WO2023051425A1 - 自由落体实验机电控制系统 - Google Patents

自由落体实验机电控制系统 Download PDF

Info

Publication number
WO2023051425A1
WO2023051425A1 PCT/CN2022/121175 CN2022121175W WO2023051425A1 WO 2023051425 A1 WO2023051425 A1 WO 2023051425A1 CN 2022121175 W CN2022121175 W CN 2022121175W WO 2023051425 A1 WO2023051425 A1 WO 2023051425A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
experiment
chip microcomputer
free
photoelectric
Prior art date
Application number
PCT/CN2022/121175
Other languages
English (en)
French (fr)
Inventor
郑浩斌
罗剑
欧阳建明
彭刚
王永
孙未蒙
肖立志
Original Assignee
中国人民解放军国防科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军国防科技大学 filed Critical 中国人民解放军国防科技大学
Publication of WO2023051425A1 publication Critical patent/WO2023051425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/08Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics
    • G09B23/10Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics of solid bodies

Definitions

  • the utility model relates to the field of teaching experiments, in particular to an electromechanical control system for free-fall experiments.
  • Measuring the local gravitational acceleration using the free fall method is a traditional physics experiment, and it is also the basic experiment of many university or middle school physics courses. During the experiment, by measuring and recording the falling distance and time of the ball and other heavy objects, the local gravitational acceleration is calculated. For a long time, how to effectively improve the utilization efficiency of experimental equipment and improve the operating level of experimental personnel has always been a problem that laboratory teachers, managers and major experimental equipment manufacturers have focused on. As an important role in the process of informatization and digital transformation in laboratory construction, the intelligent transformation of experimental equipment will change and promote traditional experimental equipment to play a more flexible and in-depth teaching and experimental role.
  • the patent with the publication number CN108154765A discloses a free fall experiment device, including a base, a support rod, an electromagnet, an experimental small iron ball, a photoelectric gate and a timing device, wherein the support rod is provided with a first height adjustable height position Adjust the connecting piece, the second height adjusting connecting piece and the third height adjusting connecting piece, the first height adjusting connecting piece is equipped with an electromagnet which absorbs the test ball, the second height adjusting connecting piece and the third height adjusting connecting piece are equipped with a photoelectric gate , the height scale line on the support rod, etc. ensure the accuracy of adjustment, and can demonstrate the free fall motion simply and intuitively.
  • the above scheme relies on manually adjusting the position of the drop point/photoelectric gate, and completing the process of picking up, loading and delivering the ball. In addition, it needs to manually control the magnet to release the ball. These may increase errors or misoperations in the experiment, and it is difficult to be free and flexible. The measurement distance required for the experiment is carefully adjusted, which increases the unnecessary subsidiary activities of the students.
  • the purpose of the utility model is to overcome the deficiencies of the prior art and provide an electromechanical control system for free-fall experiments, which can be used as an unattended remote-operated experimental control system to improve the intelligence and informatization of the experiment.
  • the utility model provides a free-fall experiment electromechanical control system, including a free-fall module, a single-chip microcomputer module, a gate control module, a photoelectric timing module, a motor control module and an image acquisition module;
  • the free fall module includes a free fall tube, the top of the free fall tube is connected to a gate control device, the bottom end of the free fall tube is connected to a ball delivery device, and the gate control device controls the release of small balls, and the ball delivery device will The final pellet is transported back to the gating device;
  • the gate control module includes a gate control switch arranged on the gate control device, and the gate control switch is electrically connected to the single-chip microcomputer module to control the release of the small ball;
  • the photoelectric timing module includes at least two photoelectric gates, the photoelectric gates are arranged on the free fall tube, and the photoelectric gates are electrically connected to the single-chip microcomputer module;
  • the motor control module includes a first motor controller electrically connected to the single-chip microcomputer module, and the first motor controller controls the first motor of the ball sending device;
  • the image acquisition module includes a plurality of cameras electrically connected to the single-chip microcomputer module, and the cameras collect images of the positions of the free-fall tube and the photoelectric gate.
  • each of the photoelectric gates is respectively connected to a corresponding lead screw mechanism, and each of the lead screw mechanisms is respectively driven by a second motor
  • the motor control module also includes a plurality of electrical connections with the single-chip microcomputer module.
  • a second motor controller each of the second motor controllers respectively controls one of the second motors.
  • the single-chip module includes a single-chip board and a circuit, the single-chip board is connected to the circuit, and the circuit includes a keyboard circuit, a power supply circuit, a reset circuit, a crystal oscillator circuit, and a communication interface circuit.
  • the single-chip microcomputer module communicates with the gate control module, the photoelectric timing module and the motor control module through the MQTT network protocol.
  • the single-chip microcomputer module communicates with the image acquisition module through the DCMI protocol.
  • the free-fall experiment electromechanical control system relies on the integrated control of the single-chip microcomputer module.
  • the gate control device releases small balls for free-fall experiments according to control instructions and control cycles.
  • the small balls in the free fall experiment can be automatically collected and fed to the gate control device to realize the recycling and precise control of the small balls.
  • the single-chip microcomputer module can automatically record the time difference of the free-falling small balls through the photoelectric gate, and at the same time obtain the distance relationship between the photoelectric gate and Calculate the local gravitational acceleration, and can adjust the position and height difference of the photoelectric gate electrically through commands. In addition, it can also shoot the whole experiment process of the ball falling in real time, ensuring the coordination and synchronization of the electromechanical control during the whole experiment process.
  • the solution adds a "real" experience to students' online experiments, and also provides remote platform maintenance for laboratory managers, reduces work intensity, and lays the foundation for comprehensive intelligence, informatization, and remoteness of online experiments;
  • Fig. 1 is a functional structural diagram of the present utility model
  • Fig. 2 is the experiment flowchart of the utility model
  • Fig. 3 is a flow chart of the position adjustment of the photoelectric gate of the present invention.
  • the embodiment of the utility model provides a kind of electromechanical control system of free fall experiment, comprises free fall module, single-chip microcomputer module, gate control module, photoelectric timing module, motor control module and image acquisition module.
  • the free-fall module includes a free-fall tube, the top of the free-fall tube is connected with a gate control device, and the bottom of the free-fall tube is connected with a ball feeding device.
  • the gate control device controls the release of the small ball, so that the small ball moves freely along the free fall tube.
  • the ball delivery device picks up the experimental ball and transfers it back to the gate control device, adopts the chain transmission method, and cooperates with the structural parts to realize that only a single ball enters each action Precise control of recovery tank.
  • the door control module includes a door control switch arranged on the door control device.
  • the door control switch is electrically connected with the single-chip microcomputer module, and can detect the state of the small ball in place. fall.
  • the photoelectric timing module includes at least two photoelectric gates. In this embodiment, the first photoelectric gate and the second photoelectric gate are arranged, both of which are installed on the free fall tube, and are electrically connected with the single-chip microcomputer module to feed back signals, so that the single-chip microcomputer module can control the small ball.
  • the free fall process is timed.
  • the motor control module includes a first motor controller electrically connected to the single-chip microcomputer module, and the first motor controller controls the first motor of the ball feeding device, thereby controlling the ball feeding process of the ball feeding device.
  • the image acquisition module is the first camera, the second camera and the third camera electrically connected with the single-chip microcomputer module, and the whole free fall tube is a transparent glass tube, all in the shooting range of the third camera, the first camera and the second camera respectively Image acquisition is performed on the positions of the first photogate and the second photogate to confirm the distance between the two photogates, the ball release point and each other.
  • the first motor controller controls the operation of the ball delivery device, and transports a small ball to the gate control device.
  • the gate control device receives the ball and makes the small ball The ball stays at the gate control switch;
  • the single-chip microcomputer module sends a gate control command to control the gate control switch to open, so that the ball enters the free fall tube through the open gate control device, and performs free fall motion in the free fall tube;
  • the single-chip microcomputer module automatically counts and calculates the corresponding time difference, checks the position of the first photogate through the first camera, and checks the position of the second photogate through the second camera , and calculate the distance difference between the two photoelectric gates, and calculate the local acceleration of gravity through the relationship between the time and the distance difference; when the ball falls on the bottom of the free fall tube, it enters the ball sending device.
  • the first motor controller is in
  • the first photoelectric gate and the second photoelectric gate in this embodiment are respectively connected with the first screw mechanism and the second screw mechanism, so that the screw mechanism can adjust the position and relative distance of the photoelectric gate without manual adjustment .
  • the first screw mechanism is driven by the second motor
  • the second screw mechanism is driven by the third motor
  • both the second motor and the third motor are stepping motors.
  • the motor control module further includes a second motor controller and a third motor controller, and the second motor controller and the third motor controller respectively control the second motor and the third motor, and the second motor and the third motor also It is electrically connected with the single chip microcomputer module.
  • the position adjustment process of the photoelectric gate controlled by this system is shown in Figure 3: Under the control of the single-chip microcomputer module, the first camera checks the position of the first photoelectric gate. If the position meets the requirements, it will not act. Instructions are given to the second motor controller, and the second motor controller controls the rotation of the second motor, so that the second motor drives the first screw mechanism to rotate, thereby driving the first photoelectric gate to move until the first photoelectric gate viewed by the first camera The position of the photogate meets the requirements. The second camera checks the position of the second photogate. If the position of the second photogate and the relative position between the first photogate and the second photogate meet the requirements, no action will be taken. If the requirements are not met, the single-chip microcomputer module will send a command.
  • the third motor controller controls the rotation of the third motor, so that the third motor drives the second screw mechanism to rotate, thereby driving the second photoelectric gate to move until the second photoelectric gate viewed by the second camera
  • the location of the door meets the requirements.
  • the single-chip microcomputer module includes a single-chip microcomputer board and a circuit, and the single-chip microcomputer board is connected with a keyboard circuit, a power supply circuit, a reset circuit, a crystal oscillator circuit, and a communication interface circuit to process signals generated by photoelectric gates and the like and synchronously control the entire system.
  • the single-chip microcomputer module communicates with the door control module, the photoelectric timing module and the motor control module through the MQTT network protocol. Subscribed data, non-subscribed data will not be received, which not only ensures the necessary data exchange, but also avoids the storage and processing caused by invalid data, and ensures the coordination and synchronization of electromechanical control in the whole experimental process.
  • the single-chip microcomputer module and the image acquisition module communicate through the DCMI protocol to ensure that the camera and the like transmit a large amount of data and require high-speed transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Educational Administration (AREA)
  • Computational Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

自由落体实验机电控制系统,依靠单片机模块集成控制,门控装置根据控制指令和控制周期释放小球进行自由落体实验,能按实验要求定时/准时启动实验开始点,送球装置使自由落体实验的小球能输送回门控装置,实现小球的回收利用和精准控制,单片机模块通过光电门能自动记录自由落体小球的时间差,同时获取光电门的距离关系而计算当地重力加速度,且能通过指令电动调节光电门的位置和高度差,另外还能实时拍摄小球落下的实验全过程,保证了全实验过程的机电控制协调同步,提升了实验的智能化、信息化程度。

Description

自由落体实验机电控制系统 技术领域
本实用新型涉及教学实验领域,特别涉及一种自由落体实验机电控制系统。
背景技术
利用自由落体法测量当地重力加速度是一项传统的物理实验,也是很多大学或中学物理课程的基础实验。在实验过程中,通过测量、记录小球等重物下落的距离和时间,计算的得到当地重力加速度的大小。长期以来,如何有效提高实验设备利用效率,提高实验人员的操作水平,一直是实验室教师、管理人员以及各大实验设备生产商着重思考的问题。作为实验室建设中信息化、数字化转型过程中的重要角色,实验设备的智能化改造,将改变并推动传统实验设备发挥更加灵活、深度的教学与实验作用。
公开号为CN108154765A的专利公开了一种自由落体运动实验装置,包括底座、支撑杆、电磁铁、实验小铁球、光电门和计时装置,其中支撑杆上设有可调整高度位置的第一高度调节连接件、第二高度调节连接件和第三高度调节连接件,第一高度调节连接件安装吸附实验小球的电磁铁、第二高度调节连接件和第三高度调节连接件安装有光电门,支撑杆上的高度刻度线等确保调节的精度,能简便、直观地演示自由落体运动。
上述方案依靠手动方式调节下落点/光电门的位置,以及完成拾球、上球及送球过程,另外需要手动控制磁铁释放小球,这些都可能在实验中增加误差或误操作,且难以自由灵活地调节实验时需要的测量距离,增加了学生不必要的附属活动。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
实用新型内容
本实用新型的目的是为了克服现有技术的不足,提供一种自由落体运动实验的机电控制系统,作为无人值守的可远程操作实验控制系统,提升实验的智能化、信息化程度。
为了达到上述目的,本实用新型提供了一种自由落体实验机电控制系统,包括自由落体模块、单片机模块、门控模块、光电计时模块、电机控制模块以及图像采集模块;
所述自由落体模块包括自由落体管,所述自由落体管的顶端连接门控装置,所述自由落体管的底端连接送球装置,所述门控装置控制小球释放,所述送球装置将实验后的小球输送回所述门控装置;
所述门控模块包括设置在所述门控装置上的门控开关,所述门控开关与所述单片机模块电连接,以控制所述小球的释放;
所述光电计时模块包括至少两个光电门,所述光电门设置于所述自由落体管上,所述光电门与所述单片机模块电连接;
所述电机控制模块包括与所述单片机模块电连接的第一电机控制器,所述第一电机控制器控制所述送球装置的第一电机;
所述图像采集模块包括多个与所述单片机模块电连接的摄像头,所述摄像头对所述自由落体管、以及所述光电门的位置进行图像采集。
进一步地,每个所述光电门分别与对应的丝杠机构连接,每个所述丝杠机构分别通过一个第二电机驱动,所述电机控制模块还包括多个与所述单片机模块电连接的第二电机控制器,每个所述第二电机控制器分别控制其中一个所述第二电机。
其中,所述单片机模块包括单片机板和电路,所述单片机板与电路相连,所述电路包括键盘电路、电源电路、复位电路、晶振电路以及通信接口电路等。
其中,所述单片机模块与所述门控模块、所述光电计时模块以及所述电机控制模块之间通过MQTT网络协议通信。
其中,所述单片机模块与所述图像采集模块之间通过DCMI协议通信。
本实用新型的上述方案有如下的有益效果:
本实用新型提供的自由落体实验机电控制系统,依靠单片机模块集成控制, 门控装置根据控制指令和控制周期释放小球进行自由落体实验,能按实验要求定时/准时启动实验开始点,送球装置使自由落体实验的小球能自动收集、上料至门控装置,实现小球的回收利用和精准控制,单片机模块通过光电门能自动记录自由落体小球的时间差,同时获取光电门的距离关系而计算当地重力加速度,且能通过指令电动调节光电门的位置和高度差,另外还能实时拍摄小球落下的实验全过程,保证了全实验过程的机电控制协调同步,作为一种可远程操作的解决方案,为学生的线上实验增加“实”的体验,还可为实验室管理人员提供远程平台维护,降低工作强度,为线上实验的全面智能化、信息化以及远程化打下基础;
本实用新型的其它有益效果将在随后的具体实施方式部分予以详细说明。
附图说明
图1为本实用新型的功能结构图;
图2为本实用新型的实验流程图;
图3为本实用新型的光电门位置调节流程图。
具体实施方式
为使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。在具体实施方式中所描述的各个具体技术特征和各实施例,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征/实施例的组合可以形成不同的实施方式,为了避免不必要的重复,本实用新型中各个具体技术特征/实施例的各种可能的组合方式不再另行说明。
如图1所示,本实用新型的实施例提供了一种自由落体实验机电控制系统,包括自由落体模块、单片机模块、门控模块、光电计时模块、电机控制模块以及图像采集模块。其中,自由落体模块包括自由落体管,自由落体管的顶端连接门控装置,自由落体管的底端连接送球装置。门控装置控制小球释放,使小球沿自由落体管作自由落体运动。当小球完成自由落体运动至自由落体管底端 时,送球装置将实验后的小球拾取并转运回门控装置,采用链条传动的方式,配合结构件实现每次动作仅让单个小球进入回收槽的精准控制。
门控模块包括设置在门控装置上的门控开关,门控开关与单片机模块电连接,能检测小球入位状况,在单片机模块指令下通过电磁铁控制小球从自由落体管中心位置自由落下。光电计时模块包括至少两个光电门,本实施例中设置第一光电门和第二光电门,均安装在自由落体管上,且与单片机模块电连接以反馈信号,使单片机模块能对小球的自由落体过程进行计时。电机控制模块包括与单片机模块电连接的第一电机控制器,第一电机控制器控制送球装置的第一电机,从而控制送球装置的送球过程。图像采集模块为与单片机模块电连接的第一摄像头、第二摄像头和第三摄像头,整个自由落体管为透明玻璃管,均在第三摄像头的拍摄范围,第一摄像头和第二摄像头分别对第一光电门和第二光电门的位置进行图像采集,以确认两个光电门与小球释放点以及相互之间的间距。
本系统控制的实验流程如图2所示:在单片机模块控制下,第一电机控制器控制送球装置运行,将一个小球运送至门控装置,此时门控装置将小球接收,使小球停留在门控开关处;单片机模块发送门控指令,控制门控开关开启,使小球通过开启的门控装置而导入自由落体管、并在自由落体管内做自由落体运动;当小球以自由落体方式通过第一光电门和第二光电门时,单片机模块自动计时,并计算出对应的时间差,通过第一摄像头查看第一光电门的位置,通过第二摄像头查看第二光电门的位置,并计算两个光电门的距离差,通过时间和距离差的关系计算当地的重力加速度;当小球掉落在自由落体管底端后,进入送球装置,此时第一电机控制器在单片机模块的控制下,等待下一轮的送球动作;整个自由落体管都在第三摄像头的拍摄覆盖范围内,通过第三摄像头记录实验全过程。
作为进一步改进,本实施例中的第一光电门和第二光电门分别与第一丝杠机构以及第二丝杠机构连接,使丝杆机构能调节光电门的位置和相对距离,无需手动调节。其中,第一丝杠机构通过第二电机驱动,第二丝杠机构通过第三电机驱动,第二电机和第三电机均为步进电机。相对应地,电机控制模块还包括第二电机控制器和第三电机控制器,第二电机控制器和第三电机控制器分别 控制第二电机和第三电机,第二电机和第三电机同样与单片机模块电连接。
本系统控制的光电门位置调节流程如图3所示:在单片机模块控制下,第一摄像头查看第一光电门的位置,若位置符合要求,则不动作,若位置不符合要求,单片机模块发送指令给第二电机控制器,由第二电机控制器控制第二电机旋转,使第二电机驱动第一丝杠机构旋转,从而带动第一光电门移动,直至在第一摄像头查看到的第一光电门的位置符合要求。第二摄像头查看第二光电门的位置,若第二光电门的位置及第一光电门与第二光电门之间的相对位置均符合要求,则不动作,若不符合要求,单片机模块发送指令给第三电机控制器,由第三电机控制器控制第三电机旋转,使第三电机驱动第二丝杠机构旋转,从而带动第二光电门移动,直至在第二摄像头查看到的第二光电门的位置符合要求。通过第一摄像头和第二摄像头查看两个光电门的位置及相对距离是否符合要求,如果不符合,继续前述调整过程。
在本实施例中,单片机模块包括单片机板和电路,单片机板与键盘电路、电源电路、复位电路、晶振电路以及通信接口电路等相连,以处理光电门等产生的信号并同步控制整个系统。
在本实施例中,单片机模块与门控模块、光电计时模块以及电机控制模块之间通过MQTT网络协议通信,MQTT协议为一种消息列队传输协议,采用订阅、发布机制,订阅者只接收自己已经订阅的数据,非订阅数据则不接收,既保证了必要的数据交换,又避免了无效数据造成的储存与处理,保证了全实验过程的机电控制协调同步。而单片机模块与图像采集模块之间则通过DCMI协议通信,确保摄像头等传输数据量大且需要高速传输的需求。
以上所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。

Claims (5)

  1. 一种自由落体实验机电控制系统,其特征在于,包括自由落体模块、单片机模块、门控模块、光电计时模块、电机控制模块以及图像采集模块;
    所述自由落体模块包括自由落体管,所述自由落体管的顶端连接门控装置,所述自由落体管的底端连接送球装置,所述门控装置控制小球释放,所述送球装置将实验后的小球输送回所述门控装置;
    所述门控模块包括设置在所述门控装置上的门控开关,所述门控开关与所述单片机模块电连接,以控制所述小球的释放;
    所述光电计时模块包括至少两个光电门,所述光电门设置于所述自由落体管上,所述光电门与所述单片机模块电连接;
    所述电机控制模块包括与所述单片机模块电连接的第一电机控制器,所述第一电机控制器控制所述送球装置的第一电机;
    所述图像采集模块包括多个与所述单片机模块电连接的摄像头,所述摄像头对所述自由落体管、以及所述光电门的位置进行图像采集。
  2. 根据权利要求1所述的自由落体实验机电控制系统,其特征在于,每个所述光电门分别与对应的丝杠机构连接,每个所述丝杠机构分别通过一个第二电机驱动,所述电机控制模块还包括多个与所述单片机模块电连接的第二电机控制器,每个所述第二电机控制器分别控制其中一个所述第二电机。
  3. 根据权利要求1所述的自由落体实验机电控制系统,其特征在于,所述单片机模块包括单片机板和电路,所述单片机板与电路相连,所述电路包括键盘电路、电源电路、复位电路、晶振电路以及通信接口电路。
  4. 根据权利要求1所述的自由落体实验机电控制系统,其特征在于,所述单片机模块与所述门控模块、所述光电计时模块以及所述电机控制模块之间通过MQTT(Message Queuing Telemetry Transport)网络协议通信。
  5. 根据权利要求1所述的自由落体实验机电控制系统,其特征在于,所述单片机模块与所述图像采集模块之间通过DCMI(Digital Camera Interface)协议通信。
PCT/CN2022/121175 2021-09-29 2022-09-26 自由落体实验机电控制系统 WO2023051425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122380402.7 2021-09-29
CN202122380402 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023051425A1 true WO2023051425A1 (zh) 2023-04-06

Family

ID=85781304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121175 WO2023051425A1 (zh) 2021-09-29 2022-09-26 自由落体实验机电控制系统

Country Status (1)

Country Link
WO (1) WO2023051425A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202975353U (zh) * 2012-09-14 2013-06-05 太原理工大学 一种测量重力加速度的实验装置
JP2014086038A (ja) * 2012-10-26 2014-05-12 System Craft Inc 動作認識システム
CN106373464A (zh) * 2016-10-31 2017-02-01 滕德虎 一种自由落体重力加速度测量装置
CN108154765A (zh) * 2018-01-05 2018-06-12 宝鸡文理学院 一种自由落体运动实验装置
CN108335588A (zh) * 2018-01-16 2018-07-27 佛山杰致信息科技有限公司 一种测量重力加速度的教学仪器
CN112201124A (zh) * 2020-09-08 2021-01-08 山东中医药高等专科学校 一种重力加速度的物理教学用演示装置
CN112802382A (zh) * 2021-02-02 2021-05-14 中国人民解放军国防科技大学 可远程控制的重力加速度物理实验系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202975353U (zh) * 2012-09-14 2013-06-05 太原理工大学 一种测量重力加速度的实验装置
JP2014086038A (ja) * 2012-10-26 2014-05-12 System Craft Inc 動作認識システム
CN106373464A (zh) * 2016-10-31 2017-02-01 滕德虎 一种自由落体重力加速度测量装置
CN108154765A (zh) * 2018-01-05 2018-06-12 宝鸡文理学院 一种自由落体运动实验装置
CN108335588A (zh) * 2018-01-16 2018-07-27 佛山杰致信息科技有限公司 一种测量重力加速度的教学仪器
CN112201124A (zh) * 2020-09-08 2021-01-08 山东中医药高等专科学校 一种重力加速度的物理教学用演示装置
CN112802382A (zh) * 2021-02-02 2021-05-14 中国人民解放军国防科技大学 可远程控制的重力加速度物理实验系统

Similar Documents

Publication Publication Date Title
CN201439856U (zh) 一种二自由度锁定跟踪伺服云台
CN107723399B (zh) 一种高炉布料智能监测系统和调整方法
CN110285300A (zh) 一种大数据信息采集监控装置
WO2023051425A1 (zh) 自由落体实验机电控制系统
CN103076814A (zh) 一种太阳能自动跟踪系统
CN106730751A (zh) 一种智能网球发球装置
CN107817823A (zh) 云台及云台关机方法
CN207488793U (zh) 一种建筑工程施工进度监控装置
CN104022724B (zh) 一种太阳能自动定位装置
CN103083888B (zh) 五自由度高仿真乒乓球发球机械手
CN204761380U (zh) 阵列式双轴联动太阳跟踪装置
CN206434822U (zh) 一种智能网球发球装置
CN206962990U (zh) 视频采集与传输智能一体机
CN203775127U (zh) 太阳能自动定位装置
CN206568563U (zh) 一种无人看守的3d打印机
CN202837940U (zh) 一种水利物联网视频监控终端
CN203870477U (zh) 一种太阳能发电装置追日姿态自动控制系统
WO2023051423A1 (zh) 智能化自由落体运动实验仪
CN202083946U (zh) 云台控制系统
CN206339824U (zh) 一种适用于投影仪的自动平衡装置
CN213693776U (zh) 一种用于线上监考的人工智能系统
CN206584551U (zh) 实现投影仪浸入式显示及投影画面与黑板同步移动的装置
CN208059879U (zh) 一种模拟摄影测量的多功能相机装置
CN207008418U (zh) 一种自动跟踪装置
CN207045150U (zh) 一种自动移动式充电桩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE