WO2023051283A1 - 一种光无线通信方法及设备 - Google Patents

一种光无线通信方法及设备 Download PDF

Info

Publication number
WO2023051283A1
WO2023051283A1 PCT/CN2022/119316 CN2022119316W WO2023051283A1 WO 2023051283 A1 WO2023051283 A1 WO 2023051283A1 CN 2022119316 W CN2022119316 W CN 2022119316W WO 2023051283 A1 WO2023051283 A1 WO 2023051283A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
signal
node
nodes
communication
Prior art date
Application number
PCT/CN2022/119316
Other languages
English (en)
French (fr)
Inventor
黄晶晶
张军平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051283A1 publication Critical patent/WO2023051283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the embodiments of the present application relate to the technical field of optical wireless communication, and in particular, to an optical wireless communication method and device.
  • the wireless communication system is gradually developing towards millimeter waves, such as electromagnetic waves in the terahertz frequency band and optical frequency band, and the use of millimeter waves for wireless communication is studied.
  • millimeter waves such as electromagnetic waves in the terahertz frequency band and optical frequency band
  • millimeter waves such as visible light
  • VLC visible light communication
  • the VLC technology can only realize positioning or communication, and cannot realize positioning and communication at the same time, that is, the positioning technology based on the VLC technology cannot be well integrated with wireless communication.
  • Embodiments of the present application provide an optical wireless communication method and device, so as to simultaneously realize device positioning and communication between devices by using the optical wireless communication technology.
  • the embodiment of the present application provides an optical communication method, the method may include: the first communication device receives the optical signals respectively transmitted by N nodes; according to the received optical signals of the N nodes, obtains the The first parameters of the N nodes of a communication device and the information bit stream corresponding to each node.
  • the optical signal is obtained by the node through the electro-optic conversion of the first signal, the first signal is the signal obtained by adding the second signal to the DC bias signal, and the second signal is the information bit stream to be sent by the light source node to the first communication device after constant
  • different nodes correspond to different frequencies of carriers used for constant envelope modulation, so as to distinguish information bit streams sent by different nodes; N is an integer greater than or equal to 3.
  • the first communication device receives an optical signal emitted by a group of (at least 3) nodes (such as LEDs), converts it into an electrical signal through photoelectricity, processes the electrical signal to obtain the spectrum of the signal, and then converts the center of the signal according to the spectrum of the signal
  • the frequency point is compared with the central frequency point of the locally stored carrier to determine which nodes have signals and obtain the position information of the nodes (the position information of the nodes is known to the first user equipment), and calculate the signal
  • the power attenuation ratio and then obtain the horizontal distance between the first communication device and each node according to the power attenuation ratio, and then calculate the position information of the first communication device itself according to the positioning method, and obtain the corresponding communication between the first communication device and the node through filtering
  • the information bit stream transmitted on the frequency point is compared with the central frequency point of the locally stored carrier to determine which nodes have signals and obtain the position information of the nodes (the position information of the nodes is known to the first user equipment), and calculate the signal
  • the first node is any node among the N nodes, and the first communication device acquires the horizontal distance d between the first node and the first communication device and the position of the first node
  • the information includes: the first communication device performs photoelectric conversion processing on the received first optical signal to obtain a third signal; wherein, the third signal is a signal after the first signal is transmitted through a channel; the first optical signal is received by the first communication device any optical signal received; the first communication device compares the center frequency point of the spectrum of the third signal and the center frequency point of the carrier corresponding to each node, if the center frequency point of the spectrum of the third signal is the same as that of the carrier corresponding to the first node If the center frequency points are the same, it is determined that the first optical signal from the first node is received; the first communication device determines the power attenuation ratio according to the received power of the third signal and the transmission power when the first node transmits the optical signal, and according to the power attenuation ratio Determine the horizontal
  • the first communication device receives the optical signals transmitted by N nodes respectively, including: the first communication device receives the optical signals transmitted by the nodes at the receiving frequency points of the nodes, and the receiving frequency points of different nodes are different from each other. The same, to ensure that the spectrums of signals transmitted by different nodes do not overlap and avoid interference.
  • the method further includes: the first communication device sends an access request including the current location information of the first communication device and the identity of the first communication device to the second communication device on the access channel, the first communication device A communication device receives an access response from the second communication device on the access channel, including the identifier of the first communication device and the communication frequency of each node in the N nodes, and the first communication device responds to the access response, and then Enter N nodes.
  • an access node can be implemented to perform optical wireless communication with the node.
  • the method further includes: the first communication device receives fixed bit streams from M nodes on the access channel, and determines the current location information of the first communication device according to the fixed bit streams of the M nodes; M is an integer greater than or equal to 3. Based on this possible design, positioning can be achieved based on fixed bit streams sent by multiple nodes.
  • the N nodes are nodes around the first communication device that are closer to the first communication device and have idle channels, so as to ensure the communication quality between the N nodes and the first communication device.
  • the method further includes: the first communication device detects that the channel quality between the first node and the first communication device is less than a preset threshold; the first node is included in the N nodes; the first communication On the access channel, the device sends to the second communication device a handover request including the current location information of the first communication device and the identity of the first communication device, and the first communication device receives a handover request from the second communication device on the access channel, including The identifier of the first communication device and the switching response of the communication frequency point of the second node; the first communication device switches from the first node to the second node according to the switching response. Based on this possible design, switching can be performed in time when the signal quality is poor, so as to ensure the communication quality.
  • the second node is a node that is closer to the first communication device and has an idle channel among the nodes around the first communication device, so as to ensure that after the first communication device switches to the second node, the second node and the first communication device A communication quality between communication devices.
  • the present application provides a communication device.
  • the communication device may be a first communication device or a chip or a system-on-a-chip in the first communication device, and may also be used in the first communication device to implement the first aspect or the first Any possible design of the functional modules of the described method.
  • the communication device may be an access network device or a chip or a system-on-a-chip in the access network device, and may also be the device described in any possible design of the access network device for realizing the second aspect or the second aspect.
  • the function module of the method can implement the functions performed by the first communication device or the access network device in the above aspects or in each possible design, and the functions can be realized by executing corresponding software through hardware.
  • the hardware or software includes one or more modules with corresponding functions above.
  • the communication device may include: a transceiver unit and a processing unit.
  • a transceiver unit configured to receive optical signals respectively transmitted by N nodes; the optical signals are obtained by electro-optical conversion of the first signal by the nodes, and the first signal is a signal obtained by adding a DC bias signal to the second signal , the second signal is a signal obtained after constant envelope modulation of the information bit stream to be sent by the light source node to the first communication device, and different nodes correspond to different carrier frequencies for constant envelope modulation; the N is an integer greater than or equal to 3;
  • a processing unit configured to acquire first parameters of the N nodes and an information bit stream corresponding to each node according to the received optical signals of the N nodes; wherein the first parameters include the node and the first The horizontal distance d between communication devices and the location information of the nodes, and the first parameters of the N nodes are used to determine the current location information of the first communication device.
  • each unit of the communication device may refer to the description in the first aspect or any possible design of the first aspect, and details are not repeated here.
  • a communication device may be a first communication device or a chip or a system on a chip in the first communication device.
  • the communication device may implement the above aspects or the functions performed by the first communication device in each possible design, and the functions may be implemented by hardware.
  • the communication device may be an access network device or a chip or a system on a chip in the access network device.
  • the communication device can realize the functions performed by the access network equipment in the above aspects or in each possible design, and the functions can be realized by hardware.
  • the communication device may include: a processor and a communication interface, and the processor and the communication interface may support the communication device to execute the method described in the first aspect or any possible design of the first aspect.
  • the communication device may further include a memory, and the memory is used for storing necessary computer-executable instructions and data of the communication device.
  • the processor executes the computer-executable instructions stored in the memory, so that the communication device executes the optical communication method described in the first aspect or any possible design of the first aspect.
  • a computer-readable storage medium may be a readable non-volatile storage medium, and instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium is run on a computer, the , causing the computer to execute the optical communication method described in the first aspect or any possible design of the first aspect.
  • a computer program product including instructions, which, when run on a computer, cause the computer to execute the optical communication method described in the first aspect or any possible design of the first aspect.
  • a communication device may be a first communication device or a chip or a system-on-chip in the first communication device, and the communication device includes one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, when the one or more processors When executing the computer instructions, the first communication device is caused to execute the method described in the first aspect or any possible design of the first aspect.
  • the technical effect brought by any one of the design methods in the third aspect to the sixth aspect can refer to the technical effect brought by the above-mentioned first aspect or any possible design method of the first aspect, and will not be repeated here.
  • the embodiment of the present application provides a communication system, and the communication system may include: a first communication device, N nodes, and a second communication device.
  • the first communication device may implement the optical communication method described in the first aspect or any possible design of the first aspect.
  • Fig. 1 is a schematic diagram of the electromagnetic spectrum
  • Figure 2 is a schematic diagram of LiFi technology
  • FIG. 3 is a schematic diagram of the advantages of LiFi technology
  • Fig. 4 is a schematic diagram of the positioning principle of multiple light sources
  • Figure 5 is a schematic diagram of positioning based on RSS
  • Fig. 6 is a schematic diagram of the LED light source emitting and PD receiving process
  • Fig. 7 is a graph showing the relationship between received signal strength and horizontal distance
  • FIG. 8 is a schematic diagram of a terminal provided with an ALS
  • Fig. 9 is a schematic diagram of positioning based on ALS
  • FIG. 10 is a schematic diagram of the architecture of an LED-based wireless optical communication system
  • Figure 11 is a schematic diagram of broad spectrum
  • Fig. 12 is a schematic diagram of superimposed DC bias
  • FIG. 13 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Fig. 14a is a frame diagram 1 of UE positioning and communication through LED provided by the embodiment of the present application.
  • FIG. 14b is a second frame diagram of UE positioning and communication through LED provided by the embodiment of the present application.
  • FIG. 15 is a flowchart of an optical communication method provided by an embodiment of the present application.
  • FIG. 16 is a flowchart of an optical communication method provided by an embodiment of the present application.
  • FIG. 17 is a flowchart of an optical communication method provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a UE implementing positioning and communication through LEDs according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of positioning and communication of multiple UEs through LEDs provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of a communication device 200 provided in an embodiment of the present application.
  • FIG. 21 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • the electromagnetic spectrum refers to the electromagnetic wave family arranged continuously according to the electromagnetic wave wavelength (or frequency). The higher the frequency (or vibration rate) of the electromagnetic wave, the greater the energy, and the shorter the wavelength of the electromagnetic wave.
  • FIG. 1 is a schematic diagram of the electromagnetic spectrum.
  • the electromagnetic spectrum can be divided into radio waves (radio), microwave (microwave), infrared (infrared), and visible light (visible) according to the order of the wavelength of electromagnetic waves from long to short.
  • ultraviolet rays ultraviolet rays (ultraviolet), X-rays (X-ray) (or Roentgen rays), gamma rays (gamma ray).
  • Radio waves have wavelengths from a few kilometers (10 3 meters) to about 0.3 meters.
  • the wavelength of microwave can be from 0.3 meters to 10 -3 meters.
  • the wavelength of infrared rays can be from 10 -3 meters to 7.8x10 -7 meters.
  • the wavelength of visible light can be from 78x10 -6 cm to 3.8x10 -6 cm.
  • the wavelength of ultraviolet light can be from 3x10 -7 cm to 6x10 -10 meters.
  • the wavelength of X-rays can be from 2x10 -9 meters to 6x10 -12 meters.
  • the wavelength of gamma rays can be from 2x10 -10 meters to 6x10 -14 meters.
  • radio waves can be used for television and radio broadcasting. Microwaves can be used in radar or other communication systems. Infrared, visible light, and ultraviolet light are not yet widely used in communications. X-rays and gamma rays are harmful to the human body.
  • FIG. 1 is only an exemplary drawing, and besides the electromagnetic waves shown in FIG. 1 , other electromagnetic waves may also be included, without limitation.
  • electromagnetic waves commonly used in wireless communication may include radio waves and microwaves, but the spectrum resources of radio waves and microwaves are relatively limited. With the increase of communication users and communication services, spectrum resources will be crowded, resulting in a decline in communication quality.
  • millimeter waves such as electromagnetic waves in the terahertz frequency band and optical frequency bands
  • millimeter waves such as visible light
  • LiFi technology (or visible light communication (visible light communication, VLC)) technology is a kind of optical wireless communication (optical wireless communication, OWC), and it is a wireless optical communication technology based on white light-emitting diode (light-emitting diode, LED). , it can use flashing lights (which can be called visible light) to realize the transmission of network signals.
  • OWC optical wireless communication
  • LED white light-emitting diode
  • flashing lights which can be called visible light
  • Figure 2 is a schematic diagram of LiFi communication. As shown in Figure 2, the LED light of the LED light will change in intensity, which is invisible to the naked eye.
  • the data (such as 0101 in Figure 2) is quickly encoded into a light signal (which can be called a LiFi signal or an electrical signal), and the encoded light signal is effectively transmitted to the receiving end (such as the mobile phone in Figure 2).
  • a light signal which can be called a LiFi signal or an electrical signal
  • LiFi is an exemplary name for visible light communication
  • LiFi may also be called VLC or other names without limitation.
  • VLC is taken as an example to describe the visible light communication method.
  • the OWC technology represented by LiFi technology can have various advantages as shown in Figure 3: large capacity, free spectrum license, anti-interception, good directionality, and strong confidentiality.
  • These advantages of LiFi technology (or VLC technology) make wireless optical communication based on LiFi technology (or VLC technology) have one or more of the following characteristics: ultra-high spectrum (such as visible, infrared, ultraviolet, etc.), High data rate (such as gigabits per second (Gbps), or terabits per second (Tbps)), low cost of use and operation, safe communication in complex electromagnetic environments, radiation safety, high-precision positioning (or indoor high precision positioning), location services, local area security communication, etc.
  • the existing positioning technology may include: satellite positioning technology such as global positioning system (GPS), ultrasonic positioning technology, wireless-fidelity (wireless-Fidelity, WIFI) positioning technology, Bluetooth positioning technology, and the like.
  • GPS and other satellite positioning technologies have matured in outdoor positioning, but the radio signals in the indoor environment are blocked by buildings, making the GPS receiving signal weak, resulting in the positioning accuracy of GPS and other satellites cannot meet indoor standards, so GPS and other satellite positioning Technology is difficult to adapt to indoor environments.
  • Ultrasonic positioning technology performs distance measurement based on the time difference between the echo and the transmitted wave, which has high positioning accuracy, but requires a large number of measuring equipment to be arranged in space, and the positioning cost is relatively high.
  • Bluetooth positioning technology performs positioning by measuring the strength of received signals, which is suitable for short-distance and small-scale positioning, but the stability of Bluetooth positioning technology is poor.
  • WIFI positioning technology locates by measuring the distance from the user to the wireless hotspot, which is easily interfered by other signals, and the energy consumption of the locator is relatively high.
  • the VLC-based indoor positioning technology has the following advantages over the above positioning technologies: 1)
  • the VLC indoor positioning system uses LEDs as light sources. LEDs have the advantages of long life, low power consumption, small size, and environmental protection.
  • VLC indoor positioning relies on the natural conditions of indoor LEDs, and does not require additional special emission points, which reduces equipment and maintenance costs and is low in cost. 4) The popularity of LED and the advantages of no electromagnetic interference make VLC indoor positioning can be applied to many harsh occasions and has a wide range of applications.
  • Figure 4 is a schematic diagram of the principle of indoor positioning technology based on VLC.
  • the horizontal distance d of each light source from the target device (d1, d2 and d3 in Figure 4), combined with the horizontal distance d of each light source from the target device, and the position information of each light source (as shown in Figure 4 in the two-dimensional plane LED1 (x1, y1), LED2 (x2, y2), LED3 (x3, y3)) can be positioned to obtain the current location information (x, y) of the target device.
  • the horizontal distance d between each light source and the target device can be obtained based on the received signal strength (received signal strength, RSS) positioning principle, or based on the ambient light sensor (ambient light sensor, ALS) wireless light RSS positioning, etc.
  • the wireless optical communication of the LED and then combine the horizontal distance d between the light source and the target device, and the position information of each light source to calculate the current position information of the target device.
  • the RSS described in the embodiment of the present application may also be understood as a received signal strength indication (received signal strength indication, RSSI).
  • FIG. 5 is a schematic diagram of the principle of RSS positioning.
  • multiple light sources or called LED light sources or LED lights
  • each light source sends a signal to the device ( may be referred to as an optical signal)
  • the target device obtains the horizontal distance d from the target device to the light source according to the detected strength of the emitted signal from the light source (which may be called RSS), and obtains position information indicating the position of the light source, and then based on
  • the horizontal distance d between each light source and the target device and the position information of the light source are calculated using a corresponding positioning algorithm to obtain the position coordinates of the device.
  • the positioning algorithm may include a trilateral positioning method, a least square method, and the like.
  • the three light sources measure the horizontal distances between themselves and the target device as d 1 , d 2 , and d 3 , draw three circles with the respective light sources as the center and the measured distance as the radius, and the intersection points of the three circles
  • the location of is the location of the target device.
  • the estimated position of the target device may be calculated according to a least squares method (LS) algorithm.
  • the position coordinates of the target device are (x, y)
  • the position coordinates of the i-th light source among the N light sources are ( xi , y i )
  • the value range of i is [1, N]
  • the position coordinates of the light source, the horizontal distance between the light source and the target device, and the position coordinates of the target device satisfy the following formula (1):
  • the horizontal distance d between the light source and the target device is an important parameter.
  • the horizontal distance d between the light source and the target device can be determined according to the RSS of the transmitted signal of the light source to the target device. For example, as shown in Figure 6, assuming that the light source transmits a signal to the target device at the emission angle ⁇ , and the luminous intensity distribution of the light source obeys the near Lambert light source model, then the luminous intensity I ⁇ in the direction of the emission angle ⁇ satisfies the following formula (2):
  • ⁇ 0 in the formula (2) is the luminous intensity perpendicular to the light-emitting surface (that is, the light-emitting surface whose emission angle is ⁇ )
  • m is the radiation modulus (ie order)
  • m represents the light concentration of the light source
  • the ⁇ 1/2 in formula (3) is the half-power angle or half-intensity angle of the luminous intensity of the light source, and 2 ⁇ 1/2 can usually be called the beam angle of the light source device, that is , the maximum effective luminous angle.
  • the indoor wireless optical communication channel model according to the radiation characteristics of the near-Lambertian light source, in the line of sight (LOS), the optical power Pr received by the photodetector (PD) in the target device (or called received power Pr or received signal strength Pr) and the relationship between the transmitting end (such as the light source in Figure 5) transmitting power Pt satisfies the following formula (4):
  • formula (4) can be transformed into: in is the power attenuation ratio.
  • ⁇ in formula (4) represent the emission angle of the light source and the reception angle of the target device respectively, if the target device is placed horizontally with the emission end, then there is T S and g represent the optical filter gain and light concentration gain of the target device, respectively;
  • Ar is the effective receiving area of the receiving device, and d is the target device (such as the PD or receiver of the target device) and the transmitter of the light source (or Transmitters) between the direct distance (or called the horizontal distance).
  • the received signal strength of the target device (or the receiver of the target device) and the distance between the target device (or the receiver of the target device) and the light source can be obtained.
  • the one-to-one correspondence of the horizontal distance d of is shown in FIG. 7 .
  • an ALS may be set on the target device.
  • the target device is a terminal (or called a mobile terminal or a mobile phone)
  • ALS may be set on the terminal, for example, ALS may be set on the top of the surface where the user interaction interface of the terminal is located.
  • ALS can provide information about ambient light levels to automatically control the screen brightness of moving target devices.
  • a key feature of ALS is low power consumption.
  • the power of ALS can be in the milliwatt (mW) level. Many low-power target devices or applications can continuously obtain data from ALS without worrying about battery life.
  • the target device with ALS is installed with a positioning program, and the positioning program can store the position information of the light source, the transmission power of the light source, and the corresponding switching frequency.
  • One of the light sources corresponds to a fixed switching frequency (which may be called a fixed frequency), and the switching frequencies corresponding to different light sources are different.
  • the light source uses the fixed frequency corresponding to itself to control the switch of the light source, so that the flickering frequency of the light source is consistent with its own fixed frequency, and the light source can be identified according to the frequency of the optical signal generated by the flickering of the light source.
  • the location information and the emission power of the light source realize the positioning of the target device.
  • Figure 9 shows the wireless optical RSS positioning process based on ALS.
  • the transmitter transmitter
  • the data table frequency map datasheet
  • the data table and other processes generate three fixed-frequency square waves.
  • the fixed frequencies of these three square waves can be ft1, ft2, and ft3 in Figure 9.
  • These three square waves correspond to three light sources (light source 1.
  • Light source 2 and light source 3) control the flickering frequency (or switching frequency) of the light source with a fixed frequency, and trigger the three light sources to emit optical signals with fixed frequencies ft1, ft2, and ft3 respectively.
  • the target device using ALS receives the optical signals from the three light sources, it undergoes double sampling rates (double sampling rates), fast Fourier transformation (fast fourier transformation, FFT) , candidate (candidate selection), decoding algorithm (decoding algorithm), localization algorithm (localization algorithm) and other processes to identify the flickering frequency of the light source, identify which light source and received power according to the flickering frequency, and then according to the stored position information of the light source , transmit power, use the above formula (4) to obtain the power attenuation ratio between the optical power (or called received power) of the signal emitted by the light source and the transmit power, and obtain the power attenuation ratio between the light source and the target device according to the power attenuation ratio Horizontal distance d. Further, the current position information of the target device is obtained according to the position information of the light source, the horizontal distance d between the light source and the target device, and the multilateral positioning method shown in formula (1).
  • the above describes the process of realizing device positioning through visible light.
  • This positioning process can only realize positioning, but cannot realize visible light-based inter-device communication at the same time (such as transmitting useful information bit streams between devices).
  • the location information of the target device can be obtained by knowing the transmission power of the light source and the receiving power of the target device. Information bit streams transmitted between each other, etc.).
  • the light source can be identified by designing a fixed-frequency transmission signal for the light source, and then the target device can be obtained based on the pre-saved position information and transmission power of the light source. location information.
  • the light source performs periodic/regular switching, and its switching state does not change periodically.
  • the signal emitted by the light source does not carry other additional information (such as information corresponding to the information bit stream, etc.), and of course Unable to achieve inter-device communication.
  • FIG 10 shows a schematic diagram of the architecture of an LED-based wireless optical communication system.
  • an LED-based wireless optical communication system may include: A channel (may be referred to as a channel (channel) for short) and an optical signal receiving end (may be referred to as a receiving end (receiver) for short).
  • the optical signal transmitting end includes a modulator (modulator) module, an amplifier (amplifier, AMP), a driving circuit (not shown in the figure), an optical transmitter (not shown in the figure), and the like.
  • the original binary signal (or information bit stream) ⁇ sg is encoded and modulated at the transmitting end to obtain a signal ⁇ " sg , ⁇ " sg may be positive or negative, and a DC bias (DC bias), after analog-to-digital conversion, drive the light transmitter (such as LED light) to control its light intensity, so as to realize the conversion of electrical signal to light signal ⁇ LED .
  • the modulated light signal ⁇ LED is transmitted in the channel, such as in Propagated in channels such as the atmosphere or underwater, where the optical signal transmitted through the channel may experience signal fading, shadowing, and ambient light scrambling.
  • the optical signal transmitted through the channel is concentrated Concentration, blue filter (blue filter) reach the optical signal receiving end.
  • Optical signal receiving end includes receiving antenna (not shown in the figure), photodetector (photodetector), amplifier, analog filter (analog filters) , demodulator (demodulator) module, etc.
  • photodetector photodetector
  • analog filter analog filters
  • demodulator demodulator module
  • the photodetector may include a photodiode (positive intrinsic-negative, PIN) or an avalanche photodiode (avalanche photodiode, APD).
  • a photodiode positive intrinsic-negative, PIN
  • an avalanche photodiode avalanche photodiode
  • the LED light emits light spontaneously, the frequency and phase of the output photons are incoherent, and the spectrum is a wide spectrum as shown in Figure 11, so the phase modulation of the carrier cannot be performed on the signal output by the LED.
  • Intensity modulation (or called non-coherent modulation) is used in wireless optical communication, but coherent modulation cannot be used.
  • intensity modulation since the output intensity of the LED lamp cannot be negative, the signal to be emitted needs to be superimposed with a DC bias before driving the LED.
  • a 400 milliampere (mA) DC bias can be superimposed on the signal to be transmitted, so that the output strength of the signal to be transmitted is always at a positive value, such as making the intensity of the signal to be transmitted
  • the output power stays around 200 milliwatts (mW).
  • the method shown in Figure 12 can only realize communication between devices based on visible light but cannot realize device positioning at the same time. The reason is as follows: the spectrum of the light signal emitted by the LED is wide-spectrum, and only intensity modulation can be performed, but coherent modulation cannot be performed. Since the intensity modulation cannot demodulate the light signals emitted by multiple (for example, three or more) LED light sources, the method shown in FIG. 12 is not applicable to the scenario of implementing communication through multiple LED light sources. However, in the above-mentioned RSS-based positioning process or ALS-based positioning process, at least three LED light sources are required to realize device positioning based on LED light sources. Therefore, it is not possible to combine the method shown in Fig. 12 with device location. That is to say, the existing technology cannot integrate inter-device communication and inter-device positioning, but in actual communication scenarios (such as cell handover or access, etc.), it is necessary to realize reliable communication between devices based on real-time acquired positioning data.
  • an embodiment of the present application provides an optical communication method, which may include: the first communication device receives optical signals respectively transmitted by N nodes; According to the received optical signals of the N nodes, first parameters for locating the N nodes of the first communication device and information bit streams corresponding to each node are acquired.
  • the optical signal is obtained by the node through the electro-optic conversion of the first signal, the first signal is the signal obtained by adding the second signal to the DC bias signal, and the second signal is the information bit stream to be sent by the light source node to the first communication device after constant
  • different nodes correspond to different carrier frequencies for constant envelope modulation, so as to distinguish different nodes.
  • the information bit stream to be sent by each node is subjected to constant envelope modulation, and different nodes carry out constant envelope modulation with different carriers, that is, the frequency spectrum of the modulated signal are different, and different nodes correspond to different spectrums, so that the receiving end/target device (such as the first communication device in the embodiment of the present application) can coherently demodulate the received signals sent by multiple nodes, according to the demodulated
  • the spectrum of the signal (or signal spectrum) identifies which node sent the signal, and obtains the information bit stream transmitted by the node, and at the same time obtains the corresponding power attenuation ratio of the node, and obtains the power between the node and the device according to the power attenuation ratio. Horizontal distance, and then realize device positioning according to the location information of multiple nodes, and the horizontal distance between multiple nodes and the device.
  • the optical wireless communication method provided by the embodiment of the present application can be used in a fourth generation (4th generation, 4G) system, a long term evolution (long term evolution, LTE) system, a fifth generation (5th generation, 5G) system, a new air interface (new radio , NR) system, NR-vehicle-to-everything communication (vehicle-to-everything, V2X) system, and any system in the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
  • the following uses the communication system shown in FIG. 13 as an example to describe the optical wireless communication method provided in the embodiment of the present application.
  • Fig. 13 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include access network equipment and multiple light sources (which may be referred to as nodes or visible light nodes in the embodiments of this application) and multiple terminals.
  • Fig. 13 is an exemplary framework diagram, and the number of nodes included in Fig. 13 is not limited, and besides the functional nodes shown in Fig. 13, other nodes such as core network devices, gateway devices, and application servers may also be included .
  • the access network equipment is mainly used to implement functions such as terminal resource scheduling, radio resource management, and radio access control.
  • the access network device may be any one of a base station, a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access node.
  • the light source may be a node capable of providing LEDs, and may be an LED lamp or other LED devices.
  • the light source can be used to convert the electrical signal sent by the access network device to the terminal into an optical signal for emission, and/or to receive the optical signal sent by the terminal to the access network device, and report the optical signal to the access network device.
  • the terminal may be a terminal equipment (terminal equipment), a user equipment (user equipment, UE) or a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT), etc.
  • the terminal can be a mobile phone, a tablet computer, or a computer with a wireless transceiver function, and can also be a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, or a wireless terminal in industrial control.
  • Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes, vehicle-mounted terminals, etc.
  • the device for realizing the function of the terminal may be a terminal, or a device capable of supporting the terminal to realize the function, such as a chip system (for example, a chip or a processing system composed of multiple chips).
  • a chip system for example, a chip or a processing system composed of multiple chips.
  • the functional block diagram of the method described in the embodiment of the present application is shown in Figure 14a or Figure 14b: all LEDs are to be sent
  • the information bit stream of the information uses constant envelope modulation, and the spectrum shape of the signal emitted by a single LED is the same.
  • the LED is driven to transmit the signal.
  • Different LEDs use different emission signals.
  • the radio frequency point ensures that the spectrum of the transmitted signal does not overlap.
  • the PD of the UE receives the optical signal sent by each LED and undergoes photoelectric conversion to obtain the signal (I' 1 +I' 0_1 )+(I' 2 +I' 0_2 )+(I' 3 +I' 0_3 ), which is obtained by TIA processing Voltage signal (V' 1 +V' 0_1 )+(V' 2 +V' 0_2 )+(V' 3 +V' 0_3 ), the voltage signal is sampled and FFT processed to obtain the signal spectrum, and the signal spectrum is compared with the constant The spectrum of the carrier used for envelope modulation determines which LED is emitting the signal, and then locates the UE according to the position information of the LED and the attenuation power ratio, and demodulates the signal to obtain the information bit stream.
  • each LED may be provided with a PD and a transimpedance amplifier (trans-impedance amplifier, TIA), so as to use the PD to convert the received uplink optical signal into an electrical signal, and use the TIA to convert the received uplink optical signal into an electrical signal.
  • the electrical signal is converted into a voltage signal and sent to the base station.
  • TIA may not be included in the LED.
  • optical communication method provided by the embodiment of the present application will be described below with reference to the communication system shown in FIG. 13 .
  • the actions and terms involved in the following embodiments can refer to each other.
  • the names of messages or parameters in the messages exchanged between devices in each embodiment are just examples, and other names can also be used in specific implementations. , without restriction.
  • the terms "first" and "second” in the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • the attributes of different objects represented by " are not limited.
  • Fig. 15 is a flow chart of an optical communication method provided in the embodiment of the present application. As shown in Fig. 15, the method may include:
  • the second communications device sends a first signal to N nodes.
  • N nodes receive the first signal.
  • the second communication device may be the access network device in FIG. 13 , such as a base station or the like.
  • the second communication device may be referred to as a sending end, and may be a device that sends an information bit stream.
  • N is an integer greater than or equal to 3.
  • Nodes can be light sources or LED lights as shown in FIG. 13 .
  • the first signals received by different nodes are different.
  • the first signal may be a signal after the second communication device processes the information bit stream (such as the signal I sg in FIG. 10 ) to be sent to the first communication device through the node.
  • the second signal is obtained by subjecting the information bit stream to constant envelope modulation, amplifying the second signal, and adding a DC bias signal, and the second signal is a constant envelope signal.
  • the information bit stream may be a binary bit stream corresponding to useful information to be sent by the second communication device to the first communication device.
  • Information bit streams corresponding to different nodes may be different or the same.
  • the constant envelope modulation may refer to modulating a signal with a carrier, so that the envelope of the modulated signal is constant, and the center frequency of the frequency spectrum of the modulated signal is the same as the center frequency of the carrier.
  • Constant envelope modulation can include minimum shift keying (MSK) modulation, or Gaussian minimum shift keying (GMSK) or binary phase shift keying (BPSK) )wait.
  • MSK minimum shift keying
  • GMSK Gaussian minimum shift keying
  • BPSK binary phase shift keying
  • the carriers used for constant envelope modulation corresponding to different nodes are different, and the center frequency points are different, so that the first communication device compares the center frequency of the received signal with the center frequency used for constant envelope modulation.
  • the center frequency of the carrier identifies which node sent the signal.
  • the carrier used for constant envelope modulation may be preconfigured or indicated to the first communication device.
  • Carriers F1, F2, and F3 for constant envelope modulation are configured for each LED in advance, and these three carriers are used to perform constant envelope modulation on the three information bit streams.
  • Envelope modulation can obtain signals I 1 , I 2 and I 3 , I 1 , I 2 and I 3 are constant envelope signals, and the frequency (or frequency spectrum) corresponds to F1, F2 and F3 respectively, and the frequency spectrum and carrier wave of signal I 1 F1 is the same, the frequency spectrum of the signal I2 is the same as the carrier F2, and the frequency spectrum of the signal I3 is the same as the carrier F3.
  • the purpose of superimposing the DC bias signal is to ensure that the intensity of the output signal is not a negative value, so as to drive the LED.
  • the size of the DC bias signal can be set according to needs, which can be 400mA or other, without limitation.
  • the signal I mentioned in this application may refer to a current signal or an electrical signal, such as I 1 , I 2 and I 3 , and I 0_1 , I 0_2 , I 0_3 are all current signals/electrical signals.
  • the signal V described in this application may refer to a voltage signal, such as the following V' 1 , V' 2 and V' 3 , V' 0_1 , V' 0_2 , V' 0_3 are all voltage signals.
  • Each of the N nodes performs photoelectric conversion on the received first signal to obtain an optical signal, and sends the optical signal to the first communication device.
  • the first communication device receives the optical signal.
  • the first communication device may be any terminal shown in FIG. 13 .
  • each node can send an optical signal to the first communication device with a certain transmit power.
  • the spectrum shape of the optical signal sent by the node is the same as the spectrum shape of the carrier used for constant envelope modulation.
  • LED_1 transmits (I 1 +I 0_1 ) to UE with transmit power P 0_1
  • LED_2 transmits (I 2 +I 0_2 ) to UE with transmit power P 0_2
  • LED_3 transmits (I 2 +I 0_2 ) to UE with transmit power P 0_3
  • the UE sends (I 3 +I 0_3 ).
  • the emission power of the LED may also be referred to as the average emission power or other names, without limitation.
  • the transmit power for each LED may be known by the first communication device.
  • the node may send an optical signal to the first communication device through a channel (such as the atmosphere or underwater) between the node and the first communication device at the transmitting frequency point corresponding to the node.
  • the first communication device receives the optical signal at the receiving frequency point corresponding to the node.
  • the channel described in this application may be called a transmission channel, and the channel may be used to transmit signals between two devices.
  • the transmitting frequency point and receiving frequency point described in this application are relative concepts.
  • the transmitting frequency point may refer to the frequency point used by the transmitting end to send signals, and the receiving frequency point may refer to the frequency point when the receiving end receives signals.
  • the radio frequency points can be the same.
  • the transmitting frequency point and the receiving frequency point of the node may be collectively referred to as the communication frequency point of the node, and the communication frequency point may be sent by the second communication device to the first communication device during the access process shown in FIG. 16 .
  • the transmission frequencies of different nodes are different, ensuring that the spectrums of signals transmitted by different nodes do not overlap, and avoiding interference between different nodes.
  • the spectrum shapes, location information and communication frequency points of signals transmitted by different nodes are known to the first communication device, for example, the node and the carrier used for constant envelope modulation, the node's The location information and the communication frequency point are pre-indicated/configured to the first communication device.
  • it may be configured to the first communication device before performing S1501 described in this application, or configured to the first communication device before performing S1503, without limitation.
  • the first communication device obtains the first parameters of the N nodes used to determine the current position information of the first communication device, and the corresponding second communication device passing nodes of each node An information bit stream sent to the first communication device.
  • the optical signal received by the first communication device may be different from the optical signal sent by the node to the first communication device, and the optical signal received by the first communication device may be the optical signal sent by the node through the channel
  • the optical signal received by the first communication device is equal to the optical signal sent by the node multiplied by the channel matrix H(f).
  • the channel mentioned in this application may refer to a transmission channel between the node and the first communication device.
  • the first parameter may include a horizontal distance d between the node and the first communication device and location information of the node
  • the first parameters of the N nodes may be used to determine the current location information of the first communication device.
  • the current location information of the first communication device may be determined by using the first parameters of the N nodes in combination with the multilateral positioning method shown in formula (1).
  • the first communication device obtains the first parameters of the N nodes used to determine the current position information of the first communication device according to the received optical signals of the N nodes, and the second communication device corresponding to each node
  • the first communication device performs photoelectric conversion processing on the received N optical signals to obtain N third signals.
  • the third signal may refer to the signal transmitted from the first signal to the first communication device through the channel (or it can be understood as the attenuated The first signal), the third signal includes the attenuated second signal (or it can be understood as the signal that the second signal is transmitted to the first communication device through the channel) and the attenuated DC bias signal (or it can be understood as the DC bias signal
  • the signal is channeled to the signal of the first communication device).
  • N nodes respectively send optical signals, and correspondingly, the first communication device receives N optical signals, and performs photoelectric conversion on the N optical signals to obtain N third signals.
  • the first communication device For each third signal, the first communication device processes the third signal to obtain the spectrum of the third signal, compares the center frequency point of the spectrum of the third signal and the carrier used by each node for constant envelope modulation If the center frequency of the carrier used by the first node is the same as the frequency spectrum of the center frequency of the spectrum of the third signal, it is determined that the optical signal corresponding to the third signal is the optical signal transmitted by the first node, and then Obtaining a power attenuation ratio according to the received power when receiving the optical signal corresponding to the third signal and the sending power when the first node sends the optical signal, and determining the horizontal distance d between the first communication device and the first node according to the power attenuation ratio; The first communication device acquires the location information of the first node according to the stored correspondence between the nodes and the location information of the nodes. At the same time, the first communication device performs processing such as demodulation on the third signal to obtain an information bit stream. After traversing each third signal, the first parameter of each node
  • the carrier used for the constant envelope modulation corresponding to the node may be known in advance. After the first communication device receives the signal, it can compare whether the center frequency point of the frequency spectrum of the received signal is the same as the center frequency point of the carrier, find the carrier wave that is the same as the center frequency point of the received signal, and determine that the received signal is The signal transmitted by the node corresponding to the carrier.
  • LED_1 corresponds to the carrier F1
  • the carrier F1 is used to perform constant envelope modulation on the information bit stream to obtain I 1
  • LED_2 corresponds to the carrier F2
  • the carrier F2 is used to perform constant envelope modulation on the information bit stream to obtain I 2
  • LED_3 corresponds to the carrier F3
  • the carrier F3 is used for constant envelope modulation to obtain I 3 . It can be seen from Fig. 14b that the frequencies of the carriers corresponding to different LEDs are different.
  • the UE can separately process the received signal to obtain the frequency spectrum of (I' 1 +I' 0_1 ), (I' 2 +I' 0_2 ) and (I' 3 +I' 0_3 ), if (I' 1 +I' 0_3 ) is found ' 0_1 ), (I' 2 +I' 0_2 ), (I' 3 +I' 0_3 ) the center frequency points of the frequency spectrum corresponding to the center frequency point of F1, the center frequency point of F2, and the center frequency point of F3 respectively, then According to the known correspondence between the carrier and the LEDs, it is determined that the received signals are the signals sent by LED_1, LED_2, and LED_3 respectively,
  • the power attenuation ratio may be equal to the ratio of the received power when the first communication device receives the optical signal to the sent power when the first node sends the optical signal.
  • the manner of determining the horizontal distance d between the first communication device and the first node according to the power attenuation ratio may refer to the foregoing formula (4), and details are not repeated here.
  • the received power when the first communication device receives the optical signal may be determined according to the current magnitude of the electrical signal corresponding to the received optical signal.
  • the current magnitude has a linear relationship with the received power.
  • the transmission power (or average power) when the first node transmits light may refer to optical power, the optical power is linearly related to the current, and the average power depends on the average current.
  • LED_1 performs photoelectric conversion on the signal (I 1 +I 0_1 ) sent by the base station to obtain an optical signal and then sends it to the UE through a channel.
  • the optical power of LED_1 P 0_1 f(I 1 , I 0_1 ).
  • its power attenuation ratio P' 0_1 /P 0_1 . It should be understood that, in this embodiment of the present application, the optical power when each node transmits an optical signal is known to the first communication device.
  • the first signal is a signal obtained by modulating the information bit stream with a constant envelope and superimposing a DC bias signal
  • the first signal includes a DC signal and an AC signal
  • the power attenuation ratios of the DC signal and the AC signal are the same, that is, the first The DC component and the AC component in the signal change in equal proportions, so the aforementioned power attenuation ratio may also be equal to the power attenuation ratio of the DC component or the power attenuation ratio of the AC component.
  • the DC bias signals described in the embodiments of the present application are pre-configured, and the DC bias signals corresponding to different nodes may be the same or different without limitation.
  • the first communication device it may be known in advance which node corresponds to which DC bias signal.
  • the corresponding relationship between the location information of each node and the node may be pre-stored on the first communication device.
  • the location information described in this application may refer to two-dimensional plane coordinates and the like.
  • the foregoing takes the first node as an example to describe the process of obtaining the first parameter of the first node and the information bit stream corresponding to the first node.
  • the process of obtaining the first parameters of other nodes can refer to the above process, and will not be repeated.
  • the first communication device performs photoelectric conversion processing on the received optical signal to obtain the third signal (or understood as the attenuated first signal) may include: the first communication device uses the photodetector deployed in it to receive After the received optical signal is converted into a voltage signal by a trans-impedance amplifier (TIA), the first communication device processes the voltage signal through sampling and FFT to obtain the spectrum of the attenuated first signal. The second signal is separated from the first signal, and the second signal is demodulated to obtain an information bit stream. At the same time, compare the center frequency point of the frequency spectrum of the attenuated first signal with the center frequency point of the carrier corresponding to which node is the same, identify the signal transmitted by which node, and obtain the signal used for The first parameter for positioning.
  • TIA trans-impedance amplifier
  • LED_1 performs photoelectric conversion on the received signal (I 1 +I 0_1 ) and sends it to the UE through a channel.
  • the UE receives the signal (I' 1 +I' 0_1 )
  • the corresponding received power is P' 0_1
  • I' 0_1 is the signal after the DC bias signal I 0_1 is transmitted through the channel (or called the attenuated DC bias signal)
  • I' 1 is the signal after the information bit stream I 1 is transmitted through the channel (may be referred to as an attenuated information bit stream).
  • LED_2 performs photoelectric conversion on the received signal (I 2 +I 0_2 ) and sends it to the UE through the channel.
  • the UE receives the signal (I' 2 +I' 0_2 ), and its corresponding received power is P' 0_2 , where I' 0_2 is the signal after the DC bias signal I 0_2 is transmitted through the channel (or called the attenuated DC bias signal), and I' 2 is the signal after the information bit stream I 2 is transmitted through the channel (it can be called the attenuated information bit flow).
  • LED_3 performs photoelectric conversion on the received signal (I' 3 +I' 0_3 ) and sends it to the UE through a channel.
  • the UE receives the signal (I' 3 +I' 0_3 ), and its corresponding received power is P 0_3 , where I ' 0_3 is the signal after the DC bias signal I 0_3 is transmitted through the channel (or called the attenuated DC bias signal), and I' 3 is the signal after the information bit stream I 3 is transmitted through the channel (it can be called the attenuated information bitstream).
  • the UE processes the signal (I' 1 +I' 0_1 ) through TIA, sampling, FFT, etc. to obtain I' 1 and I' 0_1 , and processes the signal (I' 2 +I' 0_2 ) through TIA, sampling, FFT, etc.
  • the signal (I' 3 +I' 0_3 ) is processed by TIA, sampling, FFT, etc. to obtain I' 3 and I' 0_3 .
  • the UE determines that the center frequency point of the spectrum of I'1 is the same as the center frequency point of the carrier F1, and then determines that I'1 corresponds to LED_1 according to the correspondence between the carrier and the node, that is, I'1 and I'0_1 correspond to LED_1, and the UE Determine the power attenuation ratio between the transmission power P 0_1 of the LED_1 transmitted signal and the received power P' 0_1 of the signal transmitted by the LED_1 received by the UE according to formula (4), and then determine the horizontal distance between LED_1 and the UE according to the power attenuation ratio d1.
  • the algorithm shown in the formula (1) is used to calculate the location information of the UE, so as to realize the positioning of the UE.
  • demodulate I' 1 to obtain information bit stream I 1 demodulate I' 2 to obtain information bit stream I 2 , and demodulate I' 3 to obtain information bit stream I 3 . In this way, the positioning is realized and the transmission of the information bit stream is realized at the same time.
  • the first communication device receives optical signals emitted by a group of (at least 3) nodes (such as LEDs), converts them into electrical signals through photoelectricity, processes the electrical signals to obtain the signal spectrum, and then converts the center frequency point of the signal spectrum and Compare the central frequency points of the locally saved carriers to determine which nodes have signals and obtain the location information of the nodes (the location information of the nodes is known to the first user equipment), and calculate the power attenuation ratio of the signal , and then obtain the horizontal distance between the first communication device and each node according to the power attenuation ratio, and then calculate the position information of the first communication device itself according to the positioning method, and obtain the corresponding communication frequency points between the first communication device and the node through filtering The transmitted information bit stream.
  • nodes such as LEDs
  • the first user equipment needs to perform an access process (or called an initial access process) to access the N nodes , so as to realize mutual transmission of signals with the second communication device through the N nodes.
  • the first communication device can access one or more nodes at the same time.
  • the first communication device can access at least three nodes at the same time, without limitation.
  • the process for the first user equipment to access N nodes may include S1504-S1506:
  • the first communication device sends an access request to the second communication device on the access channel.
  • the second communication device receives the access request.
  • the access channel may be a common signal, such as a control signal, and an access channel may be shared by one or more first communication devices, that is, one or more first communication devices may be on the access channel Initiate an access request.
  • the frequency of the access channel is different from the communication frequency of all nodes.
  • the access channel may be preconfigured to the first communication device and the second communication device, so that the first communication device sends an access request on the access channel, and the second communication device receives the access request on the access channel.
  • the access request may include the current location information of the first communication device and the identifier of the first communication device.
  • the access request may be used to request access to the node or to request communication with the first communication device via the node.
  • the identifier of the first communication device may be used to indicate the first communication device.
  • the identifier of the first communication device may be an Internet protocol (internet protocol, IP) address of the first communication device or a media access control (media access control, MAC) address of the first communication device or an international mobile subscriber identity of the first communication device code (international mobile subscriber identity, IMSI), or permanent identification information (subscriber permanent identifier, SUPI) of the first communication device, temporary identification information of 5G global user equipment (5G global user temporary identifier, 5G-GUTI).
  • IP Internet protocol
  • MAC media access control
  • IMSI international mobile subscriber identity
  • SUPI subscriber permanent identifier
  • the current location information of the first communication device carried in the access request may refer to the location information when the first communication device initiates access.
  • the first communication device may determine its current location information by referring to the above-mentioned RSS-based positioning principle or ALS-based positioning principle, and send it to the second communication device in the access request.
  • the process for the first communication device to determine the current location information of the first communication device according to the fixed bit streams sent by the M nodes may refer to the above description of the process shown in FIG. 9 , and details are not repeated here.
  • the second communication device determines, according to the access request, a node accessible to the first communication device, and sends an access response to the first communication device. Correspondingly, the first communication device receives the access response.
  • the second communication device may send an access response to the first communication device on the access channel, and the first communication device receives the access response from the second communication device on the access channel.
  • the access response may include an identifier of the first communication device and communication frequency points of the N nodes, and the access response may be called a downlink acknowledgment (acknowledge, ACK) message.
  • Communication frequency points include transmitting frequency points and receiving frequency points.
  • the second communication device may detect the nodes around the first communication device, select N nodes that are closer to the first communication device and have idle channels from the nodes around the first communication device, and use the selected N nodes
  • the node serves as a node accessible to the first communication device.
  • the second communication device may reply to the first communication device that the access request has been successfully received.
  • the first communication device receives the reply from the second communication device and waits on the access channel. Receive an access response. If the first communication device does not receive a reply from the second communication device within the first preset time after sending the access request, it means that the access request may fail to be sent, and at this time the first communication device will reconnect to the access channel sending an access request to the second communication device.
  • the first preset time can be set according to needs and is not limited.
  • the first communication device may reply to the second communication device that the access response is received.
  • the second communication device does not receive a reply from the first communication device within the second preset time after sending the access response, it means that the access response may fail to be sent, and at this time the second communication device will restart An access response is sent to the first communications device on an access channel.
  • the preset time can be set as required without limitation.
  • the first communication device may detect whether the identifier carried in the access response is its own identifier, if so, it indicates that the access response is sent to itself, and further, save the access The communication frequency of the node carried in the response, so as to receive the signal from the node at the receiving frequency corresponding to the transmitting frequency according to the saved communication frequency of the node. On the contrary, if the detection is that the identity carried in the access response does not deny its own identity, the received access response is discarded.
  • S1506 The first communication device accesses the N nodes in response to the access response.
  • the first communication device accessing N nodes may be understood as the first communication device establishing a communication connection with each node, such as switching the communication frequency point to the receiving frequency point corresponding to the node. Subsequently, the first communication device may receive signals from N nodes by referring to the method shown in FIG. 15 through a communication connection, so as to realize positioning and information bit stream transmission.
  • the first communication device can realize positioning based on nodes independently transmitting fixed bit streams (such as 101010...) on their respective transmission frequency points, and report the located position information to the second communication device device, so that the second communication device, based on the location of the first communication device, indicates to the first communication device surrounding nodes that are relatively close to the first communication device and have idle channels, so as to instruct the first communication device to access these nodes.
  • fixed bit streams such as 101010
  • the first communication device can also monitor the communication quality of the channel between itself and the nodes in real time, and switch in time when the information quality is poor Communicate with other nodes to ensure the quality of communication between devices.
  • This process may include S1507-S1510 as shown in Figure 17:
  • the first communication device detects the channel quality between the first node and the first communication device, and if it detects that the channel quality between the first node and the first communication device is less than the preset threshold, it means that the first node and the first If the channel quality between communication devices is poor, go to S1508-S1510.
  • the first node is included in the N nodes, and may be any node in the N nodes.
  • the channel quality between the first node and the first communication device may include an RSS between the first node and the first communication device.
  • the first communication device may determine that the channel quality between the first node and the first communication device is poor if the measured power attenuation ratio is greater than a certain threshold when positioning itself, and a timely handover is required.
  • S1508 The first communication device sends a switching request to the second communication device on the access channel.
  • the second communication device receives the switching request.
  • the handover request may include current location information of the first communication device and an identifier of the first communication device.
  • a switch request may be used to request a switch from a first node to another node.
  • the current location information of the first communication device carried in the handover request may refer to the location information when the first communication device initiates the handover.
  • the first communication device may determine its current location information by referring to the above-mentioned RSS-based positioning principle or ALS-based positioning principle, and send it to the second communication device in the handover request.
  • the second communications device determines a switchable second node according to the switch request, and sends a switch response to the first communications device.
  • the first communication device receives the switching response from the second communication device on the access channel.
  • the handover response includes the identifier of the first communication device and the communication frequency of the second node, and the communication frequency includes a transmitting frequency and a receiving frequency.
  • the second communication device may detect nodes around the first communication device, and select a second node that is closer to the first communication device and has an idle channel from the nodes around the first communication device.
  • the second communication device may reply to the first communication device that the handover request has been successfully received.
  • the first communication device receives the reply from the second communication device and waits for receiving the handover request on the access channel. response. If the first communication device does not receive a reply from the second communication device within the third preset time after sending the handover request, it means that the handover request may fail to be sent.
  • the second communication device sends a handover request.
  • the third preset time can be set according to needs and is not limited.
  • the first communication device may reply to the second communication device that the switching response is received.
  • the second communication device does not receive a reply from the first communication device within the fourth preset time after sending the handover response, it means that the handover response may fail to be sent, and at this time the second communication device will reconnect to the Sending a handover response to the first communication device on an inbound channel.
  • the preset time can be set as required without limitation.
  • the first communication device may detect whether the identifier carried in the handover response is its own identifier, and if so, it indicates that the handover response is sent to itself, and further, save the handover response.
  • the communication frequency of the second node so as to receive the signal from the second node at the receiving frequency corresponding to the transmitting frequency of the second node according to the saved communication frequency of the second node. Conversely, if the detection is that the identity carried in the handover response does not deny its own identity, the received handover response is discarded.
  • S1510 The first communication device switches from the first node to the second node according to the switching response (or understood as disconnecting from the first node and accessing the second node).
  • the first communication device accessing the second node can be understood as the first communication device establishes a communication connection with each node, such as switching the communication frequency to the receiving frequency corresponding to the node. Subsequently, the first communication device receives signals from multiple nodes including the second node by referring to the method shown in FIG. 15 through a communication connection, thereby realizing positioning and information bit stream transmission.
  • the node when the channel quality between the first communication device and the first node is poor, the node can be switched to the second node in time to ensure communication quality.
  • FIG. 18 there are 9 LEDs above the UE (that is, the object to be positioned), the spatial positions of the 9 LEDs do not overlap and the wavelength is 940 nm.
  • Each LED can send positioning/communication signals.
  • the field of view of a single LED is 27°. It is hung at a height of 2.5 meters from the target device.
  • 9 LEDs are arranged in a 3*3 array, and the distance between LEDs is 0.6 meters; The object to be positioned can always be illuminated by 4 LEDs simultaneously while moving within the coverage area.
  • the positioning/communication signals transmitted by these 9 LEDs are single-carrier BPSK signals with a bandwidth of 10MHz, and the transmitting frequencies are 20MHz, 40MHz, 60MHz, 80MHz, 100MHz, 120MHz, 140MHz, 160MHz, 180MHz; the receiving frequencies are 30MHz , 50MHz, 70MHz, 90MHz, 110MHz, 130MHz, 150MHz, 170MHz, 190MHz, the bandwidth is 5MHz, and the uplink also adopts BPSK modulation; the downlink frequency of the access channel is 200MHz, and the uplink frequency is 210MHz.
  • the 9 LEDs When the UE accesses, the 9 LEDs independently transmit fixed bit streams (such as 101010%) on their respective transmitting frequency points.
  • the UE receives the optical signal emitted by a group of LEDs, and calculates its own position by referring to the positioning principle based on ALS. Location information, the UE sends an access request to the base station on the uplink frequency of the access channel, the access request includes the ID of the UE and the location information of the UE, and then the UE waits for the reply from the base station on the access channel, and resends the access request when the timeout expires input request.
  • the base station selects a node with an idle channel and closer to the UE (4 LEDs as shown in Figure 18), and sends the ID and ID of the UE on the downlink frequency of the access channel.
  • the access responses of the communication frequencies of the four nodes for example, the transmitting frequencies are 20MHz, 40MHz, 60MHz, and 80MHz; the receiving frequencies are 30MHz, 50MHz, 70MHz, and 90MHz).
  • the UE switches the communication frequency point to the communication frequency point corresponding to the four nodes, and sends an uplink ACK signal to the UE to indicate the completion of the initial access.
  • the UE can refer to the process shown in FIG. 15 to implement positioning and communication.
  • the UE receives the information bit stream emitted by four LEDs, undergoes constant envelope modulation, superimposes the DC bias signal, and the optical signal after electro-optical conversion. After the corresponding PD and TIA, it is converted into a voltage signal, and the voltage signal is sampled and analyzed.
  • FFT obtains the signal spectrum, compares the center frequency point of the signal spectrum with the center frequency point of the locally saved carrier, determines which LED signals are present and obtains the position information of these LEDs, and then according to the received power of the signal, transmission Power and formula (4) to calculate its power attenuation ratio, calculate the horizontal distance between the UE and each of the four LEDs according to the power attenuation ratio, and then calculate the position information of the UE according to the multilateral positioning method shown in formula (1), At the same time, the voltage signal is sampled and the signal obtained by FFT is demodulated to obtain an information bit stream.
  • the UE continuously measures its own location and the channel quality between the UE and the currently accessed LED. When it is found that the current LED signal attenuation is greater than a certain value, the UE sends a handover request to the base station on the uplink frequency of the access channel.
  • the handover request includes the ID of the UE and the location information of the UE, and then the UE waits for the base station on the access channel Reply, if timeout, resend the switching request.
  • the base station selects a node whose channel is idle and close to the UE (as shown in Figure 18 except for the 4 LEDs connected to the UE)
  • a handover response carrying the ID of the UE and the communication frequency of the node (for example, the transmitting frequency is 100MHz; the receiving frequency is 110MHz) is sent on the frequency point.
  • the UE judges that the ID matches its own ID, then switches the communication frequency point to the communication frequency point corresponding to the node, and sends an uplink ACK signal to the UE, indicating the completion of inter-node handover.
  • first communication device takes a first communication device as an example to describe the access process, positioning, communication and handover process of the first communication device.
  • other communication devices may implement access, positioning, communication, and switching with reference to the above-mentioned manners.
  • FIG. 19 there are two communication devices UE1 and UE2.
  • the deployment scenario of LEDs in Figure 19 is the same as that in Figure 18.
  • 9 LEDs independently transmit fixed bit streams (such as 101010%) at their respective transmitting frequency points.
  • UE1 and UE2 receive optical signals emitted by a group of LEDs.
  • the positioning principle calculates its own location information.
  • UE1 and UE2 send access requests to the base station on the uplink frequency of the access channel in turn.
  • the access request includes the ID of the UE and the location information of the UE, and then waits for the base station on the access channel. Reply, and resend the access request when the timeout expires.
  • the base station selects a node whose channel is idle and close to the UE (as shown in Figure 19, UE1 accesses LED1, UE2 accesses LED2), and on the downlink frequency point of the access channel
  • the transmission carries the ID of the UE and the communication frequency of the node.
  • the UE switches the communication frequency point to the communication frequency point corresponding to the four nodes, and sends an uplink ACK signal to the UE to indicate the completion of the initial access.
  • UE1 and UE2 may refer to the process shown in FIG. 15 to implement positioning and communication. Further, UE1 and UE2 continuously measure their own positions (UE1 moves to the right in parallel, UE2 remains stationary) and the channel quality with the currently connected LED. When UE1 finds that the current LED signal attenuation is greater than a certain value, UE1 sends a handover request to the base station on the uplink frequency of the access channel. The handover request includes the ID of UE1 and the location information of UE1, and then UE1 waits on the access channel. The base station replies, and resends the handover request when the timeout expires.
  • the base station selects a node with an idle channel and closer to UE1 (LED3 as shown in Figure 19 instead of LED2), and transmits the UE1's signal on the downlink frequency of the access channel. ID and communication frequency of LED3.
  • UE1 receives the switching response, judges that the ID matches its own ID, switches the communication frequency point to the communication frequency point corresponding to the LED3, and sends an uplink ACK signal to UE1, indicating the completion of inter-node switching.
  • the embodiment of the present application also provides a communication device, which may be the first communication device in the above method embodiment, or a device including the functions of the above first communication device, or a component that can be used in the first communication device .
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • FIG. 20 is a schematic diagram of a communication device 200 provided according to an embodiment of the present application.
  • the communication device 200 includes a transceiver unit 2001 and a processing unit 2002 .
  • the processing unit 2002 is used to realize the processing of data by the communication device 200.
  • the transceiver unit 2001 is used for receiving content from the communication device 200 and other units or network elements.
  • the processing unit 2002 in the embodiment of the present application may be realized by a processor or a processor-related circuit component (or called a processing circuit), and the receiving function of the transceiver unit 2001 may be realized by a receiver or a receiver-related circuit component. Its sending function can be realized by the transmitter or related circuit components of the transmitter.
  • the communication device 200 may be the device of the communication device 200, or may be a chip applied in the device of the communication device 200 or other combined devices, components, etc. having the functions of the device of the communication device 200 described above.
  • the communication apparatus 200 may be the first communication device in any one of the embodiments in FIG. 15 to FIG. 17 .
  • the transceiver unit 2001 is configured to receive the optical signals respectively transmitted by the N nodes (for example, execute S1502); the optical signal is obtained by the node performing electro-optical conversion on the first signal, and the first signal is a signal obtained by adding a DC bias signal to the second signal , the second signal is a signal obtained after constant envelope modulation of the information bit stream to be sent by the light source node to the first communication device, and the frequency of the carrier used by each node when performing constant envelope modulation is different; N is greater than or an integer equal to 3;
  • the processing unit 2002 is configured to obtain the first parameter and the information bit stream corresponding to each node according to the received optical signals of the N nodes (for example, execute S1503); wherein, the first parameter includes the horizontal distance d corresponding to the N nodes and location information of each of the N nodes, the first parameter is used to determine the current location information of the first communication device.
  • the execution process of the transceiver unit 2001 and the processing unit 2002 may refer to the execution process of the first communication device in FIGS. 15-17 .
  • the various modules described above may also be used in other processes that support the techniques described herein. For the beneficial effect, reference may be made to the foregoing description, and details are not repeated here.
  • FIG. 21 is a schematic diagram of another communication device provided according to an embodiment of the present application.
  • the communication device includes: a processor 2101 , a communication interface 2102 , and a memory 2103 .
  • the processor 2101, the communication interface 2102 and the memory 2103 can be connected to each other through the bus 2104;
  • the bus 2104 can be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above bus 2104 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one line is used in FIG. 21 , but it does not mean that there is only one bus or one type of bus.
  • the processor 2101 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • Memory 2103 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • the processor 2101 is configured to obtain the first parameter and the information bit stream corresponding to each node according to the received optical signals of the N nodes (for example, execute S1503); wherein, the first parameter includes the horizontal distance d corresponding to the N nodes and The location information of each node in the N nodes, the first parameter is used to determine the current location information of the first communication device.
  • the communication interface 2102 is used to receive optical signals respectively transmitted by N nodes (for example, execute S1502); the optical signal is obtained by the node performing electro-optical conversion on the first signal, and the first signal is a signal obtained by adding a DC bias signal to the second signal,
  • the second signal is a signal obtained after constant envelope modulation of the information bit stream to be sent by the light source node to the first communication device, and the frequency of the carrier used by each node when performing constant envelope modulation is different; N is greater than or equal to Integer of 3.
  • the various modules described above may also be used in other processes that support the techniques described herein. For the beneficial effect, reference may be made to the foregoing description, and details are not repeated here.
  • the embodiment of the present application also provides a communication system, which includes the aforementioned first communication device, N nodes, and a second communication device, wherein the first communication device implements the first communication device in the embodiments shown in Figures 15-17 method of execution.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer can realize the above-mentioned method embodiments provided in Figure 15 to Figure 17 A process related to the first communication device in any one of the shown embodiments.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement any one of Figure 15 to Figure 17 provided by the above method embodiment. Flows related to the first communication device in the illustrated embodiment.
  • the present application also provides a chip, including a processor.
  • the processor is configured to read and execute the computer program stored in the memory, so as to execute the corresponding operations and/or processes executed by the first communication device in the optical communication method provided in the present application.
  • the chip further includes a memory, the memory is connected to the processor through a circuit or wires, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the above-mentioned chip can also be replaced by a system-on-a-chip, which will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to the actual situation to realize the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Abstract

本申请实施例公开了一种光无线通信方法及设备,涉及通信技术领域,以同时实现设备定位以及设备间通信。该方法可以包括:第一通信设备接收N个节点分别发射的光信号;根据接收到的N个节点的光信号,获取用于定位第一通信设备的所述N个节点的第一参数以及每个节点对应的信息比特流。其中光信号由节点对第一信号进行电光转换得到,第一信号是第二信号加上直流偏置信号得到的信号,第二信号是光源节点待发送给第一通信设备的信息比特流经过恒包络调制后得到的信号,不同节点对应的用于恒包络调制的载波的频率不同,以区分不同的节点。该方法可以应用于光无线通信技术领域。

Description

一种光无线通信方法及设备
本申请要求于2021年09月30日提交国家知识产权局、申请号为202111165946.X、申请名称为“一种光无线通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光无线通信技术领域,尤其涉及一种光无线通信方法及设备。
背景技术
无线通信系统逐渐向毫米波,如太赫兹频段和光频段的电磁波发展,研究利用毫米波进行无线通信。比如灯光上网(light fidelity,LiFi)技术就是利用毫米波(比如可见光)进行通信。LiFi技术可以称为可见光通信(visible light communication,VLC)技术。
但是,VLC技术仅能实现定位或者通信,不能同时实现定位和通信,即不能将基于VLC技术的定位技术与无线通信很好的融合在一起。
发明内容
本申请实施例提供一种光无线通信方法及设备,以利用光无线通信技术同时实现设备定位以及设备间的通信。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种光通信方法,该方法可以包括:第一通信设备接收N个节点分别发射的光信号;根据接收到的N个节点的光信号,获取用于定位第一通信设备的所述N个节点的第一参数以及每个节点对应的信息比特流。其中光信号由节点对第一信号进行电光转换得到,第一信号是第二信号加上直流偏置信号得到的信号,第二信号是光源节点待发送给第一通信设备的信息比特流经过恒包络调制后得到的信号,不同节点对应的用于恒包络调制的载波的频率不同,区分不同的节点发送的信息比特流;N为大于或等于3的整数。
基于第一方面所述的方法,多个节点使用恒包络调制,单个节点发射的信号的频谱形状相同。第一通信设备接收到一组(至少3个)节点(比如LED)发射的光信号,经光电转化为电信号,对电信号进行处理得到信号的频谱,进而根据信号的频谱,将信号的中心频点和本地保存的载波的中心频点进行比对,判断出有哪些节点的信号并得到节点的位置信息(节点的位置信息对第一用户设备而言是已知的),并计算信号的功率衰减比例,进而根据功率衰减比例得到第一通信设备距离各个节点的水平距离,继而根据定位方法计算出第一通信设备自身的位置信息,以及通过滤波得到第一通信设备和节点在对应的通信频点上传输的信息比特流。
一种可能的设计中,对于第一节点,第一节点为N个节点中的任一节点,第一通信设备获取第一节点与第一通信设备之间的水平距离d以及第一节点的位置信息包括:第一通信设备对接收到的第一光信号进行光电转换处理得到第三信号;其中,第三信号为第一信号经信道传输后的信号;第一光信号为第一通信设备接收到的任一光信号;第一通信设备比对第三信号的频谱的中心频点以及每个节点对应的载波的中心频点, 如果第三信号的频谱的中心频点与第一节点对应的载波的中心频点相同,则确定接收到来自第一节点的第一光信号;第一通信设备根据第三信号的接收功率与第一节点发射光信号时的发射功率确定功率衰减比例,根据功率衰减比例确定第一通信设备与第一节点之间的水平距离d,根据保存的节点与节点的位置信息之间的对应关系,获取第一节点的位置信息。
基于该可能的设计,可以通过比对频谱识别出接收到哪些节点发射的信号,进而根据节点的位置、对应的功率衰减比例定位第一通信设备,同时通过解调获得信息比特流,实现定位和信息传输的一体化设计。
一种可能的设计中,第一通信设备接收N个节点分别发射的光信号,包括:第一通信设备在节点的接收频点上,接收节点发射的光信号,不同节点的接收频点互不相同,以保证不同节点发射的信号的频谱不重叠,避免干扰。
一种可能的设计中,所述方法还包括:第一通信设备在接入信道上向第二通信设备发送包括第一通信设备当前的位置信息以及第一通信设备的标识的接入请求,第一通信设备在接入信道上接收来自第二通信设备的包括第一通信设备的标识以及N个节点中每个节点的通信频点的接入响应,第一通信设备响应于接入响应,接入N个节点。基于该可能的设计,可以实现接入节点,与节点进行光无线通信。
一种可能的设计中,所述方法还包括:第一通信设备在接入信道上接收来自M个节点的固定比特流,根据M个节点的固定比特流确定第一通信设备当前的位置信息;M为大于或等于3的整数。基于该可能的设计,可以基于多个节点发出的固定比特流实现定位。
一种可能的设计中,N个节点为第一通信设备周围的节点中距离第一通信设备较近且信道空闲的节点,以保证N个节点与第一通信设备的通信质量。
一种可能的设计中,所述方法还包括:第一通信设备检测到第一节点与第一通信设备之间的信道质量小于预设阈值;第一节点包括在N个节点中;第一通信设备在接入信道上,向第二通信设备发送包括第一通信设备当前的位置信息以及第一通信设备的标识的切换请求,第一通信设备在接入信道上接收来自第二通信设备的包括第一通信设备的标识以及第二节点的通信频点的切换响应;第一通信设备根据切换响应,从第一节点切换到第二节点。基于该可能的设计,可以在信号质量较差的情况下及时进行切换,以保证通信质量。
一种可能的设计中,第二节点为第一通信设备周围的节点中距离第一通信设备较近且信道空闲的节点,以保证第一通信设备切换到第二节点后,第二节点与第一通信设备之间的通信质量。
第二方面,本申请提供一种通信装置,该通信装置可以为第一通信设备或者第一通信设备中的芯片或者片上系统,还可以为第一通信设备中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现第二方面或第二方面的任一可能的设计所述的方法的功能模块。该通信装置可以实现上述各方面或者各可能的设计中第一通信设备或接入网设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如: 该通信装置可以包括:收发单元以及处理单元。
收发单元,用于接收N个节点分别发射的光信号;所述光信号由所述节点对第一信号进行电光转换得到,所述第一信号是第二信号加上直流偏置信号得到的信号,所述第二信号是所述光源节点待发送给第一通信设备的信息比特流经过恒包络调制后得到的信号,不同节点对应的用于恒包络调制的载波的频率不同;所述N为大于或等于3的整数;
处理单元,用于根据接收到的所述N个节点的光信号,获取N个节点的第一参数以及每个节点对应的信息比特流;其中,所述第一参数包括所述节点与第一通信设备之间的水平距离d以及所述节点的位置信息,N个节点的第一参数用于确定所述第一通信设备当前的位置信息。
具体的,该通信装置各个单元的执行动作可参照第一方面或者第一方面的任一可能的设计中中所述,不予赘述。
第三方面,提供了一种通信装置,该通信装置可以为第一通信设备或者第一通信设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中第一通信设备所执行的功能,所述功能可以通过硬件实现。或者,该通信装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器与通信接口可以支持通信装置执行上述第一方面或者第一方面的任一可能的设计中所述的方法。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器,用于保存通信装置必要的计算机执行指令和数据。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或者第一方面的任一可能的设计中所述的光通信方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中所述的光通信方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中所述的光通信方法。
第六方面,提供了一种通信装置,该通信装置可以为第一通信设备或者第一通信设备中的芯片或者片上系统,该通信装置包括一个或多个处理器、一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使所述第一通信设备执行第一方面或者第一方面的任一可能的设计中所述的方法。
其中,第三方面至第六方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第七方面,本申请实施例提供一种通信系统,该通信系统可以包括:第一通信设备、N个节点以及第二通信设备。第一通信设备可以执行第一方面或者第一方面的任一可能的设计所述的光通信方法。
附图说明
图1为电磁频谱示意图;
图2为LiFi技术示意图;
图3为LiFi技术的优点示意图;
图4为多个光源定位原理示意图;
图5为基于RSS的定位原理图;
图6为LED光源发光与PD接收过程示意图;
图7为接收信号强度和水平距离之间的关系曲线图;
图8为设置有ALS的终端示意图;
图9为基于ALS的定位原理图;
图10为基于LED的无线光通信系统的架构示意图;
图11为宽谱示意图;
图12为叠加直流偏置的示意图;
图13为本申请实施例提供的一种通信系统的架构示意图;
图14a为本申请实施例提供的UE通过LED实现定位和通信的框架图一;
图14b为本申请实施例提供的UE通过LED实现定位和通信的框架图二;
图15为本申请实施例提供的一种光通信方法的流程图;
图16为本申请实施例提供的一种光通信方法的流程图;
图17为本申请实施例提供的一种光通信方法的流程图;
图18为本申请实施例提供的一个UE通过LED实现定位和通信的示意图;
图19为本申请实施例提供的多个UE通过LED实现定位和通信的示意图;
图20为本申请实施例提供的一种通信装置200的示意图;
图21为本申请实施例提供的又一种通信装置的示意图。
具体实施方式
电磁频谱(electromagnetic spectrum)是指按电磁波波长(或者频率)连续排列的电磁波族。电磁波的频率(或者称为振率)越高,能量越大,该电磁波的波长越短。
图1为电磁频谱示意图,如图1所示,按照电磁波的波长从长倒短的顺序可以将电磁频谱分为:无线电波(radio)、微波(microwave)、红外线(infrared)、可见光(visible)、紫外线(ultraviolet)、X射线(X-ray)(或者称为伦琴射线)、γ射线(gamma ray)。无线电波的波长从几千米(10 3米)到0.3米左右。微波的波长可以从0.3米到10 -3米。红外线的波长可以从10 -3米到7.8x10 -7米。可见光的波长可以从78x10 -6厘米至3.8x10 -6厘米。紫外线的波长可以从3x10 -7厘米至6x10 -10米。X射线的波长可以从2x10 -9米至6x10 -12米。γ射线的波长可以从2x10 -10米至6x10 -14米。其中,无线电波可以用于电视和无线电广播。微波可以用于雷达或者其他通讯系统。红外线、可见光以及紫外线尚未在通讯中广泛应用。X射线、γ射线对人体有害。
需要说明的是,图1仅为示例性附图,除图1所示电磁波之外,还可以包括其他电磁波,不予限制。
图1所示电磁频谱中,常用于无线通信的电磁波可以包括无线电波和微波,但无线电波和微波的频谱资源是比较有限的。随着通信用户和通信业务的增加,会造成频 谱资源拥挤,导致通信质量下降。为解决频谱资源拥挤问题,无线通信系统逐渐向毫米波,如太赫兹频段和光频段的电磁波发展,研究利用毫米波进行无线通信。比如近几年出现的灯光上网(light fidelity,LiFi)技术就是利用毫米波(比如可见光)进行无线通信。下面对LiFi技术进行介绍。
LiFi技术(或者称为可见光通信(visible light communication,VLC))技术是光无线通信(opitical wireless communication,OWC)的一种,是基于白光发光二极管(light-emitting diode,LED)的无线光通信技术,它可以利用闪烁的灯光(可以称为可见光)实现网络信号的传输。例如,图2为LiFi通信示意图,如图2所示,LED灯的LED灯光会有强弱变化,这是肉眼所看不出来的,在灯光闪烁变化之时,LED灯将发送端发出的二进制的数据(比如图2中的0101)快速编码成灯光信号(可以称为LiFi信号或者电信号),将编码后的灯光信号有效地传递给接收端(比如图2中的手机)。
需要说明的是,LiFi是对可见光通信的一种示例性命名,LiFi还可以称为VLC或者其他名称,不予限制。本申请实施例中以VLC为例对可见光通信方法进行描述。
其中,以LiFi技术(或者称为VLC技术)为代表的OWC技术可以具备图3所示的多种优点:大容量、免频谱许可、抗截获以及方向性好、保密性强等。LiFi技术(或者称为VLC技术)的这些优点,使得基于LiFi技术(或者称为VLC技术)的无线光通信具备如下一种或多种特性:超高光谱(比如可见、红外、紫外等)、高数据速率(比如每秒千兆(Gbps)、或者每秒兆兆(Tbps))、使用和运营成本低、在复杂电磁环境下进行安全通信、辐射安全、高精度定位(或者称为室内高精度定位)、位置服务、局域安全通信等。
以高精度定位(或者称为室内高精度定位)为例,基于VLC技术的定位相比于现有定位技术具有绝对优势。其中,现有定位技术可以包括:全球定位系统(global positioning system,GPS)等卫星定位技术、超声波定位技术、无线保真(wireless-Fidelity,WIFI)定位技术和蓝牙定位技术等。GPS等卫星定位技术在室外定位中已经趋于成熟,但是室内环境中的无线电信号被建筑物阻挡,使得GPS接收信号较弱,从而导致GPS等卫星定位精度不能满足室内标准,因此GPS等卫星定位技术难以适用于室内环境。超声波定位技术根据回波与发射波之间的时间差进行测距,具有很高的定位精度,但是需要在空间布置大量的测量设备,定位成本较高。蓝牙定位技术通过测量接收信号的强度进行定位,适合短距离、小范围定位,但是蓝牙定位技术稳定性差。WIFI定位技术通过测量用户到无线热点的距离进行定位,易受其他信号的干扰,而且定位器的能耗也比较高。而基于VLC的室内定位技术相对于以上定位技术具有以下优势:1)VLC室内定位系统以LED为光源,LED具有寿命长、功耗低、尺寸小和绿色环保等优点。2)LED兼顾照明条件,遍布室内,接收信号比较强,而且定位系统稳定性好,定位精度高。3)VLC室内定位依托于室内LED的天然条件,不需要额外布置特殊的发射点,降低了设备和维护费用,成本低。4)LED的普及和无电磁干扰的优势使得VLC室内定位能够应用于许多苛刻的场合,应用场合广。
图4为基于VLC的室内定位技术原理示意图,如图4所示:目标设备(可以是需要定位的设备)周围可以放置多个光源(如图4中的LED1、LED2以及LED3),可以测量得到各个光源距离目标设备的水平距离d(如图4中的d1、d2以及d3),结合 各个光源距离目标设备的水平距离d、以及各个光源的位置信息(如图4所示二维平面中的LED1(x1,y1)、LED2(x2,y2)、LED3(x3,y3))可以定位得到目标设备当前的位置信息(x,y)。
具体的,可以基于接收信号强度(received signal strength,RSS)定位原理、或者基于环境光度的传感器(ambient light sensor,ALS)的无线光RSS定位等测量得到各个光源距离目标设备的水平距离d、基于LED的无线光通信,进而结合光源距离目标设备的水平距离d、以及各个光源的位置信息计算得到目标设备当前的位置信息。应理解本申请实施例所述的RSS还可以理解为接收信号强度指示(received signal strength indication,RSSI)。
下面对RSS定位原理、基于ALS的无线光RSS定位分别进行介绍:
图5为RSS定位原理示意图,如图5所示,目标设备(可以是需要定位的设备)周围可以放置多个光源(或者称为LED光源或者LED灯),每个光源向该设备发射信号(可以称为光信号),目标设备根据检测到的来自光源的发射信号的强度(可以称为RSS)得到目标设备到光源的水平距离d,并获取用于指示光源的位置的位置信息,进而基于每个光源与目标设备之间的水平距离d以及光源的位置信息,采用相应的定位算法计算得到设备的位置坐标。其中定位算法可以包括三边定位法、最小二乘法等。
以采用最小二乘法为例,三个光源分别测量得到自己与目标设备的水平距离为d 1、d 2、d 3,以各自光源为圆心,测量距离为半径绘制三个圆,三个圆交点的位置即为目标设备的位置。可选的,可以根据最小二乘法(least squares method,LS)算法计算目标设备的估计位置。比如假设目标设备的位置坐标为(x,y),N个光源中第i个光源的位置坐标为(x i,y i),i的取值范围为[1,N],N为大于或者等于3的整数,如图5中所述,N=3,光源的位置坐标、光源与目标设备之间的水平距离、目标设备的位置坐标之间满足下述公式(1):
Figure PCTCN2022119316-appb-000001
将公式(1)展开,化简可以得到:
Figure PCTCN2022119316-appb-000002
利用最小二乘法可得:X=(A TA) -1A TY,进而得到目标设备当前的位置坐标(x,y)。
由上可知,计算目标设备的位置信息时,光源与目标设备之间的水平距离d是一个重要参数。一种可能的设计中,在基于RSS的定位原理中,光源与目标设备之间的水平距离d可以根据光源的发射信号到目标设备的RSS确定。比如,如图6所示,假设光源以发射角θ向目标设备发射信号,光源的发光强度分布服从近朗波光源模型, 则发射角θ方向的发光强度Ι θ满足下述公式(2):
Ι θ=Ι 0COS mθ   公式(2)ln
其中公式(2)中的Ι 0是垂直于发光面(即发射角为θ的发光面)的发光强度,m为辐射模数(即order),m代表光源的聚光度,m的表达式如下公式(3)所示:
Figure PCTCN2022119316-appb-000003
其中公式(3)中的θ 1/ 2为光源发光强度的半功率角或半光强角,通常可以将2θ 1/ 2称为光源器件的光束角,即最大有效发光角。
在室内无线光通信信道模型中,根据近朗伯光源的辐射特性,在直射链路(line of sight,LOS)中,目标设备中的光电探测器(photodetector,PD)所接收到的光功率Pr(或者称为接收功率Pr或者接收信号强度Pr)同发射端(比如图5中的光源)发射功率Pt之间的关系满足下述公式(4):
Figure PCTCN2022119316-appb-000004
其中,公式(4)可以变形为:
Figure PCTCN2022119316-appb-000005
其中
Figure PCTCN2022119316-appb-000006
为功率衰减比例。
其中公式(4)中的θ、
Figure PCTCN2022119316-appb-000007
分别表示光源的发射角和目标设备的接收角,若目标设备与发射端水平放置,则有
Figure PCTCN2022119316-appb-000008
T S和g分别表示目标设备的光过滤器增益和光聚能增益;A r为接收机件的有效接收面积,d为目标设备(比如目标设备的PD或接收机)与光源的发射器(或者发射机)之间的直射距离(或者称为水平距离)。从公式(4)变形后的公式可知:目标设备与光源之间的水平距离d与功率衰减比例之间存在关联关系,可以根据功率衰减比例以及其他已知参数计算得到目标设备与光源之间的水平距离d。
可选的,根据LED的光强分布特性,基于上述公式(4)可以得出目标设备(或者目标设备的接收机)的接收信号强度与目标设备(或者目标设备的接收机)与光源之间的水平距离d的一一对应关系如图7所示。需要说明的是,图7所示对应关系场景下光源的高度m是已知的,比如可以为m=1.57。
又一种可能的设计中,在基于ALS的无线光RSS定位中,可以在目标设备上设置一ALS。比如如图8所示,假设目标设备为终端(或者称为移动终端或者手机),可以在终端上设置ALS,比如在终端的用户交互界面所在表面的顶部设置ALS。ALS可以提供有关环境光线水平的信息,以自动控制移动目标设备的屏幕亮度。ALS的一个关键特性是低功耗,比如ALS的功率可以是毫瓦(mW)级别,许多低功耗目标设备或者应用程序可以连续从ALS获取数据,而不必担心电池寿命。在定位场景中,具有ALS的目标设备安装有定位程序,定位程序中可以存储有光源的位置信息、光源的发射功率以及对应的开关频率。其中一个光源对应一个固定的开关频率(可以称为固定频率),不同光源对应的开关频率是不同的。如此,光源使用与自己对应的固定频率来控制光源的开关,使光源的闪烁频率与自己的固定频率是一致的,实现根据光源 的闪烁所产生的光信号的频率识别出光源,根据该光源的位置信息以及光源的发射功率实现目标设备的定位。
比如,图9为基于ALS的无线光RSS定位过程,如图9所示,发射机(transmitter)经过谐波干扰(harmonics interference)、积分效应(integration effect)、频率选择(frequency selection)、频谱图数据表(frequency map datasheet)等处理生成三个固定频率的方波,这三个方波的固定频率可以是如图9中ft1、ft2以及ft3,这三个方波分别对应3个光源(光源1、光源2以及光源3),以固定频率控制光源的闪烁频率(或者称为开关频率),触发3个光源分别发射出固定频率为ft1、ft2、ft3的光信号。使用ALS的目标设备(比如图9中的手机、智能手环)接收到3个光源发出的光信号后,经过双重抽样率(double sampling rates)、快速傅里叶变换(fast fourier transformation,FFT)、候选(candidate selection)、解码算法(decoding algorithm)、定位算法(localization algorithm)等过程,识别出光源的闪烁频率,根据闪烁频率识别出是哪个光源以及接收功率,进而根据存储的光源的位置信息、发射功率,采用上述公式(4)得到接收到的光源发射的信号的光功率(或者称为接收功率)与发射功率之间的功率衰减比例,根据功率衰减比例得到光源与目标设备之间的水平距离d。进一步的根据光源的位置信息、光源与目标设备之间的水平距离d以及公式(1)所示的多边定位方法得到目标设备当前的位置信息。
上文介绍了通过可见光实现设备定位的过程,该定位过程仅能实现定位,不能在实现定位的同时又实现基于可见光的设备间通信(比如设备之间相互传输有用的信息比特流)。比如如图5所示的基于RSS的定位过程中通过获知光源的发射功率以及目标设备的接收功率即可定位得到目标设备的位置信息,未进行、也无需进行其他操作获取其他信息(比如设备之间相互传输的信息比特流等)。又比如,如图9所示的基于ALS的定位原理中,通过为光源设计固定频率的发射信号即可识别出是哪个光源,进而根据预先保存的光源的位置信息、发射功率等定位得到目标设备的位置信息。基于ALS的定位过程中,光源进行周期性的/有规律的开关,其开关状态周期性不变,光源发射出的信号不携带其他额外的信息(比如信息比特流对应的信息等),当然也无法实现设备间通信。
此外,现有基于可见光的设备间通信(比如设备之间相互传输有用的信息比特流)过程中,也仅是实现设备间通信,不能实现定位,即不能实现在设备间通信的同时又实现设备定位。例如,基于可见光的设备间通信如图10所示:
图10示出了基于LED的无线光通信系统的架构示意图,如图10所示,基于LED的无线光通信系统可以包括:光信号发射端(可以简称为发射端(transmitter))、光信号传输信道(可以简称为信道(channel))和光信号接收端(可以简称为接收端(receiver))。光信号发射端包括调制(modulator)模块、放大器(amplifier,AMP)、驱动电路(图中未示出)、光发射器(图中未示出)等。原始的二进制信号(或者称为信息比特流)Ι sg在发射端经过编码、调制等处理得到信号Ι" sg,Ι" sg可能有正有负,将Ι" sg叠加上一个直流偏置(DC bias)、经过模数转换后驱动光发射器(如LED灯)以控制其光照强度,从而实现电信号到光信号Ι LED的转换。经过调制后的光信号Ι LED在信道中传输,比如在大气或者水下等信道中传播,其中经过信道传输的光信号可能会经历信号衰减(fading)、阴影效应(shadowing)、环境光(ambient light)的加扰。 经信道传输后的光信号经过集中器(concentration)、蓝色滤片(blue filter)到达光信号接收端。光信号接收端包括接收天线(图中未示出)、光电检测器(photodetector)、放大器、模拟滤波器(analog filters)、解调(demodulator)模块等。接收端的光电探测器接收到光信号后,可以将光信号转换为电信号,将转换后的电信号经过放大器处理后叠加上热噪声(thermal noise)、闪烁噪声(flicker)、光子噪声(photon noise)等信号后再次经过放大器、模拟滤波器、解调器处理得到原始的二进制信号(或者称为信息比特流)Ι sg
本申请实施例中,光电探测器可以包括光电二极管(positive intrinsic-negative,PIN)、或者雪崩光电二极管(avalanche photo diode,APD)。
由于LED灯是自发辐射发光,输出的光子的频率和相位不相干,且光谱为图11所示的宽谱,因此对于LED输出的信号无法进行载波的相位调制,在图10所示的基于LED进行无线光通信时采用强度调制(或者称为非相干调制),而不能采用相干调制。此外,在进行强度调制时,由于LED灯的输出强度不能为负值,待发射的信号需要叠加一个直流偏置,然后再去驱动LED。比如,如图12所示,可以在待发射的信号上叠加一个400毫安(mA)的直流偏置,使待发送的信号的输出强度一直处于正值,比如使待发送的信号的强度的输出功率保持在200毫瓦(mW)左右。
图12所示方法仅能实现基于可见光的设备间通信而无法同时实现设备定位,其原因如下:LED发出的光信号的光谱是宽谱,只能进行强度调制,不能进行相干调制。由于强度调制无法将多个(比如三个或者三个以上)LED光源发出光信号解调出来,因此图12所示方法不适用通过多个LED光源实现通信的场景。但是上文所述基于RSS的定位过程或者基于ALS的定位过程中,若要实现基于LED光源的设备定位,则需要至少三个LED光源。因此,图12所示方法不可能与设备定位相结合。即现有技术无法将设备间通信与设备间定位融合在一起,但实际通信场景(比如小区切换或者接入等),则需要根据实时获取的定位数据来实现设备间的可靠性通信。
为实现基于可见光的设备间通信和设备定位融合在一起,二者一体化,本申请实施例提供一种光通信方法,该方法可以包括:第一通信设备接收N个节点分别发射的光信号;根据接收到的N个节点的光信号,获取用于定位第一通信设备的N个节点的第一参数以及每个节点对应的信息比特流。其中光信号由节点对第一信号进行电光转换得到,第一信号是第二信号加上直流偏置信号得到的信号,第二信号是光源节点待发送给第一通信设备的信息比特流经过恒包络调制后得到的信号,不同节点对应的用于恒包络调制的载波的频率不同,以区分不同的节点。如此,在存在至少三个节点的基于可见光的定位场景中,将每个节点待发送的信息比特流进行恒包络调制,不同节点进行恒包络调制的载波不同,即调制后的信号的频谱是不同的,不同节点对应不同频谱,以便接收端/目标设备(比如本申请实施例中的第一通信设备)能够对接收到的多个节点发送的信号进行相干解调,根据解调后的信号的频谱(或者称为信号频谱)识别出是哪个节点发出的信号,并获取该节点发射的信息比特流,同时获取该节点对应的功率衰减比例,根据功率衰减比例得到节点与设备之间的水平距离,进而根据多个节点的位置信息、多个节点与设备之间的水平距离实现设备定位。
下面结合说明书附图,对本申请实施例提供的光无线通信方法进行描述。
本申请实施例提供的光无线通信方法可用于第四代(4th generation,4G)系统、 长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新空口(new radio,NR)系统、NR-车与任何事物通信(vehicle-to-everything,V2X)系统、物联网系统中的任一系统,还可以适用于其他下一代通信系统等,不予限制。下面以图13所示通信系统为例,对本申请实施例提供的光无线通信方法进行描述。
图13是本申请实施例提供的一种通信系统的示意图,如图13所示,该通信系统可以包括接入网设备、多个光源(本申请实施例中可以称为节点或可见光节点等)以及多个终端。需要说明的是,图13为示例性框架图,图13中包括的节点的数量不受限制,且除图13所示功能节点外,还可以包括核心网设备、网关设备、应用服务器等其他节点。
其中,接入网设备主要用于实现终端的资源调度、无线资源管理、无线接入控制等功能。具体的,接入网设备可以为基站、小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。
光源可以是能够提供LED的节点,可以是LED灯或者其他LED设备。该光源可以用于将接入网设备发往终端的电信号转换为光信号发射出去,和/或用于接收终端发往接入网设备的光信号,将光信号上报给接入网设备。
终端可以为终端设备(terminal equipment)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统(例如一个芯片,或多个芯片组成的处理系统)。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的光无线通信方法。
以图13所示光源包括LED_1、LED_2、LED_3,接入网设备为基站,终端为UE为例,本申请实施例所述的方法的原理框图如图14a或图14b所示:所有LED对待发送的信息比特流使用恒包络调制,单个LED发射的信号的频谱形状相同,将恒包络调制后的信号叠加上直流偏置信号后,驱动LED发射信号,不同LED的使用互不相同的发射频点,保证发射的信号的频谱不重叠。UE的PD接收到各个LED发送的光信号经过光电转换得到信号(I’ 1+I’ 0_1)+(I’ 2+I’ 0_2)+(I’ 3+I’ 0_3),经过TIA处理得到电压信号(V’ 1+V’ 0_1)+(V’ 2+V’ 0_2)+(V’ 3+V’ 0_3),将电压信号经采样、FFT处理后得到信号频谱,比较信号频谱与恒包络调制所用的载波的频谱,确定是哪个LED发射的信号,进而根据LED的位置信息、以及衰减功率比例对UE进行定位,并对信号进行解调得到信息比特流。
可选的,如图14a所示,每个LED中可以设置有PD、跨阻放大器(trans-impedance amplifier,TIA),以利用PD将接收到的上行光信号转换为电信号,并利用TIA将电信号转换为电压信号发送给基站。可选的,如图14b所示,LED中也可以不包括TIA。
下面结合图13所示通信系统,对本申请实施例提供的光通信方法进行描述。其中, 下述各实施例之间涉及的动作,术语等可以相互参考,各实施例中设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。此外,本申请实施例中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序,本申请实施例对“第一”和“第二”所表示的不同对象的属性不做限定。
图15为本申请实施例提供的一种光通信方法流程图,如图15所示,该方法可以包括:
S1501:第二通信设备向N个节点发送第一信号。相应的,N个节点接收第一信号。
其中,第二通信设备可以为图13中的接入网设备,比如可以是基站等。本申请实施例中,第二通信设备可以称为发送端,可以是发送信息比特流的设备。
其中,N为大于或等于3的整数。节点可以是图13所示的光源或者LED灯。
其中,不同节点接收到的第一信号是不同的。第一信号可以为第二通信设备对待通过节点发送给第一通信设备的信息比特流(比如图10中的信号Ι sg)进行处理后的信号。比如将信息比特流进行恒包络调制得到第二信号,将第二信号进行放大、加上直流偏置信号得到的信号,第二信号是恒包络信号。信息比特流可以是第二通信设备待发送给第一通信设备的有用信息对应的二进制比特流。不同节点对应的信息比特流可以是不同的或者相同的。
其中恒包络调制可以指采用载波对信号进行调制,以使得调制后的信号的包络是恒定不变的,且调制后的信号的频谱的中心频点与载波的中心频点是相同。恒包络调制可以包括最小频移键控(minimum shift keying,MSK)调制、或者高斯滤波器最小移频键控(gaussian minimum shift keying,GMSK)或者二进制相移键控(binary phase shift keying,BPSK)等。具体的,恒包络调制方式可以参照现有技术。应理解,不同节点对应的用于进行恒包络调制的载波是不同的、中心频点是不同的,以便第一通信设备通过比对接收到的信号的中心频率以及用于恒包络调制的载波的中心频率识别是出哪个节点发出的信号。本申请实施例中,用于进行恒包络调制的载波可以预先配置或者指示给第一通信设备。
比如以图14a为例,存在三个LED:LED_1、LED_2、LED_3,预先为各个LED配置进行恒包络调制的载波F1、F2以及F3,用这三个载波分别对三份信息比特流进行恒包络调制可以得到信号I 1、I 2以及I 3,I 1、I 2以及I 3是恒包络信号、且频率(或者频谱)分别对应F1、F2以及F3,信号I 1的频谱与载波F1相同、信号I 2的频谱与载波F2相同,信号I 3的频谱与载波F3相同。将I 1、I 2以及I 3进行其他处理,比如进行如图10所示的放大、叠加上直流偏置信号(比如I 0_1、I 0_2、I 0_3)等处理后得到三个第一信号:(I 1+I 0_1)、(I 2+I 0_2)、(I 3+I 0_3),分别向LED_1、LED_2、LED_3发送这三个第一信号,如向LED_1发送(I 1+I 0_1),向LED_2发送(I 2+I 0_2),向LED_3发送(I 3+I 0_3)。
应理解,本申请实施例中,叠加直流偏置信号的目的是保证输出的信号的强度不为负值,以便驱动LED。在满足这个目的前提下,直流偏置信号的大小可以根据需要进行设置,可以是400mA或者其他,不予限制。
应理解,本申请所述的信号I可以指电流信号或称为电信号,比如I 1、I 2以及I 3,I 0_1、I 0_2、I 0_3等都是电流信号/电信号。本申请所述的信号V可以指电压信号,比如下述的V’ 1、V’ 2以及V’ 3,V’ 0_1、V’ 0_2、V’ 0_3等都是电压信号。
S1502:N个节点中每个节点将接收到的第一信号进行光电转换得到光信号,向第一通信设备发送光信号。相应的,第一通信设备接收光信号。
其中,第一通信设备可以为图13中所示的任一终端。
具体的,节点进行光电转换的过程可以参照现有技术,不予赘述。每个节点可以以一定的发射功率向第一通信设备发送光信号。其中节点发送的光信号的频谱形状与用于进行恒包络调制的载波的频谱形状相同。
比如在图14a所示例子中,LED_1以发射功率P 0_1向UE发送(I 1+I 0_1),LED_2以发射功率P 0_2向UE发送(I 2+I 0_2),LED_3以发射功率P 0_3向UE发送(I 3+I 0_3)。应理解,本申请中,LED的发射功率还可以称为平均发射功率或者其他名称,不予限制。第一通信设备对于每个LED的发射功率可以是已知的。
示例性的,节点可以在与该节点对应的发射频点上,通过节点与第一通信设备之间的信道(比如大气或者水下)向第一通信设备发送光信号。相应的,第一通信设备在该节点对应的接收频点上接收光信号。应理解,本申请所述的信道可以称为传输信道,该信道可以用于传输两个设备之间的信号。此外本申请所述的发射频点和接收频点是相对概念,发射频点可以指发送端发送信号所用的频点,接收频点可以指接收端接收信号时的频点,接收频点与发射频点可以相同。节点的发射频点和接收频点可以统称为节点的通信频点,该通信频点可以在图16所示的接入过程中由第二通信设备发送给第一通信设备。不同节点的发射频点不同,保证不同节点发射的信号的频谱不重叠,避免不同节点间的干扰。
应理解,本申请实施例中,不同节点发射出的信号的频谱形状、位置信息以及通信频点对于第一通信设备是已知的,比如将节点与用于恒包络调制的载波、节点的位置信息以及通信频点预先指示给/配置给第一通信设备。可选的,可以在执行本申请所述S1501之前配置给第一通信设备,也可以在执行S1503之前配置给第一通信设备,不予限制。
S1503:第一通信设备根据接收到的N个节点的光信号,获取用于确定第一通信设备当前的位置信息的N个节点的第一参数、以及每个节点对应的第二通信设备通过节点向第一通信设备发送的信息比特流。
应理解,本申请实施例中,第一通信设备接收到的光信号可以与节点向第一通信设备发送的光信号不同,第一通信设备接收到的光信号可以是节点发送的光信号经过信道传输后的光信号,第一通信设备接收到的光信号等于节点发送的光信号乘以信道矩阵H(f)。应理解,本申请所述的信道可以指节点与第一通信设备之间的传输通道。
其中,第一参数可以包括节点与第一通信设备之间的水平距离d以及节点的位置信息,N个节点的第一参数可以用于确定第一通信设备当前的位置信息。比如可以利用N个节点的第一参数,结合公式(1)所示的多边定位方法确定第一通信设备当前的位置信息。
示例性的,第一通信设备根据接收到的N个节点的光信号,获取用于确定第一通 信设备当前的位置信息的N个节点的第一参数、以及每个节点对应的第二通信设备通过节点向第一通信设备发送的信息比特流:
第一通信设备对接收到的N个光信号进行光电转换处理,得到N个第三信号,第三信号可以指第一信号经信道传输至第一通信设备的信号(或者可以理解为衰减后的第一信号),第三信号包括衰减后的第二信号(或者可以理解为第二信号经信道传输至第一通信设备的信号)以及衰减后的直流偏置信号(或者可以理解为直流偏置信号经信道传输至第一通信设备的信号)。比如,N个节点分别发送光信号,对应的,第一通信设备接收到N个光信号,这N个光信号进行光电转换得到N个第三信号。
对于每个第三信号,第一通信设备对该第三信号进行处理得到第三信号的频谱,比对第三信号的频谱的中心频点以及每个节点进行恒包络调制时所使用的载波的中心频点,如果第一节点使用的载波的中心频点与第三信号的频谱的中心频点的频谱相同,则确定该第三信号对应的光信号为第一节点发射的光信号,进而根据接收该第三信号对应的光信号时的接收功率与第一节点发送光信号时的发送功率得到功率衰减比例,根据功率衰减比例确定第一通信设备与第一节点之间的水平距离d;第一通信设备根据保存的节点与节点的位置信息之间的对应关系,获取第一节点的位置信息。同时,第一通信设备对第三信号进行解调等处理得到信息比特流。遍历完每个第三信号,最终可以得到N个节点中每个节点的第一参数以及每个节点对应的信息比特流。
其中,对于第一通信设备而言,可以预先获知节点所对应的用于恒包络调制的载波。第一通信设备接收到信号后,可以比对接收到的信号的频谱的中心频点是否与载波的中心频点相同,找到与接收到信号的中心频点相同的载波,确定接收到的信号为该载波对应的节点发射的信号。例如,以图14b为例,LED_1对应载波F1,用载波F1对信息比特流进行恒包络调制得到I 1,LED_2对应载波F2,用载波F2对信息比特流进行恒包络调制得到I 2,LED_3对应载波F3,用载波F3进行恒包络调制得到I 3,由图14b可知,不同LED对应的载波的频率是不同的。UE可以对接收到信号分别进行处理得到(I’ 1+I’ 0_1)、(I’ 2+I’ 0_2)以及(I’ 3+I’ 0_3)的频谱,如果发现(I’ 1+I’ 0_1)、(I’ 2+I’ 0_2)、(I’ 3+I’ 0_3)的频谱的中心频点分别对应F1的中心频点、F2的中心频点、F3的中心频点,则根据已知的载波与LED之间的对应关系,确定接收到的信号分别为LED_1、LED_2、LED_3发送的信号,
其中,功率衰减比例可以等于第一通信设备接收光信号时的接收功率与第一节点发送光信号时的发送功率的比值。根据功率衰减比例确定第一通信设备与第一节点之间的水平距离d的方式可以参照上述公式(4)所述,不予赘述。
其中,第一通信设备接收光信号时的接收功率可以根据接收到的光信号对应的电信号的电流大小确定,对于第一通信设备而言,电流大小与接收功率成线性关系。比如以图14a为例,LED_1将接收到的信号(I 1+I 0_1)进行光电转换后经信道向UE发送,UE的PD将接收到的光信号转换为电信号(I’ 1+I’ 0_1),则接收功率P’ 0_1=f(I’ 1,I’ 0_1)。第一节点发送光时的发送功率(或者称为平均功率)可以指光功率,该光功率与电流线性相关,平均功率取决于平均电流。比如,以图14a为例,LED_1将基站发出的信号(I 1+I 0_1)进行光电转换得到光信号后经信道向UE发送,此时,LED_1的光功率P 0_1=f(I 1,I 0_1)。进一步的,在图14a所示例子中,对于LED_1而言,其功率衰减比例 =P’ 0_1/P 0_1。应理解,本申请实施例中,每个节点发射光信号时的光功率对于第一通信设备而言是已知的。
由于第一信号是对信息比特流经恒包络调制、叠加直流偏置信号后得到的信号,第一信号包括直流信号和交流信号,直流信号和交流信号的功率衰减比例是相同,即第一信号中的直流成分和交流成分等比例变化,因此上述功率衰减比例还可以等于直流成分的功率衰减比例或者交流成分的功率衰减比例。比如以图14a为例,对于LED_1而言,功率衰减比例=P’ 0_1/P 0_1=I’ 0_1/I 0_1=I’ 1/I 1
应理解,本申请实施例中所述的直流偏置信号是预先配置的,不同节点对应的直流偏置信号可以相同或者不同,不予限制。对于第一通信设备而言,可以预先获知哪个节点对应哪个直流偏置信号。此外,每个节点的位置信息与节点的对应关系可以预先存储在第一通信设备上。本申请所述的位置信息可以指二维平面坐标等。
上述以第一节点为例,对获取第一节点的第一参数以及第一节点对应的信息比特流的过程进行描述。类似的,获取其他节点(比如第二节点、第三节点、第四节点等)的第一参数以及其他节点对应的信息比特流的过程可以参照上述过程,不予赘述。
示例性的,第一通信设备对接收到的光信号进行光电转换处理得到第三信号(或者理解为衰减后的第一信号)可以包括:第一通信设备利用其内部署的光电探测器将接收到的光信号经跨组放大器(trans-impedance amplifier,TIA)转换为电压信号后,第一通信设备将电压信号经采样、FFT等处理得到衰减后的第一信号的频谱,从衰减后的第一信号中分离出第二信号,对第二信号进行解调得到信息比特流。同时比对衰减后的第一信号的频谱的中心频点与哪个节点对应的载波的中心频点相同,识别是出哪个节点发射的信号,根据该节点的位置信息、功率衰减比例等获取用于定位的第一参数。
例如,以图14a为例,LED_1将接收到的信号(I 1+I 0_1)进行光电转换后经信道向UE发送,UE接收到信号(I’ 1+I’ 0_1),其对应的接收功率为P’ 0_1,其中I’ 0_1为直流偏置信号I 0_1经信道传输后的信号(或者称为衰减后的直流偏置信号),I’ 1为信息比特流I 1经信道传输后的信号(可以称为衰减后信息比特流)。LED_2将接收到的信号(I 2+I 0_2)进行光电转换后经信道向UE发送,UE接收到信号(I’ 2+I’ 0_2),其对应的接收功率为P’ 0_2,其中I’ 0_2为直流偏置信号I 0_2经信道传输后的信号(或者称为衰减后的直流偏置信号),I’ 2为信息比特流I 2经信道传输后的信号(可以称为衰减后信息比特流)。LED_3将接收到的信号(I’ 3+I’ 0_3)进行光电转换后经信道向UE发送,UE接收到信号(I’ 3+I’ 0_3),其对应的接收功率为P 0_3,其中I’ 0_3为直流偏置信号I 0_3经信道传输后的信号(或者称为衰减后的直流偏置信号),I’ 3为信息比特流I 3经信道传输后的信号(可以称为衰减后信息比特流)。UE将信号(I’ 1+I’ 0_1)经过TIA、采样、FFT等处理得到I’ 1以及I’ 0_1,将信号(I’ 2+I’ 0_2)经过TIA、采样、FFT等处理得到I’ 2以及I’ 0_2,将信号(I’ 3+I’ 0_3)经过TIA、采样、FFT等处理得到I’ 3以及I’ 0_3。进一步的,UE确定I’ 1的频谱的中心频点与载波F1的中心频点相同,则根据载波与节点的对应关系确定I’ 1对应LED_1,即I’ 1以及I’ 0_1对应LED_1,UE根据公式(4)确定LED_1发射信号的发射功率P 0_1与UE接收到LED_1传输过来的的信号的接收功率P’ 0_1之间功率衰减比例,进而根据功率衰减比例确定LED_1与UE之间的水平距离 d1。类似的,参照同样方式,确定LED_2与UE之间的水平距离d2,确定LED_3与UE之间的水平距离d3,根据水平距离d1、水平距离d2、水平距离d3、以及UE内保存的各个LED的位置信息,采用公式(1)所示算法计算得到UE的位置信息,实现UE的定位。同时,对I’ 1进行解调处理得到信息比特流I 1,对I’ 2进行解调处理得到信息比特流I 2,对I’ 3进行解调处理得到信息比特流I 3。如此即实现定位又同时实现信息比特流的传输。
基于图15所示方法,所有节点使用恒包络调制,单个节点发射的信号的频谱形状相同。第一通信设备接收到一组(至少3个)节点(比如LED)发射的光信号,经光电转化为电信号,对电信号进行处理得到信号的频谱,进而将信号的频谱的中心频点和本地保存的载波的中心频点进行比对,判断出有哪些节点的信号并得到节点的位置信息(节点的位置信息对第一用户设备而言是已知的),并计算信号的功率衰减比例,进而根据功率衰减比例得到第一通信设备距离各个节点的水平距离,继而根据定位方法计算出第一通信设备自身的位置信息,以及通过滤波得到第一通信设备和节点在对应的通信频点上传输的信息比特流。
可选的,在图15所示的第二通信设备通过N个节点与第一用户设备进行通信之前,第一用户设备需要执行接入过程(或者称初始接入过程),接入N个节点,以实现通过N个节点与第二通信设备相互传输信号。本申请实施例中,第一通信设备可以同时接入一个或者多个节点,比如实现定位的场景中,第一通信设备可以同时接入至少三个节点,不予限制。其中,如图16所示,第一用户设备接入N个节点的过程可以包括S1504-S1506:
S1504:第一通信设备在接入信道上,向第二通信设备发送接入请求。相应的,第二通信设备接收接入请求。
其中,接入信道可以是一个公共信号,比如可以是一个控制信号,一个接入信道可以由一个或者多个第一通信设备共享,即一个或者多个第一通信设备可以在该接入信道上发起接入请求。接入信道的频点与所有节点的通信频点不同。接入信道可以预先配置给第一通信设备、第二通信设备,以使得第一通信设备在接入信道上发送接入请求,第二通信设备在该接入信道上接收接入请求。
其中接入请求可以包括第一通信设备当前的位置信息以及第一通信设备的标识。接入请求可以用于请求接入节点或者用于请求通过节点与第一通信设备通信。
本申请实施例中,第一通信设备的标识可以用于指示第一通信设备。第一通信设备的标识可以是第一通信设备的因特网协议(internet protocol,IP)地址或者第一通信设备的媒体接入控制(media access control,MAC)地址或者第一通信设备的国际移动用户识别码(international mobile subscriber identity,IMSI),或者第一通信设备的永久标识信息(subscriber permanent identifier,SUPI),5G全球用户设备的临时标识信息(5G global user temporary identifier,5G-GUTI)。
应理解,接入请求中携带的第一通信设备当前的位置信息可以指第一通信设备发起接入时的位置信息。示例性的,第一通信设备可以参照上述基于RSS的定位原理或者基于ALS的定位原理确定自己当前的位置信息,并携带在接入请求中向第二通信设备发送。
比如,以图9所示的基于ALS的定位原理为例,第一通信设备在接入信道上接收来自M个节点的固定比特流(可以为图9所示的固定频率的方波101010……),根据M个节点的固定比特流确定第一通信设备当前的位置信息;M为大于或等于3的整数,比如M=3。具体的,第一通信设备根据M个节点发出的固定比特流确定第一通信设备当前的位置信息的过程可以参照上述对图9所示过程的描述,不予赘述。
S1505:第二通信设备根据接入请求,确定第一通信设备可接入的节点,向第一通信设备发送接入响应。相应的,第一通信设备接收接入响应。
其中,第二通信设备可以在接入信道上向第一通信设备发送接入响应,第一通信设备在接入信道上,接收来自第二通信设备的接入响应。
其中,接入响应可以包括第一通信设备的标识以及N个节点的通信频点,接入响应可以称为下行确认(acknowledge,ACK)消息。通信频点包括发射频点以及接收频点。
示例性的,第二通信设备可以检测第一通信设备周围的节点,从第一通信设备周围的节点中选择出距离第一通信设备较近且信道空闲的N个节点,将选择出的N个节点作为第一通信设备可接入的节点。
可选的,第二通信设备接收到接入请求后,可以向第一通信设备回复成功收到接入请求,相应的,第一通信设备接收第二通信设备的回复,在接入信道上等待接收接入响应。若第一通信设备发送接入请求之后,在第一预设时间内未接收到第二通信设备的回复,则意味着接入请求可能发送失败,此时第一通信设备会重新在接入信道上向第二通信设备发送接入请求。其中该第一预设时间可以根据需要设置,不予限制。
可选的,第一通信设备接收到接入响应后,可以向第二通信设备回复收到接入响应。可选的,若第二通信设备发送接入响应之后,在第二预设时间内未接收到第一通信设备的回复,则意味着接入响应可能发送失败,此时第二通信设备会重新在接入信道上向第一通信设备发送接入响应。其中预设时间可以根据需要设置,不予限制。
进一步的,第一通信设备接收到接入响应后,可以检测是接入响应中携带的标识是否是自己的标识,若是,则表示该接入响应是发送给自己的,进一步的,保存接入响应中携带的节点的通信频点,以便根据保存的节点的通信频点,在发射频点对应的接收频点上接收来自节点的信号。反之,若检测是接入响应中携带的标识不否自己的标识,则丢弃接收到的接入响应。
S1506:第一通信设备响应于接入响应,接入N个节点。
其中,第一通信设备接入N个节点可以理解为第一通信设备与每个节点建立通信连接,比如将通信频点切换到节点对应的接收频点上。后续,第一通信设备可以通过通信连接,参照图15所示方法接收来自N个节点的信号,实现定位和信息比特流传输。
基于图16所示方法,第一通信设备可以基于节点在各自发射频点上独立发射固定比特流(比如101010......)实现定位,并将定位出的位置信息上报给第二通信设备,以便第二通信设备基于第一通信设备的位置,将其周围距离第一通信设备较近且信道空闲的节点指示给第一通信设备,以指示第一通信设备接入这些节点。
进一步的,在第一通信设备通过N个节点与第二通信设备通信的过程中,第一通 信设备还可以实时监测其与节点之间的信道的通信质量,并在信息质量较差时候及时切换至其他节点进行通信,保证设备之间的通信质量。该过程可以包括如图17所示的S1507-S1510:
S1507:第一通信设备检测第一节点与第一通信设备之间的信道质量,如果检测到第一节点与第一通信设备之间的信道质量小于预设阈值,则表示第一节点与第一通信设备之间的信道质量较差,执行S1508-S1510。
其中,第一节点包括在N个节点中,可以为N个节点中的任一节点。
其中,预设阈值可以根据需要设置,不予限制。第一节点与第一通信设备之间的信道质量可以包括第一节点与第一通信设备之间的RSS。示例性的,第一通信设备可以在对自己进行定位时测量得到功率衰减比例大于一定阈值,则确定第一节点与第一通信设备之间的信道质量较差,需要进行及时切换。
S1508:第一通信设备在接入信道上,向第二通信设备发送切换请求。相应的,第二通信设备接收切换请求。
其中,接入信道的相关描述可以参照S1504中所述,不予赘述。切换请求可以包括第一通信设备当前的位置信息以及第一通信设备的标识。切换请求可以用于请求从第一节点切换到其他节点。
应理解,切换请求中携带的第一通信设备当前的位置信息可以指第一通信设备发起切换时的位置信息。示例性的,第一通信设备可以参照上述基于RSS的定位原理或者基于ALS的定位原理确定自己当前的位置信息,并携带在切换请求中向第二通信设备发送。
S1509:第二通信设备根据切换请求,确定可切换的第二节点,向第一通信设备发送切换响应。相应的,第一通信设备在接入信道上接收来自第二通信设备的切换响应。
其中,切换响应包括第一通信设备的标识以及第二节点的通信频点,通信频点包括发射频点以及接收频点。
示例性的,第二通信设备可以检测第一通信设备周围的节点,从第一通信设备周围的节点中选择出距离第一通信设备较近且信道空闲的第二节点。
可选的,第二通信设备接收到切换请求后,可以向第一通信设备回复成功收到切换请求,相应的,第一通信设备接收第二通信设备的回复,在接入信道上等待接收切换响应。若第一通信设备发送切换请求之后,在第三预设时间内未接收到第二通信设备的回复,则意味着切换请求可能发送失败,此时第一通信设备会重新在接入信道上向第二通信设备发送切换请求。其中该第三预设时间可以根据需要设置,不予限制。
可选的,第一通信设备接收到切换响应后,可以向第二通信设备回复收到切换响应。可选的,若第二通信设备发送切换响应之后,在第四预设时间内未接收到第一通信设备的回复,则意味着切换响应可能发送失败,此时第二通信设备会重新在接入信道上向第一通信设备发送切换响应。其中预设时间可以根据需要设置,不予限制。
进一步的,第一通信设备接收到切换响应后,可以检测是切换响应中携带的标识是否是自己的标识,若是,则表示该切换响应是发送给自己的,进一步的,保存切换响应中携带的第二节点的通信频点,以便根据保存的第二节点的通信频点,在第二节点的发射频点对应的接收频点上接收来自第二节点的信号。反之,若检测是切换响应 中携带的标识不否自己的标识,则丢弃接收到的切换响应。
S1510:第一通信设备根据切换响应,从第一节点切换到第二节点(或者理解为断开与第一节点的连接,接入第二节点)。
其中,第一通信设备接入第二节点可以理解为第一通信设备与每个节点建立通信连接,比如将通信频点切换到节点对应的接收频点上。后续,第一通信设备通过通信连接,参照图15所示方法接收来自包括第二节点在内的多个节点的信号,实现定位和信息比特流传输。
基于图17所示方法,可以在第一通信设备与第一节点之间的信道质量较差的情况下,及时切换节点至第二节点,保证通信质量。
下面结合图18所示场景对上述方法进行介绍。如图18所示,UE(即待定位物体)的上空存在9个LED,9个LED的空间位置不重合且波长为940nm。每个LED可以发送定位/通信信号,单个LED的视场角为27°,挂在离目标设备2.5米的高度,9个LED排列成一个3*3阵列,LED之间的间距为0.6米;待定位物体在覆盖范围内移动时,总是可以同时被4个LED照射。这9个LED所发射的定位/通信信号为单载波BPSK信号,带宽为10MHz,发射频点分别为20MHz,40MHz,60MHz,80MHz,100MHz,120MHz,140MHz,160MHz,180MHz;接收频点分别为30MHz,50MHz,70MHz,90MHz,110MHz,130MHz,150MHz,170MHz,190MHz,带宽为5MHz,上行也采用BPSK调制;接入信道的下行频点为200MHz,上行频点为210MHz。
UE接入时,9个LED在各自发射频点上独立发射固定比特流(比如101010......),UE接收到一组LED发射的光信号,参照基于ALS的定位原理算出自身的位置信息,UE在接入信道的上行频点上向基站发送接入请求,该接入请求包括UE的ID和UE的位置信息,然后UE在接入信道上等待基站回复,超时则重发接入请求。随后,基站收到来自UE的接入请求后,选择信道空闲且距离UE较近的节点(如图18所示的4个LED),在接入信道的下行频点上发送携带UE的ID以及这4个节点的通信频点(比如发射频点分别为20MHz,40MHz,60MHz,80MHz;接收频点分别为30MHz,50MHz,70MHz,90MHz)的接入响应。UE接收接入响应,判断ID与自己的ID匹配后,将通信频点切换至对应这四个节点的通信频点,并发送上行ACK信号给UE,指示完成初始接入。
进一步的,UE可以参照图15所示过程实现定位和通信。比如UE接收到四个LED发射的信息比特流经恒包络调制、叠加直流偏置信号以及电光转换后的光信号,经过对应的PD和TIA后,转化为电压信号,将电压信号进行采样和FFT得到信号的频谱,将信号的频谱的中心频点和本地保存的载波的中心频点进行比对,判断出有哪些LED的信号并得到这些LED的位置信息,进而根据信号的接收功率、发射功率以及公式(4)计算其功率衰减比例,根据功率衰减比例求出UE距离这四个LED的各个LED的水平距离,然后根据公式(1)所示的多边定位方法计算出UE的位置信息,同时将电压信号进行采样和FFT得到的信号进行解调得到信息比特流。
进一步的,UE持续测量自身位置以及UE与当前接入的LED之间的信道质量。当发现当前LED的信号衰减大于一定值时,UE在接入信道的上行频点上向基站发送切换请求,该切换请求包括UE的ID和UE的位置信息,然后UE在接入信道上等待 基站回复,超时则重发切换请求。随后,基站收到来自UE的切换请求后,选择信道空闲且距离UE较近的节点(如图18所示的除与UE连接的4个LED之外的其他节点),在接入信道的下行频点上发送携带UE的ID以及该节点的通信频点(比如发射频点为100MHz;接收频点为110MHz)的切换响应。UE接收切换响应,判断ID与自己的ID匹配后,将通信频点切换至对应该节点的通信频点,并发送上行ACK信号给UE,指示完成节点间切换。
上述以一个第一通信设备为例,对第一通信设备的接入过程、定位、通信以及切换过程进行描述。类似的,其他通信设备可以参照上述方式实现接入、定位、通信以及切换。
例如,如图19所示,存在两个通信设备UE1和UE2。图19中LED的部署场景与图18中相同。UE1和UE2接入时,9个LED在各自发射频点上独立发射固定比特流(比如101010......),UE1和UE2接收到一组LED发射的光信号,分别参照基于ALS的定位原理算出自身的位置信息,UE1和UE2依次在接入信道的上行频点上向基站发送接入请求,该接入请求包括UE的ID和UE的位置信息,然后在接入信道上等待基站回复,超时则重发接入请求。随后,基站收到来自UE的接入请求后,选择信道空闲且距离UE较近的节点(如图19所示的UE1接入LED1,UE2接入LED2),在接入信道的下行频点上发送携带UE的ID以及节点的通信频点。UE接收接入响应,判断ID与自己的ID匹配后,将通信频点切换至对应这四个节点的通信频点,并发送上行ACK信号给UE,指示完成初始接入。
进一步的,UE1和UE2可以参照图15所示过程实现定位和通信。进一步的,UE1和UE2持续测量自身位置(UE1平行向右移动,UE2保持不动)以及与当前接入的LED之间的信道质量。当UE1发现当前LED的信号衰减大于一定值时,UE1在接入信道的上行频点上向基站发送切换请求,该切换请求包括UE1的ID和UE1的位置信息,然后UE1在接入信道上等待基站回复,超时则重发切换请求。随后,基站收到来自UE1的切换请求后,选择信道空闲且距离UE1较近的节点(如图19所示的LED3,而不选LED2),在接入信道的下行频点上发送携带UE1的ID以及LED3的通信频点。UE1接收切换响应,判断ID与自己的ID匹配后,将通信频点切换至对应该LED3的通信频点,并发送上行ACK信号给UE1,指示完成节点间切换。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的第一通信设备,或者包含上述第一通信设备功能的装置,或者为可用于第一通信设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图20为根据本申请实施例提供的一种通信装置200的示意图。通信装置200包括收发单元2001、以及处理单元2002。处理单元2002用于实现通信装置200对数据的 处理。收发单元2001用于接收通信装置200与其他单元或者网元的内容。应理解,本申请实施例中的处理单元2002可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,收发单元2001的接收功能可以由接收器或接收器相关电路组件实现、其发送功能可以由发送器或发送器相关电路组件实现。
示例性地,通信装置200可以是通信装置200设备,也可以是应用于通信装置200设备中的芯片或者其他具有上述通信装置200设备功能的组合器件、部件等。示例性的,通信装置200可以为图15至图17中任一实施例中的第一通信设备。
收发单元2001,用于接收N个节点分别发射的光信号(例如执行S1502);光信号由节点对第一信号进行电光转换得到,第一信号是第二信号加上直流偏置信号得到的信号,第二信号是光源节点待发送给第一通信设备的信息比特流经过恒包络调制后得到的信号,每个节点在进行恒包络调制时所使用的载波的频率不同;N为大于或等于3的整数;
处理单元2002,用于根据接收到的N个节点的光信号,获取第一参数以及每个节点对应的信息比特流(例如执行S1503);其中,第一参数包括N个节点对应的水平距离d以及N个节点中每个节点的位置信息,第一参数用于确定第一通信设备当前的位置信息。
具体的,收发单元2001以及处理单元2002的执行过程可以参照图15-图17中第一通信设备的执行过程。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
图21为根据本申请实施例提供的另一种通信装置的示意图,该通信装置包括:处理器2101、通信接口2102、存储器2103。其中,处理器2101、通信接口2102以及存储器2103可以通过总线2104相互连接;总线2104可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线2104可以分为地址总线、数据总线和控制总线等。为便于表示,图21中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。处理器2101可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。存储器2103可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
处理器2101用于根据接收到的N个节点的光信号,获取第一参数以及每个节点对应的信息比特流(例如执行S1503);其中,第一参数包括N个节点对应的水平距离d 以及N个节点中每个节点的位置信息,第一参数用于确定第一通信设备当前的位置信息。通信接口2102用于接收N个节点分别发射的光信号(例如执行S1502);光信号由节点对第一信号进行电光转换得到,第一信号是第二信号加上直流偏置信号得到的信号,第二信号是光源节点待发送给第一通信设备的信息比特流经过恒包络调制后得到的信号,每个节点在进行恒包络调制时所使用的载波的频率不同;N为大于或等于3的整数。此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
本申请实施例还提供一种通信系统,其包括前述的第一通信设备、N个节点以及第二通信设备,其中,第一通信设备执行图15-图17所示实施例中第一通信设备执行的方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图15至图17中任一所示的实施例中与第一通信设备相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图15至图17中任一所示的实施例中与第一通信设备相关的流程。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的光通信方法中由第一通信设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如 多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请的说明书和权利要求书及所述附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种光无线通信方法,其特征在于,所述方法包括:
    第一通信设备接收N个节点分别发射的光信号;所述光信号由所述节点对第一信号进行电光转换得到,所述第一信号是第二信号加上直流偏置信号得到的信号,所述第二信号是所述光源节点待发送给所述第一通信设备的信息比特流经过恒包络调制后得到的信号,不同节点对应的用于恒包络调制的载波的频率不同;所述N为大于或等于3的整数;
    所述第一通信设备根据接收到的所述N个节点的光信号,获取每个节点的第一参数以及每个节点对应的信息比特流;其中,所述第一参数包括所述节点与所述第一通信设备之间的水平距离d以及所述节点的位置信息,所述N节点的第一参数用于确定所述第一通信设备当前的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,对于第一节点,所述第一节点为所述N个节点中的任一节点,第一通信设备获取所述第一节点与所述第一通信设备之间的水平距离d以及所述第一节点的位置信息包括:
    所述第一通信设备对接收到的第一光信号进行光电转换处理得到第三信号;其中,所述第三信号为所述第一信号经信道传输后的信号;所述第一光信号为所述第一通信设备接收到的任一光信号;
    所述第一通信设备比对所述第三信号的频谱的中心频点以及每个节点对应的载波的中心频点,如果所述第三信号的频谱的中心频点与所述第一节点对应的载波的中心频点相同,则确定接收到来自所述第一节点的所述第一光信号;
    所述第一通信设备根据所述第三信号的接收功率与所述第一节点发射光信号时的发射功率确定功率衰减比例,根据所述功率衰减比例确定所述第一通信设备与所述第一节点之间的水平距离d;
    所述第一通信设备根据保存的节点与节点的位置信息之间的对应关系,获取所述第一节点的位置信息。
  3. 根据权利要求1所述的方法,其特征在于,第一通信设备接收N个节点分别发射的光信号,包括:
    所述第一通信设备在节点的接收频点上,接收节点发射的光信号;
    其中,不同节点的接收频点互不相同。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备在接入信道上,向第二通信设备发送接入请求,其中所述接入请求包括所述第一通信设备当前的位置信息以及所述第一通信设备的标识;
    所述第一通信设备在接入信道上,接收来自所述第二通信设备的接入响应;其中,所述接入响应包括所述第一通信设备的标识以及所述N个节点中每个节点的通信频点,所述通信频点包括发射频点以及接收频点;
    所述第一通信设备响应于所述接入响应,接入所述N个节点。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备在所述接入信道上接收来自M个节点的固定比特流,根据所述M个节点的固定比特流确定所述第一通信设备当前的位置信息;所述M为大于或等于 3的整数。
  6. 根据权利要求5所述的方法,其特征在于,
    所述N个节点为所述第一通信设备周围的节点中,距离所述第一通信设备较近且信道空闲的节点。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备检测到第一节点与所述第一通信设备之间的信道质量小于预设阈值;所述第一节点包括在所述N个节点中;
    所述第一通信设备在接入信道上,向第二通信设备发送切换请求,其中所述切换请求包括所述第一通信设备当前的位置信息以及所述第一通信设备的标识;
    所述第一通信设备在接入信道上接收来自所述第二通信设备的切换响应;其中,所述切换响应包括所述第一通信设备的标识以及第二节点的通信频点,所述通信频点包括发射频点以及接收频点;
    所述第一通信设备根据所述切换响应,从所述第一节点切换到所述第二节点。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第二节点为所述第一通信设备周围的节点中,距离所述第一通信设备较近且信道空闲的节点。
  9. 一种通信设备,其特征在于,所述通信设备包括:
    收发单元,用于接收N个节点分别发射的光信号;所述光信号由所述节点对第一信号进行电光转换得到,所述第一信号是第二信号加上直流偏置信号得到的信号,所述第二信号是所述光源节点待发送给所述第一通信设备的信息比特流经过恒包络调制后得到的信号,不同节点对应的用于恒包络调制的载波的频率不同;所述N为大于或等于3的整数;
    处理单元,用于根据接收到的所述N个节点的光信号,获取每个节点的第一参数以及每个节点对应的信息比特流;其中,所述第一参数包括所述节点与所述第一通信设备之间的水平距离d以及所述节点的位置信息,所述N节点的第一参数用于确定所述第一通信设备当前的位置信息。
  10. 根据权利要求9所述的通信设备,其特征在于,对于第一节点,所述第一节点为所述N个节点中的任一节点,所述处理单元,具体用于:
    对接收到的第一光信号进行光电转换处理得到第三信号;所述第三信号为所述第一信号经信道传输后的信号;所述第一光信号为所述第一通信设备接收到的任一光信号;
    比对所述第三信号的频谱的中心频点以及每个节点对应的载波的中心频点,如果所述第三信号的频谱的中心频点与所述第一节点对应的载波的中心频点相同,则确定接收到来自所述第一节点的所述第一光信号;
    根据所述第三信号的接收功率与所述第一节点发射光信号时的发射功率确定功率衰减比例,根据所述功率衰减比例确定所述第一通信设备与所述第一节点之间的水平距离d;根据保存的节点与节点的位置信息之间的对应关系,获取所述第一节点的位置信息。
  11. 根据权利要求9所述的通信设备,其特征在于,
    所述收发模块,具体用于在节点的接收频点上,接收节点发射的光信号;
    其中,不同节点的接收频点互不相同。
  12. 根据权利要求9-11任一项所述的通信设备,其特征在于,
    所述收发模块,还用于在接入信道上,向第二通信设备发送接入请求,其中所述接入请求包括所述第一通信设备当前的位置信息以及所述第一通信设备的标识;
    所述收发模块,还用于在接入信道上,接收来自所述第二通信设备的接入响应;其中,所述接入响应包括所述第一通信设备的标识以及所述N个节点中每个节点的通信频点,所述通信频点包括发射频点以及接收频点;
    所述处理单元,还用于响应于所述接入响应,接入所述N个节点。
  13. 根据权利要求12所述的通信设备,其特征在于,
    所述收发模块,还用于在所述接入信道上接收来自M个节点的固定比特流;
    所述处理单元,还用于根据所述M个节点的固定比特流确定所述第一通信设备当前的位置信息;所述M为大于或等于3的整数。
  14. 根据权利要求13所述的通信设备,其特征在于,
    所述N个节点为所述第一通信设备周围的节点中,距离所述第一通信设备较近且信道空闲的节点。
  15. 根据权利要求9-14任一项所述的通信设备,其特征在于,
    所述处理单元,用于检测到第一节点与所述第一通信设备之间的信道质量小于预设阈值;所述第一节点包括在所述N个节点中;
    所述收发模块,用于在接入信道上,向第二通信设备发送切换请求,其中所述切换请求包括所述第一通信设备当前的位置信息以及所述第一通信设备的标识;
    所述收发模块,还用于在接入信道上接收来自所述第二通信设备的切换响应;其中,所述切换响应包括所述第一通信设备的标识以及第二节点的通信频点,所述通信频点包括发射频点以及接收频点;
    所述处理单元,还用于根据所述切换响应,从所述第一节点切换到所述第二节点。
  16. 根据权利要求15所述的通信设备,其特征在于,
    所述第二节点为所述第一通信设备周围的节点中,距离所述第一通信设备较近且信道空闲的节点。
  17. 一种通信系统,其特征在于,所述通信系统包括:第一通信设备、N个节点以及第二通信设备;所述N为大于或等于3的整数;
    所述第一通信设备,用于接收所述N个节点分别发射的光信号;所述光信号由所述节点对第一信号进行电光转换得到,所述第一信号是第二信号加上直流偏置信号得到的信号,所述第二信号是所述光源节点待发送给所述第一通信设备的信息比特流经过恒包络调制后得到的信号,每个节点在进行恒包络调制时所使用的载波的频率不同;所述N为大于或等于3的整数;
    所述第一通信设备,还用于根据接收到的所述N个节点的光信号,获取第一参数以及每个节点对应的信息比特流;其中,所述第一参数包括所述N个节点对应的水平距离d以及所述N个节点中每个节点的位置信息,所述第一参数用于确定所述第一通信设备当前的位置信息。
  18. 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述处理器和所述通信接口用于支持所述通信装置执行如权利要求1-8任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-8任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-8任一项所述的方法。
  21. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-8任一项所述的方法。
PCT/CN2022/119316 2021-09-30 2022-09-16 一种光无线通信方法及设备 WO2023051283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111165946.X 2021-09-30
CN202111165946.XA CN115913363A (zh) 2021-09-30 2021-09-30 一种光无线通信方法及设备

Publications (1)

Publication Number Publication Date
WO2023051283A1 true WO2023051283A1 (zh) 2023-04-06

Family

ID=85728024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119316 WO2023051283A1 (zh) 2021-09-30 2022-09-16 一种光无线通信方法及设备

Country Status (2)

Country Link
CN (1) CN115913363A (zh)
WO (1) WO2023051283A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301561A (zh) * 2015-05-07 2016-02-03 北京理工大学 一种基于频分复用的可见光高精度室内定位方法
CN105425210A (zh) * 2015-11-27 2016-03-23 泉州装备制造研究所 一种室内可见光定位系统及方法
CN107634797A (zh) * 2017-10-25 2018-01-26 天津大学 同时实现可见光定位和可见光通信及提高定位精度的方法
US20180167140A1 (en) * 2016-12-13 2018-06-14 Maite Brandt-Pearce Position localization using visible light communication
CN108802680A (zh) * 2018-06-28 2018-11-13 长安大学 一种基于fft算法的可见光室内定位系统及方法
CN111327359A (zh) * 2020-03-02 2020-06-23 兰州理工大学 一种抑制可见光通信led非线性失真限幅噪声的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301561A (zh) * 2015-05-07 2016-02-03 北京理工大学 一种基于频分复用的可见光高精度室内定位方法
CN105425210A (zh) * 2015-11-27 2016-03-23 泉州装备制造研究所 一种室内可见光定位系统及方法
US20180167140A1 (en) * 2016-12-13 2018-06-14 Maite Brandt-Pearce Position localization using visible light communication
CN107634797A (zh) * 2017-10-25 2018-01-26 天津大学 同时实现可见光定位和可见光通信及提高定位精度的方法
CN108802680A (zh) * 2018-06-28 2018-11-13 长安大学 一种基于fft算法的可见光室内定位系统及方法
CN111327359A (zh) * 2020-03-02 2020-06-23 兰州理工大学 一种抑制可见光通信led非线性失真限幅噪声的方法

Also Published As

Publication number Publication date
CN115913363A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
Matheus et al. Visible light communication: concepts, applications and challenges
Wu et al. Visible light communications for 5G wireless networking systems: from fixed to mobile communications
Lee et al. Two hybrid positioning system design techniques with lighting LEDs and ad-hoc wireless network
CN103368645B (zh) 室内无线光高速双向通信系统
US20170054500A1 (en) Visible Light Communications VLC Related Device and Method
CN104969588A (zh) 使用方向性传输的长范围设备发现
Kumar et al. Visible light communication systems conception and vidas
WO2023040228A1 (zh) 一种可见光定位辅助的多用户光通信系统及方法
Lee et al. Hybrid positioning with lighting LEDs and Zigbee multihop wireless network
Turan et al. Visible light communications in industrial internet of things (IIOT)
Jha et al. Challenges and potentials for visible light communications: State of the art
JP6379629B2 (ja) 通信制御装置、無線通信装置、通信制御方法、及び無線通信方法
WO2022013146A1 (en) A flexible and reliable wireless communication system
WO2022200673A1 (en) Use of sidelink communications for backscatter node positioning within wireless networks
WO2023051283A1 (zh) 一种光无线通信方法及设备
Virk Li-Fi: a new communication mechanism
Birsan et al. Key technologies for indoor positioning systems
WO2023051788A1 (zh) 一种终端感知方法及装置
CN107204929A (zh) 基于激光可见光通信的无线路由器
Duvnjak et al. Heterogeneous Wi-Fi and VLC (RF-optical) wireless access architecture
WO2021218998A1 (zh) 一种通信方法及系统
CN205986877U (zh) 一种基于cdma/rf融合通信的可见光定位硬件系统
Abraham et al. Li-Fi: Illuminating the Future of Internet
WO2022236343A1 (en) Two-mode smart lighting system for rf and lifi data transmission, and lifi light modulation method on three parallel data streams using both visible and infrared lights
Shi et al. Effect of Illumination Intensity on LED Based Visible Light Communication System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874670

Country of ref document: EP

Kind code of ref document: A1