WO2023051022A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023051022A1
WO2023051022A1 PCT/CN2022/110014 CN2022110014W WO2023051022A1 WO 2023051022 A1 WO2023051022 A1 WO 2023051022A1 CN 2022110014 W CN2022110014 W CN 2022110014W WO 2023051022 A1 WO2023051022 A1 WO 2023051022A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
storage device
evaporator
air supply
compartment
Prior art date
Application number
PCT/CN2022/110014
Other languages
English (en)
French (fr)
Inventor
张振兴
张�浩
崔展鹏
陈童
李春阳
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023051022A1 publication Critical patent/WO2023051022A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to refrigeration and freezing technology, in particular to a refrigerator.
  • This kind of refrigerator usually realizes the drying function by inputting the cooling airflow flowing through the evaporator into the drawer, and accordingly, the drawer is provided with an air supply port and an air return port.
  • the prior art usually prevents the cooling air flow from continuing to enter the drawer by closing the air supply damper at the air supply port, but ignores the air return port of the drawer.
  • the air outlet is directly exposed to the refrigerator, and the return air of the refrigerator enters the drawer through the return air outlet of the drawer and affects the temperature and humidity in the drawer.
  • An object of the present invention is to overcome at least one defect of the prior art, and provide a refrigerator having a storage space with adjustable wetness and dryness, and the humidity in the storage space is not affected by its external environment.
  • Another object of the present invention is to reduce the cost of the refrigerator and simplify the control logic of the refrigerator.
  • the present invention provides a refrigerator comprising a storage compartment for storing items, an evaporator for providing cooling airflow, a compartment for sending the cooling airflow to the storage compartment
  • the room air supply duct and the compartment return air duct for returning the return air flow in the storage room to the evaporator also include:
  • the storage device is arranged in the storage compartment, and has an air supply port for air flow into its internal space and an air return port for air flow out of its internal space;
  • an air supply damper disposed on an air flow path between the evaporator and the air supply opening and configured to be controlled to open or close to selectively allow the evaporation when the storage device is in a drying mode Cooling airflow generated by the device flows into the storage device, controlled closed to prevent the cooling airflow from flowing into the storage device when the storage device is in the moisturizing mode;
  • the return air duct of the device is independent of the return air duct of the compartment, and one end of the return air duct of the device is directly connected with the evaporator, and the other end is connected with the return air port of the storage device, so as to The return air flow in the storage device is allowed to flow to the evaporator.
  • the storage device has a first lateral side proximate to the evaporator and a second lateral side remote from the evaporator in a lateral direction;
  • the air return opening is opened on the rear side of the storage device, and the distance between the air return opening and the first lateral side is smaller than the distance between the air return opening and the second lateral side.
  • the refrigerator also includes:
  • the air supply duct of the device is independent from the air supply duct of the compartment, and one end of the air supply duct of the device is directly connected to the evaporator, and the other end is connected to the air supply port of the storage device;
  • the air supply damper is arranged in the air supply duct of the device.
  • the end of the air supply duct of the compartment communicating with the evaporator and the end of the air supply duct of the device communicating with the evaporator are located above the evaporator, so that both the compartment air supply duct and the device air supply duct communicate with the upper space of the evaporator;
  • the end of the device return air duct communicating with the evaporator is located at the lower part or below the evaporator, so that the device return air duct communicates with the lower space where the evaporator is located or the lower space.
  • the rear side of the storage compartment is provided with an air duct cover plate
  • the evaporator is located on the rear side of the air duct cover plate
  • the air supply duct of the compartment the return air duct of the device
  • Both the duct and the device air supply duct are formed on the rear surface of the air duct cover plate
  • the compartment return air duct is formed on the lower part of the air duct cover plate and located below the evaporator;
  • the air duct cover plate is provided with an air outlet port of the device communicated with the other end of the air supply duct of the device, and a return air port of the device communicated with the other end of the air return duct of the device.
  • the device air outlet port and the device return air port are respectively connected to the air supply port formed at the rear of the storage device. It is in sealing communication with the air return port.
  • the refrigerator also includes:
  • the compartment air supply air door is arranged at the end of the compartment air supply duct adjacent to the evaporator, and is used to controlly conduct and/or block the compartment air supply duct to selectively efficiently deliver cooling airflow into the storage compartment;
  • the air supply damper is arranged at the end of the air supply duct of the device adjacent to the evaporator.
  • the storage device includes:
  • the drawer has a top opening and is configured to be pushed and pulled under the sealed upper cover so that the sealed upper cover covers the top opening when it is in a closed state fully pushed into the storage compartment
  • a closed space is defined between the sealed upper cover and the drawer, and when it is in an open state pulled out from the storage compartment, the drawer is separated from the sealed upper cover to expose the above the top opening.
  • the sealing upper cover includes a horizontally extending cover plate and a rear edge portion extending downward from the rear edge of the cover plate, and the rear edge portion is provided with a first notch opening downward.
  • the upper part of the rear end plate of the drawer is provided with a second notch opening upward;
  • the first notch and the second notch abut to form the closed air outlet.
  • the refrigerator also includes:
  • a temperature sensing device for detecting the temperature in the storage device, so as to obtain the humidity in the storage device according to the temperature in the storage device;
  • the air supply door is configured to be controlled to open when the humidity inside the storage device is higher than the preset humidity threshold corresponding to the drying mode to allow the evaporator to The generated cooling air flow flows into the storage device, and is controlled and closed when the humidity in the storage device is equal to or lower than a preset humidity threshold corresponding to the drying mode.
  • the temperature sensing device and the air supply port are located on the same wall of the storage device, and are respectively adjacent to two opposite ends of the wall, and the temperature sensing device and the air supply port are located of the same height.
  • the refrigerator of the present invention comprises a storage device, a compartment air supply duct and a compartment return air duct, the storage unit is arranged in the storage compartment of the refrigerator and has an air supply port and a return vent.
  • the refrigerator of the present invention further includes an air supply damper arranged on the air flow path between the evaporator and the air supply port of the storage device, and a device return air duct connecting the return air port of the storage device with the evaporator,
  • the dry and wet adjustable storage space can be realized in the storage device through the opening and closing control of the air supply damper.
  • the return air duct of the device and the return air duct of the compartment are independent of each other, and one end of the return air duct of the device is directly connected with the evaporator, instead of being indirectly connected with the evaporator through the air supply duct of the compartment, and the other end is connected with the storage
  • the air return port of the storage device is connected, and the return air flow in the storage device can directly flow to the evaporator through the return air duct of the device.
  • the return air in the storage room can flow to the evaporator through the room return air duct. That is to say, the return air of the storage device and the return air of the storage compartment are independent of each other and do not affect each other.
  • the humidity of the storage space with adjustable dryness and humidity defined in the storage device is not affected by the storage compartment. Influence.
  • the device return air duct of the present invention directly communicates the return air port with the evaporator, which is equivalent to extending the The return air path between the storage device and its external environment is defined.
  • the inventor realized that a return air damper can be added at the return air opening.
  • the increase of the return air door will not only increase the cost of the refrigerator, but also the return air door is small in size and difficult to assemble, which affects production efficiency.
  • the return air door needs to be adjusted. Precise control increases the burden on the control logic. For this reason, the present invention devises a kind of solution that is completely different from damper principle in another way.
  • the return air of the storage device and the return air of the storage compartment do not affect each other, and the return air path between the storage device and its external environment is extended.
  • the improvement of this purely mechanical structure avoids the influence of the air flow at the evaporator on the humidity in the storage device. Not only is the structure simple, the cost is low, and there is no need to increase the assembly process, but it also simplifies the control logic of the refrigerator. The practical value is relatively high. high.
  • Fig. 1 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic rear view of a partial structure of a refrigerator according to an embodiment of the present invention.
  • FIG. 3 is a schematic front view of a partial structure of a refrigerator according to an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a storage device according to an embodiment of the present invention.
  • Fig. 5 is a schematic exploded view of a storage device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • the storage compartment 11 may be a refrigerated compartment with a refrigerated storage environment, or may be a temperature-changing compartment or other fresh-keeping compartments.
  • Fig. 2 is a schematic rear view of a partial structure of a refrigerator according to an embodiment of the present invention
  • Fig. 3 is a schematic front view of a partial structure of a refrigerator according to an embodiment of the present invention
  • Fig. 4 is a storage box according to an embodiment of the present invention Schematic diagram of the device.
  • the refrigerator 1 of the present invention also includes an evaporator 20 for providing cooling airflow, a compartment air supply duct 12 for sending the cooling airflow to the storage compartment 11, and a compartment for storing goods.
  • the return air flow in the compartment 11 returns to the compartment return air duct 13 of the evaporator 20 .
  • the storage device 40 has an air supply opening 41 for airflow into its inner space and an air return opening 42 for airflow out of its inner space. It should be noted that, in order to make it easier to see the structure of the air duct, the structural members used to cover each air duct are omitted in FIG. 2 and FIG. 3 .
  • the refrigerator also includes an air supply door 71 and a device return air duct 15 .
  • the air supply damper 71 is disposed on the air flow path between the evaporator 20 and the air supply port 41 and is configured to be controlled to open or close to selectively allow the cooling generated by the evaporator 20 when the storage device 40 is in the drying mode.
  • the air flow into the storage device 40 is controlled closed to prevent the cooling air flow generated by the evaporator 20 from flowing into the storage device 40 when the storage device 40 is in the moisturizing mode.
  • the drying mode and the moisturizing mode are two different functional modes of the storage device 40 , and when the storage device 40 is in the drying mode and the moisturizing mode respectively, the preset humidity ranges corresponding to the internal spaces thereof are different.
  • the device return air duct 15 and the compartment return air duct 13 are independent of each other, and one end of the device return air duct 15 is directly connected to the evaporator 20, and the other end is connected to the return air port 42 of the storage device 40 to allow storage
  • the return air flow within the device 40 flows to the evaporator 20 .
  • the air supply door 71 is controlled to open to allow the cooling airflow generated by the evaporator 20 to flow into the storage device 40, and the original air in the storage device 40 passes through the air return port 42 and returns to the device.
  • the air duct 15 returns to the evaporator 20 to replace the air in the storage device 40 .
  • the air flow passes through the evaporator 20 with a lower temperature, the moisture in the air flow will condense on the evaporator 20, so that the temperature and humidity of the formed cooling air flow are relatively low.
  • a low-temperature and low-humidity dry storage space can be formed in the air storage device 40 .
  • the air supply damper 71 can be closed in a controlled manner. At this time, even if there is a return air flow from the storage compartment 11 in the compartment return air duct 13, the air flow in the compartment return air duct 13 and the storage compartment 11 will not flow into the storage device 40 Influences the humidity in the storage device 40 . Moreover, due to the existence of the device return air duct 15, the air flow path between the storage device 40 and the evaporator 20 is extended, and the air flow at the evaporator 20 will not easily enter the storage device through the device return air duct 15 40. When the humidity in the storage device 40 is higher than the preset humidity threshold corresponding to the drying mode, the air supply damper 71 can be opened again, and so on, so that the storage device 40 maintains the preset humidity threshold corresponding to the drying mode.
  • the air supply damper 71 is closed in a controlled manner, so as to prevent the cooling air flow from flowing into the storage device 40, and the items such as fruits and vegetables with high water content stored in the storage device 40 volatilize a large amount of water. Moisture makes the storage device 40 form a high-humidity space with high humidity, which is beneficial to the preservation of items such as fruits and vegetables.
  • the storage device 40 also includes a moisture-permeable film 47 that allows moisture inside to permeate outward.
  • a moisture-permeable film 47 that allows moisture inside to permeate outward.
  • the present invention can realize a dry and wet adjustable storage space in the storage device 40 through the opening and closing control of the air supply door 71 .
  • the device return air duct 15 and the compartment return air duct 13 are independent of each other, and one end of the device return air duct 15 is directly connected to the evaporator 20 instead of being indirectly connected to the evaporator 20 through the compartment air supply duct 13 The other end communicates with the air return port 42 of the storage device 40 , and the return air flow in the storage device 40 can directly flow to the evaporator 20 through the return air duct 15 of the device.
  • the return air in the storage compartment 11 can flow to the evaporator 20 through the compartment return air duct 13 .
  • the return air of the storage device 40 and the return air of the storage compartment 11 are independent of each other and do not affect each other. Compartment 11 Effects.
  • the device return air duct 15 of the present invention directly communicates the return air port 42 with the evaporator 20, It is equivalent to extending the return air path between the storage device 40 and its external environment.
  • the airflow in the space where the evaporator 20 is located is not easy or will not pass through the device return air duct 15
  • the flow into the storage device 40 affects its humidity, improving the storage quality of the items in the storage device 40 .
  • the inventor realized that a return air damper can be added at the air return port 42 .
  • the increase of the return air door will not only increase the cost of the refrigerator, but also the return air door is small in size and difficult to assemble, which affects production efficiency. Most importantly, the return air door needs to be adjusted. Precise control increases the burden on control logic.
  • the present invention devises a kind of solution that is completely different from damper principle in another way.
  • the return air of the storage device 40 and the return air of the storage compartment 11 are independent of each other, and the return air path between the storage device 40 and its external environment is extended , the improvement of the purely mechanical structure by extending the air path avoids the influence of the airflow at the evaporator 20 on the humidity in the storage device 40, not only the structure is very simple, the cost is low, no need to increase the assembly process, but also simplifies the refrigerator 1 control logic, high practical value.
  • the storage device 40 has a first lateral side proximate to the evaporator 20 and a second lateral side remote from the evaporator 20 in a lateral direction.
  • the air return port 42 is opened on the rear side of the storage device 40 , and the distance between the return air port 42 and the first lateral side of the storage device 40 is smaller than the distance between the return air port 42 and the second lateral side of the storage device 40 .
  • the air return port 42 is closer to the lateral side of the storage device 40 away from the evaporator 20, so as to extend the length of the device return air duct 15 connected between the air return port 42 and the evaporator 20 as much as possible, that is, The length of the return air path of the storage device 40 is extended as much as possible, and the influence of the external environment of the evaporator 20 on the humidity in the storage device 40 is further reduced.
  • the air outlet of the storage device with adjustable dry and wet space was directly connected with the air supply duct of the storage compartment, and the air supply door was usually arranged at the air outlet.
  • the air supply fan of the refrigerator 1 When the storage device needs to reduce the humidity, the air supply fan of the refrigerator 1 must be started (whether the storage compartment needs refrigeration), and the cooling air flow is delivered to the air supply duct of the compartment. Part of the cooling air flow in the air supply duct of the storage compartment flows to the storage compartment, and another part of the cooling air flow flows to the storage device.
  • the diversion of the cooling air flow not only reduces the cooling air flow to the storage device, but also may cause The temperature in the storage compartment is lower than its set temperature.
  • the refrigerator 1 of the present invention also includes a device air supply duct 14 that is independent of the compartment air supply duct 12, one end of the device air supply duct 14 is directly connected to the evaporator 20, and the other One end communicates with the air outlet 41 of the storage device 40 , and is used for directly delivering the cooling airflow generated by the evaporator 20 into the storage device 40 .
  • the air supply air duct 14 of the device of the present invention is independent from the compartment air supply duct 12 , rather than indirectly communicating with the evaporator 20 through the compartment air supply duct 12 .
  • the air supply of the storage 40 and the storage compartment 11 does not affect each other.
  • the storage device 40 When the storage device 40 needs air supply, it is not necessary to consider whether the storage compartment 11 is in a cooling state, whether cooling is required, and the cooling capacity. That is, the air supply from the storage device 40 will not affect the temperature of the storage compartment 11; All the airflow sent by the air supply duct 11 can flow to the storage compartment 11, which increases the air supply volume when the storage device 40 needs air supply and the air supply volume when the storage compartment 11 needs cooling, thereby improving The humidity adjustment efficiency of the storage device 40 in the drying mode and the cooling efficiency of the storage compartment 11 .
  • the air supply air door 71 is disposed in the device air supply air duct 14 to conduct or block the device air supply air duct 14 in a controlled manner.
  • the end of the compartment air supply duct 12 communicating with the evaporator 20 and the end of the device air supply duct 14 communicating with the evaporator 20 are located above the evaporator 20, so that the compartment Both the room air supply duct 12 and the device air supply duct 14 communicate with the space above the evaporator 20 .
  • the end of the device return air duct 15 communicating with the evaporator 20 is located below or below the evaporator 20 , so that the device return air duct communicates with the lower space where the evaporator 20 is located or the space below.
  • the blower fan 72 located above the evaporator 20 is activated to drive the airflow to flow through the evaporator 20 from bottom to top, so as to be able to
  • the lower space or the lower space of the device 20 forms a negative pressure state. That is to say, whether the storage compartment 11 is refrigerated alone, or the storage device 40 is dehumidified alone, or the storage device 40 is dehumidified while the storage compartment 11 is refrigerated, the lower space or the space below the evaporator 20 is always kept negative. pressure environment.
  • the gas in the lower space of the evaporator 20 or in the lower space will basically not enter the storage device 40 through the device return air duct 15, which greatly weakens the influence of the space where the evaporator 20 is located on the humidity in the storage device 40. Influence.
  • the rear side of the storage compartment 11 is provided with an air duct cover plate 30
  • the evaporator 20 is located at the rear side of the air duct cover plate 30 .
  • the compartment air supply duct 12, the device return air duct 15 and the unit air supply duct 14 are all formed on the rear surface of the air duct cover plate 30, and the compartment return air duct 13 is formed on the lower part of the air duct cover plate 30 And located below the evaporator 20. That is to say, the compartment air supply air duct 12 and the device return air duct 15 can be directly formed by adsorption, injection molding and other processes when the air duct cover plate 30 is formed, and only need to be covered with a thin or film-shaped structural member. Yes, the assembly structure is reduced, the assembly process is simplified, and the impact and modification on the original structure of the refrigerator are minimized.
  • the air duct cover plate 30 is provided with a device air outlet port 31 communicating with the other end of the device air supply duct 14 and a device return port communicating with the other end of the device return air duct 15 32.
  • the device air outlet port 31 and the device return air port 32 are respectively connected to the air supply port 41 and the return air port formed at the rear of the storage device 40.
  • the tuyere 42 is sealed and communicated, so that the fluid communication between the storage device 40 and the air supply duct 14 of the device is realized when the storage device 40 is pushed into the storage compartment 11 .
  • the refrigerator 1 further includes a compartment air supply damper 73, which is arranged at the end of the compartment air supply duct 12 adjacent to the evaporator 20 for controlled conduction and/or Or block the compartment air supply duct 12 to selectively deliver cooling airflow into the storage compartment 11 .
  • the air supply damper 71 is disposed at the end of the device air supply duct 14 adjacent to the evaporator 20 . Thereby, the ventilation of the storage compartment 11 and the storage device 40 can be completely separated.
  • both the compartment air supply damper 73 and the air supply damper 71 are opened, so that part of the cooling air flows to the storage compartment through the compartment air supply duct 12
  • the room 11 and another part of the cooling air flow to the storage device 40 through the air supply duct 14 of the device, so as to realize the dehumidification of the storage device 40 and the cooling of the storage compartment 11 simultaneously.
  • Fig. 5 is a schematic exploded view of a storage device according to an embodiment of the present invention.
  • the storage device 40 may include a sealed lid 43 and a drawer 44 .
  • the sealing upper cover 43 is fixedly arranged in the storage compartment 11 .
  • the drawer 44 has a top opening, and is configured to be pushed and pulled under the sealing upper cover 43, so that when it is in a closed state fully pushed into the storage compartment 11, the sealing upper cover 43 covers the top opening of the drawer 44 so that A closed space is defined between the sealing upper cover 43 and the drawer 44 , and the drawer 44 is separated from the sealing upper cover 43 to expose the top opening of the drawer 44 when it is in an open state pulled out from the storage compartment 11 .
  • the storage device 40 of the present invention forms a closed space through the cooperation of the sealed upper cover 43 and the drawer 44.
  • the storage device 40 can be made more Miniaturization, smaller space occupation, and lower cost.
  • each air outlet can be directly opened on the drawer 44, and the airflow used to adjust the humidity in the storage device 40 can directly flow into the drawer 44, and the airflow resistance is small. Humidity regulation is faster.
  • the device air outlet port 31 on the air duct cover plate 30 is in sealing communication with the air supply port 41 of the storage device 40, and the device return air port 32 on the air duct cover plate 30 is in communication with the air outlet port 41 of the storage device 40.
  • the air return port 42 of the storage device 40 is in sealed communication.
  • sealing foam can also be provided between the peripheral edge of the device air outlet port 31 and the air supply port 41, and between the peripheral edge of the device return air port 32 and the return air port 42, and the sealing foam can They are respectively fixed on the circumferential edge of the air outlet port 31 of the device and the circumferential edge of the air return port 32 of the device.
  • the inventor realized that, in order to communicate with the device air supply duct 14 on the air duct cover plate 30, the air supply opening 41 is preferably opened at the rear side of the storage device 40, and the higher the height, the better. For this reason, air supply port 41 can be offered at the top of drawer 44 rear end plates.
  • the inventor realized that even if the air outlet 41 is arranged at the uppermost part of the drawer 44 , its height is still not the highest, and the risk of being blocked by the items stored in the drawer 44 cannot be avoided.
  • the sealing upper cover 43 includes a horizontally extending cover plate 431 and a rear side edge portion 432 extending downward from the rear side edge of the cover plate 431, and the rear side edge portion 432 is provided with a downward opening
  • the first notch 433 and the upper part of the rear end plate 441 of the drawer 44 define a second notch 442 opening upward.
  • the first notch 433 and the second notch 442 butt to form a closed air outlet 41 .
  • the air outlet 41 of the present invention is not completely opened on the drawer 44, but is spliced by two notches respectively formed on the sealing upper cover 43 and the drawer 44, breaking through the height limit of the drawer 44 , so that the height of the air supply port 41 reaches the highest as possible, and the height of the highest point of the air supply port 41 is higher than the height of the drawer 44, therefore, the air supply port 41 does not have the risk of being blocked by the items stored in the drawer 44.
  • the air return port 42 is opened at the bottom of the rear end plate 441 of the drawer 44 , which prolongs the flow path of the cooling air flowing into the storage device 40 from the air supply port 41 , so that the humidity of the storage device 40 is more balanced.
  • the opening and closing state of the air supply damper 71 is mainly controlled according to the humidity in the storage device 40 . Therefore, it is necessary to accurately detect the humidity of the storage device 40 . It is common to use a humidity sensor to directly acquire the humidity in the storage device 40 . However, the inventors have realized that the humidity sensor is expensive and difficult to implement in an actual refrigerator product. Moreover, the inventor also realized that it is the relative humidity in the storage device 40 rather than the absolute humidity that affects the storage quality of the articles, and the relative humidity in the storage device 40 can also be obtained by the temperature in the storage device 40 .
  • the refrigerator 1 of the present invention further includes a temperature sensing device 80 for detecting the temperature in the storage device 40 so as to obtain the humidity in the storage device 40 according to the temperature in the storage device 40 .
  • the air supply damper 71 is configured to be controlled to open when the humidity in the storage device 40 is higher than the preset humidity threshold corresponding to the drying mode to allow the cooling airflow generated by the evaporator 20 to flow into the storage device.
  • the humidity in the storage device 40 when the humidity in the storage device 40 is equal to or lower than the preset humidity threshold corresponding to the drying mode, it is controlled to close. Since the temperature sensing device 80 is cheap, it not only meets the purpose of indirect detection of the humidity in the storage device 40, but also reduces the cost of the refrigerator 1 and is more practical.
  • the temperature sensing device 80 may be a temperature sensing head.
  • the temperature sensing device 80 and the air supply port 41 are located on the same wall of the storage device 40, and are respectively adjacent to two opposite ends of the wall, that is, the temperature sensing device 80 and the air supply port 41 are separated by a certain distance, rather than proximity settings. Further, the temperature sensing device 80 is at the same height as the air outlet 41 . Thus, the position of the temperature sensing device 80 can be one of the positions with the slowest airflow velocity in the storage device 40 , that is, one of the positions where the humidity adjustment rate is relatively lagging.
  • the temperature sensing device 80 is not fixedly arranged in the storage device 40 , but is fixed on the air duct cover plate 30 .
  • the rear side of the storage device 40 is provided with a temperature acquisition through hole 45 for exposing the temperature sensing device 80 to the storage device 40 .
  • the position of the temperature acquisition through hole 45 corresponds to the position of the temperature sensing device 80, so that the temperature sensing device 80 is exposed to the storage device 40 through the temperature acquisition through hole 45 when the storage device 40 is completely in the storage compartment 11 .
  • the number of storage devices 40 can be one, two or more than two, and when the number of storage devices 40 is two, the two storage devices 40 can be arranged side by side in the lateral direction between the storage bottom of chamber 11.
  • the number of related structures such as the device air supply duct 14 , the device return air duct 15 , and the air supply damper 71 is consistent with the number of storage devices 40 .
  • the refrigerator 1 of the present application is a refrigerator in a broad sense, which includes not only refrigerators in the narrow sense, but also storage devices with refrigeration, freezing or other storage functions, such as refrigerators, freezers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱,包括储物间室、蒸发器、间室送风风道、间室回风风道,还包括:储物装置,设置于储物间室内,且具有用于供气流流入其内部空间的送风口和用于供其内部空间的气流流出的回风口;送风风门,设置在蒸发器与送风口之间的气流流动路径上,且配置成在储物装置处于干燥模式时受控地打开或关闭以选择性地允许蒸发器产生的冷却气流流入储物装置内、在储物装置处于保湿模式时受控地关闭以阻止冷却气流流入储物装置内;以及装置回风风道,与间室回风风道相互独立,且装置回风风道的一端直接与蒸发器连通,另一端与储物装置的回风口连通,以允许储物装置内的回风气流流向蒸发器,有效地避免了储物装置内的湿度受到其外部环境的影响。

Description

冰箱 技术领域
本发明涉及冷藏冷冻技术,特别是涉及一种冰箱。
背景技术
随着人民生活水平的提高,对食材的存放更为精细。目前市场中干湿分储的空间大都为单独的固定区域,但是,用户在不同的季节对干湿区的需求往往不同,有的季节不需要干区,有的季节不需要湿区,而有的季节干湿区都需要,这样就造成部分分区空间在某些季节将失去作用,造成冰箱的空间浪费。为此,现有技术中出现了一种具有干湿可调抽屉的冰箱,以根据用户的不同需求储存湿度要求不同的食材。
这种冰箱通常通过向抽屉内输入流经蒸发器后的冷却气流实现干燥功能,相应地,抽屉设有送风口和回风口。当抽屉需要保湿时,抽屉内不再需要冷却气流,此时,现有技术通常通过关闭送风口处的送风风门阻止冷却气流继续进入抽屉内,然而却忽略了抽屉的回风口,抽屉的回风口直接暴露于冷藏室,存在冷藏室的回风通过抽屉的回风口进入抽屉内对抽屉内的温湿度产生影响的情况。
发明内容
本发明的一个目的旨在克服现有技术的至少一个缺陷,提供一种具有干湿可调的储物空间且该储物空间内的湿度不受其外部环境影响的冰箱。
本发明的另一个目的是降低冰箱的成本、简化冰箱的控制逻辑。
为了实现上述目的,本发明提供一种冰箱,包括用于储物物品的储物间室、用于提供冷却气流的蒸发器、用于将所述冷却气流送往所述储物间室的间室送风风道、用于供所述储物间室内的回风气流返回所述蒸发器的间室回风风道,还包括:
储物装置,设置于所述储物间室内,且具有用于供气流流入其内部空间的送风口和用于供其内部空间的气流流出的回风口;
送风风门,设置在所述蒸发器与所述送风口之间的气流流动路径上,且配置成在所述储物装置处于干燥模式时受控地打开或关闭以选择性地允许所述蒸发器产生的冷却气流流入所述储物装置内、在所述储物装置处于保湿 模式时受控地关闭以阻止所述冷却气流流入所述储物装置内;以及
装置回风风道,与所述间室回风风道相互独立,且所述装置回风风道的一端直接与所述蒸发器连通,另一端与所述储物装置的回风口连通,以允许所述储物装置内的回风气流流向所述蒸发器。
可选地,所述储物装置在横向上具有靠近所述蒸发器的第一横向侧部和远离所述蒸发器的第二横向侧部;且
所述回风口开设在所述储物装置的后侧,所述回风口与所述第一横向侧部之间的距离小于所述回风口与所述第二横向侧部之间的距离。
可选地,所述冰箱还包括:
装置送风风道,与所述间室送风风道相互独立,且所述装置送风风道的一端直接与所述蒸发器连通,另一端与所述储物装置的送风口连通;且
所述送风风门设置于所述装置送风风道中。
可选地,所述间室送风风道的与所述蒸发器连通的端部、以及所述装置送风风道的与所述蒸发器连通的端部均位于所述蒸发器的上方,以使得所述间室送风风道和所述装置送风风道均与所述蒸发器的上方空间连通;且
所述装置回风风道的与所述蒸发器连通的端部位于所述蒸发器的下部或下方,以使得装置回风风道与所述蒸发器所处的下部空间或下方空间连通。
可选地,所述储物间室的后侧设有风道盖板,所述蒸发器位于所述风道盖板的后侧,所述间室送风风道、所述装置回风风道和所述装置送风风道均形成在所述风道盖板的后向表面,所述间室回风风道形成在所述风道盖板的下部并位于所述蒸发器的下方;且
所述风道盖板上开设有与所述装置送风风道的另一端端部连通的装置出风端口、与所述装置回风风道的另一端端部连通的装置回风端口,在所述储物装置处于完全容置在所述储物间室内的关闭状态时,所述装置出风端口和所述装置回风端口分别与形成在所述储物装置后部的所述送风口和所述回风口密封连通。
可选地,所述冰箱还包括:
间室送风风门,设置于所述间室送风风道的邻近所述蒸发器的端部,用于受控地导通和/或阻断所述间室送风风道,以选择性地向所述储物间室内输送冷却气流;且
所述送风风门设置于所述装置送风风道的邻近所述蒸发器的端部。
可选地,所述储物装置包括:
密封上盖,固定设置在所述储物间室中;以及
抽屉,具有顶部开口,且配置成可推拉地设置于所述密封上盖的下方,以在其处于完全推入所述储物间室内的关闭状态时使得所述密封上盖覆盖所述顶部开口从而在所述密封上盖和所述抽屉之间限定出封闭空间、在其处于从所述储物间室中拉出的打开状态时使得所述抽屉与所述密封上盖分离以暴露出所述顶部开口。
可选地,所述密封上盖包括水平延伸的盖板和由所述盖板的后侧边缘向下延伸的后侧边缘部,所述后侧边缘部开设有开口向下的第一槽口,所述抽屉的后端板的上部开设有开口向上的第二槽口;且
当所述抽屉处于所述关闭状态时,所述第一槽口和所述第二槽口对接并形成了封闭的所述送风口。
可选地,所述冰箱还包括:
感温装置,用于检测所述储物装置内的温度,以便于根据所述储物装置内的温度获得所述储物装置内的湿度;且
在所述储物装置处于干燥模式时,所述送风风门配置成在所述储物装置内的湿度高于所述干燥模式对应的预设湿度阈值时受控地打开以允许所述蒸发器产生的冷却气流流入所述储物装置内、在所述储物装置内的湿度等于或低于所述干燥模式对应的预设湿度阈值时受控地关闭。
可选地,所述感温装置与所述送风口处于所述储物装置的同一壁面,并分别邻近该壁面的两个相对的端部,且所述感温装置与所述送风口所处的高度相同。
本发明的冰箱包括储物装置、间室送风风道和间室回风风道,储物装置设置在冰箱的储物间室内,且具有送风口和回风口。特别地,本发明的冰箱还包括设置在蒸发器与储物装置的送风口之间的气流流动路径上的送风风门、以及连通储物装置的回风口和蒸发器的装置回风风道,通过送风风门的开闭控制可以在储物装置内实现干湿可调的储物空间。并且,装置回风风道与间室回风风道相互独立,装置回风风道的一端直接与蒸发器连通,而不是通过间室送风风道间接地与蒸发器连通,另一端与储物装置的回风口连通,储物装置内的回风气流可经装置回风风道直接流向蒸发器。储物间室内的回 风可经间室回风风道流向蒸发器。也就是说,储物装置的回风与储物间室的回风相互独立,互不影响,因此,储物装置内限定的干湿可调的储物空间的湿度不受储物间室的影响。同时,相比于现有技术中直接将储物装置的回风口与间室回风风道连通的方案来说,本发明的装置回风风道将回风口与蒸发器直接连通,相当于延长了储物装置与其外部环境之间的回风路径,当储物装置不需要输送冷却气流时,蒸发器所处空间内的气流不会通过装置回风风道对储物装置内的湿度产生影响,提高了储物装置内物品的保存品质。
进一步地,在面临如何避免外部环境通过回风口对储物装置内的湿度产生影响的问题时,发明人认识到,可以在回风口处增加回风风门。然而,发明人进一步认识到,回风风门的增加不但会增大了冰箱的成本,而且回风风门体积较小,装配难度大,影响生产效率,最重要的是,还需要对回风风门进行精确控制,增加了控制逻辑的负担。为此,本发明另辟蹊径地设计出一种完全不同于风门原理的解决方案。本发明通过设置独立的装置回风风道,使得储物装置的回风与储物间室的回风互不影响,并延长了储物装置与其外部环境之间的回风路径,通过延长风路这种纯机械结构的改进避免蒸发器处的气流对储物装置内的湿度产生影响,不但结构简单、成本较低、不需要增加装配工序,而且还简化了冰箱的控制逻辑,实用价值较高。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的冰箱的部分结构的示意后视图;
图3是根据本发明一个实施例的冰箱的部分结构的示意正视图;
图4是根据本发明一个实施例的储物装置的示意性结构图;
图5是根据本发明一个实施例的储物装置的示意性分解图。
具体实施方式
本发明提供一种冰箱,图1是根据本发明一个实施例的冰箱的示意性结 构图,参见图1,本发明的冰箱1包括限定有储物间室11的箱体10、以及设置于储物间室11内的储物装置40。具体地,储物间室11可以为具有冷藏储物环境的冷藏间室,也可以为变温间室或其他保鲜间室。
图2是根据本发明一个实施例的冰箱的部分结构的示意后视图,图3是根据本发明一个实施例的冰箱的部分结构的示意正视图,图4是根据本发明一个实施例的储物装置的示意性结构图。参见图2至图4,本发明的冰箱1还包括用于提供冷却气流的蒸发器20、用于将冷却气流送往储物间室11的间室送风风道12、用于供储物间室11内的回风气流返回蒸发器20的间室回风风道13。储物装置40具有用于供气流流入其内部空间的送风口41和用于供其内部空间的气流流出的回风口42。需要说明的是,为了便于看清楚风道结构,图2和图3中省去了用于覆盖各风道的结构件。
特别地,冰箱还包括送风风门71和装置回风风道15。
送风风门71设置在蒸发器20与送风口41之间的气流流动路径上,且配置成在储物装置40处于干燥模式时受控地打开或关闭以选择性地允许蒸发器20产生的冷却气流流入储物装置40内、在储物装置40处于保湿模式时受控地关闭以阻止蒸发器20产生的冷却气流流入储物装置40内。可以理解的是,干燥模式和保湿模式是储物装置40的两个不同的功能模式,当储物装置40分别处于干燥模式和保湿模式时,其内部空间对应的预设湿度范围是不同的。
装置回风风道15与间室回风风道13相互独立,且装置回风风道15的一端直接与蒸发器20连通,另一端与储物装置40的回风口42连通,以允许储物装置40内的回风气流流向蒸发器20。
当储物装置40切换至干燥模式时,送风风门71受控地打开以允许蒸发器20产生的冷却气流流入储物装置40内,储物装置40内原有的空气经回风口42和装置回风风道15返回蒸发器20,从而置换储物装置40内的空气。由于气流流经温度较低的蒸发器20时,气流中的水分会在蒸发器20上凝结,从而使得形成的冷却气流的温度和湿度都比较低,因此当冷却气流置换储物装置40内的空气后储物装置40内可形成低温低湿的干燥储物空间。当储物装置40内的湿度降低至干燥模式对应的预设湿度阈值时可受控地关闭送风风门71。此时,即便间室回风风道13内有储物间室11的回风气流流过,间室回风风道13及储物间室11内的气流都不会流入储物装置40中对储物装 置40中的湿度产生影响。并且,由于装置回风风道15的存在,延长了储物装置40与蒸发器20之间的气流路径,蒸发器20处的气流也不会轻易地经装置回风风道15进入储物装置40。当储物装置40内的湿度高于干燥模式对应的预设湿度阈值时可再次打开送风风门71,如此反复,使得储物装置40内维持在干燥模式对应的预设湿度阈值。
当储物装置40切换至保湿模式时,送风风门71受控地关闭,以阻止冷却气流和流入储物装置40内,储物装置40内储存的含水量较大的果蔬等物品挥发大量的水分,使得储物装置40内形成湿度较高的高湿空间,利于果蔬等物品的保存。
进一步地,储物装置40还包括允许其内部的水分向外渗透的透湿膜47,当储物装置40内的湿度过高时,过多的水分可以通过透湿膜47向外透出,避免储物装置40内因湿度过大而出现凝露现象。
由此,可见,本发明通过送风风门71的开闭控制可以在储物装置40内实现干湿可调的储物空间。并且,装置回风风道15与间室回风风道13相互独立,装置回风风道15的一端直接与蒸发器20连通,而不是通过间室送风风道13间接地与蒸发器20连通,另一端与储物装置40的回风口42连通,储物装置40内的回风气流可经装置回风风道15直接流向蒸发器20。储物间室11内的回风可经间室回风风道13流向蒸发器20。也就是说,储物装置40的回风与储物间室11的回风相互独立,互不影响,因此,储物装置40内限定的干湿可调的储物空间的湿度不受储物间室11的影响。同时,相比于现有技术中直接将储物装置的回风口与间室回风风道连通的方案来说,本发明的装置回风风道15将回风口42与蒸发器20直接连通,相当于延长了储物装置40与其外部环境之间的回风路径,当储物装置40不需要输送冷却气流时,蒸发器20所处空间内的气流不易或不会通过装置回风风道15流入储物装置40内对其湿度产生影响,提高了储物装置40内物品的保存品质。
在面临如何避免外部环境通过回风口42对储物装置40内的湿度产生影响的问题时,发明人认识到,可以在回风口42处增加回风风门。然而,发明人进一步认识到,回风风门的增加不但会增大了冰箱的成本,而且回风风门体积较小,装配难度大,影响生产效率,最重要的是,还需要对回风风门进行精确控制,增加了控制逻辑上的负担。
为此,本发明另辟蹊径地设计出一种完全不同于风门原理的解决方案。 本发明通过设置独立的装置回风风道15,使得储物装置40的回风与储物间室11的回风互不影响,并延长了储物装置40与其外部环境之间的回风路径,通过延长风路这种纯机械结构的改进避免蒸发器20处的气流对储物装置40内的湿度产生影响,不但结构非常简单、成本较低、不需要增加装配工序,而且还简化了冰箱1的控制逻辑,实用价值较高。
在一些实施例中,储物装置40在横向上具有靠近蒸发器20的第一横向侧部和远离蒸发器20的第二横向侧部。回风口42开设在储物装置40的后侧,回风口42与储物装置40的第一横向侧部之间的距离小于回风口42与储物装置40的第二横向侧部之间的距离。也就是说,回风口42更加邻近储物装置40的远离蒸发器20的横向侧部,尽可能地延长了连接在回风口42和蒸发器20之间的装置回风风道15的长度,即最大可能地延长了储物装置40的回风风路的长度,进一步减小了蒸发器20这一外部环境对储物装置40内的湿度的影响。
发明人认识到,在本申请之前,具有干湿可调空间的储物装置的送风口直接与储物间室的送风风道连通,并且送风风门通常设置在送风口处。当储物装置需要降低湿度时,冰箱1的送风风机必须启动(无论储物间室是否需要制冷),向间室的送风风道内输送冷却气流。储物间室的送风风道内的部分冷却气流流向储物间室、另一部分冷却气流流向储物装置,然而,冷却气流的分流不但减少了流向储物装置的冷却气流量,而且还可能导致储物间室内的温度低于其设定温度。
为此,在一些实施例中,本发明的冰箱1还包括与间室送风风道12相互独立的装置送风风道14,装置送风风道14的一端直接与蒸发器20连通,另一端与储物装置40的送风口41连通,用于直接向储物装置40内输送蒸发器20产生的冷却气流。本发明的装置送风风道14与间室送风风道12相互独立,而不是通过间室送风风道12间接地与蒸发器20连通。一方面,储物40与储物间室11的送风互不影响,当储物装置40需要送风时不必考虑储物间室11是否处于制冷状态、是否需要制冷以及制冷量的多少等,也即是,储物装置40的送风不会对储物间室11的温度产生影响;另一方面,经装置送风风道14送出的全部气流均可以流向储物装置40,经间室送风风道11送出的全部气流均可以流向储物间室11,增大了储物装置40需要送风时的送风量以及储物间室11需要制冷时的送风量,从而提高了储物装置40在 干燥模式下的湿度调节效率以及储物间室11的制冷效率。
进一步地,送风风门71设置于装置送风风道14中,以受控地导通或阻断装置送风风道14。
在一些实施例中,间室送风风道12的与蒸发器20连通的端部、以及装置送风风道14的与蒸发器20连通的端部均位于蒸发器20的上方,以使得间室送风风道12和装置送风风道14均与蒸发器20的上方空间连通。装置回风风道15的与蒸发器20连通的端部位于蒸发器20的下部或下方,以使得装置回风风道与蒸发器20所处的下部空间或下方空间连通。由此,当储物间室11和/或储物装置40需要输送冷却气流时,位于蒸发器20上方的送风风机72启动,驱动气流由下向上地流经蒸发器20,从而可在蒸发器20的下部空间或下方空间形成负压状态。也就是说,无论是储物间室11单独制冷、还是储物装置40单独除湿、还是在储物间室11制冷的同时储物装置40除湿,蒸发器20的下部空间或下方空间始终保持负压环境。因此,蒸发器20的下部空间或下方空间内的气体基本不会经由装置回风风道15进入储物装置40,大幅度地减弱了蒸发器20所处的空间对储物装置40内湿度的影响。
在一些实施例中,储物间室11的后侧设有风道盖板30,蒸发器20位于风道盖板30的后侧。间室送风风道12、装置回风风道15和装置送风风道14均形成在风道盖板30的后向表面,间室回风风道13形成在风道盖板30的下部并位于蒸发器20的下方。也就是说,间室送风风道12和装置回风风道15可以在风道盖板30成型时通过吸附、注塑等工艺直接形成,只需要覆盖一层薄片状或薄膜状的结构件即可,减少了装配结构、简化了装配工序,最大化地减小了对冰箱原有结构的影响和改动。
进一步地,风道盖板30上开设有与装置送风风道14的另一端端部连通的装置出风端口31、以及与装置回风风道15的另一端端部连通的装置回风端口32,在储物装置40处于完全容置在储物间室11内的关闭状态时,装置出风端口31和装置回风端口32分别与形成在储物装置40后部的送风口41和回风口42密封连通,从而在储物装置40推入储物间室11内的同时实现了储物装置40与装置送风风道14之间的流体连通。
在一些实施例中,冰箱1还包括间室送风风门73,间室送风风门73设置于间室送风风道12的邻近蒸发器20的端部,用于受控地导通和/或阻断间 室送风风道12,以选择性地向储物间室11内输送冷却气流。送风风门71设置于装置送风风道14的邻近蒸发器20的端部。由此,可以将储物间室11和储物装置40的送风完全地独立开。当储物间室11不需要制冷时,间室送风风道12内不会有任何冷却气流流过,使得送风风机72驱动的全部冷却气流均流向装置送风风道14;当储物装置40不需要降湿时,装置送风风道14内不会有任何冷却气流流过,使得送风风机72驱动的全部冷却气流均流向间室送风风道12,进一步提高了储物装置40在干燥模式下的湿度调节效率以及储物间室11的制冷效率。当储物装置40需要降湿、且储物间室11需要制冷时,间室送风风门73和送风风门71均打开,以使得部分冷却气流通过间室送风风道12流向储物间室11、另一部分冷却气流通过装置送风风道14流向储物装置40,同步实现储物装置40的降湿和储物间室11的制冷。
图5是根据本发明一个实施例的储物装置的示意性分解图。在一些实施例中,储物装置40可包括密封上盖43和抽屉44。密封上盖43固定设置在储物间室11中。抽屉44具有顶部开口,且配置成可推拉地设置于密封上盖43的下方,以在其处于完全推入储物间室11内的关闭状态时使得密封上盖43覆盖抽屉44的顶部开口从而在密封上盖43和抽屉44之间限定出封闭空间、在其处于从储物间室11中拉出的打开状态时使得抽屉44与密封上盖43分离以暴露出抽屉44的顶部开口。
相比于现有技术中具有密封桶体和抽屉的储物装置来说,本发明的储物装置40通过密封上盖43与抽屉44配合形成封闭空间,一方面,可使得储物装置40更加小型化,占用空间更小,且成本更低,另一方面,各风口可直接开设在抽屉44上,用于调节储物装置40内湿度的气流可直接流入抽屉44内,气流阻力较小,湿度调节的速度更快。
具体地,在储物装置40处于关闭状态时,风道盖板30上的装置出风端口31与储物装置40的送风口41密封连通,风道盖板30上的装置回风端口32与储物装置40的回风口42密封连通。为了进一步提高密封性能,装置出风端口31与送风口41的周向边缘之间、以及装置回风端口32与回风口42的周向边缘之间还可设有密封泡棉,密封泡棉可以分别固定在装置出风端口31的周向边缘和装置回风端口32的周向边缘。
进一步地,发明人认识到,为了便于与风道盖板30上的装置送风风道14连通,送风口41优选开设在储物装置40的后侧,并且高度越高越好。为 此,送风口41可以开设在抽屉44后端板的最上部。然而,发明人认识到,即使将送风口41设置在抽屉44的最上部,其高度仍然不是最高的,且也避免不了被抽屉44内存放的物品封堵的风险。
为此,在一些实施例中,密封上盖43包括水平延伸的盖板431和由盖板431的后侧边缘向下延伸的后侧边缘部432,后侧边缘部432开设有开口向下的第一槽口433,抽屉44的后端板441的上部开设有开口向上的第二槽口442。当抽屉44处于关闭状态时,第一槽口433和第二槽口442对接并形成了封闭的送风口41。也就是说,本发明的送风口41并不完全地开设在抽屉44上,而是由分别形成在密封上盖43和抽屉44上的两个槽口拼接而成,突破了抽屉44的高度限制,使得送风口41的高度尽可能地达到最高,且送风口41最高点的高度高于抽屉44的高度,因此,送风口41不存在被抽屉44内存放的物品堵死的风险。
在一些实施例中,回风口42开设在抽屉44的后端板441的底部,延长了由送风口41流入储物装置40的冷却气流的流动路径,使得储物装置40的湿度更加均衡。
可以理解的是,送风风门71的开闭状态主要是根据储物装置40内的湿度来控制的。因此,需要对储物装置40的湿度进行准确地检测。通常比较常见的是采用湿度传感器直接获取储物装置40内的湿度,然而,发明人认识到,湿度传感器的成本较高,难以在实际的冰箱产品上得以实现。并且,发明人还认识到,影响物品保存品质的是储物装置40内的相对湿度,而不是绝对湿度,储物装置40内的相对湿度还可以通过储物装置40内的温度获得。
为此,在一些实施例中,本发明的冰箱1还包括感温装置80,用于检测储物装置40内的温度,以便于根据储物装置40内的温度获得储物装置40内的湿度。在储物装置40处于干燥模式时,送风风门71配置成在储物装置40内的湿度高于干燥模式对应的预设湿度阈值时受控地打开以允许蒸发器20产生的冷却气流流入储物装置40内、在储物装置40内的湿度等于或低于干燥模式对应的预设湿度阈值时受控地关闭。由于感温装置80价格低廉,因此不但可以满足对储物装置40内的湿度进行间接检测的目的,而且还可以降低冰箱1的成本,更加实用。
具体地,感温装置80可以为感温头。
在一些实施例中,感温装置80与送风口41处于储物装置40的同一壁面,并分别邻近该壁面的两个相对的端部,即感温装置80与送风口41间隔一定的距离,而不是邻近设置。进一步地,感温装置80与送风口41所处的高度相同。由此,可以使得感温装置80所处的位置为储物装置40内气流流速最慢的位置之一,也即是湿度调节速率相对滞后的位置之一。当通过向储物装置40内输入冷却气流的方式降低其湿度时,感温装置80检测到的温度对应的湿度值达到干燥模式对应的预设湿度阈值时,储物装置40内的其他区域也已经达到该预设湿度阈值或比该预设湿度阈值更低,此时关闭送风风门71可以确保储物装置40内的湿度完全符合要求。
进一步地,为了避免感温装置80受到储物装置40内存放物品的影响,感温装置80并不固定地设置储物装置40内,而是固定在风道盖板30上。相应地,储物装置40的后侧设有用于将感温装置80暴露于储物装置40内的温度获取通孔45。温度获取通孔45的位置与感温装置80的位置相对应,以在储物装置40完全地处于储物间室11时使得感温装置80经温度获取通孔45暴露于储物装置40内。
在一些实施例中,储物装置40的数量可以为一个、两个或两个以上,当储物装置40的数量为两个时,两个储物装置40可沿横向并排设置在储物间室11的底部。相应地,装置送风风道14、装置回风风道15、送风风门71等相关结构的数量与储物装置40的数量保持一致。
本申请的冰箱1为广义上的冰箱,其不但包括通常所说的狭义上的冰箱,而且还包括具有冷藏、冷冻或其他储物功能的储物装置,例如,冷藏箱、冷柜等等。
本领域技术人员还应理解,本发明实施例中所称的“上”、“下”、“前”、“后”、“顶”、“底”等用于表示方位或位置关系的用语是以冰箱1的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修 改。

Claims (10)

  1. 一种冰箱,包括用于储物物品的储物间室、用于提供冷却气流的蒸发器、用于将所述冷却气流送往所述储物间室的间室送风风道、用于供所述储物间室内的回风气流返回所述蒸发器的间室回风风道,其中,所述冰箱还包括:
    储物装置,设置于所述储物间室内,且具有用于供气流流入其内部空间的送风口和用于供其内部空间的气流流出的回风口;
    送风风门,设置在所述蒸发器与所述送风口之间的气流流动路径上,且配置成在所述储物装置处于干燥模式时受控地打开或关闭以选择性地允许所述蒸发器产生的冷却气流流入所述储物装置内、在所述储物装置处于保湿模式时受控地关闭以阻止所述冷却气流流入所述储物装置内;以及
    装置回风风道,与所述间室回风风道相互独立,且所述装置回风风道的一端直接与所述蒸发器连通,另一端与所述储物装置的回风口连通,以允许所述储物装置内的回风气流流向所述蒸发器。
  2. 根据权利要求1所述的冰箱,其中,
    所述储物装置在横向上具有靠近所述蒸发器的第一横向侧部和远离所述蒸发器的第二横向侧部;且
    所述回风口开设在所述储物装置的后侧,所述回风口与所述第一横向侧部之间的距离小于所述回风口与所述第二横向侧部之间的距离。
  3. 根据权利要求1所述的冰箱,还包括:
    装置送风风道,与所述间室送风风道相互独立,且所述装置送风风道的一端直接与所述蒸发器连通,另一端与所述储物装置的送风口连通;且
    所述送风风门设置于所述装置送风风道中。
  4. 根据权利要求3所述的冰箱,其中,
    所述间室送风风道的与所述蒸发器连通的端部、以及所述装置送风风道的与所述蒸发器连通的端部均位于所述蒸发器的上方,以使得所述间室送风风道和所述装置送风风道均与所述蒸发器的上方空间连通;且
    所述装置回风风道的与所述蒸发器连通的端部位于所述蒸发器的下部或下方,以使得所述装置回风风道与所述蒸发器所处的下部空间或下方空间 连通。
  5. 根据权利要求3所述的冰箱,其中,
    所述储物间室的后侧设有风道盖板,所述蒸发器位于所述风道盖板的后侧,所述间室送风风道、所述装置回风风道和所述装置送风风道均形成在所述风道盖板的后向表面,所述间室回风风道形成在所述风道盖板的下部并位于所述蒸发器的下方;且
    所述风道盖板上开设有与所述装置送风风道的另一端端部连通的装置出风端口、与所述装置回风风道的另一端端部连通的装置回风端口,在所述储物装置处于完全容置在所述储物间室内的关闭状态时,所述装置出风端口和所述装置回风端口分别与形成在所述储物装置后部的所述送风口和所述回风口密封连通。
  6. 根据权利要求3所述的冰箱,还包括:
    间室送风风门,设置于所述间室送风风道的邻近所述蒸发器的端部,用于受控地导通和/或阻断所述间室送风风道,以选择性地向所述储物间室内输送冷却气流;且
    所述送风风门设置于所述装置送风风道的邻近所述蒸发器的端部。
  7. 根据权利要求1所述的冰箱,其中,所述储物装置包括:
    密封上盖,固定设置在所述储物间室中;以及
    抽屉,具有顶部开口,且配置成可推拉地设置于所述密封上盖的下方,以在其处于完全推入所述储物间室内的关闭状态时使得所述密封上盖覆盖所述顶部开口从而在所述密封上盖和所述抽屉之间限定出封闭空间、在其处于从所述储物间室中拉出的打开状态时使得所述抽屉与所述密封上盖分离以暴露出所述顶部开口。
  8. 根据权利要求7所述的冰箱,其中,
    所述密封上盖包括水平延伸的盖板和由所述盖板的后侧边缘向下延伸的后侧边缘部,所述后侧边缘部开设有开口向下的第一槽口,所述抽屉的后端板的上部开设有开口向上的第二槽口;且
    当所述抽屉处于所述关闭状态时,所述第一槽口和所述第二槽口对接并形成了封闭的所述送风口。
  9. 根据权利要求1所述的冰箱,还包括:
    感温装置,用于检测所述储物装置内的温度,以便于根据所述储物装置内的温度获得所述储物装置内的湿度;且
    在所述储物装置处于干燥模式时,所述送风风门配置成在所述储物装置内的湿度高于所述干燥模式对应的预设湿度阈值时受控地打开以允许所述蒸发器产生的冷却气流流入所述储物装置内、在所述储物装置内的湿度等于或低于所述干燥模式对应的预设湿度阈值时受控地关闭。
  10. 根据权利要求9所述的冰箱,其中,
    所述感温装置与所述送风口处于所述储物装置的同一壁面,并分别邻近该壁面的两个相对的端部,且所述感温装置与所述送风口所处的高度相同。
PCT/CN2022/110014 2021-09-29 2022-08-03 冰箱 WO2023051022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111151232.3 2021-09-29
CN202111151232.3A CN115875903A (zh) 2021-09-29 2021-09-29 冰箱

Publications (1)

Publication Number Publication Date
WO2023051022A1 true WO2023051022A1 (zh) 2023-04-06

Family

ID=85756135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110014 WO2023051022A1 (zh) 2021-09-29 2022-08-03 冰箱

Country Status (2)

Country Link
CN (1) CN115875903A (zh)
WO (1) WO2023051022A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567240A (zh) * 2014-11-26 2015-04-29 青岛海尔股份有限公司 干燥储物装置及其换风方法
CN106766488A (zh) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 风冷冰箱及其控制方法
CN107289707A (zh) * 2016-03-31 2017-10-24 青岛海尔智能技术研发有限公司 风冷冰箱
JP2018146198A (ja) * 2017-03-08 2018-09-20 パナソニックIpマネジメント株式会社 冷蔵庫
CN208817816U (zh) * 2018-07-19 2019-05-03 青岛海尔股份有限公司 单系统对开门冰箱
CN209893729U (zh) * 2018-04-13 2020-01-03 青岛海尔电冰箱有限公司 法式冰箱
CN216409425U (zh) * 2021-09-29 2022-04-29 青岛海尔电冰箱有限公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567240A (zh) * 2014-11-26 2015-04-29 青岛海尔股份有限公司 干燥储物装置及其换风方法
CN107289707A (zh) * 2016-03-31 2017-10-24 青岛海尔智能技术研发有限公司 风冷冰箱
CN106766488A (zh) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 风冷冰箱及其控制方法
JP2018146198A (ja) * 2017-03-08 2018-09-20 パナソニックIpマネジメント株式会社 冷蔵庫
CN209893729U (zh) * 2018-04-13 2020-01-03 青岛海尔电冰箱有限公司 法式冰箱
CN208817816U (zh) * 2018-07-19 2019-05-03 青岛海尔股份有限公司 单系统对开门冰箱
CN216409425U (zh) * 2021-09-29 2022-04-29 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN115875903A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN110274417B (zh) 冰箱及其湿度调节方法
CN105972929B (zh) 一种风冷冰箱及其控制方法
CN104350343B (zh) 制冷器具
US5400612A (en) High humidity-low temperature portable storage apparatus
CN105806003A (zh) 风冷冰箱
EP3742061B1 (en) A refrigerating appliance, in particular a wine cellar, with a humidity control system
CN104949466A (zh) 一种湿度控制装置、保藏箱和冰箱
CN107504755A (zh) 储物组件和具有其的制冷设备及控制方法
CN108278814A (zh) 冰箱展示装置
CN208170825U (zh) 一种具有门体干燥室的冰箱
WO2023051022A1 (zh) 冰箱
CN110513936B (zh) 冰箱
CN216409425U (zh) 冰箱
CN216409424U (zh) 冰箱
CN109990527A (zh) 一种具有门体干燥室的冰箱
WO2023124631A1 (zh) 冰箱
WO2023051045A1 (zh) 冰箱
WO2023045537A1 (zh) 一种用于冰箱的储物组件及具有其的冰箱
JPH04371778A (ja) 冷蔵庫
WO2022257415A1 (zh) 冷藏冷冻装置
US10612829B2 (en) Dynamic humidity control system
CN211400450U (zh) 一种调湿储藏柜
KR20100102302A (ko) 냉장고의 야채실 및 이의 제어방법
WO2023065979A1 (zh) 冷藏冷冻装置
KR102580949B1 (ko) 냉장 냉동 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE