WO2023050914A1 - 一种具有绝热构造的多腔绝热导流管 - Google Patents

一种具有绝热构造的多腔绝热导流管 Download PDF

Info

Publication number
WO2023050914A1
WO2023050914A1 PCT/CN2022/100323 CN2022100323W WO2023050914A1 WO 2023050914 A1 WO2023050914 A1 WO 2023050914A1 CN 2022100323 W CN2022100323 W CN 2022100323W WO 2023050914 A1 WO2023050914 A1 WO 2023050914A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
tube
inner tube
heat
pipe
Prior art date
Application number
PCT/CN2022/100323
Other languages
English (en)
French (fr)
Inventor
张鸣
汪强
Original Assignee
等熵循环(北京)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 等熵循环(北京)新能源科技有限公司 filed Critical 等熵循环(北京)新能源科技有限公司
Publication of WO2023050914A1 publication Critical patent/WO2023050914A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the utility model relates to the technical field related to heat insulation and flow diversion, in particular to a multi-cavity heat insulation flow diversion pipe with a heat insulation structure.
  • conventional geothermal energy utilization generally adopts heat pump systems, which are divided into the following main methods: 1. Utilization of surface water sources, using surface water as a cold and heat source; 2. Utilization of soil sources, using soil energy storage as a cooling 3. Shallow ground energy utilization, a water source heat pump system that uses shallow groundwater as a cold and heat source. These three technical forms are basically shallow or surface ground energy utilization, combined with heat pump technology to form a new energy utilization system.
  • the existing conventional geothermal energy utilization has the following disadvantages: 1. Utilization of water that exists on the surface of the earth’s crust and is exposed to the atmosphere, such as river water, river water, lake water, reservoir water, etc., has relatively large constraints on the location of utilization; extract hot water and discharge it into cold water It will cause the temperature of the local water body to rise or fall, which will affect the distribution of the temperature field of the water body in a specific area, and then cause certain pollution to the water environment. The temperature of the hydrothermal resources existing on the surface is relatively low, and the traditional diversion pipe has a large heat loss, so the heat utilization value of the surface water source system is low, and other energy sources are needed to assist the work. 2.
  • the heat energy temperature of the shallow soil is low, so in order to provide a certain amount of heat energy, a large area of pipelines needs to be buried; the soil source heat pump occupies a large area, the amount of engineering is large, the investment is large and the benefit is low; the heating process will lead to regional thermal imbalance;
  • the shallow soil temperature is relatively low, and the traditional diversion pipe has a large heat loss, so the heat utilization value of the surface water source system is low, and other energy sources are needed to assist the work. 3.
  • Due to the limitation of underground heat resources, the application is limited; most of them use extraction, extraction, and recharge methods. It is an open system for the utilization of groundwater sources. The utilization rate is not high, and it will cause the problem of groundwater oxidation and affect the underground ecology.
  • the buried pipes used in the existing geothermal energy utilization system are mainly divided into two types according to the material: one is polyethylene (PE) pipes, and the other is steel pipes; the pipelines are divided into direct water intake structures and heat-conducting liquids for closed pipe components Closed loop construction.
  • PE polyethylene
  • the existing geothermal energy utilization system directly extracts underground hot water, exchanges heat in the ground heat exchanger, and recharges the remaining water after energy extraction.
  • Use a closed pipe member inject a special heat transfer liquid into the member, and through the circulation of the liquid in the pipe, the geothermal energy will be brought to the ground heat exchanger for heat exchange, and the heat transfer liquid after extracting the energy will flow back to the ground to close the cycle.
  • the double-cavity buried pipe of the general airtight pipe component is only equipped with an extraction pipe and a return pipe.
  • the function of the pipe is only a closed circulation of the heat-conducting liquid, and it does not directly extract groundwater.
  • the pipe itself does not have thermal insulation performance. In order to reduce heat loss, it will Wrap flexible insulation material on the outside of the pipe.
  • General thermal insulation materials for closed pipe components use rock wool, glass wool, rubber and plastic sponge, etc., and wrap the closed pipe components outside the pipe.
  • the thermal conductivity ⁇ of these thermal insulation materials is between 0.034-0.040W/(m K), and the thermal conductivity The coefficient is relatively large. If there is a demand for compression, it is necessary to add a compression-resistant structural layer outside the insulation layer.
  • the utility model provides a multi-cavity heat-insulating draft tube with heat-insulating structure.
  • a multi-cavity adiabatic conduction pipe with an adiabatic structure including an outer pipe and an inner pipe, the bottom of the outer pipe is a sealed structure, and the top and bottom of the inner pipe Both are open structures; a first cavity is formed between the inner tube and the outer tube, the middle of the inner tube has a second cavity axially penetrated, the inner tube is sleeved in the outer tube, A communication area is reserved between the bottom of the inner tube and the bottom of the outer tube, and the first cavity communicates with the second cavity through the communication area; the inner side wall of the inner tube is connected to the outer side A third cavity is formed between the walls, the third cavity is a vacuum cavity, and an insulating material is sealed in the third cavity.
  • the utility model adopts a three-layer cavity structure, uses the first cavity between the inner tube and the outer tube as a heat collection cavity, and the third cavity of the inner tube itself as a thermal insulation cavity body, the second cavity in the center of the inner tube is used as the heat delivery cavity, and the heat insulation cavity is located in the middle of the overall guide tube, between the heat collection cavity and the heat delivery cavity.
  • the heat insulation cavity itself is an independent closed structure, and There is no communication between the two cavities, and the heat insulation cavity can well isolate the heat transfer between the heat collection cavity and the heat delivery cavity.
  • the multi-cavity heat-insulated draft tube of the utility model can be used in the mid-deep geothermal energy utilization system, realizing the comprehensive utilization effect of small footprint, low loss of geothermal energy, and zero impact on the ecological environment, and does not need to use high-grade energy for supplementary heat , can meet the heating demand of buildings and agriculture, and achieve the maximum utilization efficiency of geothermal energy.
  • thermal insulation material sealed in the third cavity includes airgel particles or/and ultrafine glass fibers.
  • the beneficial effect of adopting the above-mentioned further scheme is: airgel particles are used as the insulation material, and the thermal conductivity ⁇ of the airgel particles can be reduced from 0.014W/(m K) to 0.004W/(m K) in a vacuum state. ), has a good thermal insulation effect.
  • the third cavity is an annular cavity.
  • the beneficial effect of adopting the above further solution is that the first cavity and the second cavity can be thermally insulated.
  • the first cavity is an annular cavity.
  • the beneficial effect of adopting the above further scheme is that the first cavity and the second cavity communicated through the communication area form a U-shaped circulation channel, and fluids at different temperatures can be circulated and diverted in one diversion tube.
  • top of the inner tube protrudes from the top of the outer tube, and the top of the outer tube is in sealing connection with the outer side wall of the inner tube, and a water return port is opened on the top side wall of the outer tube, so The top opening of the inner pipe is a water outlet.
  • the beneficial effect of adopting the above further scheme is that the inner pipe and the outer pipe are effectively connected together, and the water return port and the water outlet port are respectively used to connect to the heat exchanger, and the overall structure is compact and reliable.
  • a heat-insulating support ring is provided in the first cavity, and the heat-insulation support ring is sleeved on the outer wall of the inner tube, and the heat-insulation support ring is connected to the outer wall of the inner tube and the outer wall of the inner tube respectively.
  • the inner side walls of the outer tube abut.
  • a heat-insulating support ring in order to ensure the size of the first cavity as the heat collection cavity, a heat-insulating support ring can be set in the first cavity between the inner tube and the outer tube, and the heat-insulation support ring can be set A plurality of heat-insulating support rings are arranged at intervals along the axial direction of the draft tube, and the material of the heat-insulation support rings is made of a material with certain mechanical properties and low thermal conductivity to avoid heat transfer as much as possible.
  • the heat insulation support ring includes a ring body and support feet, the ring body is sleeved on the outer wall of the inner tube, and a plurality of support feet are integrally connected to the outer ring side wall of the ring body. Two support feet are arranged at intervals along the circumference of the ring body, and the support feet abut against the inner side wall of the outer tube.
  • the beneficial effect of adopting the above further scheme is that: the heat-insulating support ring formed by the cooperation of the ring body and the support feet ensures the support strength while occupying as little circulation space as possible in the first cavity.
  • Figure 1 is a schematic diagram of the overall structure of the axial section of the multi-cavity heat-insulating draft tube of the present invention
  • Fig. 2 is a partial enlarged structural schematic diagram of the axial section of the utility model multi-cavity heat-insulated draft tube
  • Fig. 3 is a structural schematic diagram of a radial section of a multi-cavity heat-insulating draft tube of the present invention
  • Fig. 4 is a structural schematic diagram of the heat insulation support ring of the present invention.
  • Heat exchanger 10. Natural ground; 101. Shallow geothermal area; 102. Medium-deep geothermal area.
  • a multi-chamber heat-insulated draft tube with a thermal insulation structure in this embodiment includes an outer tube 1 and an inner tube 2, the bottom of the outer tube 1 is a sealed structure, and the inner tube The top and bottom of 2 are both open structures; the first cavity 3 is formed between the inner tube 2 and the outer tube 1, and the middle part of the inner tube 2 has a second cavity 4 axially penetrating.
  • the inner tube 2 is sleeved in the outer tube 1, and a communication area 6 is reserved between the bottom of the inner tube 2 and the bottom of the outer tube 1, and the first cavity 3 passes through the communication area 6 It communicates with the second cavity 4; a third cavity 5 is formed between the inner wall and the outer wall of the inner tube 2, the third cavity 5 is a vacuum cavity, and the third cavity 5 is sealed There are insulation materials8.
  • the thermal insulation material 8 sealed in the third cavity 5 is airgel particles.
  • Airgel particles are used as insulation materials, and the thermal conductivity ⁇ of the airgel particles is 0.014W/(m ⁇ K).
  • the third cavity 5 is an independent sealed structure. Through vacuuming, a vacuum chamber with an insulating layer of airgel particles is formed. Under vacuum, the thermal conductivity ⁇ of the airgel particles will increase from 0.014W/(m ⁇ K ) is reduced to 0.004W/(m ⁇ K), which has a good thermal insulation effect.
  • the depth of thermal insulation is basically the same as that of the overall pipe, and the thermal insulation is continuous and fully insulated for the entire inner tube, rather than only Setting in the permafrost layer greatly reduces the heat loss of geothermal heat from deep to shallow.
  • the third cavity 5 in this embodiment is an annular cavity.
  • the first cavity and the second cavity can be thermally insulated by using the ring-shaped third cavity.
  • the first cavity 3 in this embodiment is an annular cavity.
  • the first cavity and the second cavity connected by the communication area form a U-shaped circulation flow channel, and the circulation flow of fluids with different temperatures can be carried out in one flow guide tube.
  • the top of the inner tube 2 in this embodiment protrudes from the top of the outer tube 1, and the top of the outer tube 1 is in sealing connection with the outer wall of the inner tube 2.
  • a water return port 11 is opened on the top side wall of the pipe 1 , and the top opening of the inner pipe 2 is a water outlet 22 .
  • the inner pipe 2 and the outer pipe 1 are effectively connected together, and the water return port 11 and the water outlet port 22 are respectively used to connect to the heat exchanger 9, and the overall structure is compact and reliable.
  • the first cavity 3 of this embodiment is provided with a heat-insulating support ring 7, and the heat-insulating support ring 7 is sleeved on the outer wall of the inner tube 2, so that The heat insulating support ring 7 abuts against the outer sidewall of the inner tube 2 and the inner sidewall of the outer tube 1 respectively.
  • a heat insulating support ring can be set in the first cavity between the inner tube and the outer tube, and multiple heat insulating support rings can be set.
  • the material of the heat insulation support ring is made of a material with certain mechanical properties and low thermal conductivity, so as to avoid heat transfer as much as possible.
  • the heat-insulating support ring 7 of this embodiment includes a ring body 71 and support feet, the ring body 71 is sleeved on the outer wall of the inner tube 2, and the ring body A plurality of supporting legs are integrally connected to the outer ring side wall of 71 , and the plurality of supporting legs are arranged at intervals along the circumference of the ring body 71 , and the supporting legs abut against the inner side wall of the outer tube 1 .
  • the heat-insulating support ring formed by the cooperation of the ring body and the support feet ensures the support strength while occupying as little circulation space as possible in the first cavity.
  • the ring body 71 of this embodiment includes two semi-circular rings 74, which can be formed by docking the two semi-circular rings 74
  • the annular ring body 71 can be provided with a complete supporting foot respectively on the two half-annular rings 74, and half supporting feet can also be arranged at the two ends of the semi-annular ring respectively.
  • the half supporting legs at both ends of the two semicircular rings 74 are butted with each other, and then connected by bolts 75 to form a complete supporting leg.
  • Two semi-circular rings 74 are used to connect to form the ring body 71, which facilitates the ring body 71 to be sleeved between the inner tube 2 and the outer tube.
  • the supporting foot includes a supporting rod 72 and a supporting plate 73, and the supporting rod 72 is fixed on the outer wall of the ring body 71 in the radial direction, and then the supporting plate 73 is fixed on the supporting The free end of the rod 72.
  • the supporting plate 73 can be an arc-shaped plate, and is adapted to the inner side wall of the outer tube.
  • All the pipes in this embodiment are made of high-strength steel, which has good corrosion resistance in a humid environment.
  • the multi-cavity heat-insulating duct with adiabatic structure is buried below the natural ground 10, and the multi-cavity heat-insulating duct passes through the shallow geothermal area 101 (within 200m below the natural ground 10, the temperature lower than 25°C), extending into the middle-deep geothermal zone 102 (within 3000m below the natural ground 10, the temperature is higher than 25°C).
  • the multi-chamber heat-insulated draft tube with heat insulation structure of this embodiment adopts a three-layer chamber structure, using the first cavity between the inner tube and the outer tube as a heat collection cavity, and the third cavity of the inner tube itself As a thermal insulation cavity, the second cavity in the center of the inner tube is used as a heat delivery cavity.
  • the thermal insulation cavity is located in the middle of the overall flow guide tube, between the heat collection cavity and the heat delivery cavity.
  • the thermal insulation cavity itself is an independent closed structure. , without any communication with the other two chambers, the heat transfer between the heat collection chamber and the heat delivery chamber can be well isolated by using the heat insulating chamber.
  • the multi-cavity heat-insulating draft tube with thermal insulation structure of this embodiment integrates heat collection, heat preservation, and heat transmission. It only needs to bury the finished draft tube directly along the borehole to the mid-deep geothermal area, and connect it with the heat exchanger Connection, that is, complete connection, is highly integrated.
  • the multi-cavity heat-insulated draft tube of this embodiment can be used in the mid-deep geothermal energy utilization system, realizing the comprehensive utilization effect of small footprint, low loss of geothermal energy, and zero impact on the ecological environment, and does not need to use high-grade energy for supplementary heat , can meet the heating demand of buildings and agriculture, and achieve the maximum utilization efficiency of geothermal energy.
  • a method for preparing a multi-cavity heat-insulated draft tube with a heat-insulating structure described in Example 1, comprising the following steps: setting two steel pipes 21 together to form a double-layer steel pipe, welding and sealing one end of the double-layer steel pipe, The cavity between the double-layer steel pipes is the third cavity 5; the thermal insulation material 8 is filled into the third cavity 5, and then the other end of the double-layer steel pipe is evacuated while welding, and after the welding is completed, a There is an inner tube 2 with a sealed vacuum cavity; the inner tube 2 is sheathed in the outer tube 1 , and a communication area 6 is reserved between the bottom of the inner tube 2 and the bottom of the outer tube 1 .
  • one end of the double-layer steel pipe uses a steel plate of the same material, and the workpiece is melted by laser welding to form a specific molten pool, thereby forming a second cavity with a sealed bottom.
  • vacuuming while welding is specifically, using vacuuming equipment to carry out multi-stage vacuuming treatment, and finally welding and sealing, so that the heat loss of the inner tube can be reduced from 50% to 5%.
  • the heat insulating support ring 7 is sleeved on the outer wall of the inner tube 2, and then the inner tube 2 is inserted into the outer tube 1 as a whole.
  • the heat-insulating support ring is set on the outer wall of the inner tube, which facilitates the installation of the heat-insulation support ring, and also facilitates the subsequent assembly of the inner tube into the outer tube.
  • thermal insulation material 8 into the third cavity 5 specifically, press the airgel particles into a ring-shaped thermal insulation material 8 with an axial length of 300-500mm, and then put the circular ring-shaped thermal insulation material 8 into the third chamber 5.
  • the airgel particles are first pressed into a ring shape, which is conducive to filling the third cavity, has a good heat preservation effect, and is also convenient for the subsequent vacuuming operation.
  • two steel pipes are sheathed together to form a double-layer steel pipe, which is convenient for sealing and has stable structural strength. Vacuumize the double-layer steel pipe while welding to ensure that the vacuum degree of the third cavity meets the heat insulation requirements.
  • first”, “second”, and “third” are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of the indicated technical features. Thus, a feature defined as “first”, “second” and “third” may explicitly or implicitly include at least one of such features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first feature and the second feature through an intermediary indirect contact.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Insulation (AREA)

Abstract

本实用新型涉及一种具有绝热构造的多腔绝热导流管,属于绝热导流相关技术领域。多腔绝热导流管包括外管和内管,外管的底部为密封结构,内管的顶部以及底部均为敞口结构;内管与外管之间形成第一腔体,内管中部具有轴向贯通的第二腔体,内管套设在外管内,内管的底部与外管的底部之间预留有连通区域,第一腔体通过连通区域与第二腔体连通;内管的内侧壁与外侧壁之间形成第三腔体,第三腔体为真空腔,第三腔体内密封有保温材料。本实用新型能用于中深层地热能利用系统,实现占地面积小、地热能低损耗、对生态环境零影响的综合利用效果,且无需使用高品位能源进行补热,就能达到建筑及农业的采暖需求,对地热能达到最大利用效率。

Description

一种具有绝热构造的多腔绝热导流管 技术领域
本实用新型涉及绝热导流相关技术领域,具体涉及一种具有绝热构造的多腔绝热导流管。
背景技术
目前常规地热能利用一般均采用热泵系统,分为以下主要方式:1、地表水源利用,以利用地表水为冷热源的地表水热泵系统;2、土壤源利用,以利用土壤蓄能作为冷热源的土壤源热泵系统;3、浅层地能利用,以利用浅层地下水为冷热源的水源热泵系统。这三种技术形式基本上都是浅层或表层地能利用,并结合热泵技术形成新能源利用系统。
现有的常规地热能利用存在以下缺点:1、利用存在于地壳表面、暴露于大气的水,如江水、河水、湖水、水库水等,对于利用地点约束较大;抽取热水,排入冷水会导致局部水体温度上升或下降,对特定区域的水体温度场分布产生影响,进而对水环境造成一定的污染。存在于地表的水热资源其温度相对较低,加上传统导流管具有较大的热损失,所以地表水源系统热利用值较低,需要其他能源辅助工作。2、浅层的土壤热能温度低,为提供定量的热能,需要大面积埋设管线;土壤源热泵占地面积大,工程量大,投资大效益低;采热过程会导致地域热不平衡问题;浅层土壤温度相对较低,加上传统导流管具有较大的热损失,所以地表水源系统热利用值较低,需要其 他能源辅助工作。3、受地下热资源的限制,应用受限;大部分采用了抽出、提取、回灌方式,是一个地下水源利用的开放系统,利用率不高,且会带来地下水氧化问题,影响地下生态环境,容易造成地下水资源的污染;由于无法实现地下水完全回灌,采水量大于回灌量,造成地面沉降等问题;浅层地下水温度无法满足生活热水要求,加上传统导流管具有较大的热损失,所以地表水源系统热利用值较低,需要其他能源辅助工作。
另外,现有的地热能利用系统所用地埋管按材质主要分为两种:一种为聚乙烯(PE)管材,另外一种为钢管;管线分为直接取水构造和密闭管材构件专用导热液体闭合循环构造。现有的地热能利用系统将地下热水直接抽取,在地面换热器内换热,提取能源后的余水回灌。使用密闭管材构件,在构件中注入专用导热液体,通过液体在管材内的循环,将地热能带至地面换热器内换热,提取能源后的导热液体回流至地下,闭合循环。一般的密闭管材构件的双腔体地埋管只设有提取管和回流管,管材起到的作用只是导热液体密闭循环,不直接抽取地下水,管材本身不具备保温性能,为减少热能流失,会在管材外侧包裹柔性保温材料。一般的密闭管材构件保温材料使用岩棉、玻璃棉、橡塑海绵等,在管材外侧将密闭管材构件包裹,这些保温材料的导热系数λ在0.034-0.040W/(m·K)之间,导热系数相对较大。若有受压需求,需要在保温层外侧增设抗压构造层。一般只会将冻土层中的管道进行保温包裹,但实际上地热是从深到浅逐渐降温,深层地热到冻土层以下的提升过程中,热损失一直在持续。
实用新型内容
本实用新型为了解决上述技术问题中的一种或几种,提供了一种具有绝 热构造的多腔绝热导流管。
本实用新型解决上述技术问题的技术方案如下:一种具有绝热构造的多腔绝热导流管,包括外管和内管,所述外管的底部为密封结构,所述内管的顶部以及底部均为敞口结构;所述内管与所述外管之间形成第一腔体,所述内管中部具有轴向贯通的第二腔体,所述内管套设在所述外管内,所述内管的底部与所述外管的底部之间预留有连通区域,所述第一腔体通过所述连通区域与所述第二腔体连通;所述内管的内侧壁与外侧壁之间形成第三腔体,所述第三腔体为真空腔,所述第三腔体内密封有保温材料。
本实用新型的有益效果是:本实用新型采用三层腔室构造,利用内管和外管之间的第一腔体作为采热腔体,内管自身带有的第三腔体作为绝热腔体,内管中心的第二腔体作为热输送腔,绝热腔体在整体导流管的中间位置,位于采热腔体和热输送腔之间,绝热腔体自身为独立封闭构造,与其他两个腔没有任何连通,利用绝热腔体可以很好的隔绝采热腔体和热输送腔之间的热量传递。本实用新型的多腔绝热导流管能够用于中深层地热能利用系统,实现占地面积小、地热能低损耗、对生态环境零影响的综合利用效果,且无需使用高品位能源进行补热,就能达到建筑及农业的采暖需求,对地热能达到最大利用效率。
在上述技术方案的基础上,本实用新型还可以做如下改进。
进一步,所述第三腔体内密封的保温材料包括气凝胶颗粒或/和超细玻璃纤维。
采用上述进一步方案的有益效果是:采用气凝胶颗粒作为保温材料,气凝胶颗粒在真空状态下,其导热系数λ会从0.014W/(m·K)降低到0.004W/(m·K),具有很好的保温效果。
进一步,所述第三腔体为环形腔。
采用上述进一步方案的有益效果是:可以将第一腔体和第二腔体进行隔热。
进一步,所述第一腔体为环形腔。
采用上述进一步方案的有益效果是:利用通过连通区域连通的第一腔体和第二腔体,形成类U型的循环流道,可以在一根导流管内进行不同温度流体的循环导流。
进一步,所述内管的顶部从所述外管的顶部伸出,所述外管的顶部与所述内管的外侧壁密封连接,所述外管的顶部侧壁上开设有回水口,所述内管的顶部敞口为出水口。
采用上述进一步方案的有益效果是:将内管和外管有效连接在一起,回水口和出水口分别用于连接换热器,整体结构紧凑可靠。
进一步,所述第一腔体内设有隔热支撑圈,所述隔热支撑圈套设在所述内管的外侧壁上,所述隔热支撑圈分别与所述内管的外侧壁以及所述外管的内侧壁抵接。
采用上述进一步方案的有益效果是:为保证作为采热腔体的第一腔体的尺寸,可以在内管与外管之间的第一腔体内设置隔热支撑圈,隔热支撑圈可以设置多个,多个隔热支撑圈沿导流管的轴向间隔排布,隔热支撑圈的材料使用具有一定力学性能和导热系数较低的材料,尽可能避免热传递。
进一步,所述隔热支撑圈包括圈本体以及支撑脚,所述圈本体套设在所述内管的外侧壁上,所述圈本体的外环侧壁上一体连接有多个支撑脚,多个所述支撑脚沿所述圈本体的周向间隔排布,所述支撑脚与所述外管的内侧壁抵接。
采用上述进一步方案的有益效果是:利用圈本体和支撑脚配合形成的隔热支撑圈,保证支撑强度的同时,尽量少占用第一腔体内的流通空间。
附图说明
图1为本实用新型多腔绝热导流管轴向剖面的整体结构示意图;
图2为本实用新型多腔绝热导流管轴向剖面的局部放大结构示意图;
图3为本实用新型多腔绝热导流管径向剖面的结构示意图;
图4为本实用新型隔热支撑圈的结构示意图。
附图中,各标号所代表的部件列表如下:
1、外管;11、回水口;
2、内管;21、钢管;22、出水口;
3、第一腔体;4、第二腔体;5、第三腔体;6、连通区域;
7、隔热支撑圈;71、圈本体;72、支撑杆;73、支撑板;74、半圆环;75、螺栓;
8、保温材料;
9、换热器;10、自然地面;101、浅层地热区;102、中深层地热区。
具体实施方式
以下结合附图对本实用新型的原理和特征进行描述,所举实例只用于解释本实用新型,并非用于限定本实用新型的范围。
如图1~图3所示,本实施例的一种具有绝热构造的多腔绝热导流管,包括外管1和内管2,所述外管1的底部为密封结构,所述内管2的顶部以及底部均为敞口结构;所述内管2与所述外管1之间形成第一腔体3,所述内管2中部具有轴向贯通的第二腔体4,所述内管2套设在所述外管1内,所 述内管2的底部与所述外管1的底部之间预留有连通区域6,所述第一腔体3通过所述连通区域6与所述第二腔体4连通;所述内管2的内侧壁与外侧壁之间形成第三腔体5,所述第三腔体5为真空腔,所述第三腔体5内密封有保温材料8。
其中,所述第三腔体5内密封的保温材料8为气凝胶颗粒。采用气凝胶颗粒作为保温材料,气凝胶颗粒的导热系数λ为0.014W/(m·K)。第三腔体5为独立密封构造,通过抽真空处理,形成带有气凝胶颗粒保温层的真空腔,气凝胶颗粒在真空状态下,其导热系数λ会从0.014W/(m·K)降低到0.004W/(m·K),具有很好的保温效果。由于保温材料8填充在整个第三腔体5内,且位于整个多腔绝热导流管的中间位置,所以保温的深度基本与整体管材相同,保温连贯且为整个内管全保温,而不是只有在冻土层中设置,大大降低了地热从深到浅的热损失。
如图1~图3所示,本实施例的所述第三腔体5为环形腔。采用环形的第三腔体可以将第一腔体和第二腔体进行隔热。
如图1~图3所示,本实施例的所述第一腔体3为环形腔。利用连通区域连通的第一腔体和第二腔体,形成类U型的循环流道,可以在一根导流管内进行不同温度流体的循环导流。
如图1所示,本实施例的所述内管2的顶部从所述外管1的顶部伸出,所述外管1的顶部与所述内管2的外侧壁密封连接,所述外管1的顶部侧壁上开设有回水口11,所述内管2的顶部敞口为出水口22。将内管2和外管1有效连接在一起,回水口11和出水口22分别用于连接换热器9,整体结构紧凑可靠。
如图3和图4所示,本实施例的所述第一腔体3内设有隔热支撑圈7, 所述隔热支撑圈7套设在所述内管2的外侧壁上,所述隔热支撑圈7分别与所述内管2的外侧壁以及所述外管1的内侧壁抵接。为保证作为采热腔体的第一腔体的尺寸,可以在内管与外管之间的第一腔体内设置隔热支撑圈,隔热支撑圈可以设置多个,多个隔热支撑圈沿导流管的轴向间隔排布,隔热支撑圈的材料使用具有一定力学性能和导热系数较低的材料,尽可能避免热传递。
如图3和图4所示,本实施例的所述隔热支撑圈7包括圈本体71以及支撑脚,所述圈本体71套设在所述内管2的外侧壁上,所述圈本体71的外环侧壁上一体连接有多个支撑脚,多个所述支撑脚沿所述圈本体71的周向间隔排布,所述支撑脚与所述外管1的内侧壁抵接。利用圈本体和支撑脚配合形成的隔热支撑圈,保证支撑强度的同时,尽量少占用第一腔体内的流通空间。
本实施例关于隔热支撑圈7的一个具体方案为,如图4所示,本实施例的圈本体71包括两个半圆环74,可以将两个半圆环74对接后形成一个完整的圆环形的圈本体71,可以在两个半圆环74上分别设置一个完整的支撑脚,也可以在半圆环的两端分别设置半个支撑脚,当两个半圆环74对接后,两个半圆环74两端的半个支撑脚相互对接,再通过螺栓75连接形成一个完整的支撑脚。采用两个半圆环74连接形成圈本体71,方便将圈本体71套设在内管2和外管之间。
本实施例关于支撑脚的一个具体方案为,支撑脚包括支撑杆72和支撑板73,支撑杆72沿径向固定在所述圈本体71的外侧壁上,然后再将支撑板73固定在支撑杆72的自由端。支撑板73可以采用弧形板,并与外管的内侧壁相适配。
本实施例所有管材均采用高强度钢材,在潮湿环境下具有良好的耐腐蚀性能。
如图1和图2所示,将具有绝热构造的多腔绝热导流管埋入自然地面10以下,使多腔绝热导流管穿过浅层地热区101(自然地面10以下200m以内,温度低于25℃),伸入到中深层地热区102(自然地面10以下3000m以内,温度高于25℃)。将外管1的回水口11与换热器9的出水口连通,将内管2的出水口22与换热器9的进水口连通,使换热器9内的水经过第一腔体3进入到外管1底部的连通区域6,再经过连通区域6从内管2底部进入到第二腔体4,经过地热加热的水沿内管2的第二腔体4进入换热器9。
本实施例的具有绝热构造的多腔绝热导流管采用三层腔室构造,利用内管和外管之间的第一腔体作为采热腔体,内管自身带有的第三腔体作为绝热腔体,内管中心的第二腔体作为热输送腔,绝热腔体在整体导流管的中间位置,位于采热腔体和热输送腔之间,绝热腔体自身为独立封闭构造,与其他两个腔没有任何连通,利用绝热腔体可以很好的隔绝采热腔体和热输送腔之间的热量传递。本实施例的具有绝热构造的多腔绝热导流管集采热、保温、热传输为一体,只需要将成品的导流管直接沿钻孔埋入至中深层地热区域,并与换热器连接,即完成连接,具有高度集成性。
本实施例的多腔绝热导流管能够用于中深层地热能利用系统,实现占地面积小、地热能低损耗、对生态环境零影响的综合利用效果,且无需使用高品位能源进行补热,就能达到建筑及农业的采暖需求,对地热能达到最大利用效率。
一种实施例1中所述的具有绝热构造的多腔绝热导流管的制备方法,包括以下步骤:将两根钢管21套设在一起形成双层钢管,将双层钢管的一端 焊接密封,双层钢管之间的腔体为第三腔体5;将保温材料8填入到所述第三腔体5内,然后将双层钢管的另一端边焊接边抽真空,焊接完成后,形成具有密封真空腔的内管2;将内管2套设在外管1内,并使内管2的底部与外管1的底部之间预留有连通区域6。
具体的,双层钢管的一端使用同样材质的钢板,通过激光焊接使工件熔化,形成特定的熔池,进而形成底部密封的第二腔体。
其中,边焊接边抽真空具体为,使用抽真空设备进行多级抽真空处理,最后焊接密封,制成的内管热损失量可由50%降低到5%。
将内管2套设在外管1内之前,先将隔热支撑圈7套设在内管2的外侧壁上,然后再将内管2整体插入到外管1内。先将隔热支撑圈套设在内管外侧壁上,方便隔热支撑圈的安装,也有利于后续内管装配入外管。
将保温材料8填入到所述第三腔体5内,具体为,将气凝胶颗粒压制成轴向长度为300-500mm的圆环形状的保温材料8,再将圆环形状的保温材料8装入第三腔体5内。先将气凝胶颗粒压制成圆环形状,有利于填充第三腔体,保温效果好,也方便后续的抽真空操作。
本实施例采用两根钢管套设在一起形成双层钢管,方便密封且结构强度稳定。边焊接边对双层钢管抽真空,保证第三腔体的真空度满足绝热需求。
在本实用新型的描述中,需要理解的是,术语“中心”、“长度”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有 “第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人 员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (5)

  1. 一种具有绝热构造的多腔绝热导流管,其特征在于,包括外管和内管,所述外管的底部为密封结构,所述内管的顶部以及底部均为敞口结构;所述内管与所述外管之间形成第一腔体,所述内管中部具有轴向贯通的第二腔体,所述内管套设在所述外管内,所述内管的底部与所述外管的底部之间预留有连通区域,所述第一腔体通过所述连通区域与所述第二腔体连通;所述内管的内侧壁与外侧壁之间形成第三腔体,所述第三腔体为真空腔,所述第三腔体内密封有保温材料。
  2. 根据权利要求1所述一种具有绝热构造的多腔绝热导流管,其特征在于,所述第三腔体内密封的保温材料包括气凝胶颗粒或/和超细玻璃纤维。
  3. 根据权利要求1所述一种具有绝热构造的多腔绝热导流管,其特征在于,所述内管的顶部从所述外管的顶部伸出,所述外管的顶部与所述内管的外侧壁密封连接,所述外管的顶部侧壁上开设有回水口,所述内管的顶部敞口为出水口。
  4. 根据权利要求1所述一种具有绝热构造的多腔绝热导流管,其特征在于,所述第一腔体内设有隔热支撑圈,所述隔热支撑圈套设在所述内管的外侧壁上,所述隔热支撑圈分别与所述内管的外侧壁以及所述外管的内侧壁抵接。
  5. 根据权利要求4所述一种具有绝热构造的多腔绝热导流管,其特征在于,所述隔热支撑圈包括圈本体以及支撑脚,所述圈本体套设在所述内管的外侧壁上,所述圈本体的外环侧壁上一体连接有多个支撑脚,多个所述支撑脚沿所述圈本体的周向间隔排布,所述支撑脚与所述外管的内侧壁抵接。
PCT/CN2022/100323 2021-09-28 2022-06-22 一种具有绝热构造的多腔绝热导流管 WO2023050914A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111142676.0 2021-09-28
CN202111142676.0A CN113790316A (zh) 2021-09-28 2021-09-28 一种具有绝热构造的多腔绝热导流管及其制备方法
CN202221137788.7 2022-05-12
CN202221137788.7U CN217977794U (zh) 2021-09-28 2022-05-12 一种具有绝热构造的多腔绝热导流管

Publications (1)

Publication Number Publication Date
WO2023050914A1 true WO2023050914A1 (zh) 2023-04-06

Family

ID=79184737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100323 WO2023050914A1 (zh) 2021-09-28 2022-06-22 一种具有绝热构造的多腔绝热导流管

Country Status (2)

Country Link
CN (2) CN113790316A (zh)
WO (1) WO2023050914A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790316A (zh) * 2021-09-28 2021-12-14 北京千城集成房屋有限公司 一种具有绝热构造的多腔绝热导流管及其制备方法
CN217584916U (zh) * 2022-05-12 2022-10-14 等熵循环(北京)新能源科技有限公司 一种支架构造真空腔组合中深层地热导管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041141A (zh) * 2015-09-06 2015-11-11 长沙星纳气凝胶有限公司 一种气凝胶隔热保温玻璃的制备方法
CN105090682A (zh) * 2014-05-15 2015-11-25 杭州三花研究院有限公司 保温管
CN110455099A (zh) * 2019-07-29 2019-11-15 东南大学 一种桩基埋管地源热泵套管式换热器
US20200011573A1 (en) * 2018-07-04 2020-01-09 Peter Samuel Winston Graham Geothermal system operable between heat recovery and heat storage modes
CN111912126A (zh) * 2020-09-04 2020-11-10 河北工程大学 一种用于中深地层钻孔内的同轴套管换热器
CN113790316A (zh) * 2021-09-28 2021-12-14 北京千城集成房屋有限公司 一种具有绝热构造的多腔绝热导流管及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2679905A1 (en) * 2009-09-22 2011-03-22 7238703 Canada Inc. Geothermal power system
CN101974415B (zh) * 2010-09-02 2013-04-17 同济大学 太阳能-地源热泵耦合式沼气池供暖系统及运行控制方法
CH706507A1 (de) * 2012-05-14 2013-11-15 Broder Ag Koaxial-Erdwärmesonde und Verfahren zur Montage einer solchen Erdwärmesonde im Untergrund.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090682A (zh) * 2014-05-15 2015-11-25 杭州三花研究院有限公司 保温管
CN105041141A (zh) * 2015-09-06 2015-11-11 长沙星纳气凝胶有限公司 一种气凝胶隔热保温玻璃的制备方法
US20200011573A1 (en) * 2018-07-04 2020-01-09 Peter Samuel Winston Graham Geothermal system operable between heat recovery and heat storage modes
CN110455099A (zh) * 2019-07-29 2019-11-15 东南大学 一种桩基埋管地源热泵套管式换热器
CN111912126A (zh) * 2020-09-04 2020-11-10 河北工程大学 一种用于中深地层钻孔内的同轴套管换热器
CN113790316A (zh) * 2021-09-28 2021-12-14 北京千城集成房屋有限公司 一种具有绝热构造的多腔绝热导流管及其制备方法

Also Published As

Publication number Publication date
CN217977794U (zh) 2022-12-06
CN113790316A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023050914A1 (zh) 一种具有绝热构造的多腔绝热导流管
CN107939621B (zh) 基于翅片套管开发热干岩地热能的s-co2发电系统及方法
CN101581517B (zh) 单回路地热井下换热器热泵系统
CN201077982Y (zh) 局部冻结器
CN212340029U (zh) 一种超长重力热管系统
CN111664602A (zh) 一种弯折型地热井
CN203177502U (zh) 一种真空式太阳能热水系统
CN209893671U (zh) 一种基于闭合回路热媒管的高效地热利用系统
CN107741170B (zh) 一种用于土壤源热泵系统的双u形管换热器
CN209025658U (zh) 一种油田矿井余热利用系统
CN201652970U (zh) 利用油层套管传导地热能的装置
CN213480633U (zh) 一种干热岩换热装置
CN214581875U (zh) 深浅结合的eht耦合换热井系统
WO2023216372A1 (zh) 一种支架构造真空腔组合中深层地热导管
CN206506956U (zh) 一种蔬菜大棚储能增温器
CN214371898U (zh) 一种具有真空隔热机构的双层油套管式井下换热器
CN211739235U (zh) 一种燃气具用蓄热换热装置
CN203642522U (zh) 一种相变蓄热型太阳能集热器
CN209910213U (zh) 一种太阳能地表热能互补建筑能源利用装置
CN203869346U (zh) 承压式太阳能热水器
CN208936261U (zh) 一种快速提取地源热高能效供热系统
CN203848524U (zh) 一种太阳能光热利用装置
CN108613424B (zh) 增强封闭式中深层埋管换热系统
CN201687039U (zh) 水管保温系统
CN206019044U (zh) 一种地埋管换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22874311

Country of ref document: EP

Kind code of ref document: A1