WO2023216372A1 - 一种支架构造真空腔组合中深层地热导管 - Google Patents
一种支架构造真空腔组合中深层地热导管 Download PDFInfo
- Publication number
- WO2023216372A1 WO2023216372A1 PCT/CN2022/100330 CN2022100330W WO2023216372A1 WO 2023216372 A1 WO2023216372 A1 WO 2023216372A1 CN 2022100330 W CN2022100330 W CN 2022100330W WO 2023216372 A1 WO2023216372 A1 WO 2023216372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavity
- tube
- inner tube
- vacuum chamber
- pipe
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 239000012774 insulation material Substances 0.000 claims description 31
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 14
- 239000004677 Nylon Substances 0.000 claims description 10
- 229920001778 nylon Polymers 0.000 claims description 10
- 239000003365 glass fiber Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 7
- 238000007789 sealing Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 238000004321 preservation Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 description 20
- 230000009286 beneficial effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 239000003673 groundwater Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002352 surface water Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/14—Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the utility model relates to the technical field related to thermal insulation diversion, and specifically relates to a deep geothermal conduit in a vacuum chamber combination with a bracket structure.
- conventional geothermal energy utilization generally uses heat pump systems, which are divided into the following main methods: 1. Surface water source utilization, a surface water heat pump system that uses surface water as a cold and heat source; 2. Soil source utilization, which uses soil energy storage as a cold and heat source. Soil source heat pump system as a heat source; 3. Shallow ground energy utilization, a water source heat pump system that uses shallow groundwater as a cold and heat source. These three technical forms are basically shallow or surface ground energy utilization, and combined with heat pump technology to form a new energy utilization system.
- the existing underground pipes used in geothermal energy utilization systems are mainly divided into two types according to their materials: one is polyethylene (PE) pipes, and the other is steel pipes; the pipelines are divided into direct water intake structures and sealed pipe components with special heat transfer liquids. Closed loop construction.
- PE polyethylene
- the existing geothermal energy utilization system directly extracts underground hot water, exchanges heat in a ground heat exchanger, and recharges the remaining water after energy extraction. Sealed pipe components are used, and special heat-conducting liquid is injected into the components. Through the circulation of the liquid in the pipe, the geothermal energy is brought to the ground heat exchanger for heat exchange. The heat-conducting liquid after the energy is extracted returns to the ground, closing the cycle.
- double-cavity underground pipes with sealed pipe components are only equipped with extraction pipes and return pipes.
- the function of the pipe is only to circulate the heat-conducting liquid in a closed loop and does not directly extract groundwater.
- the pipe itself does not have thermal insulation properties. In order to reduce the loss of heat energy, it will Wrap flexible insulation material around the outside of the pipe.
- rock wool, glass wool, rubber and plastic sponge are used as insulation materials for sealed pipe components.
- the sealed pipe components are wrapped around the outside of the pipe.
- the thermal conductivity ⁇ of these insulation materials is between 0.034-0.040W/(m ⁇ K), and the thermal conductivity is The coefficient is relatively large. If there is pressure demand, a compression-resistant structural layer needs to be added outside the insulation layer.
- only pipes in the permafrost layer are wrapped with insulation, but in fact, geothermal heat gradually cools down from deep to shallow. During the lifting process of deep geothermal heat to below the permafrost layer, heat loss continues.
- the present utility model provides a deep geothermal conduit in a vacuum cavity combination with a support structure.
- a deep geothermal conduit with a bracket structure vacuum chamber combination including an outer tube and an inner tube.
- the bottom of the outer tube is a sealed structure, and the top and bottom of the inner tube are both It is an open structure; a first cavity is formed between the inner tube and the outer tube, and the middle part of the inner tube has an axially penetrating second cavity, and the inner tube is sleeved in the outer tube.
- the bottom of the inner tube is connected to a coaxially arranged single-wall tube.
- the single-wall tube is provided with an exchange hole.
- a communication area is reserved between the bottom of the single-wall tube and the bottom of the outer tube.
- the third A cavity is connected to the second cavity through the communication area and the exchange hole; the inner tube is a double-layer tube, and a third cavity is formed between the double-layer tubes. It is a vacuum chamber, and the third chamber is sealed with insulation material.
- the utility model adopts a three-layer chamber structure, using the first chamber between the inner tube and the outer tube as the heat extraction chamber, and the third chamber provided with the inner tube itself as the heat insulation chamber.
- body the second cavity in the center of the inner tube serves as the heat transfer cavity, and the insulation cavity is in the middle of the overall guide tube, between the heat collection cavity and the heat transfer cavity.
- the insulation cavity itself has an independent closed structure, and is separated from other There is no connection between the two cavities, and the heat transfer between the heat collection cavity and the heat transfer cavity can be well isolated by using the insulating cavity.
- the utility model's bracket structure vacuum cavity combined with a deep geothermal conduit achieves a comprehensive utilization effect of small footprint, low loss of geothermal energy, and zero impact on the ecological environment. It does not require the use of high-grade energy for heating, and can achieve the goal of building and The heating needs of agriculture require maximum utilization efficiency of geothermal energy.
- the utility model adopts a single-wall tube and provides an exchange hole on the single-wall tube, so that the fluid in the first cavity enters the second cavity through the exchange hole, which can further increase the heat exchange efficiency.
- the present utility model can also make the following improvements.
- the single-walled tube is provided with multiple groups of exchange holes arranged along the axial direction, and each group of exchange holes is evenly arranged along the circumferential direction of the single-walled tube.
- the beneficial effect of adopting the above further solution is that using multiple sets of exchange holes arranged at intervals can make the fluid flow process uniform and stable.
- the upper end of the single-wall tube is inserted into the third cavity from the bottom of the inner tube and is sealingly connected with the inner tube.
- the beneficial effect of adopting the above further solution is to make the connection between the single-wall pipe and the inner pipe more stable and reliable.
- the beneficial effects of adopting the above further solution are: by setting the nylon support ring, the third cavity of the inner tube can be made uniform, so that the inner tube can withstand sufficient pressure, ensure the volume of the third cavity, and minimize the amount of hot water in the inner tube. Heat loss during transportation.
- the thermal insulation material sealed in the third cavity includes airgel particles or/and ultra-fine glass fibers.
- the beneficial effect of adopting the above further solution is: using airgel particles as insulation materials, the thermal conductivity ⁇ of the airgel particles will be reduced from 0.014W/(m ⁇ K) to 0.004W/(m ⁇ K in a vacuum state ), has good thermal insulation effect.
- the insulation material is a circular structure, and the insulation material of the circular structure is sleeved in the third cavity of the inner tube; or the insulation material is a linear rope structure, and the linear structure The rope structure is wound in the third cavity.
- the beneficial effect of adopting the above-mentioned further solution is that the third cavity can be filled with the thermal insulation material, and the filling is convenient.
- the outer diameter of the outer tube is 200mm ⁇ 1000mm
- the outer diameter of the inner tube is 120mm ⁇ 920mm
- the outer diameter of the single-wall tube is 120mm ⁇ 920mm
- the diameter of the second cavity is not less than 100mm.
- outer tube, inner tube and single-wall tube are all made of steel.
- the beneficial effect of adopting the above further solution is that it can ensure resistance to the distance pressure generated by the depth of the buried pipe.
- the height of the connecting area is 2m to 100m.
- top of the inner tube protrudes from the top of the outer tube, and the top of the outer tube is sealingly connected to the outer side wall of the inner tube.
- a water return port is provided on the top side wall of the outer tube, so The top opening of the inner tube is the water outlet.
- the beneficial effect of adopting the above further solution is that the inner pipe and the outer pipe are effectively connected together, and the water return port and water outlet are respectively used to connect the heat exchanger, and the overall structure is compact and reliable.
- Figure 1 is a schematic structural diagram of the axial section of a deep geothermal conduit in a vacuum chamber assembly with a bracket structure according to the present invention
- Figure 2 is a schematic cross-sectional structural diagram of A-A’ in Figure 1;
- Figure 3 is a schematic cross-sectional structural diagram of B-B’ in Figure 1;
- Figure 4 is a schematic cross-sectional structural diagram of C-C’ in Figure 1.
- a deep geothermal conduit in a vacuum chamber combination with a bracket structure in this embodiment includes an outer tube 1 and an inner tube 2.
- the bottom of the outer tube 1 is a sealed structure, and the inner tube 2 Both the top and the bottom are open structures; a first cavity 3 is formed between the inner tube 2 and the outer tube 1, and the inner tube 2 has an axially penetrating second cavity 4 in the middle.
- the tube 2 is sleeved in the outer tube 1.
- the bottom of the inner tube 2 is connected to a coaxially arranged single-wall tube 5.
- the single-wall tube 5 is provided with an exchange hole 51.
- a communication area 6 is reserved between the bottom of the outer tube 1 and the first cavity 3 communicates with the second cavity 4 through the communication area 6 and the exchange hole 51;
- the inner tube 2 is a double-layer tube, and a third cavity is formed between the double-layer tubes.
- the third cavity is a vacuum cavity, and a thermal insulation material 8 is sealed in the third cavity.
- both the outer tube 1 and the inner tube 2 of this embodiment adopt cylindrical structures.
- the single-walled tube 5 of this embodiment is provided with multiple sets of exchange holes 51 arranged in the axial direction, and each set of exchange holes 51 is along the circumferential direction of the single-walled tube 5. Arrange evenly.
- the use of multiple sets of exchange holes arranged at intervals can make the fluid flow process uniform and stable.
- the number of each group of exchange holes 51 on the single-wall tube 5 in this embodiment can be 2, 3, 4, 5, etc., and can be set arbitrarily according to needs.
- the shape of the exchange hole 51 can be any hole shape such as a round hole or a square hole, as long as the first cavity 3 and the second cavity 4 can be connected.
- the upper end of the single-walled tube 5 in this embodiment is inserted into the third cavity from the bottom of the inner tube 2 and is sealingly connected with the inner tube 2 . Make the connection between single-wall pipe and inner pipe more stable and reliable.
- a plurality of nylon heat insulation support rings 7 are also provided in the third cavity of this embodiment.
- the third cavity of the inner tube can be evenly stressed, so that the inner tube can withstand sufficient pressure, ensuring the volume of the third cavity, and minimizing the heat loss of the inner tube during the hot water delivery process.
- an optional solution for this embodiment is that the nylon heat insulation support ring 7 is annular, and the inner ring wall of the nylon heat insulation support ring 7 can be connected to the outside of the steel pipe 21 inside the inner tube 2
- multiple legs can also be provided on the outer wall of the nylon heat insulation support ring 7, and then the legs can contact the inner wall of the steel pipe 21 outside the inner tube.
- the number of legs can be set arbitrarily as needed. For example, it can be set to 2, 3, 4, 5, etc.
- the thermal insulation material 8 sealed in the third cavity in this embodiment includes airgel particles or/and ultra-fine glass fibers.
- the thermal conductivity ⁇ of the airgel particles will decrease from 0.014W/(m ⁇ K) to 0.004W/(m ⁇ K) in a vacuum state, which has a good thermal insulation effect.
- the thermal insulation material 8 sealed in the third cavity is airgel particles.
- Airgel particles are used as insulation materials, and the thermal conductivity ⁇ of the airgel particles is 0.014W/(m ⁇ K).
- the third cavity is an independent sealed structure. Through vacuum treatment, a vacuum cavity with an insulation layer of airgel particles is formed. In the vacuum state, the thermal conductivity ⁇ of the airgel particles will change from 0.014W/(m ⁇ K) It is reduced to 0.004W/(m ⁇ K), which has a good thermal insulation effect.
- the insulation material 8 is filled in the entire third cavity and is located in the middle of the entire multi-cavity insulated guide tube, the depth of the insulation is basically the same as that of the entire pipe. The insulation is continuous and fully insulates the entire inner tube, not just the freezing point. Set in the soil layer, it greatly reduces the heat loss of geothermal heat from deep to shallow.
- a preferred solution of this embodiment is that the insulation material 8 has a circular ring structure, and the insulation material 8 of the circular ring structure is set in the third cavity of the inner tube 2; Or the insulation material 8 is a linear rope structure, and the linear rope structure is wound in the third cavity.
- the third cavity can be filled with thermal insulation material and is convenient for filling.
- the outer diameter of the outer tube 1 is 200mm ⁇ 1000mm, and the specific options are 200mm, 210mm, 220mm, 230mm, 240mm, 250mm, 260mm, 270mm, 280mm, 290mm, 300mm, 350mm, 400mm, 450mm, 500mm, 550mm, 600mm, 650mm, 700mm, 750mm, 800mm, 850mm, 900mm, 1000mm;
- the outer diameter of the inner tube 2 is 120mm ⁇ 920mm, and the specific options are 120mm, 130mm, 140mm, 150mm, 160mm , 170mm, 180mm, 190mm, 200mm, 250mm, 300mm, 350mm, 400mm, 450mm, 500mm, 650mm, 700mm, 750mm, 800mm, 850mm, 900mm, 920mm;
- the outer diameter of the single-wall tube 5 is 120mm ⁇ 920mm, specifically Optional 120mm, 130mm, 140mm, 150mm, 160mm, 170mm, 180mm, 190mm
- the outer tube 1, the inner tube 2 and the single-wall tube 5 in this embodiment are all made of steel. All pipes in this embodiment are made of high-strength steel and have good corrosion resistance in humid environments. It can also ensure resistance to the distance pressure generated by the depth of buried pipes.
- the height of the connecting area 6 is 2m to 100m, and can be specifically selected as 2m, 5m, 10m, 15m, 20m, 25m, 30m, 35m, 40m, 45m, 50m, 55m, 60m, 65m, 70m, 75m , 80m, 85m, 90m, 95m, 100m.
- the third cavity in this embodiment is an annular cavity.
- the first cavity 3 and the second cavity 4 can be thermally insulated by using an annular third cavity.
- the first cavity 3 in this embodiment is an annular cavity.
- the first cavity and the second cavity connected by the connecting area are used to form a U-shaped circulating flow channel, which can carry out circulating diversion of fluids of different temperatures in one diversion tube.
- the top of the inner tube 2 protrudes from the top of the outer tube 1.
- the top of the outer tube 1 is sealingly connected to the outer side wall of the inner tube 2.
- the top side wall of the outer tube 1 A water return port is provided on the top, and the top opening of the inner tube 2 is a water outlet.
- the inner tube 2 and the outer tube 1 are effectively connected together, and the water return port and water outlet are respectively used to connect the heat exchanger.
- the overall structure is compact and reliable.
- a bracket in order to make the overall structure more stable, can also be provided in the first cavity 3 so that the bracket is in contact with the outer side wall of the inner tube 2 and the inner side wall of the outer tube 1 respectively.
- the first cavity 3 provides structural support.
- the deep geothermal conduits in the vacuum chamber combination of the bracket structure are buried below the natural ground, so that the multi-cavity insulated diversion pipes pass through the shallow geothermal area (within 10 and 200 meters below the natural ground, the temperature is lower than 25 °C), extending into the mid-deep geothermal area (within 3000m below 10°C of the natural ground, with a temperature higher than 25°C).
- two steel pipes 21 are sleeved together to form a double-layer steel pipe, which is the inner pipe 2, and then the upper end of the single-wall pipe 5 is inserted into the two between the lower ends of the steel pipes 21 and welded to form a second weld 22.
- the cavity between the double-layer steel pipes is the third cavity; fill the insulation material 8 into the third cavity while filling the insulation material 8.
- an inner pipe 2 with a sealed vacuum cavity is formed; the inner pipe 2 is placed inside the outer pipe 1, and the inner pipe is A communication area 6 is reserved between the bottom of 2 and the bottom of the outer tube 1; the bottom of the outer tube 1 is sealed by a sealing plate 11.
- the sealing plate 11 can be a circular plate.
- the sealing plate 11 and the bottom of the outer tube 1 form a first weld. Sew 12.
- One end of the double-layer steel pipe uses a steel plate of the same material, and the workpiece is melted through laser welding to form a specific molten pool, thereby forming a second cavity with a sealed bottom.
- vacuuming while welding specifically involves using vacuuming equipment to perform multi-stage vacuuming, and finally welding and sealing.
- the heat loss of the inner tube can be reduced from 50% to 5%.
- the thermal insulation material 8 is filled into the third cavity. Specifically, the airgel particles are pressed into a circular ring-shaped thermal insulation material 8 with an axial length of 300-500 mm, and then the circular ring-shaped thermal insulation material 8 is filled. into the third cavity. First, the airgel particles are pressed into a ring shape, which is beneficial to filling the third cavity, has a good heat preservation effect, and also facilitates subsequent vacuuming operations.
- the deep geothermal conduit in the bracket structure vacuum chamber combination of this embodiment adopts a three-layer chamber structure.
- the first cavity between the inner tube and the outer tube is used as the heating cavity, and the third cavity of the inner tube itself is used as the heating cavity.
- Insulated cavity, the second cavity in the center of the inner tube serves as the heat transfer cavity.
- the insulated cavity is in the middle of the overall guide tube, between the heat collection cavity and the heat transfer cavity.
- the insulated cavity itself has an independent closed structure. There is no connection with the other two cavities. The use of the insulating cavity can well isolate the heat transfer between the heat collection cavity and the heat transfer cavity.
- the bracket-structured vacuum cavity combined with a deep geothermal conduit in this embodiment achieves a comprehensive utilization effect of small footprint, low loss of geothermal energy, and zero impact on the ecological environment. It does not require the use of high-grade energy for heating, and can achieve the goal of building and The heating needs of agriculture require maximum utilization efficiency of geothermal energy.
- This embodiment uses a single-walled tube, and provides an exchange hole on the single-walled tube, so that the fluid in the first cavity enters the second cavity through the exchange hole, which can further increase the heat exchange efficiency.
- the middle-deep geothermal conduit of the vacuum chamber combination with a bracket structure in this embodiment integrates heat collection, insulation, and heat transmission. It only needs to bury the finished flow guide pipe directly along the drill hole into the mid-deep geothermal area and connect it to the heat exchanger. , that is, the connection is completed and is highly integrated.
- first”, “second” and “third” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
- connection In this utility model, unless otherwise expressly stipulated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. Connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements, unless otherwise Clear limits.
- connection or integration
- connection can be a mechanical connection or an electrical connection
- it can be a direct connection or an indirect connection through an intermediate medium
- it can be an internal connection between two elements or an interaction between two elements, unless otherwise Clear limits.
- specific meanings of the above terms in the present invention can be understood according to specific circumstances.
- the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in direct contact through an intermediate medium. indirect contact.
- the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
- "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
- references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Thermal Insulation (AREA)
Abstract
一种支架构造真空腔组合中深层地热导管,包括外管(1)和内管(2),外管(1)的底部为密封结构,内管(2)的顶部以及底部均为敞口结构;内管(2)与外管(1)之间形成第一腔体(3),内管(2)中部具有轴向贯通的第二腔体(4),内管(2)套设在外管(1)内,内管(2)底部连接有同轴布置的单壁管(5),单壁管(5)上开设有交换孔(51),单壁管(5)的底部与外管(1)的底部之间预留有连通区域(6),第一腔体(3)通过连通区域(6)以及交换孔(51)与第二腔体(4)连通;内管(2)为双层管,双层管之间形成第三腔体,第三腔体为真空腔,第三腔体内密封有保温材料(8)。该地热导管能用于中深层地热能利用系统,实现占地面积小、对地热能达到最大利用效率的效果。
Description
本实用新型涉及绝热导流相关技术领域,具体涉及一种支架构造真空腔组合中深层地热导管。
目前常规地热能利用一般均采用热泵系统,分为以下主要方式:1、地表水源利用,以利用地表水为冷热源的地表水热泵系统;2、土壤源利用,以利用土壤蓄能作为冷热源的土壤源热泵系统;3、浅层地能利用,以利用浅层地下水为冷热源的水源热泵系统。这三种技术形式基本上都是浅层或表层地能利用,并结合热泵技术形成新能源利用系统。
现有的常规地热能利用存在以下缺点:1、利用存在于地壳表面、暴露于大气的水,如江水、河水、湖水、水库水等,对于利用地点约束较大;抽取热水,排入冷水会导致局部水体温度上升或下降,对特定区域的水体温度场分布产生影响,进而对水环境造成一定的污染。存在于地表的水热资源其温度相对较低,加上传统导流管具有较大的热损失,所以地表水源系统热利用值较低,需要其他能源辅助工作。2、浅层的土壤热能温度低,为提供定量的热能,需要大面积埋设管线;土壤源热泵占地面积大,工程量大,投资大效益低;采热过程会导致地域热不平衡问题;浅层土壤温度相对较低,加上传统导流管具有较大的热损失,所以地表水源系统热利用值较低,需要其 他能源辅助工作。3、受地下热资源的限制,应用受限;大部分采用了抽出、提取、回灌方式,是一个地下水源利用的开放系统,利用率不高,且会带来地下水氧化问题,影响地下生态环境,容易造成地下水资源的污染;由于无法实现地下水完全回灌,采水量大于回灌量,造成地面沉降等问题;浅层地下水温度无法满足生活热水要求,加上传统导流管具有较大的热损失,所以地表水源系统热利用值较低,需要其他能源辅助工作。
另外,现有的地热能利用系统所用地埋管按材质主要分为两种:一种为聚乙烯(PE)管材,另外一种为钢管;管线分为直接取水构造和密闭管材构件专用导热液体闭合循环构造。现有的地热能利用系统将地下热水直接抽取,在地面换热器内换热,提取能源后的余水回灌。使用密闭管材构件,在构件中注入专用导热液体,通过液体在管材内的循环,将地热能带至地面换热器内换热,提取能源后的导热液体回流至地下,闭合循环。一般的密闭管材构件的双腔体地埋管只设有提取管和回流管,管材起到的作用只是导热液体密闭循环,不直接抽取地下水,管材本身不具备保温性能,为减少热能流失,会在管材外侧包裹柔性保温材料。一般的密闭管材构件保温材料使用岩棉、玻璃棉、橡塑海绵等,在管材外侧将密闭管材构件包裹,这些保温材料的导热系数λ在0.034-0.040W/(m·K)之间,导热系数相对较大。若有受压需求,需要在保温层外侧增设抗压构造层。一般只会将冻土层中的管道进行保温包裹,但实际上地热是从深到浅逐渐降温,深层地热到冻土层以下的提升过程中,热损失一直在持续。
实用新型内容
本实用新型为了解决上述技术问题中的一种或几种,提供了一种支架构 造真空腔组合中深层地热导管。
本实用新型解决上述技术问题的技术方案如下:一种支架构造真空腔组合中深层地热导管,包括外管和内管,所述外管的底部为密封结构,所述内管的顶部以及底部均为敞口结构;所述内管与所述外管之间形成第一腔体,所述内管中部具有轴向贯通的第二腔体,所述内管套设在所述外管内,所述内管底部连接有同轴布置的单壁管,所述单壁管上开设有交换孔,所述单壁管的底部与所述外管的底部之间预留有连通区域,所述第一腔体通过所述连通区域以及所述交换孔与所述第二腔体连通;所述内管为双层管,所述双层管之间形成第三腔体,所述第三腔体为真空腔,所述第三腔体内密封有保温材料。
本实用新型的有益效果是:本实用新型采用三层腔室构造,利用内管和外管之间的第一腔体作为采热腔体,内管自身带有的第三腔体作为绝热腔体,内管中心的第二腔体作为热输送腔,绝热腔体在整体导流管的中间位置,位于采热腔体和热输送腔之间,绝热腔体自身为独立封闭构造,与其他两个腔没有任何连通,利用绝热腔体可以很好的隔绝采热腔体和热输送腔之间的热量传递。本实用新型的支架构造真空腔组合中深层地热导管,实现占地面积小、地热能低损耗、对生态环境零影响的综合利用效果,且无需使用高品位能源进行补热,就能达到建筑及农业的采暖需求,对地热能达到最大利用效率。本实用新型采用单壁管,并在单壁管上开设交换孔,使第一腔体内的流体通过交换孔进入到第二腔体内,能够进一步增大换热效率。
在上述技术方案的基础上,本实用新型还可以做如下改进。
进一步,所述单壁管上开设有多组沿轴向布置的交换孔,每组所述交换孔沿所述单壁管的周向均匀布置。
采用上述进一步方案的有益效果是:采用多组间隔布置的交换孔,能够使流体流动过程均匀稳定。
进一步,所述单壁管的上端从所述内管的底部插入到所述第三腔体内且与内管密封连接。
采用上述进一步方案的有益效果是:使单壁管与内管的连接更加稳定可靠。
进一步,所述第三腔体内还设有多个尼龙隔热支撑圈。
采用上述进一步方案的有益效果是:通过设置尼龙支撑圈,能够使内管的第三腔体均匀,使内管可以承受足够的压力,保证第三腔体的体积,尽量减少内管在热水输送过程中的热量损失。
进一步,所述第三腔体内密封的保温材料包括气凝胶颗粒或/和超细玻璃纤维。
采用上述进一步方案的有益效果是:采用气凝胶颗粒作为保温材料,气凝胶颗粒在真空状态下,其导热系数λ会从0.014W/(m·K)降低到0.004W/(m·K),具有很好的保温效果。
进一步,所述保温材料为圆环形结构,所述圆环形结构的保温材料套设在所述内管的第三腔体内;或所述保温材料为线型绳体结构,所述线型绳体结构缠绕在所述第三腔体内。
采用上述进一步方案的有益效果是:能够使第三腔体内填充满保温材料,并且方便填充。
进一步,所述外管的外径为200mm~1000mm,所述内管的外径为120mm~920mm,所述单壁管的外径为120mm~920mm,所述第二腔体的直径不小于100mm。
进一步,所述外管、内管以及单壁管均采用钢制材料制成。
采用上述进一步方案的有益效果是:能够保证抵抗埋管深度所产生的距离压力。
进一步,所述连通区域的高度为2m~100m。
进一步,所述内管的顶部从所述外管的顶部伸出,所述外管的顶部与所述内管的外侧壁密封连接,所述外管的顶部侧壁上开设有回水口,所述内管的顶部敞口为出水口。
采用上述进一步方案的有益效果是:将内管和外管有效连接在一起,回水口和出水口分别用于连接换热器,整体结构紧凑可靠。
图1为本实用新型支架构造真空腔组合中深层地热导管轴向剖面的结构示意图;
图2为图1中A-A’的剖面结构示意图;
图3为图1中B-B’的剖面结构示意图;
图4为图1中C-C’的剖面结构示意图。
附图中,各标号所代表的部件列表如下:
1、外管;11、封口板;12、第一焊缝;
2、内管;21、钢管;22、第二焊缝;
3、第一腔体;4、第二腔体;5、单壁管;51、交换孔;6、连通区域;
7、尼龙隔热支撑圈;
8、保温材料。
以下结合附图对本实用新型的原理和特征进行描述,所举实例只用于解释本实用新型,并非用于限定本实用新型的范围。
实施例1
如图1~图4所示,本实施例的一种支架构造真空腔组合中深层地热导管,包括外管1和内管2,所述外管1的底部为密封结构,所述内管2的顶部以及底部均为敞口结构;所述内管2与所述外管1之间形成第一腔体3,所述内管2中部具有轴向贯通的第二腔体4,所述内管2套设在所述外管1内,所述内管2底部连接有同轴布置的单壁管5,所述单壁管5上开设有交换孔51,所述单壁管5的底部与所述外管1的底部之间预留有连通区域6,所述第一腔体3通过所述连通区域6以及所述交换孔51与所述第二腔体4连通;所述内管2为双层管,所述双层管之间形成第三腔体,所述第三腔体为真空腔,所述第三腔体内密封有保温材料8。
如图2~图4所示,本实施例的外管1、内管2均采用圆筒状结构。
如图1和图4所示,本实施例的所述单壁管5上开设有多组沿轴向布置的交换孔51,每组所述交换孔51沿所述单壁管5的周向均匀布置。采用多组间隔布置的交换孔,能够使流体流动过程均匀稳定。
具体的,本实施例的单壁管5上每组交换孔51的个数可以为2个、3个、4个、5个等,具体可以根据需要任意设定。交换孔51的形状可以采用圆孔、方形孔等任意形状的孔,只要能够将第一腔体3和第二腔体4连通即可。
如图1所示,本实施例的所述单壁管5的上端从所述内管2的底部插入到所述第三腔体内且与内管2密封连接。使单壁管与内管的连接更加稳定可靠。
如图1所示,本实施例的所述第三腔体内还设有多个尼龙隔热支撑圈7。通过设置尼龙支撑圈,能够使内管的第三腔体受力均匀,使内管可以承受足够的压力,保证第三腔体的体积,尽量减少内管在热水输送过程中的热量损失。
如图3所示,本实施例的一个可选方案为,所述尼龙隔热支撑圈7为圆环形,可将尼龙隔热支撑圈7的内环壁与内管2内侧的钢管21外侧壁抵接,还可将尼龙隔热支撑圈7的外环壁上设置多个支脚,再通过支脚抵接在内管外侧的钢管21的内侧壁抵接,支脚的个数可以根据需要任意设定,例如可以设置为2个、3个、4个、5个等。
如图1所示,本实施例的所述第三腔体内密封的保温材料8包括气凝胶颗粒或/和超细玻璃纤维。采用气凝胶颗粒作为保温材料,气凝胶颗粒在真空状态下,其导热系数λ会从0.014W/(m·K)降低到0.004W/(m·K),具有很好的保温效果。
其中,所述第三腔体内密封的保温材料8为气凝胶颗粒。采用气凝胶颗粒作为保温材料,气凝胶颗粒的导热系数λ为0.014W/(m·K)。第三腔体为独立密封构造,通过抽真空处理,形成带有气凝胶颗粒保温层的真空腔,气凝胶颗粒在真空状态下,其导热系数λ会从0.014W/(m·K)降低到0.004W/(m·K),具有很好的保温效果。由于保温材料8填充在整个第三腔体内,且位于整个多腔绝热导流管的中间位置,所以保温的深度基本与整体管材相同,保温连贯且为整个内管全保温,而不是只有在冻土层中设置,大大降低了地热从深到浅的热损失。
如图1所示,本实施例的一个优选方案为,所述保温材料8为圆环形结构,所述圆环形结构的保温材料8套设在所述内管2的第三腔体内;或所述 保温材料8为线型绳体结构,所述线型绳体结构缠绕在所述第三腔体内。能够使第三腔体内填充满保温材料,并且方便填充。
本实施例的一个具体方案为,所述外管1的外径为200mm~1000mm,具体可选为200mm、210mm、220mm、230mm、240mm、250mm、260mm、270mm、280mm、290mm、300mm、350mm、400mm、450mm、500mm、550mm、600mm、650mm、700mm、750mm、800mm、850mm、900mm、1000mm;所述内管2的外径为120mm~920mm,具体可选为120mm、130mm、140mm、150mm、160mm、170mm、180mm、190mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm、650mm、700mm、750mm、800mm、850mm、900mm、920mm;所述单壁管5的外径为120mm~920mm,具体可选为120mm、130mm、140mm、150mm、160mm、170mm、180mm、190mm、200mm、250mm、300mm、350mm、400mm、450mm、500mm、650mm、700mm、750mm、800mm、850mm、900mm、920mm;所述第二腔体4的直径不小于100mm。
本实施例的所述外管1、内管2以及单壁管5均采用钢制材料制成。本实施例所有管材均采用高强度钢材,在潮湿环境下具有良好的耐腐蚀性能。还能够保证抵抗埋管深度所产生的距离压力。
具体的,所述连通区域6的高度为2m~100m,具体可选为2m、5m、10m、15m、20m、25m、30m、35m、40m、45m、50m、55m、60m、65m、70m、75m、80m、85m、90m、95m、100m。
如图1~图4所示,本实施例的所述第三腔体为环形腔。采用环形的第三腔体可以将第一腔体3和第二腔体4进行隔热。本实施例的所述第一腔体3为环形腔。利用连通区域连通的第一腔体和第二腔体,形成类U型的循环流 道,可以在一根导流管内进行不同温度流体的循环导流。
本实施例的所述内管2的顶部从所述外管1的顶部伸出,所述外管1的顶部与所述内管2的外侧壁密封连接,所述外管1的顶部侧壁上开设有回水口,所述内管2的顶部敞口为出水口。将内管2和外管1有效连接在一起,回水口和出水口分别用于连接换热器,整体结构紧凑可靠。
本实施例的一个可选方案为,为了使整体结构更加稳定,还可以在第一腔体3中设置支架,使支架分别与内管2的外侧壁以及外管1的内侧壁抵接,对第一腔体3进行结构支撑。
如图1和图2所示,将支架构造真空腔组合中深层地热导管埋入自然地面以下,使多腔绝热导流管穿过浅层地热区(自然地面10以下200m以内,温度低于25℃),伸入到中深层地热区(自然地面10以下3000m以内,温度高于25℃)。将外管1的回水口与换热器的出水口连通,将内管2的出水口与换热器的进水口连通,使换热器内的水经过第一腔体3进入到外管1底部的连通区域6,再经过连通区域6从内管2底部进入到第二腔体4,经过地热加热的水沿内管2的第二腔体4进入换热器。
本实施例的支架构造真空腔组合中深层地热导管在制备的时候,将两根钢管21套设在一起形成双层钢管,即为内管2,然后将单壁管5的上端插入到两个钢管21下端之间,并焊接形成第二焊缝22,双层钢管之间的腔体为第三腔体;将保温材料8填入到所述第三腔体内,边填充保温材料8,边填充尼龙隔热支撑圈7,然后将双层钢管的上端边焊接边抽真空,焊接完成后,形成具有密封真空腔的内管2;将内管2套设在外管1内,并使内管2的底部与外管1的底部之间预留有连通区域6;外管1底部通过封口板11进行封闭,封口板11可以采用圆形板,封口板11与外管1底部形成第一焊缝12。 双层钢管的一端使用同样材质的钢板,通过激光焊接使工件熔化,形成特定的熔池,进而形成底部密封的第二腔体。其中,边焊接边抽真空具体为,使用抽真空设备进行多级抽真空处理,最后焊接密封,制成的内管热损失量可由50%降低到5%。
将保温材料8填入到所述第三腔体内,具体为,将气凝胶颗粒压制成轴向长度为300-500mm的圆环形状的保温材料8,再将圆环形状的保温材料8装入第三腔体内。先将气凝胶颗粒压制成圆环形状,有利于填充第三腔体,保温效果好,也方便后续的抽真空操作。
本实施例的支架构造真空腔组合中深层地热导管在使用的时候,水从第一腔体3向下进入到连通区域6,经过热交换后,再通过连通区域6以及单壁管5上的交换孔51进入到第二腔体4内,从第二腔体4由下至上输出。
本实施例的支架构造真空腔组合中深层地热导管采用三层腔室构造,利用内管和外管之间的第一腔体作为采热腔体,内管自身带有的第三腔体作为绝热腔体,内管中心的第二腔体作为热输送腔,绝热腔体在整体导流管的中间位置,位于采热腔体和热输送腔之间,绝热腔体自身为独立封闭构造,与其他两个腔没有任何连通,利用绝热腔体可以很好的隔绝采热腔体和热输送腔之间的热量传递。本实施例的支架构造真空腔组合中深层地热导管,实现占地面积小、地热能低损耗、对生态环境零影响的综合利用效果,且无需使用高品位能源进行补热,就能达到建筑及农业的采暖需求,对地热能达到最大利用效率。本实施例采用单壁管,并在单壁管上开设交换孔,使第一腔体内的流体通过交换孔进入到第二腔体内,能够进一步增大换热效率。
本实施例的支架构造真空腔组合中深层地热导管集采热、保温、热传输为一体,只需要将成品的导流管直接沿钻孔埋入至中深层地热区域,并与换 热器连接,即完成连接,具有高度集成性。
在本实用新型的描述中,需要理解的是,术语“中心”、“长度”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特 征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (10)
- 一种支架构造真空腔组合中深层地热导管,其特征在于,包括外管和内管,所述外管的底部为密封结构,所述内管的顶部以及底部均为敞口结构;所述内管与所述外管之间形成第一腔体,所述内管中部具有轴向贯通的第二腔体,所述内管套设在所述外管内,所述内管底部连接有同轴布置的单壁管,所述单壁管上开设有交换孔,所述单壁管的底部与所述外管的底部之间预留有连通区域,所述第一腔体通过所述连通区域以及所述交换孔与所述第二腔体连通;所述内管为双层管,所述双层管之间形成第三腔体,所述第三腔体为真空腔,所述第三腔体内密封有保温材料。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述单壁管上开设有多组沿轴向布置的交换孔,每组所述交换孔沿所述单壁管的周向均匀布置。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述单壁管的上端从所述内管的底部插入到所述第三腔体内且与内管密封连接。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述第三腔体内还设有多个尼龙隔热支撑圈。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述第三腔体内密封的保温材料包括气凝胶颗粒或/和超细玻璃纤维。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述保温材料为圆环形结构,所述圆环形结构的保温材料套设在 所述内管的第三腔体内;或所述保温材料为线型绳体结构,所述线型绳体结构缠绕在所述第三腔体内。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述外管的外径为200mm~1000mm,所述内管的外径为120mm~920mm,所述单壁管的外径为120mm~920mm,所述第二腔体的直径不小于100mm。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述外管、内管以及单壁管均采用钢制材料制成。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述连通区域的高度为2m~100m。
- 根据权利要求1所述一种支架构造真空腔组合中深层地热导管,其特征在于,所述内管的顶部从所述外管的顶部伸出,所述外管的顶部与所述内管的外侧壁密封连接,所述外管的顶部侧壁上开设有回水口,所述内管的顶部敞口为出水口。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221137680.8 | 2022-05-12 | ||
CN202221137680.8U CN217584916U (zh) | 2022-05-12 | 2022-05-12 | 一种支架构造真空腔组合中深层地热导管 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023216372A1 true WO2023216372A1 (zh) | 2023-11-16 |
Family
ID=83551470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/100330 WO2023216372A1 (zh) | 2022-05-12 | 2022-06-22 | 一种支架构造真空腔组合中深层地热导管 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN217584916U (zh) |
WO (1) | WO2023216372A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100038898A1 (en) * | 2008-08-14 | 2010-02-18 | Pierre Ollier | Insulated double-walled well completion tubing for high temperature use |
US20100096037A1 (en) * | 2008-10-16 | 2010-04-22 | Woodward Governor Company | Multi-Tubular Fluid Transfer Conduit |
CN107860145A (zh) * | 2017-10-13 | 2018-03-30 | 中国科学院广州能源研究所 | 地热单井自然对流强化换热系统 |
CN108332440A (zh) * | 2018-03-22 | 2018-07-27 | 吉林大学 | 一种中深层地热地下增强型换热系统及换热方法 |
CN212566358U (zh) * | 2020-05-14 | 2021-02-19 | 广东中科光年数智科技有限公司 | 一种地热井结构 |
CN214371898U (zh) * | 2021-01-18 | 2021-10-08 | 核工业二〇三研究所 | 一种具有真空隔热机构的双层油套管式井下换热器 |
CN113790316A (zh) * | 2021-09-28 | 2021-12-14 | 北京千城集成房屋有限公司 | 一种具有绝热构造的多腔绝热导流管及其制备方法 |
-
2022
- 2022-05-12 CN CN202221137680.8U patent/CN217584916U/zh active Active
- 2022-06-22 WO PCT/CN2022/100330 patent/WO2023216372A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100038898A1 (en) * | 2008-08-14 | 2010-02-18 | Pierre Ollier | Insulated double-walled well completion tubing for high temperature use |
US20100096037A1 (en) * | 2008-10-16 | 2010-04-22 | Woodward Governor Company | Multi-Tubular Fluid Transfer Conduit |
CN107860145A (zh) * | 2017-10-13 | 2018-03-30 | 中国科学院广州能源研究所 | 地热单井自然对流强化换热系统 |
CN108332440A (zh) * | 2018-03-22 | 2018-07-27 | 吉林大学 | 一种中深层地热地下增强型换热系统及换热方法 |
CN212566358U (zh) * | 2020-05-14 | 2021-02-19 | 广东中科光年数智科技有限公司 | 一种地热井结构 |
CN214371898U (zh) * | 2021-01-18 | 2021-10-08 | 核工业二〇三研究所 | 一种具有真空隔热机构的双层油套管式井下换热器 |
CN113790316A (zh) * | 2021-09-28 | 2021-12-14 | 北京千城集成房屋有限公司 | 一种具有绝热构造的多腔绝热导流管及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN217584916U (zh) | 2022-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201077982Y (zh) | 局部冻结器 | |
CN217977794U (zh) | 一种具有绝热构造的多腔绝热导流管 | |
CN111271886A (zh) | 地下冷热蓄能装置 | |
WO2023216372A1 (zh) | 一种支架构造真空腔组合中深层地热导管 | |
CN204063575U (zh) | 一种熔盐储能加热换热系统 | |
CN111664602A (zh) | 一种弯折型地热井 | |
CN203177502U (zh) | 一种真空式太阳能热水系统 | |
CN201653224U (zh) | 高效热交换波纹内套管式地埋管 | |
CN104990438B (zh) | 一种带内置水箱的相变式储热装置 | |
CN106642764A (zh) | 中深层地温复合模式换热地埋管装置 | |
CN104374098A (zh) | 一种真空管太阳能集热器 | |
CN212806114U (zh) | 一种同轴组合套管式换热器 | |
CN210773576U (zh) | 一种桩基埋管地源热泵套管式换热器 | |
CN207907540U (zh) | 一种地源热泵能量桩 | |
CN213025055U (zh) | 一种单井地热能开发模型结构 | |
CN203131961U (zh) | 一种热管式移动供热相变蓄热装置 | |
CN202500151U (zh) | 一种光热发电高温熔盐储罐的复合功能储罐基础 | |
CN215598176U (zh) | 一种土壤源热泵高效换热装置 | |
CN214371898U (zh) | 一种具有真空隔热机构的双层油套管式井下换热器 | |
CN212253231U (zh) | 一种多蒸发段热管耦合地埋管系统 | |
CN213480633U (zh) | 一种干热岩换热装置 | |
CN107192063A (zh) | 一种利用中深层无干扰地岩热换热孔作冷热源的系统与方法 | |
CN208536658U (zh) | 一种地下换热器 | |
CN220119597U (zh) | 一种中深层地埋管高效换热器 | |
CN212299507U (zh) | 地下冷热蓄能装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22941318 Country of ref document: EP Kind code of ref document: A1 |