WO2023050893A1 - 基板结构和终端设备 - Google Patents

基板结构和终端设备 Download PDF

Info

Publication number
WO2023050893A1
WO2023050893A1 PCT/CN2022/099101 CN2022099101W WO2023050893A1 WO 2023050893 A1 WO2023050893 A1 WO 2023050893A1 CN 2022099101 W CN2022099101 W CN 2022099101W WO 2023050893 A1 WO2023050893 A1 WO 2023050893A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall plate
cooling
substrate structure
chip
wall
Prior art date
Application number
PCT/CN2022/099101
Other languages
English (en)
French (fr)
Inventor
张凯
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22874290.4A priority Critical patent/EP4344370A1/en
Publication of WO2023050893A1 publication Critical patent/WO2023050893A1/zh
Priority to US18/444,961 priority patent/US20240196513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/44Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements the complete device being wholly immersed in a fluid other than air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit

Definitions

  • the present application relates to the field of chip cooling, in particular to a substrate structure and terminal equipment.
  • the existing liquid cooling solution in the substrate is to embed the liquid cooling pipeline in the substrate, and the chip that generates heat is flip-chip or mounted directly above the liquid cooling pipeline, and the chip is cooled by heat exchange through the liquid cooling pipeline.
  • the heat-conducting working medium in the liquid cooling pipeline receives the heat from the chip, generates heat backflow, and distributes the heat evenly throughout the substrate.
  • the liquid-cooled pipeline is in indirect contact with the chip, and the heat generated by the chip is transferred to the heat-conducting working medium of the liquid-cooled tube through heat conduction.
  • the heat transfer efficiency is relatively low, and the diffusion thermal resistance of the substrate is relatively large.
  • the present application provides a substrate structure, which helps to improve the cooling efficiency of chips.
  • the present application also provides a terminal device including the substrate structure.
  • a first aspect of the embodiments of the present application provides a substrate structure, including a frame body, a cooling shell, and a first chip.
  • the frame body includes a first wall plate and a second wall plate arranged at intervals, and an accommodating cavity is formed between the first wall plate and the second wall plate.
  • the cooling shell is at least partly arranged in the accommodating cavity, and is fixedly connected with the frame body, and a cooling cavity is formed between the cooling shell and the second wall plate.
  • the first chip is arranged in the cooling cavity, located in the accommodating cavity, and connected with the second wall plate. The cooling cavity is used for filling the cooling fluid submerged in the first chip.
  • the substrate structure installs the first chip by embedding the chip, that is, the first chip is located in the accommodation cavity between the first wall plate and the second wall plate.
  • the first chip is also located in the cooling cavity while in the accommodating cavity.
  • the cooling shell in the frame forms a cooling cavity for accommodating cooling fluid.
  • the cooling fluid can directly act on the first chip, and the first chip is cooled by immersion cooling. Chips cool quickly.
  • the substrate structure further includes a first insulating component.
  • the first insulating component is disposed on an end surface of the first wall plate away from the second wall plate, and forms a first electrical connection area on a surface of the first wall plate.
  • the insulating area and the first electrical connection area are separated on the first wall by the first insulating member.
  • the first electrical connection area can be used for surface mount inductors, capacitors, and resistors, while the insulating area It can effectively prevent the substrate structure from being affected by other electrical components and ensure the normal operation of the substrate structure.
  • the substrate structure further includes a second insulating component.
  • the second insulating component is disposed on an end surface of the second wall plate away from the first wall plate, and forms a second electrical connection area on the surface of the second wall plate.
  • the insulating area and the second electrical connection area are separated on the second wall plate by the second insulating member, and the second electrical connection area can be used for surface mount PCB (Printed Circuit Board, printed circuit board) board), and the insulating region can effectively prevent the substrate structure from being affected by other electrical components, and ensure the normal operation of the substrate structure.
  • PCB printed Circuit Board, printed circuit board
  • a buffer member is filled between the first wall plate in the accommodating cavity and the cooling shell, and the buffer member is used to buffer the first wall The impact force between the plate and the second wall plate.
  • the buffer can use ABF (Ajinomoto Build-up Film, Ajinomoto accumulation film) or PP (Polypropylene, polypropylene), and the strength of the substrate structure can be improved by filling the buffer into the accommodation cavity.
  • ABF Ajinomoto Build-up Film, Ajinomoto accumulation film
  • PP Polypropylene, polypropylene
  • the substrate structure further includes a copper-clad board, the copper-clad board is fixedly connected to the frame body, and the copper-clad board is arranged on the second wall board and the first wall board. Between a chip, the surface of the copper clad plate away from the second wall plate forms a first wiring surface, and the surface of the copper clad plate close to the second wall plate forms a second wiring surface.
  • the copper clad laminate has a certain strength, which can improve the overall strength of the substrate structure.
  • the copper clad laminate has a first wiring surface and a second wiring surface insulated from each other, which can increase the wiring area.
  • the substrate structure further includes two cooling pipes, and the cooling pipes include a first connection end and a second connection end that communicate.
  • the first connecting end communicates with the cooling cavity, and the second connecting end is used for connecting to a circulation device for supplying the cooling fluid.
  • the two cooling pipes can be used to connect the two ports of the circulation device, so that the cooling fluid in the cooling chamber can be circulated and switched quickly, increasing the cooling efficiency of the first chip.
  • the substrate structure further includes a first resistance-capacitance sensing element.
  • the resistance-capacitance sensing element is arranged in the cooling cavity and connected with the second wall plate.
  • the first RC-sensing element may be a resistor, a capacitor or an inductor, and the first RC-sensing element is assembled to realize or expand the function of the substrate structure and increase the stability of the substrate structure.
  • the substrate structure further includes a first insulating film and a second insulating film.
  • the first insulating film covers the surface of the first chip
  • the second insulating film covers the surface of the first resistance-capacitance sensing element.
  • the first insulating film and the second insulating film increase the creepage distance between the first chip and the first RC-sensing element, reducing the electrical connection between the first RC-sensing element and the first chip under high-voltage conditions. The probability.
  • the substrate structure further includes a second chip.
  • the cooling shell also includes an outer shell part and a middle part.
  • the cooling cavity is formed between the outer shell and the second wall.
  • the middle piece is arranged in the cooling chamber, the middle piece is relatively fixed to the outer shell piece, and the second chip is connected to the middle piece.
  • the cooling shell further expands the middle piece, and the layout space can be increased through the middle piece, so that the substrate structure can include the second chip, and the function of the substrate structure is further expanded.
  • the substrate structure further includes a second resistance-capacitance sensing element.
  • the second resistance-capacitance sensing element is arranged in the cooling cavity and connected with the intermediate piece.
  • the second resistance-capacitance sensing element can be a resistor, capacitor or inductor, and the second resistance-capacitance sensing element is assembled to realize or expand the function of the substrate structure and increase the stability of the substrate structure.
  • the substrate structure further includes a plastic package.
  • the plastic seal is covered on a side of the first wall that is away from the second wall.
  • the plastic encapsulation member after the plastic encapsulation member molds components such as the frame body, it can protect the frame body and other components of the substrate structure, so that the substrate structure can run stably.
  • the first wall plate is provided with an installation opening, and the cooling shell protrudes from the accommodating cavity through the installation opening.
  • the plastic package covers the first wall and the side of the cooling shell away from the second wall.
  • the cooling shell when the cooling shell has a large volume, the cooling shell protrudes out of the accommodating cavity, and the plastic package can cover the cooling shell while covering the frame, so that the plastic package can protect the cooling shell in the substrate structure.
  • Frame, cooling shell and other components when the cooling shell has a large volume, the cooling shell protrudes out of the accommodating cavity, and the plastic package can cover the cooling shell while covering the frame, so that the plastic package can protect the cooling shell in the substrate structure.
  • Frame, cooling shell and other components when the cooling shell has a large volume, the cooling shell protrudes out of the accommodating cavity, and the plastic package can cover the cooling shell while covering the frame, so that the plastic package can protect the cooling shell in the substrate structure.
  • Frame, cooling shell and other components when the cooling shell has a large volume, the cooling shell protrudes out of the accommodating cavity, and the plastic package can cover the cooling shell while covering the frame, so that the plastic package can protect the cooling shell in the substrate structure.
  • Frame, cooling shell and other components when the cooling shell has a large volume, the
  • the substrate structure further includes a heat dissipation element, and the heat dissipation element is disposed on a side of the first wall plate away from the second wall plate.
  • the heat sink can quickly dissipate the heat generated by the substrate structure.
  • the first chip is connected to the second wall plate through a plurality of first connecting pieces, and a first gap is formed between the multiple first connecting pieces, so The first gap is used for the circulation of the cooling fluid.
  • the cooling fluid flows through the first gap, which can enhance the heat dissipation of the side of the first chip close to the second wall plate.
  • a second aspect of the embodiments of the present application provides a terminal device, including a device body and the substrate structure provided in the first aspect, where the substrate structure is disposed in the device body.
  • the first chip can be maintained at a relatively low working temperature through immersion cooling, so that the terminal device can run stably for a long time.
  • FIG. 1 shows a schematic structural diagram of a substrate structure.
  • FIG. 2 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a substrate structure provided by an embodiment of the present application.
  • the first chip 210 The first chip 210
  • Second wiring plane 303 Second wiring plane 303
  • the first electrical connection area 501 The first electrical connection area 501
  • first”, second, etc. are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the number of indicated technical features. Thus, a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
  • plural means two or more. Orientation terms such as “upper”, “lower”, “left”, and “right” are defined relative to the schematic placement of components in the drawings. It should be understood that these directional terms are relative concepts, and they are used With respect to description and clarification relative to it, it may change correspondingly according to the change of orientation of parts placed in the drawings.
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be directly or indirectly through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be directly or indirectly through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be directly or indirectly through an intermediary.
  • and/or includes any and all combinations of one or more of the associated listed items.
  • FIG. 1 shows a schematic structural diagram of a substrate structure 001 .
  • this substrate structure 001 includes a frame body 100 , a first chip 210 and a first resistance-capacitance sensing element 230 .
  • the frame body 100 is made of a conductive material, and includes a first wall plate 110 and a second wall plate 130 opposite to each other.
  • the first wall plate 110 and the second wall plate 130 are connected by a connecting plate 150 .
  • An accommodating cavity 101 is formed between the second wall plates 130 .
  • the first chip 210 is disposed in the accommodating cavity 101 and is electrically connected to the second wall plate 130 .
  • the first resistance-capacitance sensing element 230 is also disposed in the accommodating cavity 101 and is electrically connected to the second wall plate 130 .
  • the first RC-sensing element 230 can be a resistor, a capacitor or an inductor.
  • the first RC-sensing element 230 is spaced apart from the first chip 210 to reduce the probability of mutual influence between the first RC-sensing element 230 and the cell.
  • first wall plate 110 , the second wall plate 130 and the connecting plate 150 in the frame body 100 may be integrally made without using conductive materials.
  • the second wall 130 and the connection plate 150 are provided conductive lines, and the conductive lines of the first wall 110 , the second wall 130 and the connection plate 150 are electrically connected.
  • the substrate structure 001 further includes a copper clad board 300 , and the copper clad board 300 is disposed in the accommodating cavity 101 near the second wall 130 .
  • the copper clad laminate 300 is located between the first chip 210 and the second wall 130 .
  • the second wall plate 130 includes a first extension piece 135 , and the first extension piece 135 passes through the copper clad laminate 300 to the position of the first chip 210 .
  • the first chip 210 is electrically connected to the corresponding first extension piece 135 to realize the electrical connection between the first chip 210 and the second wall plate 130 .
  • the first RC sensing element 230 is electrically connected to the corresponding first extension piece 135 to realize the electrical connection between the first RC sensing element 230 and the second wall plate 130 .
  • a surface of the copper clad laminate 300 away from the second wall 130 forms a first wiring surface 301
  • a surface of the copper clad laminate 300 close to the second wall 130 forms a second wiring surface 303 .
  • Wiring can be performed on the first wiring surface 301 and the second wiring surface 303 respectively, and the wiring area of the substrate structure 001 is increased through the copper clad laminate 300 .
  • the copper clad laminate 300 itself has a certain strength, and the strength of the substrate structure 001 can be increased by arranging the copper clad laminate 300 .
  • the first chip 210 is located in the accommodating cavity 101 between the first wall plate 110 and the second wall plate 130 , forming an embedded substrate structure. Encapsulation of the first chip 210 in the frame body 100 can improve integration and power density, and can reduce the overall size of the substrate structure 001 .
  • This substrate structure 001 can realize heat dissipation by connecting the frame body 100 to an external heat dissipation structure.
  • FIG. 2 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 includes a frame body 100 , a cooling shell 400 , a first chip 210 and a first resistance-capacitance sensing element 230 .
  • the frame body 100 is made of conductive material.
  • the frame body 100 is made of copper, which has strong electrical conductivity.
  • the frame body 100 includes a first wall plate 110 , a second wall plate 130 and a connecting plate 150 .
  • the first wall plate 110 and the second wall plate 130 are substantially parallel and spaced apart.
  • the first wall plate 110 and the second wall plate 130 are connected through the connecting plate 150 , so that the first wall plate 110 and the second wall plate 130 are electrically connected.
  • Both the first wall plate 110 and the second wall plate 130 can be individually wired, so that after each element in the substrate structure 001 is electrically connected to the first wall plate 110 or the second wall plate 130, each element can realize its own function.
  • An accommodating cavity 101 is formed between the first wall plate 110 and the second wall plate 130 , and the first chip 210 and the first resistance-capacitance sensing element 230 are disposed in the accommodating cavity 101 .
  • the first chip 210 is fixed on the second wall 130 , and the first chip 210 is electrically connected to the second wall 130 .
  • the first RC sensing element 230 is fixed on the second wall 130 , and the first RC sensing element 230 is electrically connected to the second wall 130 .
  • the first RC-sensing element 230 can be a resistor, a capacitor or an inductor, and the corresponding element is selected as the first RC-sensing element 230 according to the actual requirements of the substrate structure 001, so that each element in the substrate structure 001 can realize the required function after being electrically connected.
  • the cooling shell 400 is located in the accommodating cavity 101 .
  • One end of the cooling shell 400 has an opening 403 , and one end of the opening 403 is sealingly connected with the second wall plate 130 , and a cooling chamber 401 is jointly formed by the cooling shell 400 and the second wall plate 130 .
  • the first chip 210 and the first RC sensing element 230 are located in the cooling chamber 401 , and the first chip 210 and the first RC sensing element 230 are not in direct contact with the cooling shell 400 .
  • the cooling cavity 401 is filled with cooling fluid 450 , and the cooling fluid 450 immerses the first chip 210 and the first resistance-capacitance sensing element 230 .
  • the cooling fluid 450 can quickly take the heat away from the first chip 210 and the first RC sensing element 230 .
  • the cooling shell 400 is made of metal, ceramic or plastic, so that the cooling shell 400 has a certain strength, and can maintain the shape of the cooling shell 400 when the substrate structure 001 is running.
  • the cooling fluid 450 is an insulating and heat-conducting fluid whose insulating property can maintain the normal operation of the first chip 210 and the first RC sensor 230 .
  • the cooling fluid 450 is transformer oil or fluorinated liquid, which has good thermal conductivity, and can be immersed in the narrow gap of the chip or the resistance-capacitance sensor element, and takes away the heat in the gap, so as to achieve better cooling Effect.
  • the first chip 210 is connected to the second wall plate 130 through a plurality of spaced first connectors, and there is a first gap 131 between two adjacent first connectors.
  • the cooling fluid 450 passes through the first gap 131, it can The heat from the end of the first chip 210 close to the second wall plate 130 is quickly taken away from the first chip 210 , thereby improving the heat dissipation effect of the first chip 210 .
  • the first resistance-capacitance sensing element 230 is connected to the second wall plate 130 through two second connecting parts, and there is a second gap 133 between the two second connecting parts.
  • the cooling fluid 450 passes through the second gap 133, the first The heat from the end of the RC sensing element 230 close to the second wall plate 130 is quickly taken away from the first RC sensing element 230 , thereby improving the heat dissipation effect of the first RC sensing element 230 .
  • a buffer cavity 101 a is formed between the first wall plate 110 , the connecting plate 150 and the cooling shell 400 , and the buffer cavity 101 a is filled with a buffer member 170 .
  • the buffer member 170 is made of ABF or PP. Filling the buffer member 170 into the accommodating cavity 101 can buffer the impact force transmission between the first wall plate 110 and the second wall plate 130 and improve the strength of the substrate structure 001 .
  • This substrate structure 001 also includes a first insulating part 510 and a second insulating part 530 .
  • the first insulating component 510 is disposed on an end surface of the first wall plate 110 away from the second wall plate 130 .
  • the first insulating member 510 may be formed on the surface of the first wall plate 110 by means of photoelectrochemical etching or the like. While the first insulating component 510 protects the first wall plate 110 , a first electrical connection region 501 is formed on the first wall plate 110 where the first insulating component 510 is not disposed. Capacitors, resistors or inductors can be electrically connected to the first electrical connection region 501 , so as to expand the functions of the substrate structure 001 .
  • the insulating region where the first insulating member 510 is located can effectively prevent the substrate structure 001 from being affected by other electrical components, and ensure the normal operation of the substrate structure 001 .
  • the second insulating component 530 is disposed on an end surface of the second wall plate 130 away from the first wall plate 110 .
  • the second insulating member 530 may be formed on the surface of the second wall plate 130 by means of photoelectrochemical etching or the like. While the second insulating component 530 protects the second wall plate 130 , a second electrical connection region 503 is formed on the second wall plate 130 where the second insulating component 530 is not disposed.
  • the second electrical connection area 503 can be used for connecting the substrate structure 001 and the PCB, which facilitates the application of the substrate structure 001 .
  • the insulating region where the second insulating member 530 is located can effectively prevent the substrate structure 001 from being affected by other electrical components, and ensure the normal operation of the substrate structure 001 .
  • the substrate structure 001 can realize rapid heat dissipation of the first chip 210 and the first RC sensing element 230 by filling the cooling cavity 401 with the cooling fluid 450 , thereby maintaining the normal operation of the substrate structure 001 .
  • the cooling fluid 450 passing through the first gap 131 between the first chip 210 and the second wall plate 130 can further enhance the heat dissipation of the first chip 210 .
  • FIG. 3 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 includes a frame body 100 , a cooling shell 400 , a copper clad laminate 300 , a first chip 210 and a first RC sensing element 230 .
  • the frame body 100 is made of conductive material.
  • the frame body 100 is made of copper, which has strong electrical conductivity.
  • the frame body 100 includes a first wall plate 110 , a second wall plate 130 and a connecting plate 150 .
  • the first wall plate 110 and the second wall plate 130 are substantially parallel and spaced apart.
  • the first wall plate 110 and the second wall plate 130 are connected through the connecting plate 150 , so that the first wall plate 110 and the second wall plate 130 are electrically connected.
  • Both the first wall plate 110 and the second wall plate 130 can be individually wired, so that after each element in the substrate structure 001 is electrically connected to the first wall plate 110 or the second wall plate 130, each element can realize its own function.
  • the copper clad laminate 300 is disposed on a side of the second wall 130 close to the first wall 110 , and the copper clad laminate 300 is relatively fixed to the second wall 130 . Since the copper clad laminate 300 itself has a certain strength, after the copper clad laminate 300 and the second wall plate 130 are relatively fixed, the substrate structure 001 can have higher strength. When the substrate structure 001 is subject to external force and tends to bend, the copper clad laminate 300 can reduce the degree of bending of the substrate structure 001 .
  • An accommodating cavity 101 is formed between the first wall 110 and the second wall 130 .
  • the first chip 210 and the first RC sensing element 230 are disposed in the accommodating cavity 101 on a side of the copper clad laminate 300 away from the second wall 130 .
  • the second wall plate 130 includes a first extension piece 135 passing through the copper clad laminate 300 .
  • the first extension 135 corresponding to the first chip 210 is electrically connected to a plurality of spaced first connecting members at an end close to the chip.
  • the first connectors are electrically connected to the first chip 210 , and there is a first gap 131 between two adjacent first connectors.
  • the first chip 210 is connected to the first connecting member, that is to realize the electrical connection between the first chip 210 and the second wall plate 130 .
  • the first extension 135 corresponding to the first RC sensing element 230 is electrically connected to two second connecting elements at an end close to the first RC sensing element 230 .
  • the second connection part is electrically connected to the first resistance-capacitance sensing element 230 , and there is a second gap 133 between the two second connection parts.
  • the first resistance-capacity sensing element 230 is connected to the second connecting member, that is, the electrical connection between the first resistance-capacity sensing element 230 and the second wall plate 130 is realized.
  • the first RC-sensing element 230 can be a resistor, a capacitor or an inductor, and the corresponding element is selected as the first RC-sensing element 230 according to the actual requirements of the substrate structure 001, so that each element in the substrate structure 001 can realize the required function after being electrically connected.
  • the cooling shell 400 is located in the accommodating cavity 101 .
  • One end of the cooling shell 400 has an opening 403, and one end of the opening 403 is sealingly connected with the second wall plate 130, and a cooling cavity 401 is jointly formed by the cooling shell 400, the second wall plate 130 and the copper clad laminate 300, and the cooling cavity 401 is located in the cooling shell 400 and the second wall plate 130.
  • the first chip 210 and the first RC sensing element 230 are located in the cooling chamber 401 , and the first chip 210 and the first RC sensing element 230 are not in direct contact with the cooling shell 400 .
  • the cooling cavity 401 is filled with cooling fluid 450 , and the cooling fluid 450 immerses the first chip 210 and the first resistance-capacitance sensing element 230 .
  • the cooling fluid 450 can quickly take the heat away from the first chip 210 and the first RC sensing element 230 .
  • the cooling fluid 450 can also flow through the first gap 131 to take away the heat from the end of the first chip 210 close to the copper clad laminate 300 .
  • the cooling fluid 450 can also flow through the second gap 133 , so as to take away the heat from the end of the first RC sensing element 230 close to the copper clad laminate 300 .
  • the cooling fluid 450 is an insulating and heat-conducting fluid whose insulating property can maintain the normal operation of the first chip 210 and the first RC sensor 230 .
  • the cooling fluid 450 is transformer oil or fluorinated liquid, which has good thermal conductivity, and can be immersed in the narrow gap of the chip or the resistance-capacitance sensor element, and takes away the heat in the gap, so as to achieve better cooling Effect.
  • a buffer cavity 101 a is formed between the first wall plate 110 , the connecting plate 150 and the cooling shell 400 , and the buffer cavity 101 a is filled with a buffer member 170 .
  • the buffer member 170 is made of ABF or PP. Filling the buffer member 170 into the accommodating cavity 101 can buffer the impact force transmission between the first wall plate 110 and the second wall plate 130 and improve the strength of the substrate structure 001 .
  • This substrate structure 001 also includes a first insulating part 510 and a second insulating part 530 .
  • the first insulating component 510 is disposed on an end surface of the first wall plate 110 away from the second wall plate 130 .
  • the first insulating member 510 may be formed on the surface of the first wall plate 110 by means of photoelectrochemical etching or the like. While the first insulating component 510 protects the first wall plate 110 , a first electrical connection region 501 is formed on the first wall plate 110 where the first insulating component 510 is not disposed. Capacitors, resistors or inductors can be electrically connected to the first electrical connection region 501 , so as to expand the functions of the substrate structure 001 .
  • the insulating region where the first insulating member 510 is located can effectively prevent the substrate structure 001 from being affected by other electrical components, and ensure the normal operation of the substrate structure 001 .
  • the second insulating component 530 is disposed on an end surface of the second wall plate 130 away from the first wall plate 110 .
  • the second insulating member 530 may be formed on the surface of the second wall plate 130 by means of photoelectrochemical etching or the like. While the second insulating component 530 protects the second wall plate 130 , a second electrical connection region 503 is formed on the second wall plate 130 where the second insulating component 530 is not disposed.
  • the second electrical connection area 503 can be used for connecting the substrate structure 001 and the PCB, which facilitates the application of the substrate structure 001 .
  • the insulating region where the second insulating member 530 is located can effectively prevent the substrate structure 001 from being affected by other electrical components, and ensure the normal operation of the substrate structure 001.
  • the substrate structure 001 can realize rapid heat dissipation of the first chip 210 and the first RC sensing element 230 by filling the cooling cavity 401 with the cooling fluid 450 , thereby maintaining the normal operation of the substrate structure 001 .
  • the cooling fluid 450 passing through the first gap 131 between the first chip 210 and the second wall plate 130 can further enhance the heat dissipation of the first chip 210 .
  • FIG. 4 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • This substrate structure 001 further includes a first insulating film 211 and a second insulating film 231 on the basis of the substrate structure 001 shown in FIG. 2 .
  • the first insulating film 211 covers the surface of the first chip 210 and can improve the insulating performance of the first chip 210 .
  • the second insulating film 231 covers the surface of the first RC-sensing element 230 and can improve the insulation performance of the first RC-sensing element 230 .
  • the creepage gap between the first chip 210 and the first RC-sensing element 230 can be increased, even if the first chip 210 and the first RC-sensing element 230 are at relatively high When operating under high voltage, the first chip 210 and the first RC sensing element 230 are not easy to conduct directly, which effectively guarantees the stable operation of the substrate structure 001 .
  • FIG. 5 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • This substrate structure 001 further includes a first insulating film 211 and a second insulating film 231 on the basis of the substrate structure 001 shown in FIG. 3 .
  • the first insulating film 211 covers the surface of the first chip 210 and can improve the insulating performance of the first chip 210 .
  • the second insulating film 231 covers the surface of the first RC-sensing element 230 and can improve the insulation performance of the first RC-sensing element 230 .
  • the first insulating film 211 and the second insulating film 231 are PI (Polyimide, polyimide) films, which have better insulating properties and can be sufficiently thin.
  • the creepage gap between the first chip 210 and the first RC-sensing element 230 can be increased, even if the first chip 210 and the first RC-sensing element 230 are at relatively high When operating under high voltage, the first chip 210 and the first RC sensing element 230 are not easy to conduct directly, which effectively guarantees the stable operation of the substrate structure 001 .
  • FIG. 6 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 further includes two cooling pipes 470 located on opposite sides of the cooling shell 400 .
  • the cooling pipe 470 includes a first connecting end 471 and a second connecting end 473 opposite to each other, and the first connecting end 471 and the second connecting end 473 communicate directly.
  • the first connecting end 471 communicates with the cooling cavity 401 in the accommodating cavity 101 , so that the cooling fluid 450 in the cooling cavity 401 can enter the cooling pipeline 470 , and also provide the cooling fluid 450 to the cooling cavity 401 through the cooling pipeline 470 .
  • the second connecting end 473 extends out of the accommodating cavity 101 and is used for connecting to a circulation device (not shown in the figure).
  • the circulation device includes a circulation pump, a pump outlet and a pump inlet, and the fluid is powered by the circulation pump so that the fluid can enter from the pump inlet and then flow out from the pump outlet at a certain speed.
  • One of the two cooling ducts 470 serves as a first duct, and the other serves as a second duct.
  • the second connection end 473 of the first pipeline communicates with the pump inlet, and the second connection end 473 of the second pipeline communicates with the pump outlet.
  • the circulation device is activated, the cooling fluid 450 in the cooling cavity 401 is led out by the first pipe. After the cooling fluid 450 flows through the circulation pump, it flows out from the outlet of the pump.
  • the cooling fluid 450 flowing out of the pump outlet enters the cooling cavity 401 through the second pipeline, thereby realizing the circulation of the cooling fluid 450.
  • An active cooling structure may also be provided in the circulation device, and the cooling fluid 450 flowing through the circulation device is cooled by the active cooling structure.
  • the fluidity of the cooling fluid 450 in the substrate structure 001 can be strong, which can provide better heat dissipation effect for the first chip 210 and the first RC sensor 230 .
  • FIG. 7 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 further includes two cooling ducts 470 located on opposite sides of the cooling shell 400 .
  • the cooling pipe 470 includes a first connecting end 471 and a second connecting end 473 opposite to each other, and the first connecting end 471 and the second connecting end 473 communicate directly.
  • the first connecting end 471 communicates with the cooling cavity 401 in the accommodating cavity 101 , so that the cooling fluid 450 in the cooling cavity 401 can enter the cooling pipeline 470 , and also provide the cooling fluid 450 to the cooling cavity 401 through the cooling pipeline 470 .
  • the second connecting end 473 extends out of the accommodating cavity 101 and is used for connecting to a circulation device (not shown in the figure).
  • the circulation device includes a circulation pump, a pump outlet and a pump inlet, and the fluid is powered by the circulation pump so that the fluid can enter from the pump inlet and then flow out from the pump outlet at a certain speed.
  • One of the two cooling ducts 470 serves as a first duct, and the other serves as a second duct.
  • the second connection end 473 of the first pipeline communicates with the pump inlet, and the second connection end 473 of the second pipeline communicates with the pump outlet.
  • the circulation device is activated, the cooling fluid 450 in the cooling cavity 401 is led out by the first pipe. After the cooling fluid 450 flows through the circulation pump, it flows out from the outlet of the pump.
  • the cooling fluid 450 flowing out of the pump outlet enters the cooling cavity 401 through the second pipe, so as to realize the circulation of the cooling fluid 450 .
  • An active cooling structure may also be provided in the circulation device, and the cooling fluid 450 flowing through the circulation device is cooled by the active cooling structure.
  • the fluidity of the cooling fluid 450 in the substrate structure 001 can be strong, which can provide better heat dissipation effect for the first chip 210 and the first RC sensor 230 .
  • FIG. 8 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 includes a frame body 100 , a cooling shell 400 , a first chip 210 and a first resistance-capacitance sensing element 230 .
  • the frame body 100 is made of conductive material.
  • the frame body 100 is made of copper, which has strong electrical conductivity.
  • the frame body 100 includes a first wall plate 110 , a second wall plate 130 and a connecting plate 150 .
  • the first wall plate 110 and the second wall plate 130 are substantially parallel and spaced apart.
  • the first wall plate 110 and the second wall plate 130 are connected through the connecting plate 150 , so that the first wall plate 110 and the second wall plate 130 are electrically connected.
  • Both the first wall plate 110 and the second wall plate 130 can be individually wired, so that after each element in the substrate structure 001 is electrically connected to the first wall plate 110 or the second wall plate 130, each element can realize its own function.
  • first wall plate 110 does not need to be equipped with a resistance-capacitance sensing element, then the first wall plate 110 does not need to be separately wired.
  • An accommodating cavity 101 is formed between the first wall plate 110 and the second wall plate 130, and an installation opening is provided on the first wall plate 110.
  • Part of the cooling shell 400 is located in the accommodating cavity 101, and the other part protrudes from the installation opening for storage. Cavity 101.
  • the cooling shell 400 includes an outer shell 410 and a middle piece 430 , and the middle piece 430 is located inside the outer shell 410 .
  • One end of the outer shell 410 has an opening 403 , and one end of the opening 403 is sealingly connected with the second wall 130 , and a cooling chamber 401 is jointly formed by the outer shell 410 and the second wall 130 .
  • the first chip 210 and the first RC sensing element 230 are located in the cooling chamber 401 , and the first chip 210 and the first RC sensing element 230 are not in direct contact with the cooling shell 400 .
  • the cooling cavity 401 is filled with cooling fluid 450, and the cooling fluid 450 immerses the first chip 210 and the first resistance-capacitance sensing element 230.
  • the cooling fluid 450 can quickly take the heat away from the first chip 210 and the first RC sensing element 230 .
  • the cooling shell 400 is made of metal, ceramic or plastic, so that the cooling shell 400 has a certain strength, and can maintain the shape of the cooling shell 400 when the substrate structure 001 is running.
  • the first chip 210 is fixed on the second wall 130 , and the first chip 210 is electrically connected to the second wall 130 .
  • the first RC sensing element 230 is fixed on the second wall 130 , and the first RC sensing element 230 is electrically connected to the second wall 130 .
  • the first RC-sensing element 230 can be a resistor, a capacitor or an inductor, and the corresponding element is selected as the first RC-sensing element 230 according to the actual requirements of the substrate structure 001, so that each element in the substrate structure 001 can realize the required function after being electrically connected.
  • the cooling fluid 450 is an insulating and heat-conducting fluid whose insulating property can maintain the normal operation of the first chip 210 and the first RC sensor 230 .
  • the cooling fluid 450 is transformer oil or fluorinated liquid, which has good thermal conductivity, and can be immersed in the narrow gap of the chip or the resistance-capacitance sensor element, and takes away the heat in the gap, so as to achieve better cooling Effect.
  • the first chip 210 is connected to the second wall plate 130 through a plurality of spaced first connectors, and there is a first gap 131 between two adjacent first connectors.
  • the cooling fluid 450 passes through the first gap 131, it can The heat from the end of the first chip 210 close to the second wall plate 130 is quickly taken away from the first chip 210 , thereby improving the heat dissipation effect of the first chip 210 .
  • the first resistance-capacitance sensing element 230 is connected to the second wall plate 130 through two second connecting parts, and there is a second gap 133 between the two second connecting parts.
  • the cooling fluid 450 passes through the second gap 133, the first The heat from the end of the RC sensing element 230 close to the second wall plate 130 is quickly taken away from the first RC sensing element 230 , thereby improving the heat dissipation effect of the first RC sensing element 230 .
  • the substrate structure 001 also includes a second chip 250 and a second RC sensor 270 .
  • the middle piece 430 is located at an end of the first chip 210 away from the second wall plate 130 , and the middle piece 430 is spaced apart from the first chip 210 .
  • the middle piece 430 is relatively fixedly connected with the outer shell piece 410 .
  • the second chip 250 is disposed on the middle piece 430 , the second wall 130 includes a second extension 137 , and the second extension 137 passes through the middle piece 430 .
  • the second chip 250 is electrically connected to the corresponding second extension piece 137 .
  • the middle piece 430 can support the relative position of the second chip 250 , and the second extension piece 137 enables the second chip 250 to be electrically connected to the second wall plate 130 .
  • the second RC sensing element 270 When the second RC sensing element 270 is connected to the intermediate piece 430 , the second RC sensing element 270 is electrically connected to the corresponding second extension piece 137 .
  • the middle piece 430 can support the relative position of the second RC sensing element 270 , and the second extension 137 enables the second RC sensing element 270 to be electrically connected to the second wall plate 130 .
  • the second RC-sensing element 270 can be a resistor, a capacitor or an inductor, and the corresponding element is selected as the second RC-sensing element 270 according to the actual requirements of the substrate structure 001, so that each element in the substrate structure 001 can realize the required function after being electrically connected.
  • a buffer cavity 101 a is formed between the first wall plate 110 , the connecting plate 150 and the cooling shell 400 , and the buffer cavity 101 a is filled with a buffer member 170 .
  • the buffer member 170 is made of ABF or PP. Filling the buffer member 170 into the accommodating cavity 101 can buffer the impact force transmission between the first wall plate 110 and the second wall plate 130 and improve the strength of the substrate structure 001 .
  • This substrate structure 001 also includes a plastic package 550 and a second insulating component 530 .
  • the plastic sealing part 550 covers the surface of the shell part and the first wall plate 110. By covering the surface of the substrate structure 001 with the first wall plate 110, the plastic sealing part 550 can protect the frame body 100 and other components of the substrate structure 001, so that the substrate structure 001 can Stable operation.
  • the second insulating component 530 is disposed on an end surface of the second wall plate 130 away from the first wall plate 110 .
  • the second insulating member 530 may be formed on the surface of the second wall plate 130 by means of photoelectrochemical etching or the like. While the second insulating component 530 protects the second wall plate 130 , a second electrical connection region 503 is formed on the second wall plate 130 where the second insulating component 530 is not disposed.
  • the second electrical connection area 503 can be used for connecting the substrate structure 001 and the PCB, which facilitates the application of the substrate structure 001 .
  • the insulating region where the second insulating member 530 is located can effectively prevent the substrate structure 001 from being affected by other electrical components, and ensure the normal operation of the substrate structure 001 .
  • This substrate structure 001 can realize rapid heat dissipation of the first chip 210, the first RC sensor element 230, the second chip 250 and the second RC sensor element 270 by filling the cooling cavity 401 with the cooling fluid 450, thereby maintaining the substrate structure 001's normal operation.
  • the cooling fluid 450 passing through the first gap 131 between the first chip 210 and the second wall plate 130 can further enhance the heat dissipation of the first chip 210 .
  • the cooling fluid 450 flowing through the second gap 133 between the first RC sensing element 230 and the second wall plate 130 can further enhance the heat dissipation of the first RC sensing element 230 .
  • FIG. 9 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 includes a frame body 100 , a cooling shell 400 , a copper clad laminate 300 , a first chip 210 and a first RC sensing element 230 .
  • the frame body 100 is made of conductive material.
  • the frame body 100 is made of copper, which has strong electrical conductivity.
  • the frame body 100 includes a first wall plate 110 , a second wall plate 130 and a connecting plate 150 .
  • the first wall plate 110 and the second wall plate 130 are substantially parallel and spaced apart.
  • the first wall plate 110 and the second wall plate 130 are connected through the connecting plate 150 , so that the first wall plate 110 and the second wall plate 130 are electrically connected.
  • Both the first wall plate 110 and the second wall plate 130 can be individually wired, so that after each element in the substrate structure 001 is electrically connected to the first wall plate 110 or the second wall plate 130, each element can realize its own function.
  • first wall plate 110 does not need to be equipped with a resistance-capacitance sensing element, then the first wall plate 110 does not need to be separately wired.
  • the copper clad laminate 300 is disposed on a side of the second wall 130 close to the first wall 110 , and the copper clad laminate 300 is relatively fixed to the second wall 130 . Since the copper clad laminate 300 itself has a certain strength, after the copper clad laminate 300 and the second wall plate 130 are relatively fixed, the substrate structure 001 can have higher strength. When the substrate structure 001 is subject to external force and tends to bend, the copper clad laminate 300 can reduce the degree of bending of the substrate structure 001 .
  • An accommodating cavity 101 is formed between the first wall 110 and the second wall 130 .
  • An installation opening is provided on the first wall plate 110 , a part of the cooling shell 400 is located in the accommodating cavity 101 , and another part extends out of the accommodating cavity 101 from the installation opening.
  • the cooling shell 400 includes an outer shell 410 and a middle piece 430 , and the middle piece 430 is located inside the outer shell 410 .
  • One end of the outer shell 410 has an opening 403, and one end of the opening 403 is sealed and connected to the second wall plate 130, and a cooling cavity 401 is jointly formed by the outer shell 410, the copper clad laminate 300 and the second wall plate 130, and the cooling cavity 401 It is located between the cooling shell 400 and the second wall plate 130 .
  • the first chip 210 and the first RC sensing element 230 are located in the cooling chamber 401 , on a side of the copper clad laminate 300 away from the second wall 130 .
  • the first chip 210 and the first RC sensing element 230 are not in direct contact with the cooling shell 400 .
  • the cooling cavity 401 is filled with cooling fluid 450 , and the cooling fluid 450 immerses the first chip 210 and the first resistance-capacitance sensing element 230 .
  • the cooling fluid 450 can quickly take the heat away from the first chip 210 and the first RC sensing element 230 .
  • the cooling shell 400 is made of metal, ceramic or plastic, so that the cooling shell 400 has a certain strength, and can maintain the shape of the cooling shell 400 when the substrate structure 001 is running.
  • the second wall plate 130 includes a first extension 135 passing through the copper clad laminate 300 .
  • the first extension 135 corresponding to the first chip 210 is electrically connected to a plurality of spaced first connecting members at an end close to the chip.
  • the first connectors are electrically connected to the first chip 210 , and there is a first gap 131 between two adjacent first connectors.
  • the first chip 210 is connected to the first connecting member, that is to realize the electrical connection between the first chip 210 and the second wall plate 130 .
  • the first extension 135 corresponding to the first RC sensing element 230 is electrically connected to two second connecting elements at an end close to the first RC sensing element 230 .
  • the second connection part is electrically connected to the first resistance-capacitance sensing element 230 , and there is a second gap 133 between the two second connection parts.
  • the first resistance-capacity sensing element 230 is connected to the second connecting member, that is, the electrical connection between the first resistance-capacity sensing element 230 and the second wall plate 130 is realized.
  • the first RC-sensing element 230 can be a resistor, a capacitor or an inductor, and the corresponding element is selected as the first RC-sensing element 230 according to the actual requirements of the substrate structure 001, so that each element in the substrate structure 001 can realize the required function after being electrically connected.
  • the cooling fluid 450 can also flow through the first gap 131 to take away the heat from the end of the first chip 210 close to the copper clad laminate 300 .
  • the cooling fluid 450 can also flow through the second gap 133 , so as to take away the heat from the end of the first RC sensing element 230 close to the copper clad laminate 300 .
  • the cooling fluid 450 is an insulating and heat-conducting fluid whose insulating property can maintain the normal operation of the first chip 210 and the first RC sensor 230 .
  • the cooling fluid 450 is transformer oil or fluorinated liquid, which has good thermal conductivity, and can be immersed in the narrow gap of the chip or the resistance-capacitance sensor element, and takes away the heat in the gap, so as to achieve better cooling Effect.
  • a buffer cavity 101 a is formed between the first wall plate 110 , the connecting plate 150 and the cooling shell 400 , and the buffer cavity 101 a is filled with a buffer member 170 .
  • the buffer member 170 is made of ABF or PP. Filling the buffer member 170 into the accommodating cavity 101 can buffer the impact force transmission between the first wall plate 110 and the second wall plate 130 and improve the strength of the substrate structure 001 .
  • This substrate structure 001 also includes a plastic package 550 and a second insulating component 530 .
  • the plastic sealing part 550 covers the surface of the shell part and the first wall plate 110. By covering the surface of the substrate structure 001 with the first wall plate 110, the plastic sealing part 550 can protect the frame body 100 and other components of the substrate structure 001, so that the substrate structure 001 can Stable operation.
  • the second insulating component 530 is disposed on an end surface of the second wall plate 130 away from the first wall plate 110 .
  • the second insulating member 530 may be formed on the surface of the second wall plate 130 by means of photoelectrochemical etching or the like. While the second insulating component 530 protects the second wall plate 130 , a second electrical connection region 503 is formed on the second wall plate 130 where the second insulating component 530 is not disposed.
  • the second electrical connection area 503 can be used for connecting the substrate structure 001 and the PCB, which facilitates the application of the substrate structure 001 .
  • the insulating region where the second insulating member 530 is located can effectively prevent the substrate structure 001 from being affected by other electrical components, and ensure the normal operation of the substrate structure 001 .
  • the substrate structure 001 can realize rapid heat dissipation of the first chip 210 and the first RC sensing element 230 by filling the cooling cavity 401 with the cooling fluid 450 , thereby maintaining the normal operation of the substrate structure 001 .
  • the cooling fluid 450 passing through the first gap 131 between the first chip 210 and the second wall plate 130 can further enhance the heat dissipation of the first chip 210 .
  • FIG. 10 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • This substrate structure 001 further includes a heat sink 600 on the basis of the substrate structure 001 shown in FIG. 8 .
  • the plastic package 550 has a window, and the heat sink 600 is disposed at the window.
  • the heat sink 600 is in contact with the shell, and the heat of the cooling shell 400 can be dissipated through the heat sink 600 .
  • the heat sink 600 is a metal part, and the metal part has a high thermal conductivity, so that the heat of the shell part can be quickly taken away, so as to realize the cooling of the cooling shell 400 .
  • the heat dissipation element 600 includes a plurality of heat dissipation fins, and the heat dissipation fins are located on a side of the heat dissipation element 600 away from the cooling shell 400 . Heat dissipation efficiency can be accelerated by cooling fins.
  • the heat sink 600 is a VC (Vapor Chamber, vacuum cavity) vapor chamber, and the heat of the shell can be quickly conducted after entering the heat sink 600, and evenly distributed at the end away from the shell.
  • VC Vapor Chamber, vacuum cavity
  • the plastic package 550 may not have a window, and the heat sink 600 is disposed on the side of the plastic package 550 away from the first wall 110 , and the heat sink 600 can also accelerate the dissipation of heat from the substrate structure 001 .
  • heat dissipation element 600 can also contact and cooperate with the first wall plate 110 while being in contact with the shell element, and the heat dissipation element 600 can also accelerate heat dissipation of the substrate structure 001 .
  • the heat sink 600 can contact and cooperate with the first wall plate 110 to dissipate heat to the first wall plate 110 .
  • the heat sink 600 can also accelerate the dissipation of heat from the substrate structure 001 .
  • the substrate structure 001 can realize rapid heat dissipation of the first chip 210 and the first RC sensing element 230 by filling the cooling cavity 401 with the cooling fluid 450 , thereby maintaining the normal operation of the substrate structure 001 .
  • the cooling fluid 450 dissipates heat through the heat sink 600 , and the heat sink 600 can enhance the heat dissipation of the cooling fluid 450 .
  • FIG. 11 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • This substrate structure 001 further includes a heat sink 600 on the basis of the substrate structure 001 shown in FIG. 9 .
  • the plastic package 550 has a window, and the heat sink 600 is disposed at the window.
  • the heat sink 600 is in contact with the shell, and the heat of the cooling shell 400 can be dissipated through the heat sink 600 .
  • the heat sink 600 is a metal part, and the metal part has a high thermal conductivity, so that the heat of the shell part can be quickly taken away, so as to realize the cooling of the cooling shell 400 .
  • the heat dissipation element 600 includes a plurality of heat dissipation fins, and the heat dissipation fins are located on a side of the heat dissipation element 600 away from the cooling shell 400 . Heat dissipation efficiency can be accelerated by cooling fins.
  • the heat sink 600 is a VC (Vapor Chamber, vacuum cavity) vapor chamber, and the heat of the shell can be quickly conducted after entering the heat sink 600, and evenly distributed at the end away from the shell.
  • VC Vapor Chamber, vacuum cavity
  • the plastic package 550 may not have a window, and the heat sink 600 is disposed on the side of the plastic package 550 away from the first wall 110 , and the heat sink 600 can also accelerate the dissipation of heat from the substrate structure 001 .
  • heat dissipation element 600 can also contact and cooperate with the first wall plate 110 while being in contact with the shell element, and the heat dissipation element 600 can also accelerate heat dissipation of the substrate structure 001 .
  • the heat sink 600 can contact and cooperate with the first wall plate 110 to dissipate heat to the first wall plate 110 .
  • the heat sink 600 can also accelerate the dissipation of heat from the substrate structure 001 .
  • the substrate structure 001 can realize rapid heat dissipation of the first chip 210 and the first RC sensing element 230 by filling the cooling cavity 401 with the cooling fluid 450 , thereby maintaining the normal operation of the substrate structure 001 .
  • the cooling fluid 450 dissipates heat through the heat sink 600 , and the heat sink 600 can enhance the heat dissipation of the cooling fluid 450 .
  • FIG. 12 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • This base plate structure 001 is based on the base plate structure 001 shown in FIG.
  • the cooling pipe 470 includes a first connecting end 471 and a second connecting end 473 opposite to each other, and the first connecting end 471 and the second connecting end 473 communicate directly.
  • the first connection end 471 communicates with the cooling cavity 401 , so that the cooling fluid 450 in the cooling cavity 401 can enter the cooling pipeline 470 , and the cooling fluid 450 can also be provided to the cooling cavity 401 through the cooling pipeline 470 .
  • the second connection end 473 is used to connect with a circulation device.
  • the circulation device includes a circulation pump, a pump outlet and a pump inlet, and the fluid is powered by the circulation pump so that the fluid can enter from the pump inlet and then flow out from the pump outlet at a certain speed.
  • One of the two cooling ducts 470 serves as a first duct, and the other serves as a second duct.
  • the second connection end 473 of the first pipeline communicates with the pump inlet, and the second connection end 473 of the second pipeline communicates with the pump outlet.
  • the circulation device is activated, the cooling fluid 450 in the cooling cavity 401 is led out by the first pipe. After the cooling fluid 450 flows through the circulation pump, it flows out from the outlet of the pump.
  • the cooling fluid 450 flowing out of the pump outlet enters the cooling cavity 401 through the second pipe, so as to realize the circulation of the cooling fluid 450 .
  • An active cooling structure may also be provided in the circulation device, and the cooling fluid 450 flowing through the circulation device is cooled by the active cooling structure.
  • the fluidity of the cooling fluid 450 in the substrate structure 001 can be strong, which can provide better heat dissipation effect for the first chip 210 , the first RC sensor 230 , the second chip 250 and the second RC sensor 270 .
  • FIG. 13 shows a schematic structural diagram of a substrate structure 001 provided in an embodiment of the present application.
  • this substrate structure 001 further includes two cooling ducts 470 located on opposite sides of the cooling shell 400 .
  • the cooling pipe 470 includes a first connecting end 471 and a second connecting end 473 opposite to each other, and the first connecting end 471 and the second connecting end 473 communicate directly.
  • the first connection end 471 communicates with the cooling cavity 401 , so that the cooling fluid 450 in the cooling cavity 401 can enter the cooling pipeline 470 , and the cooling fluid 450 can also be provided to the cooling cavity 401 through the cooling pipeline 470 .
  • the second connection end 473 is used to connect with a circulation device.
  • the circulation device includes a circulation pump, a pump outlet and a pump inlet, and the fluid is powered by the circulation pump so that the fluid can enter from the pump inlet and then flow out from the pump outlet at a certain speed.
  • One of the two cooling ducts 470 serves as a first duct, and the other serves as a second duct.
  • the second connection end 473 of the first pipeline communicates with the pump inlet, and the second connection end 473 of the second pipeline communicates with the pump outlet.
  • the circulation device is activated, the cooling fluid 450 in the cooling cavity 401 is led out by the first pipe. After the cooling fluid 450 flows through the circulation pump, it flows out from the outlet of the pump.
  • the cooling fluid 450 flowing out of the pump outlet enters the cooling cavity 401 through the second pipe, so as to realize the circulation of the cooling fluid 450 .
  • An active cooling structure may also be provided in the circulation device, and the cooling fluid 450 flowing through the circulation device is cooled by the active cooling structure.
  • the fluidity of the cooling fluid 450 in the substrate structure 001 can be strong, which can provide better heat dissipation effect for the first chip 210 , the first RC sensor 230 , the second chip 250 and the second RC sensor 270 .
  • the present application also provides a terminal device.
  • This terminal device includes a device body and the aforementioned substrate structure 001 .
  • the substrate structure 001 is disposed within the device body.
  • the first chip 210 can be maintained at a relatively low operating temperature through immersion cooling, so that the terminal device can run stably for a long time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及芯片冷却领域,提供了一种基板结构包括框体、冷却壳和第一芯片。框体包括间隔设置的第一壁板和第二壁板,第一壁板和第二壁板之间形成容置腔。冷却壳至少部分设置于容置腔内,与框体固定连接,冷却壳与第二壁板之间形成冷却腔。第一芯片,设置于冷却腔内,与第二壁板连接。冷却腔用于填充浸没第一芯片的冷却流体。该基板结构通过埋嵌芯片的形式安装第一芯片,在框体内的冷却壳形成流通冷却流体的冷却腔,冷却流体可以直接作用于第一芯片,采用浸没式的冷却方式对第一芯片快速制冷。本申请还提供了一种终端设备。

Description

基板结构和终端设备
相关申请的交叉引用
本申请要求在2021年09月30日提交中国专利局、申请号为202111161406.4、申请名称为“基板结构和终端设备”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及芯片冷却领域,尤其涉及一种基板结构和终端设备。
背景技术
现有的基板内液冷散热方案,是将液冷管路埋嵌入基板内,而发热的芯片倒装或贴装在液冷管路的正上方,芯片通过液冷管路换热实现冷却。液冷管路中的导热工质接受芯片传过来的热量,产生热回流,将热量均匀分布到整个基板内。
这种基板中,液冷管路与芯片间接接触,芯片产生的热量通过热传导的方式,传入液冷管的导热工质中,传热效率相对较低,基板的扩散热阻相对较大。
发明内容
本申请提供了一种基板结构,有助于提高芯片的冷却效率。本申请还提供了包括基板结构的终端设备。
本申请实施例的第一方面提供一种基板结构,包括框体、冷却壳和第一芯片。框体包括间隔设置的第一壁板和第二壁板,所述第一壁板和所述第二壁板之间形成容置腔。冷却壳至少部分设置于所述容置腔内,与所述框体固定连接,所述冷却壳与所述第二壁板之间形成冷却腔。第一芯片设置于所述冷却腔内,位于所述容置腔内,与所述第二壁板连接。所述冷却腔用于填充浸没所述第一芯片的冷却流体。
该基板结构通过埋嵌芯片的形式安装第一芯片,也即第一芯片位于第一壁板和第二壁板之间的容置腔内。第一芯片在容置腔内的同时还位于冷却腔内,在框体内的冷却壳形成容置冷却流体的冷却腔,冷却流体可以直接作用于第一芯片,采用浸没式的冷却方式对第一芯片快速制冷。
基于第一方面,一种可能的实现方式中,所述基板结构还包括第一绝缘部件。所述第一绝缘部件设置于所述第一壁板远离所述第二壁板的端面,在所述第一壁板的表面形成第一电性连接区。
在该可能的实现方式中,通过第一绝缘部件在第一壁板分离出绝缘区域和第一电性连接区,第一电性连接区可以用于表贴电感、电容、电阻,而绝缘区域可以有效防止基板结构被其他电性元件影响,保障基板结构的正常工作。
基于第一方面,一种可能的实现方式中,所述基板结构还包括第二绝缘部件。所述第二绝缘部件设置于所述第二壁板远离所述第一壁板的端面,在所述第二壁板的表面形成第二电性连接区。
在该可能的实现方式中,通过第二绝缘部件在第二壁板分离出绝缘区域和第二电性连接区,第二电性连接区可以用于表贴PCB(Printed Circuit Board,印制电路板),而绝缘区域可以有效防止基板结构被其他电性元件影响,保障基板结构的正常工作。
基于第一方面,一种可能的实现方式中,所述容置腔内的所述第一壁板与所述冷却壳之间填充有缓冲件,所述缓冲件用于缓冲所述第一壁板到所述第二壁板之间的冲击力。
在该可能的实现方式中,缓冲件可以采用ABF(Ajinomoto Build-up Film,味之素堆积膜)或PP(Polypropylene,聚丙烯),通过缓冲件填充入容置腔可以提高基板结构的强度。
基于第一方面,一种可能的实现方式中,所述基板结构还包括覆铜板,所述覆铜板与所述框体固定连接,所述覆铜板设置于所述第二壁板与所述第一芯片之间,所述覆铜板远离所述第二壁板的一面形成第一布线面,所述覆铜板靠近所述第二壁板的一面形成第二布线面。
在该可能的实现方式中,一方面覆铜板具有一定的强度,可以提高基板结构的整体强度。另一方面覆铜板具有相互绝缘的第一布线面和第二布线面,可以增加布线面积。
基于第一方面,一种可能的实现方式中,所述基板结构还包括两个冷却管道,所述冷却管道包括连通的第一连接端和第二连接端。所述第一连接端连通所述冷却腔,所述第二连接端用于连接供应所述冷却流体的循环装置。
在该可能的实现方式中,两个冷却管道可以用于连接循环装置的两个端口,使得冷却腔内的冷却流体可以快速流通转换,增加第一芯片的冷却效率。
基于第一方面,一种可能的实现方式中,所述基板结构还包括第一阻容感元件。所述阻容感元件设置于所述冷却腔内,与所述第二壁板连接。
在该可能的实现方式中,第一阻容感元件可以为电阻、电容或电感,装配第一阻容感元件以实现或扩展基板结构的功能,增加基板结构的稳定性。
基于第一方面,一种可能的实现方式中,所述基板结构还包括第一绝缘膜和第二绝缘膜。所述第一绝缘膜覆盖于所述第一芯片的表面,所述第二绝缘膜覆盖于所述第一阻容感元件的表面。
在该可能的实现方式中,第一绝缘膜和第二绝缘膜增加第一芯片和第一阻容感元件的爬电间距,降低高压状态下第一阻容感元件和第一芯片电性连接的概率。
基于第一方面,一种可能的实现方式中,所述基板结构还包括第二芯片。所述冷却壳还包括外层壳件和中间件。所述外层壳件与所述第二壁板之间形成所述冷却腔。所述中间件设置于所述冷却腔内,所述中间件与所述外层壳件相对固定,所述第二芯片与所述中间件连接。
在该可能的实现方式中,冷却壳进一步扩展出中间件,通过中间件能够增加布局空间,使得基板结构能够包括第二芯片,进一步扩展了基板结构的功能。
基于第一方面,一种可能的实现方式中,所述基板结构还包括第二阻容感元件。所述第二阻容感元件设置于所述冷却腔内,与所述中间件连接。
在该可能的实现方式中,第二阻容感元件可以为电阻、电容或电感,装配第二阻容 感元件以实现或扩展基板结构的功能,增加基板结构的稳定性。
基于第一方面,一种可能的实现方式中,所述基板结构还包括塑封件。所述塑封件覆盖于所述第一壁板背离所述第二壁板的一面。
在该可能的实现方式中,塑封件塑封框体等部件后,能够保护基板结构的框体等部件,使得基板结构能够稳定运行。
基于第一方面,一种可能的实现方式中,所述第一壁板设置有安装口,所述冷却壳从所述安装口伸出所述容置腔。所述塑封件覆盖所述第一壁板和所述冷却壳背离所述第二壁板的一面。
在该可能的实现方式中,在冷却壳具有较大体积的情况下,冷却壳伸出容置腔,塑封件可以在覆盖框体的同时覆盖冷却壳,从而使得塑封件能够保护基板结构中的框体、冷却壳等部件。
基于第一方面,一种可能的实现方式中,所述基板结构还包括散热件,所述散热件设置于所述第一壁板背离所述第二壁板的一面。
在该可能的实现方式中,散热件能够将基板结构产生的热量快速散出。
基于第一方面,一种可能的实现方式中,所述第一芯片与所述第二壁板通过多个第一连接件连接,所述多个第一连接件之间形成第一间隙,所述第一间隙用于所述冷却流体流通。
在该可能的实现方式中,通过第一间隙流通冷却流体,可以加强第一芯片靠近第二壁板的一面的散热。
本申请实施例的第二方面提供一种终端设备,包括设备主体和第一方面提供的基板结构,所述基板结构设置在所述设备主体内。
该终端设备中,第一芯片通过浸没式冷却,可以维持在相对较低的工作温度,使得终端设备能够长期稳定运行。
附图说明
图1示出了一种基板结构的结构示意图。
图2是本申请一实施例提供的一种基板结构的结构示意图。
图3是本申请一实施例提供的一种基板结构的结构示意图。
图4是本申请一实施例提供的一种基板结构的结构示意图。
图5是本申请一实施例提供的一种基板结构的结构示意图。
图6是本申请一实施例提供的一种基板结构的结构示意图。
图7是本申请一实施例提供的一种基板结构的结构示意图。
图8是本申请一实施例提供的一种基板结构的结构示意图。
图9是本申请一实施例提供的一种基板结构的结构示意图。
图10是本申请一实施例提供的一种基板结构的结构示意图。
图11是本申请一实施例提供的一种基板结构的结构示意图。
图12是本申请一实施例提供的一种基板结构的结构示意图。
图13是本申请一实施例提供的一种基板结构的结构示意图。
主要元件符号说明
基板结构                     001
框体                         100
容置腔                       101
缓冲腔                       101a
第一壁板                     110
第二壁板                     130
第一间隙                     131
第二间隙                     133
第一延伸件                   135
第二延伸件                   137
连接板                       150
缓冲件                       170
第一芯片                     210
第一绝缘膜                   211
第一阻容感元件               230
第二绝缘膜                   231
第二芯片                     250
第二阻容感元件               270
覆铜板                       300
第一布线面                   301
第二布线面                   303
冷却壳                       400
冷却腔                       401
开口                         403
外层壳件                     410
中间件                       430
冷却流体                     450
冷却管道                     470
第一连接端                   471
第二连接端                   473
第一电性连接区               501
第二电性连接区               503
第一绝缘部件                 510
第二绝缘部件                 530
塑封件                       550
散热件                       600
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合较佳实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下,如果有用到,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。“上”、“下”、“左”、“右”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,如果有用到,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在下述实施例结合示意图进行详细描述时,为便于说明,表示器件局部结构的图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本申请保护的范围。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
图1示出了一种基板结构001的结构示意图。
如图1所示,这种基板结构001包括框体100、第一芯片210和第一阻容感元件230。框体100由导体材料制成,包括相对的第一壁板110和第二壁板130,第一壁板110和第二壁板130之间通过连接板150连接,在第一壁板110和第二壁板130之间形成一容置腔101。第一芯片210设置于容置腔101内,且与第二壁板130电性连接。第一阻容感元件230也设置在容置腔101内,且与第二壁板130电性连接。第一阻容感元件230可以为电阻、电容或电感,第一阻容感元件230与第一芯片210间隔设置,降低第一阻容感元件230和电芯之间相互影响的几率。
可以理解的,框体100中第一壁板110、第二壁板130和连接板150可以不使用导体材料整体制成。而在第一壁板110、第二壁板130和连接板150上设置导电线路,第一壁板110、第二壁板130和连接板150的导电线路电性连接。
这种基板结构001还包括覆铜板300,覆铜板300设置于容置腔101内靠近第二壁板130的位置。覆铜板300位于第一芯片210和第二壁板130之间。第二壁板130包括第一延伸件135,第一延伸件135穿过覆铜板300至第一芯片210的位置。第一芯片210与对应的第一延伸件135电性连接,实现第一芯片210与第二壁板130的电性连接。第 一阻容感元件230与对应的第一延伸件135电性连接,实现第一阻容感元件230与第二壁板130的电性连接。覆铜板300远离第二壁板130的一面形成第一布线面301,覆铜板300靠近第二壁板130的一面形成第二布线面303。在第一布线面301和第二布线面303可以分别布线,通过覆铜板300增加了这种基板结构001的布线面积。而且覆铜板300本身具有一定强度,通过设置覆铜板300可以增加基板结构001的强度。
这种基板结构001中,第一芯片210位于第一壁板110和第二壁板130之间的容置腔101内,形成埋入式基板结构。第一芯片210封装于框体100内可以提高集成度、提高功率密度,而且能够降低基板结构001的整体尺寸。这种基板结构001可以通过将框体100连接至外部散热结构实现散热。
图2示出了本申请实施方式提供的一种基板结构001的结构示意图。
如图2所示,这种基板结构001包括框体100、冷却壳400、第一芯片210和第一阻容感元件230。
框体100由导体材料制成。可选择性的,框体100由铜制成,具有较强的导电性能。框体100包括第一壁板110、第二壁板130和连接板150。第一壁板110和第二壁板130大致平行,且间隔设置。第一壁板110和第二壁板130通过连接板150连接,使得第一壁板110和第二壁板130电性连接。在第一壁板110和第二壁板130上均可以单独布线,从而使得基板结构001内的各元件在与第一壁板110或第二壁板130电性连接后,各元件能够实现各自的功能。
第一壁板110和第二壁板130之间形成容置腔101,第一芯片210和第一阻容感元件230设置于容置腔101内。第一芯片210固定在第二壁板130上,且第一芯片210与第二壁板130电性连接。第一阻容感元件230固定在第二壁板130上,且第一阻容感元件230与第二壁板130电性连接。第一阻容感元件230可以为电阻、电容或电感,根据基板结构001实际需求选择对应的元件作为第一阻容感元件230,使得基板结构001中各元件电性连接后实现需求的功能。
冷却壳400位于容置腔101内。冷却壳400一端具有开口403,开口403的一端与第二壁板130密封连接,通过冷却壳400和第二壁板130共同形成一冷却腔401。第一芯片210和第一阻容感元件230位于冷却腔401内,第一芯片210和第一阻容感元件230与冷却壳400不直接接触。在冷却腔401内填充冷却流体450,冷却流体450浸没第一芯片210和第一阻容感元件230。当第一芯片210和第一阻容感元件230工作产生热量时,冷却流体450可以快速将热量带离第一芯片210和第一阻容感元件230。可选择性的,冷却壳400采用金属、陶瓷或塑料制成,使得冷却壳400具有一定强度,在基板结构001运行时,能够维持冷却壳400的形状。
冷却流体450采用绝缘导热流体,其绝缘特性可以维持第一芯片210和第一阻容感元件230的正常运作。可选择性的,冷却流体450为变压器油或氟化液,具有较好的导热性能,而且可以浸入芯片或阻容感元件的狭小缝隙中,带走缝隙处的热量,从而达到较佳的冷却效果。
第一芯片210与第二壁板130通过多个间隔的第一连接件连接,相邻的两个第一连接件之间还具有第一间隙131,冷却流体450通过第一间隙131时,可以将第一芯片210靠近第二壁板130的一端的热量快速带离第一芯片210,从而提高第一芯片210的散热效果。
第一阻容感元件230通过两个第二连接件与第二壁板130连接,两个第二连接件之间具有第二间隙133,冷却流体450通过第二间隙133时,可以将第一阻容感元件230靠近第二壁板130的一端的热量快速带离第一阻容感元件230,从而提高第一阻容感元件230的散热效果。
在容置腔101内,第一壁板110、连接板150和冷却壳400之间形成缓冲腔101a,缓冲腔101a内填充有缓冲件170。可选择性的,缓冲件170采用ABF或PP,通过缓冲件170填充入容置腔101可以缓冲第一壁板110和第二壁板130之间的冲击力传递,提高基板结构001的强度。
这种基板结构001还包括第一绝缘部件510和第二绝缘部件530。
第一绝缘部件510设置在第一壁板110远离第二壁板130的端面。第一绝缘部件510可以采用光电化学刻蚀等形式形成于第一壁板110的表面。第一绝缘部件510保护第一壁板110的同时,在第一壁板110上未设置第一绝缘部件510的位置形成第一电性连接区501。在第一电性连接区501可以电性连接电容、电阻或电感,从而扩展基板结构001的功能。而第一绝缘部件510所在的绝缘区域可以有效防止基板结构001被其他电性元件影响,保障基板结构001的正常工作。
第二绝缘部件530设置在第二壁板130远离第一壁板110的端面。第二绝缘部件530可以采用光电化学刻蚀等形式形成于第二壁板130的表面。第二绝缘部件530保护第二壁板130的同时,在第二壁板130上未设置第二绝缘部件530的位置形成第二电性连接区503。第二电性连接区503可以用于基板结构001与PCB的连接,便于基板结构001的应用。而第二绝缘部件530所在的绝缘区域可以有效防止基板结构001被其他电性元件影响,保障基板结构001的正常工作。
这种基板结构001通过冷却腔401内填充冷却流体450,可以实现第一芯片210和第一阻容感元件230的快速散热,从而维持基板结构001的正常运行。在第一芯片210与第二壁板130之间的第一间隙131流通冷却流体450可以进一步加强第一芯片210的散热。
图3示出了本申请实施方式提供的一种基板结构001的结构示意图。
如图3所示,这种基板结构001包括框体100、冷却壳400、覆铜板300、第一芯片210和第一阻容感元件230。
框体100由导体材料制成。可选择性的,框体100由铜制成,具有较强的导电性能。框体100包括第一壁板110、第二壁板130和连接板150。第一壁板110和第二壁板130大致平行,且间隔设置。第一壁板110和第二壁板130通过连接板150连接,使得第一壁板110和第二壁板130电性连接。在第一壁板110和第二壁板130上均可以单独布线,从而使得基板结构001内的各元件在与第一壁板110或第二壁板130电性连接后,各元件能够实现各自的功能。
覆铜板300设置于第二壁板130靠近第一壁板110的一面,覆铜板300与第二壁板130相对固定。由于覆铜板300本身具有一定的强度,覆铜板300与第二壁板130相对固定后,可以使得基板结构001具有更高的强度。在基板结构001受到外力,具有弯曲的趋势时,覆铜板300可以降低基板结构001的弯曲程度。
第一壁板110和第二壁板130之间形成容置腔101。第一芯片210和第一阻容感元件230设置于容置腔101内,位于覆铜板300远离第二壁板130的一面。第二壁板130 包括第一延伸件135,第一延伸件135穿过覆铜板300。与第一芯片210对应的第一延伸件135在靠近芯片的一端电性连接有多个间隔的第一连接件。第一连接件与第一芯片210电性连接,在相邻的两个第一连接件之间具有第一间隙131。第一芯片210与第一连接件连接,即实现第一芯片210与第二壁板130的电性连接。
与第一阻容感元件230对应的第一延伸件135在靠近第一阻容感元件230的一端电性连接有两个第二连接件。第二连接件与第一阻容感元件230电性连接,在两个第二连接件之间具有第二间隙133。第一阻容感元件230与第二连接件连接,即实现第一阻容感元件230与第二壁板130的电性连接。第一阻容感元件230可以为电阻、电容或电感,根据基板结构001实际需求选择对应的元件作为第一阻容感元件230,使得基板结构001中各元件电性连接后实现需求的功能。
冷却壳400位于容置腔101内。冷却壳400一端具有开口403,开口403的一端与第二壁板130密封连接,通过冷却壳400、第二壁板130和覆铜板300共同形成一冷却腔401,该冷却腔401位于冷却壳400和第二壁板130之间。第一芯片210和第一阻容感元件230位于冷却腔401内,第一芯片210和第一阻容感元件230与冷却壳400不直接接触。在冷却腔401内填充冷却流体450,冷却流体450浸没第一芯片210和第一阻容感元件230。当第一芯片210和第一阻容感元件230工作产生热量时,冷却流体450可以快速将热量带离第一芯片210和第一阻容感元件230。
冷却流体450还可以流经第一间隙131,从而带走第一芯片210靠近覆铜板300一端的热量。同样的,冷却流体450还可以流经第二间隙133,从而带走第一阻容感元件230靠近覆铜板300一端的热量。
冷却流体450采用绝缘导热流体,其绝缘特性可以维持第一芯片210和第一阻容感元件230的正常运作。可选择性的,冷却流体450为变压器油或氟化液,具有较好的导热性能,而且可以浸入芯片或阻容感元件的狭小缝隙中,带走缝隙处的热量,从而达到较佳的冷却效果。
在容置腔101内,第一壁板110、连接板150和冷却壳400之间形成缓冲腔101a,缓冲腔101a内填充有缓冲件170。可选择性的,缓冲件170采用ABF或PP,通过缓冲件170填充入容置腔101可以缓冲第一壁板110和第二壁板130之间的冲击力传递,提高基板结构001的强度。
这种基板结构001还包括第一绝缘部件510和第二绝缘部件530。
第一绝缘部件510设置在第一壁板110远离第二壁板130的端面。第一绝缘部件510可以采用光电化学刻蚀等形式形成于第一壁板110的表面。第一绝缘部件510保护第一壁板110的同时,在第一壁板110上未设置第一绝缘部件510的位置形成第一电性连接区501。在第一电性连接区501可以电性连接电容、电阻或电感,从而扩展基板结构001的功能。而第一绝缘部件510所在的绝缘区域可以有效防止基板结构001被其他电性元件影响,保障基板结构001的正常工作。
第二绝缘部件530设置在第二壁板130远离第一壁板110的端面。第二绝缘部件530可以采用光电化学刻蚀等形式形成于第二壁板130的表面。第二绝缘部件530保护第二壁板130的同时,在第二壁板130上未设置第二绝缘部件530的位置形成第二电性连接区503。第二电性连接区503可以用于基板结构001与PCB的连接,便于基板结构001的应用。而第二绝缘部件530所在的绝缘区域可以有效防止基板结构001被其他电性元 件影响,保障基板结构001的正常工作。
这种基板结构001通过冷却腔401内填充冷却流体450,可以实现第一芯片210和第一阻容感元件230的快速散热,从而维持基板结构001的正常运行。在第一芯片210与第二壁板130之间的第一间隙131流通冷却流体450可以进一步加强第一芯片210的散热。
图4示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图2所示的基板结构001的基础上,进一步包括第一绝缘膜211和第二绝缘膜231。
第一绝缘膜211覆盖于第一芯片210的表面,可以提高第一芯片210的绝缘性能。第二绝缘膜231覆盖于第一阻容感元件230的表面,可以提高第一阻容感元件230的绝缘性能。
通过第一绝缘膜211和第二绝缘膜231可以增加第一芯片210和第一阻容感元件230的爬电间隙,即使第一芯片210和第一阻容感元件230都在相对较高的电压下运行时,第一芯片210和第一阻容感元件230也不易直接导通,有效保障基板结构001的稳定运行。
图5示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图3所示的基板结构001的基础上,进一步包括第一绝缘膜211和第二绝缘膜231。
第一绝缘膜211覆盖于第一芯片210的表面,可以提高第一芯片210的绝缘性能。第二绝缘膜231覆盖于第一阻容感元件230的表面,可以提高第一阻容感元件230的绝缘性能。
可选择性的,第一绝缘膜211和第二绝缘膜231为PI(Polyimide,聚酰亚胺)膜,具有较佳的绝缘性能,且能够做到足够薄。
通过第一绝缘膜211和第二绝缘膜231可以增加第一芯片210和第一阻容感元件230的爬电间隙,即使第一芯片210和第一阻容感元件230都在相对较高的电压下运行时,第一芯片210和第一阻容感元件230也不易直接导通,有效保障基板结构001的稳定运行。
图6示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图2所示的基板结构001的基础上,进一步包括两个冷却管道470,两个冷却管道470位于冷却壳400的相对两侧。
冷却管道470包括相对的第一连接端471和第二连接端473,第一连接端471和第二连接端473直接连通。
第一连接端471在容置腔101内与冷却腔401连通,使得冷却腔401内冷却流体450可以进入冷却管道470,也可通过冷却管道470为冷却腔401提供冷却流体450。
第二连接端473伸出容置腔101,用于连接循环装置(图中未示出)。
循环装置包括循环泵、泵出口和泵入口,通过循环泵为流体提供动力,使得流体能够以一定的速度从泵入口进入再从泵出口流出。两个冷却管道470中的一个作为第一管道,另一个作为第二管道。第一管道的第二连接端473与泵入口连通,第二管道的第二连接端473与泵出口连通。当循环装置启动时,第一管道将冷却腔401内的冷却流体450引出。冷却流体450流经循环泵之后,从泵出口流出。泵出口流出的冷却流体450再经 过第二管道进入冷却腔401内,从而实现冷却流体450的循环。
在循环装置内还可以设置主动降温结构,通过主动降温结构对流经循环装置的冷却流体450进行降温。
这种基板结构001中冷却流体450的流动性能够强,能够为第一芯片210和第一阻容感元件230提供更佳的散热效果。
图7示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图3所示的基板结构001的基础上,进一步包括两个冷却管道470,两个冷却管道470位于冷却壳400的相对两侧。
冷却管道470包括相对的第一连接端471和第二连接端473,第一连接端471和第二连接端473直接连通。
第一连接端471在容置腔101内与冷却腔401连通,使得冷却腔401内冷却流体450可以进入冷却管道470,也可通过冷却管道470为冷却腔401提供冷却流体450。
第二连接端473伸出容置腔101,用于连接循环装置(图中未示出)。
循环装置包括循环泵、泵出口和泵入口,通过循环泵为流体提供动力,使得流体能够以一定的速度从泵入口进入再从泵出口流出。两个冷却管道470中的一个作为第一管道,另一个作为第二管道。第一管道的第二连接端473与泵入口连通,第二管道的第二连接端473与泵出口连通。当循环装置启动时,第一管道将冷却腔401内的冷却流体450引出。冷却流体450流经循环泵之后,从泵出口流出。泵出口流出的冷却流体450再经过第二管道进入冷却腔401内,从而实现冷却流体450的循环。
在循环装置内还可以设置主动降温结构,通过主动降温结构对流经循环装置的冷却流体450进行降温。
这种基板结构001中冷却流体450的流动性能够强,能够为第一芯片210和第一阻容感元件230提供更佳的散热效果。
图8示出了本申请实施方式提供的一种基板结构001的结构示意图。
如图8所示,这种基板结构001包括框体100、冷却壳400、第一芯片210和第一阻容感元件230。
框体100由导体材料制成。可选择性的,框体100由铜制成,具有较强的导电性能。框体100包括第一壁板110、第二壁板130和连接板150。第一壁板110和第二壁板130大致平行,且间隔设置。第一壁板110和第二壁板130通过连接板150连接,使得第一壁板110和第二壁板130电性连接。在第一壁板110和第二壁板130上均可以单独布线,从而使得基板结构001内的各元件在与第一壁板110或第二壁板130电性连接后,各元件能够实现各自的功能。
可以理解的,如第一壁板110不需要安装阻容感元件,则第一壁板110上也可以不用单独布线。
第一壁板110和第二壁板130之间形成容置腔101,在第一壁板110设置有安装口,冷却壳400部分位于容置腔101内,另一部分从安装口伸出容置腔101。冷却壳400包括外层壳件410和中间件430,中间件430位于外层壳件410内。外层壳件410一端具有开口403,开口403的一端与第二壁板130密封连接,通过外层壳件410和第二壁板130共同形成一冷却腔401。第一芯片210和第一阻容感元件230位于冷却腔401内,第一芯片210和第一阻容感元件230与冷却壳400不直接接触。在冷却腔401内填充冷却 流体450,冷却流体450浸没第一芯片210和第一阻容感元件230。当第一芯片210和第一阻容感元件230工作产生热量时,冷却流体450可以快速将热量带离第一芯片210和第一阻容感元件230。可选择性的,冷却壳400采用金属、陶瓷或塑料制成,使得冷却壳400具有一定强度,在基板结构001运行时,能够维持冷却壳400的形状。
第一芯片210固定在第二壁板130上,且第一芯片210与第二壁板130电性连接。第一阻容感元件230固定在第二壁板130上,且第一阻容感元件230与第二壁板130电性连接。第一阻容感元件230可以为电阻、电容或电感,根据基板结构001实际需求选择对应的元件作为第一阻容感元件230,使得基板结构001中各元件电性连接后实现需求的功能。
冷却流体450采用绝缘导热流体,其绝缘特性可以维持第一芯片210和第一阻容感元件230的正常运作。可选择性的,冷却流体450为变压器油或氟化液,具有较好的导热性能,而且可以浸入芯片或阻容感元件的狭小缝隙中,带走缝隙处的热量,从而达到较佳的冷却效果。
第一芯片210与第二壁板130通过多个间隔的第一连接件连接,相邻的两个第一连接件之间还具有第一间隙131,冷却流体450通过第一间隙131时,可以将第一芯片210靠近第二壁板130的一端的热量快速带离第一芯片210,从而提高第一芯片210的散热效果。
第一阻容感元件230通过两个第二连接件与第二壁板130连接,两个第二连接件之间具有第二间隙133,冷却流体450通过第二间隙133时,可以将第一阻容感元件230靠近第二壁板130的一端的热量快速带离第一阻容感元件230,从而提高第一阻容感元件230的散热效果。
基板结构001还包括第二芯片250和第二阻容感元件270。
中间件430位于第一芯片210远离第二壁板130的一端,且中间件430与第一芯片210间隔设置。中间件430与外层壳件410相对固定连接。
第二芯片250设置于中间件430上,第二壁板130包括第二延伸件137,第二延伸件137穿过中间件430。第二芯片250与中间件430连接的同时,第二芯片250与对应的第二延伸件137电性连接。中间件430可以支撑第二芯片250的相对位置,第二延伸件137使得第二芯片250与第二壁板130电性连接。
第二阻容感元件270与中间件430连接的同时,第二阻容感元件270与对应的第二延伸件137电性连接。中间件430可以支撑第二阻容感元件270的相对位置,第二延伸件137使得第二阻容感元件270与第二壁板130电性连接。第二阻容感元件270可以为电阻、电容或电感,根据基板结构001实际需求选择对应的元件作为第二阻容感元件270,使得基板结构001中各元件电性连接后实现需求的功能。
在容置腔101内,第一壁板110、连接板150和冷却壳400之间形成缓冲腔101a,缓冲腔101a内填充有缓冲件170。可选择性的,缓冲件170采用ABF或PP,通过缓冲件170填充入容置腔101可以缓冲第一壁板110和第二壁板130之间的冲击力传递,提高基板结构001的强度。
这种基板结构001还包括塑封件550和第二绝缘部件530。
塑封件550覆盖于外壳件和第一壁板110的表面,通过塑封件550覆盖基板结构001设置第一壁板110的一面,可以保护基板结构001的框体100等部件,使得基板结构001 能够稳定运行。
第二绝缘部件530设置在第二壁板130远离第一壁板110的端面。第二绝缘部件530可以采用光电化学刻蚀等形式形成于第二壁板130的表面。第二绝缘部件530保护第二壁板130的同时,在第二壁板130上未设置第二绝缘部件530的位置形成第二电性连接区503。第二电性连接区503可以用于基板结构001与PCB的连接,便于基板结构001的应用。而第二绝缘部件530所在的绝缘区域可以有效防止基板结构001被其他电性元件影响,保障基板结构001的正常工作。
可以理解的,若冷却壳400整体位于容置腔101内时,塑封件550覆盖第一壁板110即可。
这种基板结构001通过冷却腔401内填充冷却流体450,可以实现第一芯片210、第一阻容感元件230、第二芯片250和第二阻容感元件270的快速散热,从而维持基板结构001的正常运行。在第一芯片210与第二壁板130之间的第一间隙131流通冷却流体450可以进一步加强第一芯片210的散热。在第一阻容感元件230和第二壁板130之间的第二间隙133流通冷却流体450可以进一步加强第一阻容感元件230的散热。
图9示出了本申请实施方式提供的一种基板结构001的结构示意图。
如图9所示,这种基板结构001包括框体100、冷却壳400、覆铜板300、第一芯片210和第一阻容感元件230。
框体100由导体材料制成。可选择性的,框体100由铜制成,具有较强的导电性能。框体100包括第一壁板110、第二壁板130和连接板150。第一壁板110和第二壁板130大致平行,且间隔设置。第一壁板110和第二壁板130通过连接板150连接,使得第一壁板110和第二壁板130电性连接。在第一壁板110和第二壁板130上均可以单独布线,从而使得基板结构001内的各元件在与第一壁板110或第二壁板130电性连接后,各元件能够实现各自的功能。
可以理解的,如第一壁板110不需要安装阻容感元件,则第一壁板110上也可以不用单独布线。
覆铜板300设置于第二壁板130靠近第一壁板110的一面,覆铜板300与第二壁板130相对固定。由于覆铜板300本身具有一定的强度,覆铜板300与第二壁板130相对固定后,可以使得基板结构001具有更高的强度。在基板结构001受到外力,具有弯曲的趋势时,覆铜板300可以降低基板结构001的弯曲程度。
第一壁板110和第二壁板130之间形成容置腔101。在第一壁板110设置有安装口,冷却壳400部分位于容置腔101内,另一部分从安装口伸出容置腔101。冷却壳400包括外层壳件410和中间件430,中间件430位于外层壳件410内。外层壳件410一端具有开口403,开口403的一端与第二壁板130密封连接,通过外层壳件410、覆铜板300和第二壁板130共同形成一冷却腔401,该冷却腔401位于冷却壳400和第二壁板130之间。第一芯片210和第一阻容感元件230位于冷却腔401内,位于覆铜板300远离第二壁板130的一面。第一芯片210和第一阻容感元件230与冷却壳400不直接接触。在冷却腔401内填充冷却流体450,冷却流体450浸没第一芯片210和第一阻容感元件230。当第一芯片210和第一阻容感元件230工作产生热量时,冷却流体450可以快速将热量带离第一芯片210和第一阻容感元件230。可选择性的,冷却壳400采用金属、陶瓷或塑料制成,使得冷却壳400具有一定强度,在基板结构001运行时,能够维持冷却壳400 的形状。
第二壁板130包括第一延伸件135,第一延伸件135穿过覆铜板300。与第一芯片210对应的第一延伸件135在靠近芯片的一端电性连接有多个间隔的第一连接件。第一连接件与第一芯片210电性连接,在相邻的两个第一连接件之间具有第一间隙131。第一芯片210与第一连接件连接,即实现第一芯片210与第二壁板130的电性连接。
与第一阻容感元件230对应的第一延伸件135在靠近第一阻容感元件230的一端电性连接有两个第二连接件。第二连接件与第一阻容感元件230电性连接,在两个第二连接件之间具有第二间隙133。第一阻容感元件230与第二连接件连接,即实现第一阻容感元件230与第二壁板130的电性连接。第一阻容感元件230可以为电阻、电容或电感,根据基板结构001实际需求选择对应的元件作为第一阻容感元件230,使得基板结构001中各元件电性连接后实现需求的功能。
冷却流体450还可以流经第一间隙131,从而带走第一芯片210靠近覆铜板300一端的热量。同样的,冷却流体450还可以流经第二间隙133,从而带走第一阻容感元件230靠近覆铜板300一端的热量。
冷却流体450采用绝缘导热流体,其绝缘特性可以维持第一芯片210和第一阻容感元件230的正常运作。可选择性的,冷却流体450为变压器油或氟化液,具有较好的导热性能,而且可以浸入芯片或阻容感元件的狭小缝隙中,带走缝隙处的热量,从而达到较佳的冷却效果。
在容置腔101内,第一壁板110、连接板150和冷却壳400之间形成缓冲腔101a,缓冲腔101a内填充有缓冲件170。可选择性的,缓冲件170采用ABF或PP,通过缓冲件170填充入容置腔101可以缓冲第一壁板110和第二壁板130之间的冲击力传递,提高基板结构001的强度。
这种基板结构001还包括塑封件550和第二绝缘部件530。
塑封件550覆盖于外壳件和第一壁板110的表面,通过塑封件550覆盖基板结构001设置第一壁板110的一面,可以保护基板结构001的框体100等部件,使得基板结构001能够稳定运行。
第二绝缘部件530设置在第二壁板130远离第一壁板110的端面。第二绝缘部件530可以采用光电化学刻蚀等形式形成于第二壁板130的表面。第二绝缘部件530保护第二壁板130的同时,在第二壁板130上未设置第二绝缘部件530的位置形成第二电性连接区503。第二电性连接区503可以用于基板结构001与PCB的连接,便于基板结构001的应用。而第二绝缘部件530所在的绝缘区域可以有效防止基板结构001被其他电性元件影响,保障基板结构001的正常工作。
可以理解的,若冷却壳400整体位于容置腔101内时,塑封件550覆盖第一壁板110即可。
这种基板结构001通过冷却腔401内填充冷却流体450,可以实现第一芯片210和第一阻容感元件230的快速散热,从而维持基板结构001的正常运行。在第一芯片210与第二壁板130之间的第一间隙131流通冷却流体450可以进一步加强第一芯片210的散热。
图10示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图8所示的基板结构001的基础上,进一步包括散热件600。
塑封件550具有窗口,散热件600设置在窗口处。散热件600与外壳件接触配合,通过散热件600可以将冷却壳400的热量散发。
可选择性的,散热件600为金属件,金属件具有较高导热率,从而将外壳件的热量快速带走,实现冷却壳400的降温。
可选择性的,散热件600包括多片散热鳍片,散热鳍片位于散热件600远离冷却壳400的一面。通过散热鳍片可以加快散热效率。
可选择性的,散热件600为VC(Vapor Chamber,真空腔)均热板,外壳件的热量进入散热件600后可以快速传导,并且在远离外壳件的一端均匀散发。
可以理解的,塑封件550也可以不具备窗口,散热件600设置在塑封件550远离第一壁板110的一面,散热件600同样可以加速基板结构001热量的散发。
可以理解的,散热件600还可以与外壳件接触配合的同时,与第一壁板110接触配合,散热件600同样可以加速基板结构001热量的散发。
可以理解的,若冷却壳400全部位于容置腔101内时,散热件600可以于第一壁板110接触配合,对第一壁板110散热。这种散热件600同样可以加速基板结构001热量的散发。
这种基板结构001通过冷却腔401内填充冷却流体450,可以实现第一芯片210和第一阻容感元件230的快速散热,从而维持基板结构001的正常运行。而冷却流体450又通过散热件600进行散热,散热件600可以加强冷却流体450热量的散发。
图11示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图9所示的基板结构001的基础上,进一步包括散热件600。
塑封件550具有窗口,散热件600设置在窗口处。散热件600与外壳件接触配合,通过散热件600可以将冷却壳400的热量散发。
可选择性的,散热件600为金属件,金属件具有较高导热率,从而将外壳件的热量快速带走,实现冷却壳400的降温。
可选择性的,散热件600包括多片散热鳍片,散热鳍片位于散热件600远离冷却壳400的一面。通过散热鳍片可以加快散热效率。
可选择性的,散热件600为VC(Vapor Chamber,真空腔)均热板,外壳件的热量进入散热件600后可以快速传导,并且在远离外壳件的一端均匀散发。
可以理解的,塑封件550也可以不具备窗口,散热件600设置在塑封件550远离第一壁板110的一面,散热件600同样可以加速基板结构001热量的散发。
可以理解的,散热件600还可以与外壳件接触配合的同时,与第一壁板110接触配合,散热件600同样可以加速基板结构001热量的散发。
可以理解的,若冷却壳400全部位于容置腔101内时,散热件600可以于第一壁板110接触配合,对第一壁板110散热。这种散热件600同样可以加速基板结构001热量的散发。
这种基板结构001通过冷却腔401内填充冷却流体450,可以实现第一芯片210和第一阻容感元件230的快速散热,从而维持基板结构001的正常运行。而冷却流体450又通过散热件600进行散热,散热件600可以加强冷却流体450热量的散发。
图12示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图8所示的基板结构001的基础上,进一步包括两个冷却管道 470,两个冷却管道470位于冷却壳400的相对两侧。
冷却管道470包括相对的第一连接端471和第二连接端473,第一连接端471和第二连接端473直接连通。
第一连接端471与冷却腔401连通,使得冷却腔401内冷却流体450可以进入冷却管道470,也可通过冷却管道470为冷却腔401提供冷却流体450。
第二连接端473用于连接循环装置。
循环装置包括循环泵、泵出口和泵入口,通过循环泵为流体提供动力,使得流体能够以一定的速度从泵入口进入再从泵出口流出。两个冷却管道470中的一个作为第一管道,另一个作为第二管道。第一管道的第二连接端473与泵入口连通,第二管道的第二连接端473与泵出口连通。当循环装置启动时,第一管道将冷却腔401内的冷却流体450引出。冷却流体450流经循环泵之后,从泵出口流出。泵出口流出的冷却流体450再经过第二管道进入冷却腔401内,从而实现冷却流体450的循环。
在循环装置内还可以设置主动降温结构,通过主动降温结构对流经循环装置的冷却流体450进行降温。
这种基板结构001中冷却流体450的流动性能够强,能够为第一芯片210、第一阻容感元件230、第二芯片250和第二阻容感元件270提供更佳的散热效果。
图13示出了本申请实施方式提供的一种基板结构001的结构示意图。
这种基板结构001在图9所示的基板结构001的基础上,进一步包括两个冷却管道470,两个冷却管道470位于冷却壳400的相对两侧。
冷却管道470包括相对的第一连接端471和第二连接端473,第一连接端471和第二连接端473直接连通。
第一连接端471与冷却腔401连通,使得冷却腔401内冷却流体450可以进入冷却管道470,也可通过冷却管道470为冷却腔401提供冷却流体450。
第二连接端473用于连接循环装置。
循环装置包括循环泵、泵出口和泵入口,通过循环泵为流体提供动力,使得流体能够以一定的速度从泵入口进入再从泵出口流出。两个冷却管道470中的一个作为第一管道,另一个作为第二管道。第一管道的第二连接端473与泵入口连通,第二管道的第二连接端473与泵出口连通。当循环装置启动时,第一管道将冷却腔401内的冷却流体450引出。冷却流体450流经循环泵之后,从泵出口流出。泵出口流出的冷却流体450再经过第二管道进入冷却腔401内,从而实现冷却流体450的循环。
在循环装置内还可以设置主动降温结构,通过主动降温结构对流经循环装置的冷却流体450进行降温。
这种基板结构001中冷却流体450的流动性能够强,能够为第一芯片210、第一阻容感元件230、第二芯片250和第二阻容感元件270提供更佳的散热效果。
本申请还提供一种终端设备。这种终端设备包括设备主体和上述的基板结构001。基板结构001设置在设备主体内。
这种终端设备中,第一芯片210通过浸没式冷却,可以维持在相对较低的工作温度,使得终端设备能够长期稳定运行。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的公开范围之内。

Claims (15)

  1. 一种基板结构,其特征在于,包括:
    框体,包括间隔设置的第一壁板和第二壁板,所述第一壁板和所述第二壁板之间形成容置腔;
    冷却壳,至少部分设置于所述容置腔内,与所述框体固定连接,所述冷却壳与所述第二壁板之间形成冷却腔;
    第一芯片,设置于所述冷却腔内,位于所述容置腔内,与所述第二壁板连接;
    所述冷却腔用于填充浸没所述第一芯片的冷却流体。
  2. 根据权利要求1所述的基板结构,其特征在于,还包括第一绝缘部件;
    所述第一绝缘部件设置于所述第一壁板远离所述第二壁板的端面,在所述第一壁板的表面形成第一电性连接区。
  3. 根据权利要求1所述的基板结构,其特征在于,还包括第二绝缘部件;
    所述第二绝缘部件设置于所述第二壁板远离所述第一壁板的端面,在所述第二壁板的表面形成第二电性连接区。
  4. 如权利要求1所述的基板结构,其特征在于,所述容置腔内的所述第一壁板与所述冷却壳之间填充有缓冲件,所述缓冲件用于缓冲所述第一壁板到所述第二壁板之间的冲击力。
  5. 如权利要求1所述的基板结构,其特征在于,还包括覆铜板;
    所述覆铜板与所述框体固定连接,所述覆铜板设置于所述第二壁板与所述第一芯片之间,所述覆铜板远离所述第二壁板的一面形成第一布线面,所述覆铜板靠近所述第二壁板的一面形成第二布线面。
  6. 如权利要求1所述的基板结构,其特征在于,还包括两个冷却管道,所述冷却管道包括连通的第一连接端和第二连接端;
    所述第一连接端连通所述冷却腔,所述第二连接端用于连接供应所述冷却流体的循环装置。
  7. 如权利要求1所述的基板结构,其特征在于,还包括第一阻容感元件;
    所述阻容感元件设置于所述冷却腔内,与所述第二壁板连接。
  8. 如权利要求7所述的基板结构,其特征在于,还包括第一绝缘膜和第二绝缘膜,
    所述第一绝缘膜覆盖于所述第一芯片的表面,所述第二绝缘膜覆盖于所述第一阻容感元件的表面。
  9. 如权利要求1所述的基板结构,其特征在于,还包括第二芯片;
    所述冷却壳还包括外层壳件和中间件;
    所述外层壳件与所述第二壁板之间形成所述冷却腔;
    所述中间件设置于所述冷却腔内,所述中间件与所述外层壳件相对固定,所述第二芯片与所述中间件连接。
  10. 如权利要求9所述的基板结构,其特征在于,还包括第二阻容感元件;
    所述第二阻容感元件设置于所述冷却腔内,与所述中间件连接。
  11. 如权利要求1所述的基板结构,其特征在于,还包括塑封件;
    所述塑封件覆盖于所述第一壁板背离所述第二壁板的一面。
  12. 如权利要求11所述的基板结构,其特征在于,所述第一壁板设置有安装口,所述冷却壳从所述安装口伸出所述容置腔;
    所述塑封件覆盖所述第一壁板和所述冷却壳背离所述第二壁板的一面。
  13. 如权利要求1所述的基板结构,其特征在于,还包括散热件,所述散热件设置于所述第一壁板背离所述第二壁板的一面。
  14. 如权利要求1所述的基板结构,其特征在于,所述第一芯片与所述第二壁板通过多个第一连接件连接,所述多个第一连接件之间形成第一间隙,所述第一间隙用于所述冷却流体流通。
  15. 一种终端设备,其特征在于,包括设备主体和如权利要求1至14任一项所述的基板结构,所述基板结构设置在所述设备主体内。
PCT/CN2022/099101 2021-09-30 2022-06-16 基板结构和终端设备 WO2023050893A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22874290.4A EP4344370A1 (en) 2021-09-30 2022-06-16 Substrate structure and terminal device
US18/444,961 US20240196513A1 (en) 2021-09-30 2024-02-19 Substrate Structure and Terminal Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111161406.4A CN113966069B (zh) 2021-09-30 2021-09-30 基板结构和终端设备
CN202111161406.4 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/444,961 Continuation US20240196513A1 (en) 2021-09-30 2024-02-19 Substrate Structure and Terminal Device

Publications (1)

Publication Number Publication Date
WO2023050893A1 true WO2023050893A1 (zh) 2023-04-06

Family

ID=79463338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099101 WO2023050893A1 (zh) 2021-09-30 2022-06-16 基板结构和终端设备

Country Status (4)

Country Link
US (1) US20240196513A1 (zh)
EP (1) EP4344370A1 (zh)
CN (1) CN113966069B (zh)
WO (1) WO2023050893A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966069B (zh) * 2021-09-30 2024-07-05 华为数字能源技术有限公司 基板结构和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177903A (zh) * 1996-08-06 1998-04-01 株式会社爱德万测试 安装有电子器件的印刷电路板
CN102510709A (zh) * 2011-11-21 2012-06-20 聚信科技有限公司 浸没式冷却的电子设备
CN113382615A (zh) * 2021-07-02 2021-09-10 立酷新能源技术(上海)有限公司 一种自循环浸没射流电源模块
CN113966069A (zh) * 2021-09-30 2022-01-21 华为数字能源技术有限公司 基板结构和终端设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215843B3 (de) * 2013-08-12 2014-12-11 Siemens Aktiengesellschaft Abschirmende Anordnung zum Kühlen elektrischer Bauelemente und Magnetresonanztomograph damit
KR20160100712A (ko) * 2015-02-16 2016-08-24 주식회사 에프에스티 직접 냉각식 발광다이오드 조명기기
CN206323733U (zh) * 2017-01-10 2017-07-11 广东合一新材料研究院有限公司 一种流动液体全浸没冷却式发射机功放单元
US10622283B2 (en) * 2018-06-14 2020-04-14 International Business Machines Corporation Self-contained liquid cooled semiconductor packaging
US10542640B1 (en) * 2018-09-27 2020-01-21 Hewlett Packard Enterprise Development Lp Liquid chamber housings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177903A (zh) * 1996-08-06 1998-04-01 株式会社爱德万测试 安装有电子器件的印刷电路板
CN102510709A (zh) * 2011-11-21 2012-06-20 聚信科技有限公司 浸没式冷却的电子设备
CN113382615A (zh) * 2021-07-02 2021-09-10 立酷新能源技术(上海)有限公司 一种自循环浸没射流电源模块
CN113966069A (zh) * 2021-09-30 2022-01-21 华为数字能源技术有限公司 基板结构和终端设备

Also Published As

Publication number Publication date
CN113966069A (zh) 2022-01-21
EP4344370A1 (en) 2024-03-27
CN113966069B (zh) 2024-07-05
US20240196513A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
US7492594B2 (en) Electronic circuit modules cooling
US20130056178A1 (en) Ebullient cooling device
JP5472955B2 (ja) 放熱モジュール
JP2009147156A (ja) 冷却装置およびそれを用いた電子機器
WO2016075838A1 (ja) 電子機器の冷却システム、及び冷却方法
US20240196513A1 (en) Substrate Structure and Terminal Device
US20140291832A1 (en) Integrated cooling modules of power semiconductor device
JP2008227150A (ja) 電子機器
TW200915597A (en) Light emitting diode device
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN110043973B (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN110043974B (zh) 一种散热器、空调室外机和空调器
JP4391351B2 (ja) 冷却装置
GB2342152A (en) Plate type heat pipe and its installation structure
CN216905720U (zh) 一种冷却装置和电子设备
JP4012773B2 (ja) 電子機器
JP2002010624A (ja) 電源装置
CN111403365B (zh) 智能功率模块
CN219961221U (zh) 散热装置及电子设备
CN220733332U (zh) 电子设备
JP3598416B2 (ja) 電子機器用の熱輸送デバイス
CN219303654U (zh) 一种液冷装置、pcb结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874290

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874290

Country of ref document: EP

Effective date: 20231219

NENP Non-entry into the national phase

Ref country code: DE