WO2023050793A1 - 空调系统供电控制方法、装置及空调系统 - Google Patents

空调系统供电控制方法、装置及空调系统 Download PDF

Info

Publication number
WO2023050793A1
WO2023050793A1 PCT/CN2022/089860 CN2022089860W WO2023050793A1 WO 2023050793 A1 WO2023050793 A1 WO 2023050793A1 CN 2022089860 W CN2022089860 W CN 2022089860W WO 2023050793 A1 WO2023050793 A1 WO 2023050793A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
power supply
energy storage
solar energy
air
Prior art date
Application number
PCT/CN2022/089860
Other languages
English (en)
French (fr)
Inventor
吕科磊
赵凯强
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023050793A1 publication Critical patent/WO2023050793A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to a power supply control method and device for an air conditioning system and an air conditioning system.
  • the existing power grid can generally provide stable voltage, and the air conditioner is not easy to produce voltage fluctuations during normal operation.
  • the voltage provided by the power grid is often in an unstable state, causing the voltage and current fluctuations of the air conditioner, which may cause the air conditioner to overheat and shut down, and increase the operating cost of the air conditioner. loss, affecting the cooling and heating effects of the air conditioner.
  • the present application provides an air conditioning system power supply control method, device and air conditioning system to solve the technical problem in the prior art that air conditioners are easily affected by voltage fluctuations.
  • the present application provides a power supply control method for an air conditioning system, including:
  • the solar energy storage device is electrically connected with the air conditioner.
  • the controlling the solar energy storage device and the external power supply of the air conditioner to supply power to the air conditioner includes:
  • control the solar energy storage device When the voltage of the air conditioner is lower than the preset voltage, control the solar energy storage device to supply power to the electric components of the air conditioner, and control the external power supply of the air conditioner to supply power to the compressor of the air conditioner powered by;
  • the electric components include each electric load of the air conditioner.
  • the controlling the solar energy storage device and the external power supply of the air conditioner to supply power to the air conditioner further includes:
  • the solar energy storage device and the external power supply are controlled to supply power to the electric components.
  • the preset voltage is greater than or equal to 180V and less than or equal to 186V.
  • the preset value is greater than or equal to 10V and less than or equal to 15V.
  • the present application provides a power supply control device for an air conditioning system, including a control unit configured to, when the current of the air conditioner is higher than the current threshold, if the voltage drop value of the air conditioner is greater than a preset value, controlling the solar energy storage device and the external power supply of the air conditioner to supply power to the air conditioner;
  • the solar energy storage device is electrically connected with the air conditioner.
  • the control unit is used to control the solar energy storage device to supply electricity to the air-conditioning components when the voltage of the air-conditioner is lower than a preset voltage and control the external power supply of the air conditioner to supply power to the compressor of the air conditioner; when the voltage of the air conditioner is greater than or equal to the preset voltage, control the solar energy storage device and the external power supply to The electric component supplies power;
  • the electric components include each electric load of the air conditioner.
  • the present application provides an air conditioning system, including: an air conditioner, a solar energy storage device, and a control device, and the air conditioner, the solar energy storage device, and the control device are connected to each other by communication;
  • the solar energy storage device is electrically connected to the air conditioner, the air conditioner is connected to an external power supply, and the control device is used to, if the current of the air conditioner is higher than a current threshold, The voltage drop value is greater than or equal to a preset value, and the solar energy storage device and the external power supply are controlled to supply power to the air conditioner.
  • the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the first The steps of the air conditioning system power supply control method described in the aspect.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for controlling power supply of an air-conditioning system as described in the first aspect are implemented.
  • the air-conditioning system power supply control method, device, and air-conditioning system provided by the present application determine that the voltage drop value of the air-conditioner is greater than or equal to a preset value when the current of the air-conditioner is higher than the current threshold, and control the solar energy storage device and the air-conditioner
  • the external power supply of the air conditioner supplies power to the air conditioner, which increases the power source of the air conditioner, compensates the voltage of the air conditioner, and reduces the impact of grid voltage fluctuations on the air conditioner, so that the air conditioner can still operate under abnormal working conditions. can function normally.
  • FIG. 1 is a schematic flowchart of a power supply control method for an air conditioning system provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for controlling power supply of an air conditioning system provided in another embodiment of the present application;
  • Fig. 3 is a flow chart of a power supply control method for an air conditioning system provided in another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the power supply control method of the air conditioning system includes:
  • the solar energy storage device is electrically connected with the air conditioner.
  • Solar energy storage devices are used to convert solar energy into electrical energy storage.
  • the solar energy storage device includes a solar panel and an energy storage component.
  • the solar panel is installed in an outdoor environment with sufficient sunlight to convert solar energy into electrical energy.
  • the energy storage component is charged with the energy generated by the solar panel and supplies power to the air conditioner under certain conditions.
  • the air conditioner When the voltage provided by the grid decreases, the air conditioner is in the state of undervoltage compensation, and the current of the air conditioner will increase relatively. If it is operated in this state for a long time, the internal temperature of the air conditioner will be too high, resulting in shutdown.
  • the voltage drop value of the air conditioner when the current of the air conditioner is higher than the current threshold, the voltage drop value of the air conditioner is obtained, and if the voltage drop value of the air conditioner is greater than the preset value, the solar energy storage device and the air conditioner are controlled.
  • the external power supply supplies power to the air conditioner together to compensate the voltage of the air conditioner, effectively reducing the loss caused by voltage fluctuations to the air conditioner, and improving the working effect of the air conditioner.
  • the current threshold is the maximum current that can keep the air conditioner running normally, and different modes or set temperatures of the air conditioner have different current thresholds.
  • the air conditioner may be in an abnormal working state, which will affect the working effect and even cause abnormal loss.
  • the preset value is the maximum voltage fluctuation value that can keep the air conditioner running normally. When the voltage drop of the air conditioner is greater than the preset value, the voltage fluctuation of the air conditioner is large, which may affect the operation of the air conditioner components.
  • the air conditioning system power supply control method provided in the embodiment of the present application can obtain the current of the air conditioner in real time, or obtain the current of the air conditioner at intervals, for example, obtain the current of the air conditioner every 1 minute, and judge whether it exceeds the current threshold .
  • the current of the air conditioner When the current of the air conditioner is higher than the current threshold, by comparing the voltage drop value of the air conditioner with the preset value, it is judged whether the current change of the air conditioner is caused by voltage fluctuations. If the voltage drop value of the air conditioner is greater than the preset value, Then, the voltage of the air conditioner is compensated, and the solar energy storage device and the external power supply of the air conditioner jointly supply power to the air conditioner.
  • the solar energy storage device and the external power supply of the air conditioner are controlled to supply power to the air conditioner.
  • the voltage threshold is the minimum voltage that can keep the air conditioner running normally.
  • the current change of the air conditioner is caused by voltage fluctuations.
  • the voltage of the air conditioner is compensated by solar energy.
  • the energy storage device and the external power supply of the air conditioner jointly supply power to the air conditioner.
  • the air conditioning system power supply control method determines that the voltage drop value of the air conditioner is greater than or equal to a preset value when the current of the air conditioner is higher than the current threshold, and controls the external connection between the solar energy storage device and the air conditioner.
  • the power supply supplies power to the air conditioner, which increases the power source of the air conditioner, compensates the voltage of the air conditioner, and reduces the impact of grid voltage fluctuations on the air conditioner, so that the air conditioner can still operate normally under abnormal working conditions .
  • the air conditioning system power supply control method provided in the embodiment of the present application can control the external power supply of the solar energy storage device and the air conditioner to supply power to the same components, and can also control the external power supply of the solar energy storage device and the air conditioner to supply power to different components powered by.
  • controlling the solar energy storage device and the external power supply of the air conditioner to supply power to the air conditioner includes:
  • the electrical components include each electrical load of the air conditioner, such as compressors, fans, motors and other components.
  • the preset voltage is a preset voltage value.
  • the air conditioner is in a low-voltage operation state, and the power supply of the air conditioner is insufficient.
  • the voltage drop value of the air conditioner is greater than the preset value, compare the voltage of the air conditioner with the preset voltage, and if the voltage of the air conditioner is lower than the preset voltage, control the solar energy storage device to supply power to the electrical components of the air conditioner , and in order to ensure the working effect of the air conditioner, the external power supply of the air conditioner is controlled to only supply power to the compressor of the air conditioner, so as to reduce the influence on the cooling/heating effect of the air conditioner. That is, the compressor of the air conditioner is jointly powered by the solar energy storage device and the external power supply, while other electric loads in the air conditioner except the compressor are powered by the solar energy storage device.
  • the voltage of the air conditioner is lower than the preset voltage, the demand for voltage compensation is relatively high. Therefore, controlling the external power supply of the air conditioner to only supply power to the compressor of the air conditioner will help reduce the energy consumption speed of the solar energy storage device and prolong the solar energy. The service time of the energy storage device is improved, and the power supply efficiency of the solar energy storage device is improved.
  • the solar energy storage device can also be controlled to supply power only to the compressor of the air conditioner, and the external power supply of the air conditioner can be controlled to supply power to other electrical loads other than the compressor. Perform voltage compensation.
  • controlling the solar energy storage device and the external power supply of the air conditioner to supply power to the air conditioner also includes:
  • the voltage drop value of the air conditioner is greater than the preset value
  • the voltage of the air conditioner is greater than or equal to the preset voltage, although the voltage of the air conditioner drops, the impact on the operation of the air conditioner is relatively small, and the demand for voltage compensation is relatively small. Low, so the energy consumption of the solar energy storage device is also low, so the solar energy storage device and the external power supply are controlled to supply power to all the electrical loads of the air conditioner, and the voltage compensation of the air conditioner is performed.
  • the preset voltage is greater than or equal to 180V and less than or equal to 186V.
  • the preset voltage can be 180V, 183V, 186V and so on.
  • the preset value is greater than or equal to 10V and less than or equal to 15V.
  • the preset value can be 10V, 13V, 15V and so on.
  • power supply control of the air conditioning system is performed according to the following steps:
  • Step S20 Determine whether the current of the air conditioner is higher than the current threshold, if yes, execute step S21, if not, execute step S22;
  • Step S21 Determine whether the voltage drop value of the air conditioner is greater than a preset value, if yes, execute step S23, if not, execute step S22;
  • Step S22 Control the air conditioner to continue running according to the current circuit
  • Step S23 Determine whether the voltage of the air conditioner is lower than the preset voltage, if yes, execute step S24, if not, execute step S25;
  • Step S24 Control the solar energy storage device to supply power to the electrical parts of the air conditioner, and control the external power supply of the air conditioner to supply power to the compressor of the air conditioner;
  • Step S25 Control the solar energy storage device and the external power supply to supply power to the electric components.
  • the power source of the air conditioner is increased, the voltage of the air conditioner is compensated, the impact of grid voltage fluctuations on the air conditioner is reduced, and the air conditioner can still operate normally under abnormal working conditions.
  • the embodiment of the present application also provides a power supply control device for an air-conditioning system, including a control unit.
  • the control unit is used to control the solar energy storage system to The external power supply of the functional device and the air conditioner supplies power to the air conditioner.
  • the solar energy storage device is electrically connected with the air conditioner.
  • control unit is used to control the solar energy storage device to supply power to the electric parts of the air conditioner when the voltage of the air conditioner is lower than the preset voltage, and to control the external power supply of the air conditioner to supply power to the compressor of the air conditioner;
  • the solar energy storage device and the external power supply are controlled to supply power to the electric components.
  • the electrical components include each electrical load of the air conditioner.
  • An embodiment of the present application also provides an air conditioning system, including: an air conditioner, a solar energy storage device, and a control device, and the air conditioner, the solar energy storage device, and the control device are connected to each other by communication.
  • the solar energy storage device is electrically connected to the air conditioner, and the air conditioner is connected to an external power supply.
  • the control device is used to control the solar energy storage device if the voltage drop value of the air conditioner is greater than or equal to the preset value when the current of the air conditioner is higher than the current threshold.
  • the energy device and the external power supply supply power to the air conditioner.
  • the solar energy storage device is respectively connected to the internal unit and the external electromechanical unit of the air conditioner.
  • the solar energy storage device includes a solar panel and an energy storage component.
  • the solar panel is used to convert solar energy into electrical energy.
  • the solar panel is placed in an outdoor environment with sufficient sunlight. For example, it is fixed to the external unit of the air conditioner.
  • the energy storage unit is charged with energy generated by the solar panels and powers the air conditioner under certain conditions.
  • the air conditioner is provided with a voltage detection device and a current detection device, which are respectively used to obtain the voltage and current of the air conditioner. Both the voltage detection device and the current detection device are in communication connection with the control device.
  • the control device is used to control the solar energy storage device to supply power to the electric parts of the air conditioner when the voltage of the air conditioner is lower than the preset voltage, and to control the external power supply of the air conditioner to supply power to the compressor of the air conditioner; When the voltage is greater than or equal to the preset voltage, the solar energy storage device and the external power supply are controlled to supply power to the electric components.
  • the electrical components include each electrical load of the air conditioner.
  • FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device provided by the embodiment of the present application may include: a processor (processor) 410, a communication interface (CommunicationsInterface) 420, a memory (memory) 430 and The communication bus 440 , wherein the processor 410 , the communication interface 420 , and the memory 430 communicate with each other through the communication bus 440 .
  • the processor 410 can call the logic instructions in the memory 430 to execute the power supply control method of the air conditioning system.
  • the method includes: when the current of the air conditioner is higher than the current threshold, if the voltage drop value of the air conditioner is greater than a preset value, control The solar energy storage device and the external power supply of the air conditioner supply power to the air conditioner; wherein the solar energy storage device is electrically connected to the air conditioner.
  • the above logic instructions in the memory 430 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-OnlyMemory), random access memory (RAM, RandomAccessMemory), magnetic disk or optical disk and other media that can store program codes.
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer
  • the computer can execute the power supply control method of the air conditioning system provided by the above methods, the method includes: when the current of the air conditioner is higher than the current threshold, if the voltage drop value of the air conditioner is greater than a preset value, controlling the solar energy storage
  • the external power supply of the energy storage device and the air conditioner supplies power to the air conditioner; wherein, the solar energy storage device is electrically connected with the air conditioner.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the above-mentioned methods for controlling power supply of an air-conditioning system, the method includes : When the current of the air conditioner is higher than the current threshold, if the voltage drop of the air conditioner is greater than the preset value, control the solar energy storage device and the external power supply of the air conditioner to supply power to the air conditioner; wherein, the solar energy storage device and the air conditioner electrical connection.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative effort.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供一种空调系统供电控制方法、装置及空调系统,涉及空气调节技术领域。该方法包括:在空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于预设值,控制太阳能储能装置和所述空调器的外接电源向所述空调器供电;其中,所述太阳能储能装置与所述空调器电连接。本申请提供的空调系统供电控制方法、装置及空调系统,增加了空调器的电能来源,对空调器的电压进行了补偿,降低了电网电压波动对空调器带来的影响,使空调器在非正常的工况下仍能正常运行。

Description

空调系统供电控制方法、装置及空调系统
相关申请的交叉引用
本申请要求于2021年9月29日提交的申请号为2021111516555,发明名称为″空调系统供电控制方法、装置及空调系统″的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空气调节技术领域,尤其涉及一种空调系统供电控制方法、装置及空调系统。
背景技术
随着经济和科技的发展,现有的电网一般可以提供稳定的电压,空调器在正常运行时不易产生电压波动。
然而,在某些地区,由于设备老化、电线过长等原因,电网提供的电压常常处于不稳定状态,引起空调器的电压、电流波动,可能会造成空调器过热停机等状况,增加空调器的损耗,影响空调器的制冷、制热效果。
发明内容
本申请提供一种空调系统供电控制方法、装置及空调系统,用以解决现有技术中空调器容易受电压波动影响的技术问题。
第一方面,本申请提供一种空调系统供电控制方法,包括:
在空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于预设值,控制太阳能储能装置和所述空调器的外接电源向所述空调器供电;
其中,所述太阳能储能装置与所述空调器电连接。
根据本申请实施例提供的空调系统供电控制方法,所述控制太阳能储能装置和所述空调器的外接电源向所述空调器供电,包括:
在所述空调器的电压小于预设电压的情况下,控制所述太阳能储能装置向所述空调器的用电部件供电,并控制所述空调器的外接电源向所述空 调器的压缩机供电;
其中,所述用电部件包括所述空调器的每一用电负载。
根据本申请实施例提供的空调系统供电控制方法,所述控制太阳能储能装置和所述空调器的外接电源向所述空调器供电,还包括:
在所述空调器的电压大于等于预设电压的情况下,控制所述太阳能储能装置和所述外接电源向所述用电部件供电。
根据本申请实施例提供的空调系统供电控制方法,所述预设电压大于等于180V,且小于等于186V。
根据本申请实施例提供的空调系统供电控制方法,所述预设值大于等于10V,且小于等于15V。
第二方面,本申请提供一种空调系统供电控制装置,包括控制单元,所述控制单元用于在空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于预设值,控制太阳能储能装置和所述空调器的外接电源向所述空调器供电;
其中,所述太阳能储能装置与所述空调器电连接。
根据本申请实施例提供的空调系统供电控制装置,所述控制单元用于在所述空调器的电压小于预设电压的情况下,控制所述太阳能储能装置向所述空调器的用电部件供电,并控制所述空调器的外接电源向所述空调器的压缩机供电;在所述空调器的电压大于等于预设电压的情况下,控制所述太阳能储能装置和所述外接电源向所述用电部件供电;
其中,所述用电部件包括所述空调器的每一用电负载。
第三方面,本申请提供一种空调系统,包括:空调器、太阳能储能装置和控制装置,所述空调器、所述太阳能储能装置和所述控制装置相互通信连接;
所述太阳能储能装置与所述空调器电连接,所述空调器连接有外接电源,所述控制装置用于在所述空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于等于预设值,控制所述太阳能储能装置和所述外接电源向所述空调器供电。
第四方面,本申请提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所 述程序时实现如第一方面所述空调系统供电控制方法的步骤。
第五方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述空调系统供电控制方法的步骤。
本申请提供的空调系统供电控制方法、装置及空调系统,通过在空调器的电流高于电流阈值的情况下,确定空调器的电压下降值大于等于预设值,并控制太阳能储能装置和空调器的外接电源向空调器供电,增加了空调器的电能来源,对空调器的电压进行了补偿,降低了电网电压波动对空调器带来的影响,使空调器在非正常的工况下仍能正常运行。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的空调系统供电控制方法的流程示意图;
图2是本申请另一个实施例提供的空调系统供电控制方法的流程示意图;
图3是本申请又一个实施例提供的空调系统供电控制方法的流程图;
图4是本申请实施例提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实例用于说明本申请,但不用来限制本申请的范围。
如图1所示,本申请实施例提供的空调系统供电控制方法包括:
S10:在空调器的电流高于电流阈值的情况下,若空调器的电压下降值大于预设值,控制太阳能储能装置和空调器的外接电源向空调器供电。
其中,太阳能储能装置与空调器电连接。
太阳能储能装置用于将太阳能转化成电能储存。太阳能储能装置包括太阳能板和储能部件,太阳能板安装于光照充足的室外环境中,将太阳能转化为电能,储能部件利用太阳能板产生的能量充电,并在特定条件下为空调器供电。
当电网提供的电压降低时,空调器处于欠压补偿的状态,空调器的电流会相对增大,若长期以此状态运行,会使空调器内部温度过高,造成停机。
而本申请实施例中,在空调器的电流高于电流阈值的情况下,获取空调器的电压下降值,若空调器的电压下降值大于预设值,则控制太阳能储能装置和空调器的外接电源共同向空调器供电,对空调器的电压进行补偿,有效降低电压波动对空调器带来的损耗,提高空调器的工作效果。
其中,电流阈值为能使空调器保持正常运行的最大电流,空调器的不同模式或设定温度具有不同的电流阈值。当空调器在运行时的电流超出电流阈值时,空调器可能处于非正常工作状态,影响工作效果,甚至产生非正常损耗。
预设值为能使空调器保持正常运行的最大电压波动值,当空调器的电压下降值大于预设值时,空调器的电压波动较大,有可能会影响空调器元器件的运行。
本申请实施例提供的空调系统供电控制方法,可以实时获取空调器的电流,也可以每间隔一段时间获取一次空调器的电流,例如每隔1min获取一次空调器的电流,判断其是否超出电流阈值。
在空调器的电流高于电流阈值的情况下,通过比较空调器的电压下降值和预设值,判断空调器的电流变化是否由电压波动引起,若空调器的电压下降值大于预设值,则对空调器的电压进行补偿,由太阳能储能装置和空调器的外接电源共同向空调器供电。
在另一个实施例中,在空调器的电流高于电流阈值的情况下,若空调器的电压小于电压阈值,控制太阳能储能装置和空调器的外接电源向空调 器供电。通过比较空调器的电压和电压阈值,判断空调器的电流变化是否由电压波动引起。其中,电压阈值为能使空调器保持正常运行的最小电压,当空调器的电压小于电压阈值时,空调器的电流变化是由电压波动引起的,此时对空调器的电压进行补偿,由太阳能储能装置和空调器的外接电源共同向空调器供电。
本申请实施例提供的空调系统供电控制方法,通过在空调器的电流高于电流阈值的情况下,确定空调器的电压下降值大于等于预设值,并控制太阳能储能装置和空调器的外接电源向空调器供电,增加了空调器的电能来源,对空调器的电压进行了补偿,降低了电网电压波动对空调器带来的影响,使空调器在非正常的工况下仍能正常运行。
本申请实施例提供的空调系统供电控制方法,可以控制太阳能储能装置和空调器的外接电源向相同的元器件供电,也可以控制太阳能储能装置和空调器的外接电源分别向不同的元器件供电。
例如,在一个实施例中,如图2所示,控制太阳能储能装置和空调器的外接电源向空调器供电,包括:
S11:在空调器的电压小于预设电压的情况下,控制太阳能储能装置向空调器的用电部件供电,并控制空调器的外接电源向空调器的压缩机供电。
其中,用电部件包括空调器的每一用电负载,例如压缩机、风机、电机等元器件。
预设电压为预先设定的电压值,当空调器的电压小于预设电压时,空调器处于低压运行状态,空调器的供电不足。
在空调器的电压下降值大于预设值的情况下,将空调器的电压与预设电压比较,若空调器的电压小于预设电压,则控制太阳能储能装置向空调器的用电部件供电,而为了保证空调器的工作效果,控制空调器的外接电源仅向空调器的压缩机供电,降低对空调器制冷/制热效果的影响。也即,空调器的压缩机由太阳能储能装置和外接电源共同供电,而空调器中除压缩机以外的其他用电负载由太阳能储能装置供电。
并且,若空调器的电压小于预设电压,电压补偿需求量相对较高,因此控制空调器的外接电源仅向空调器的压缩机供电,有利于降低太阳能储 能装置的耗能速度,延长太阳能储能装置的使用时间,提高太阳能储能装置的供电效率。
当然,若空调器的电压小于预设电压,也可以控制太阳能储能装置仅向空调器的压缩机供电,控制空调器的外接电源向除压缩机以外的其他用电负载供电,能对空调器进行电压补偿即可。
进一步地,控制太阳能储能装置和空调器的外接电源向空调器供电,还包括:
S12:在空调器的电压大于等于预设电压的情况下,控制太阳能储能装置和外接电源向用电部件供电。
在空调器的电压下降值大于预设值的情况下,若空调器的电压大于等于预设电压,空调器的电压虽下降,但对空调器运行的影响相对较小,电压补偿需求量相对较低,所以太阳能储能装置的耗能也较低,因此控制太阳能储能装置和外接电源共同向空调器的所有用电负载供电,对空调器进行电压补偿。
进一步地,预设电压大于等于180V,且小于等于186V。例如,预设电压可以为180V、183V、186V等。
预设值大于等于10V,且小于等于15V。例如,预设值可以为10V、13V、15V等。
在一个实施例中,根据图3所示,空调系统在运行时,按照以下步骤进行空调系统供电控制:
步骤S20:判断空调器的电流是否高于电流阈值,若是,执行步骤S21,若否,执行步骤S22;
步骤S21:判断空调器的电压下降值是否大于预设值,若是,执行步骤S23,若否,执行步骤S22;
步骤S22:控制空调器按照当前线路继续运行;
步骤S23:判断空调器的电压是否小于预设电压,若是,执行步骤S24,若否,执行步骤S25;
步骤S24:控制太阳能储能装置向空调器的用电部件供电,并控制空调器的外接电源向空调器的压缩机供电;
步骤S25:控制太阳能储能装置和外接电源向用电部件供电。
利用以上流程,增加了空调器的电能来源,对空调器的电压进行了补偿,降低了电网电压波动对空调器带来的影响,使空调器在非正常的工况下仍能正常运行。
本申请实施例还提供一种空调系统供电控制装置,包括控制单元,控制单元用于在空调器的电流高于电流阈值的情况下,若空调器的电压下降值大于预设值,控制太阳能储能装置和空调器的外接电源向空调器供电。
其中,太阳能储能装置与空调器电连接。
具体地,控制单元用于在空调器的电压小于预设电压的情况下,控制太阳能储能装置向空调器的用电部件供电,并控制空调器的外接电源向空调器的压缩机供电;在空调器的电压大于等于预设电压的情况下,控制太阳能储能装置和外接电源向用电部件供电。
其中,用电部件包括空调器的每一用电负载。
本申请实施例还提供一种空调系统,包括:空调器、太阳能储能装置和控制装置,空调器、太阳能储能装置和控制装置相互通信连接。
太阳能储能装置与空调器电连接,空调器连接有外接电源,控制装置用于在空调器的电流高于电流阈值的情况下,若空调器的电压下降值大于等于预设值,控制太阳能储能装置和外接电源向空调器供电。
具体地,太阳能储能装置分别与空调器的内机和外机电连接,太阳能储能装置包括太阳能板和储能部件,太阳能板用于将太阳能转化为电能,太阳能板设置于光照充足的室外环境中,例如固定于空调器外机。储能部件利用太阳能板产生的能量充电,并在特定条件下为空调器供电。
空调器内设置有电压检测装置和电流检测装置,分别用于获取空调器的电压和电流。电压检测装置和电流检测装置均与控制装置通信连接。
控制装置用于在空调器的电压小于预设电压的情况下,控制太阳能储能装置向空调器的用电部件供电,并控制空调器的外接电源向空调器的压缩机供电;在空调器的电压大于等于预设电压的情况下,控制太阳能储能装置和外接电源向用电部件供电。其中,用电部件包括空调器的每一用电负载。
图4示例了一种电子设备的实体结构示意图,如图4所示,本申请实施例提供的电子设备可以包括:处理器(processor)410、通信接口 (CommunicationsInterface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行空调系统供电控制方法,该方法包括:在空调器的电流高于电流阈值的情况下,若空调器的电压下降值大于预设值,控制太阳能储能装置和空调器的外接电源向空调器供电;其中,太阳能储能装置与空调器电连接。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的空调系统供电控制方法,该方法包括:在空调器的电流高于电流阈值的情况下,若空调器的电压下降值大于预设值,控制太阳能储能装置和空调器的外接电源向空调器供电;其中,太阳能储能装置与空调器电连接。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的空调系统供电控制方法,该方法包括:在空调器的电流高于电流阈值的情况下,若空调器的电压下降值大于预设值,控制太阳能储能装置和空调器的外接电源向空调器供电;其中,太阳能储能装置与空调器电连接。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多 个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空调系统供电控制方法,包括:
    在空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于预设值,控制太阳能储能装置和所述空调器的外接电源向所述空调器供电;
    其中,所述太阳能储能装置与所述空调器电连接。
  2. 根据权利要求1所述的空调系统供电控制方法,其中,所述控制太阳能储能装置和所述空调器的外接电源向所述空调器供电,包括:
    在所述空调器的电压小于预设电压的情况下,控制所述太阳能储能装置向所述空调器的用电部件供电,并控制所述空调器的外接电源向所述空调器的压缩机供电;
    其中,所述用电部件包括所述空调器的每一用电负载。
  3. 根据权利要求2所述的空调系统供电控制方法,其中,所述控制太阳能储能装置和所述空调器的外接电源向所述空调器供电,还包括:
    在所述空调器的电压大于等于预设电压的情况下,控制所述太阳能储能装置和所述外接电源向所述用电部件供电。
  4. 根据权利要求3所述的空调系统供电控制方法,其中,所述预设电压大于等于180V,且小于等于186V。
  5. 根据权利要求1所述的空调系统供电控制方法,其中,所述预设值大于等于10V,且小于等于15V。
  6. 一种空调系统供电控制装置,包括控制单元,所述控制单元用于在空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于预设值,控制太阳能储能装置和所述空调器的外接电源向所述空调器供电;
    其中,所述太阳能储能装置与所述空调器电连接。
  7. 根据权利要求6所述的空调系统供电控制装置,其中,所述控制单元用于在所述空调器的电压小于预设电压的情况下,控制所述太阳能储能装置向所述空调器的用电部件供电,并控制所述空调器的外接电源向所述空调器的压缩机供电;在所述空调器的电压大于等于预设电压的 情况下,控制所述太阳能储能装置和所述外接电源向所述用电部件供电;
    其中,所述用电部件包括所述空调器的每一用电负载。
  8. 一种空调系统,包括:空调器、太阳能储能装置和控制装置,所述空调器、所述太阳能储能装置和所述控制装置相互通信连接;
    所述太阳能储能装置与所述空调器电连接,所述空调器连接有外接电源,所述控制装置用于在所述空调器的电流高于电流阈值的情况下,若所述空调器的电压下降值大于等于预设值,控制所述太阳能储能装置和所述外接电源向所述空调器供电。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至5任一项所述空调系统供电控制方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述空调系统供电控制方法的步骤。
PCT/CN2022/089860 2021-09-29 2022-04-28 空调系统供电控制方法、装置及空调系统 WO2023050793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111151655.5A CN113872196A (zh) 2021-09-29 2021-09-29 空调系统供电控制方法、装置及空调系统
CN202111151655.5 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023050793A1 true WO2023050793A1 (zh) 2023-04-06

Family

ID=78992813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089860 WO2023050793A1 (zh) 2021-09-29 2022-04-28 空调系统供电控制方法、装置及空调系统

Country Status (2)

Country Link
CN (1) CN113872196A (zh)
WO (1) WO2023050793A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872196A (zh) * 2021-09-29 2021-12-31 青岛海尔空调器有限总公司 空调系统供电控制方法、装置及空调系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169435A1 (en) * 2010-01-12 2011-07-14 Koenig Daniel Ec motor assembly
CN105305505A (zh) * 2015-11-27 2016-02-03 国家电网公司 具有电压控制功能的光伏并网逆变器
CN111219847A (zh) * 2019-12-06 2020-06-02 宁波奥克斯电气股份有限公司 一种避免空调电压突变异常停机的方法、装置及空调器
CN113872196A (zh) * 2021-09-29 2021-12-31 青岛海尔空调器有限总公司 空调系统供电控制方法、装置及空调系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2854126B2 (ja) * 1990-11-28 1999-02-03 三洋電機株式会社 2電源駆動型の空気調和機
JPH05223397A (ja) * 1992-01-08 1993-08-31 Hitachi Ltd ソーラーエアコン
KR950014766A (ko) * 1993-11-26 1995-06-16 김광호 태양전지 발전시스템과 계통연계된 공기조화기 및 그 제어방법
KR20060087234A (ko) * 2005-01-28 2006-08-02 엘지전자 주식회사 공기 조화기의 보조전원 공급장치
JP5356316B2 (ja) * 2010-06-17 2013-12-04 信越ポリマー株式会社 防水用押釦スイッチ部材
CN202993467U (zh) * 2012-11-14 2013-06-12 珠海格力电器股份有限公司 太阳能空调器的电源控制系统
CN103836738B (zh) * 2012-11-23 2017-06-30 珠海格力电器股份有限公司 太阳能空调器及其控制方法
CN203797842U (zh) * 2013-12-24 2014-08-27 珠海格力电器股份有限公司 光伏空调系统
CN107461972B (zh) * 2017-08-15 2020-07-03 广东美的制冷设备有限公司 太阳能制冷设备的控制方法及相关设备、太阳能空调
CN111947277A (zh) * 2020-08-04 2020-11-17 广东美的暖通设备有限公司 空调器、运行控制方法和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169435A1 (en) * 2010-01-12 2011-07-14 Koenig Daniel Ec motor assembly
CN105305505A (zh) * 2015-11-27 2016-02-03 国家电网公司 具有电压控制功能的光伏并网逆变器
CN111219847A (zh) * 2019-12-06 2020-06-02 宁波奥克斯电气股份有限公司 一种避免空调电压突变异常停机的方法、装置及空调器
CN113872196A (zh) * 2021-09-29 2021-12-31 青岛海尔空调器有限总公司 空调系统供电控制方法、装置及空调系统

Also Published As

Publication number Publication date
CN113872196A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN108281952B (zh) 光伏供电系统及其供电控制方法
WO2020010781A1 (zh) 一种风电装置、空调器、控制方法、计算机可读存储介质
WO2023050793A1 (zh) 空调系统供电控制方法、装置及空调系统
WO2022033142A1 (zh) 空调系统及其控制方法和控制选择器
CN111271840A (zh) 一种有效的电压异常保护方法、装置及空调机组
WO2023071157A1 (zh) 空调器的机能力补偿控制方法、装置及空调系统
CN112653190A (zh) 一种光伏空调的功率控制方法、装置、系统及光伏空调
CN115751527A (zh) 空调器的回油控制方法、装置及空调器
CN111412633B (zh) 一种空调控制方法、装置、存储介质及空调
WO2024131045A1 (zh) 光伏设备以及提升光伏设备的光伏利用率的方法
WO2023087674A1 (zh) 太阳能空调及其控制方法、电子设备和存储介质
CN111023465A (zh) 空调器的控制方法、装置、空调器及可读存储介质
CN112821350B (zh) 电压异常保护电路、控制方法及空调器
CN109827286A (zh) 一种防止机组的功率器件过热损坏的方法、装置及机组
WO2021233344A1 (zh) 风力发电机的冷却控制方法、系统、设备及存储介质
CN111244577A (zh) 数据中心余热回收补偿蓄电池室温度的调温系统及方法
CN110829817B (zh) 控制电路、控制电路的控制方法、装置及空调器
Wang et al. Load characteristics-oriented control strategy for air conditioners during voltage sags
CN112822916B (zh) 大型机电设备散热控制方法及装置
CN220491195U (zh) 一种配电室的室温自动控制电路及控制系统
CN110768254B (zh) 供电电路、供电电路的控制方法、装置及空调器
CN113091327B (zh) 电锅炉系统及电锅炉控制方法
CN117889040B (zh) 风电离网制氢的控制方法、装置、设备及存储介质
CN118049740A (zh) 基于ups供电的太阳能空调器控制方法、装置及空调器
CN118361841A (zh) 空调系统的控制方法及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22874191

Country of ref document: EP

Kind code of ref document: A1