WO2020010781A1 - 一种风电装置、空调器、控制方法、计算机可读存储介质 - Google Patents

一种风电装置、空调器、控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2020010781A1
WO2020010781A1 PCT/CN2018/117453 CN2018117453W WO2020010781A1 WO 2020010781 A1 WO2020010781 A1 WO 2020010781A1 CN 2018117453 W CN2018117453 W CN 2018117453W WO 2020010781 A1 WO2020010781 A1 WO 2020010781A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
air conditioner
battery
components
standby
Prior art date
Application number
PCT/CN2018/117453
Other languages
English (en)
French (fr)
Inventor
曹志高
孙超
安超
顾超
刘光辉
王建营
张相荣
熊长友
杨坤
杜娟
Original Assignee
青岛海尔空调电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to EP18925900.5A priority Critical patent/EP3822550A1/en
Publication of WO2020010781A1 publication Critical patent/WO2020010781A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to the technical field of air-conditioning energy saving, in particular to a wind power device, an air conditioner, a control method, and a computer-readable storage medium.
  • the energy-saving requirements for air conditioners are becoming higher and higher.
  • the current solution is to reduce the number of components that need to be activated during the standby or off state, and minimize the power in the standby or off state.
  • the air conditioner can respond quickly, and some parts of the machine still need to be activated. Therefore, the standby or shutdown power of the air conditioner is generally about 3 to 15W. The larger the number of air conditioners, the higher the standby power.
  • Standby power consumption standby power ⁇ standby time
  • the estimated standby time for the year is 2142h and the shutdown time is 5088h.
  • the standby power consumption and shutdown power consumption are still relatively high.
  • Embodiments of the present invention provide a wind power device, an air conditioner, a control method, and a computer-readable storage medium, which can reduce the power consumption of an air conditioner in a standby state and an off state.
  • a brief summary is given below. This summary is not a general overview, nor is it intended to identify key / important constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
  • a wind power device is provided.
  • the device includes: an impeller, a generator, a first transformer circuit, and a battery; the impeller is installed in front of the air outlet grill of the air conditioner, and is connected to the generator shaft; A power conversion circuit receives the AC power output from the generator and converts it into a battery charging voltage; the battery stores the DC power output by the first power conversion circuit.
  • an air conditioner is provided.
  • the air conditioner includes the wind power device described in any one of the foregoing optional embodiments, and further includes a signal receiving device for receiving a control signal, and the signal receiving device is powered by the battery or a power grid.
  • the components that need to remain activated in the standby or shutdown state of the air conditioner are also powered by the battery or the power grid.
  • a control method is provided for controlling the air conditioner according to any of the foregoing optional embodiments.
  • the method includes: detecting whether the remaining battery power is greater than or equal to a first threshold value when receiving a standby or shutdown signal; and controlling the switching circuit if the remaining battery power is greater than or equal to the first threshold value Strobe the battery to power the signal receiving device and the components that remain active, and control the other components of the air conditioner to cut off the power; if the remaining battery power is less than the first threshold, the control switching circuit selects the grid-side AC power to the signal receiving device and Keep the active parts powered and control the other parts of the air conditioner to be powered off.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium stores a computer program thereon, and when the computer program is executed by a processor, the control method according to any one of the foregoing optional embodiments is implemented.
  • the power consumption of the air conditioner in the standby state and the power consumption in the off state is the power stored in the battery after wind power generation. Therefore, the power consumption in the standby state is 0, which improves the energy efficiency level of the air conditioner and reduces the power consumption of the air conditioner.
  • FIG. 1 is a schematic structural diagram of an alternative embodiment of the wind power device
  • FIG. 2 is a circuit block diagram of an alternative embodiment of the wind power device
  • FIG. 3 is a circuit block diagram of an alternative embodiment of the air conditioner
  • FIG. 5 is a circuit block diagram of another alternative embodiment of the air conditioner.
  • FIG. 6 is a schematic diagram of an optional implementation process of the control method.
  • Figure 1 shows the structure of an alternative embodiment of a wind power installation.
  • the wind power device includes an impeller 5, a generator 10, a first power transformation circuit, and a battery.
  • the impeller 5 is installed in front of the air outlet grill of the air conditioner, and is used to absorb the wind energy output by the fan.
  • the external unit of the air conditioner is also provided with an external mesh cover 6, which has a receiving space for installing the impeller 5 and the generator 10, and plays a protective role to prevent the impeller 5 from causing harm to the surrounding people or objects during work .
  • the impeller 5 is connected to the rotating shaft of the generator 10. When the impeller 5 rotates, the generator 10 outputs AC power.
  • the rotation axis of the impeller and the rotation axis of the fan of the air conditioner are on the same horizontal line.
  • the diameter of the impeller is smaller than or equal to the diameter of the fan.
  • the number of the impellers is multiple, and each impeller is disposed around the fan of the air conditioner. Since the wind energy output by the fan will be dispersed after a certain distance is transmitted, multiple impellers are arranged around the fan to maximize the use of the wind energy output by the fan.
  • each impeller corresponds to a generator, and the output ends of multiple generators collect the output AC energy through a bus circuit.
  • Figure 2 shows a control block diagram of an alternative embodiment of a wind power installation.
  • the wind power device 1 includes: an impeller 5, a generator 10, a first power conversion circuit 40, and a battery 50; an input terminal of the first power conversion circuit 40 receives an AC voltage output from the power generator 10. , Converts it into a battery charging voltage, and charges the battery 50; the battery 50 stores the DC power output by the first power conversion circuit 40.
  • the battery charging voltage is a DC voltage. Therefore, the output voltage of the generator 10 is converted by the first transformation circuit into electric energy, which is converted into a stable voltage. Battery charging voltage.
  • the first power conversion circuit is an AC / DC converter.
  • the battery has a voltage of 12V and a capacity of 10A ⁇ h to 20A ⁇ h.
  • the storage battery is a lithium battery.
  • the fan runs and forms forced convection with the impeller of the wind power device to convert wind energy into electrical energy and store it in a battery.
  • the power supply on the grid side was cut off, and the stored power in the battery was used to keep the signal receiving device and some of its components in the machine always active.
  • the power consumption in the standby state or the shutdown state is the electrical energy stored in the battery. Since the power in the battery is converted by wind energy, the power consumption of the air conditioner in standby or shutdown is 0.
  • Fig. 3 shows an alternative embodiment of the air conditioner.
  • the air conditioner includes the wind power device 1 according to any one of the foregoing embodiments, and further includes a signal receiving device 60 for receiving a control signal.
  • the signal receiving device 60 receives a standby or shutdown signal, The signal receiving device is powered by the battery 50 of the wind power device or the AC power supply on the power grid 70 side.
  • the components that need to be activated when the air conditioner is in standby or off state are also powered by the battery 50 of the wind power device or the AC power supply on the power grid 70 side. Component power is off.
  • the air conditioner further includes a second power conversion circuit 45 for converting the AC voltage on the power grid 70 side or the DC voltage of the battery 50 into the power supply voltage of the signal receiving device 60 or the component 66 that remains activated. .
  • the wind power device of the air conditioner converts wind energy into electrical energy and stores it in a battery; when the air conditioner is in a standby or off state, the signal receiving device and components that need to remain activated are cut off from the power supply side and the battery is used
  • the power stored in the medium is used to keep the signal receiving device and some components always active, and the other components of the air conditioner are powered off.
  • the power consumption of the air conditioner in the standby state and the off state is the electrical energy stored in the battery, and the power consumption components include only the signal receiving device and the components that must be kept active.
  • the other components of the air conditioner are in a power off state.
  • the electrical energy in the air conditioner is converted from the wind energy output by the fan of the air conditioner, so the power consumption of the air conditioner in the standby or off state is 0.
  • Fig. 4 shows another alternative embodiment of the air conditioner.
  • the air conditioner further includes a first control unit 90 for detecting whether the remaining battery power is greater than or equal to a first threshold value when the signal receiving device receives a standby or shutdown signal. Greater than or equal to the first threshold, the control switching circuit 80 gates the battery 50, the signal receiving device 60 and the components 66 to be activated are powered by the battery. If the remaining battery power is less than the first threshold, the control switching circuit selects the power grid The 70-side AC power source, the air conditioner standby or off-state signal receiving device 60, and the components 66 that need to remain activated are powered by the AC power source.
  • the first threshold value is 20% of the total power of the battery.
  • the first control unit detects the remaining power of the battery every fixed time interval.
  • the first control unit detects the remaining battery power at a first time interval.
  • the first preset condition is that the remaining battery power is greater than or equal to 70% of the total battery power.
  • the first time interval is 1 to 2 hours.
  • the first control unit detects the remaining battery power at a second time interval.
  • the second preset condition is that the remaining battery power is 50-60% of the total battery power.
  • the second time interval is 0.5 to 1 hour.
  • the first control unit detects the remaining battery power at a third time interval.
  • the third preset condition is that the remaining battery power is 40-50% of the total battery power.
  • the third time interval is 10-20 minutes.
  • the first control unit detects the remaining battery power at a fourth time interval.
  • the fourth preset condition is that the remaining battery power is 30-40% of the total battery power.
  • the fourth time interval is 5 to 10 minutes.
  • the first control unit detects the remaining battery power at a fifth time interval.
  • the fifth preset condition is that the remaining battery power is 20-30% of the total battery power.
  • the fifth time interval is 1 to 2 minutes.
  • the first control unit detects the remaining battery power at a sixth time interval.
  • the sixth preset condition is that the remaining battery power is 10-20% of the total battery power.
  • the sixth time interval is 1 minute.
  • the first control unit controls the switching circuit to gate the grid-side AC power.
  • the seventh preset condition is that the residual current of the battery is 5-10% of the total power of the battery.
  • Fig. 5 shows another alternative embodiment of the air conditioner.
  • the switching circuit 80 includes a reverse driver 82 and a relay 81 for switching between a battery power supply line and a grid-side power supply line.
  • the signal receiving device 60 After receiving the standby signal or the shutdown signal, the signal receiving device 60 outputs a control signal to the first control unit.
  • the first control unit controls the output signal of the reverse driver 82 according to the remaining power of the battery 50, and the output signal of the reverse driver 82 controls The relay 81 operates to switch between the grid-side power supply line and the battery power supply line.
  • FIG. 6 shows an alternative embodiment of the control method.
  • the control method is used to control the air conditioner described in any one of the above embodiments.
  • the method includes: step 101, receiving a standby or shutdown signal; step 102, detecting whether the remaining battery power is greater than or equal to a first threshold value; step 103, if the remaining battery power is greater than or equal to the first threshold value, controlling the switching circuit to select The battery, the air conditioner standby or off state signal receiving device and the components that need to be activated are powered by the battery; step 104, if the remaining battery power is less than the first threshold value, the control switching circuit selects the grid-side AC power and the air conditioner is on standby Or the off-state signal receiving device and the components that need to be activated are powered by AC power.
  • the first threshold value is 20% of the total power of the battery.
  • the method further includes: when the air conditioner is in a standby or off state signal receiving device and components that need to remain activated are powered by the battery, detecting the remaining power of the battery every fixed time interval.
  • the air conditioner is in a standby or off state signal receiving device and components that need to remain activated are powered by the battery, detecting the remaining power of the battery every fixed time interval.
  • the method further includes: when the remaining battery power meets a first preset condition, detecting the remaining battery power at a first time interval.
  • the first preset condition is that the remaining battery power is greater than or equal to 70% of the total battery power.
  • the first time interval is 1 to 2 hours.
  • the method further includes: when the remaining battery power meets a second preset condition, detecting the remaining battery power at a second time interval.
  • the second preset condition is that the remaining battery power is 50-60% of the total battery power.
  • the second time interval is 0.5 to 1 hour.
  • the method further includes: when the remaining battery power meets a third preset condition, detecting the remaining battery power at a third time interval.
  • the third preset condition is that the remaining battery power is 40-50% of the total battery power.
  • the third time interval is 10-20 minutes.
  • the method further includes: when the remaining battery power meets a fourth preset condition, detecting the remaining battery power at a fourth time interval.
  • the fourth preset condition is that the remaining battery power is 30-40% of the total battery power.
  • the fourth time interval is 5 to 10 minutes.
  • the method further includes: when the remaining battery power meets a fifth preset condition, detecting the remaining battery power at a fifth time interval.
  • the fifth preset condition is that the remaining battery power is 20-30% of the total battery power.
  • the fifth time interval is 1 to 2 minutes.
  • the method further includes: when the remaining battery power meets a sixth preset condition, detecting the remaining battery power at a sixth time interval.
  • the sixth preset condition is that the remaining battery power is 10-20% of the total battery power.
  • the sixth time interval is 1 minute.
  • the method further includes: when the remaining power of the storage battery satisfies the seventh preset condition, controlling the switching circuit to select the grid-side AC power.
  • the seventh preset condition is that the residual current of the battery is 5-10% of the total power of the battery.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method described above is implemented.
  • the computer-readable storage medium includes a read-only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), a magnetic tape, and an optical storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种风电装置,包括:叶轮(5)、发电机(10)、变电电路和蓄电池;叶轮(5)安装在空调器外机出风栅前面,与发电机(10)转轴相连接;变电电路接收发电机(10)输出的交流电能,并将其变换为蓄电池充电电压;蓄电池存储变电电路输出的直流电能。空调外机启动后外风机运行,与风电装置的叶轮(5)形成强制对流,将风能转换电能并在蓄电池中存储;当空调处于待机和关机状态时,可以使用蓄电池中存储的电量,用来保持及其中的信号接收装置和需要保持激活的部件一直保持激活状态,空调的待机或关机耗电量为零。还涉及一种空调器、控制方法和计算机可读存储介质。

Description

一种风电装置、空调器、控制方法、计算机可读存储介质
本申请基于申请号为201810761252.4、申请日为2018年07月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调器节能技术领域,特别涉及一种风电装置、空调器、控制方法、计算机可读存储介质。
背景技术
目前,对于空调的节能要求越来越高,机器处于待机状态或者关机状态时需要各个部件一直保持激活状态,部件保持激活状态就需要消耗功率。为了降低空调器待机或者关机状态的耗电量,目前的解决方案是减少待机或关机状态时需要保持激活的部件数量,尽量降低待机或者关机状态的功率,但是为了保证在获取开机信号后,空调器能够快速反应,仍然需要机器的一些部件处于激活状态,因此,空调器的待机或者关机功率一般在3~15W左右,空调器的匹数越大,待机功率越高。
待机耗电量=待机功率×待机时间
关机耗电量=关机功率×关机时间
由于空调器全年的待机和关机时间较长,全年估计待机时间为2142h,关机时间为5088h,待机耗电量和关机耗电量还是相对较高。
如何降低空调器的待机功耗或者关机功耗,是目前亟待解决的问题。
发明内容
本发明实施例提供了一种风电装置、空调器、控制方法、计算机可读存储介质,可以降低空调器待机状态耗电量和关机状态耗电量。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种风电装置。
在一些可选实施例中,所述装置包括:叶轮、发电机、第一变电电路和蓄电池;所述叶轮安装在空调器外机出风栅前面,与发电机转轴相连接;所述第一变电电路接收所述发电机输出的交流电能,并将其变换为蓄电池充电电压;蓄电池存储所述第一变电电路输出的直流电能。
根据本发明实施例的第二方面,提供一种空调器。
在一些可选实施例中,所述空调器包括前述任一可选实施例所述的风电装置,还包括用于接收控制信号的信号接收装置,所述信号接收装置由所述蓄电池或者电网供电,所述空调器待机或者关机状态需要保持激活的部件也由所述蓄电池或者电网供电。
根据本发明实施例的第三方面,提供了一种控制方法,用于控制前文任一可选实施例所述的空调器。
在一些可选实施例中,所述方法包括:当接收到待机或者关机信号时,检测蓄电池剩余电量是否大于等于第一门限值;如果蓄电池剩余电量大于等于第一门限值,控制切换电路选通蓄电池给信号接收装置和保持激活的部件供电,并控制空调器其他部件供电断开;如果蓄电池剩余电量小于第一门限值,则控制切换电路选通电网侧交流电源给信号接收装置和保持激活的部件供电,并控制空调器其他部件供电断开。
根据本发明实施例的第四方面,提供一种计算机可读存储介质。
在一些可选实施例中,所述计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被处理器执行时实现前述任一可选实施例所述的控制方法。
本发明实施例提供的技术方案可以包括以下有益效果:
空调器待机状态耗电量和关机状态耗电量为风能发电后储存在蓄电池中的电能,因此,待机状态耗电量为0,提高了空调器的能效等级,减少空调器用电量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是所述风电装置的一个可选实施例的结构示意图;
图2是所述风电装置的一个可选实施例的电路框图;
图3是所述空调器的一个可选实施例的电路框图;
图4是所述空调器的另一个可选实施例的电路框图;
图5是所述空调器的另一个可选实施例的电路框图;
图6是所述控制方法的一个可选实施流程示意图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1示出了风电装置的一个可选实施例的结构。
该可选实施例中,所述风电装置包括叶轮5、发电机10、第一变电电路和蓄电池。所述叶轮5安装在空调器外机出风栅前面,用于吸收所述风机输出的风能。空调器外机还设置有一外置网罩6,网罩6具有一容纳空间,用于安装叶轮5和发电机10,并起到保护作用,防止叶轮5工作时对周围的人员或者物品造成伤害。所述叶轮5与发电机10的转轴相连接,当叶轮5转动时,发电机10输出交流电能。
可选地,所述叶轮转轴与空调器外机风机转轴在同一水平线。采用该实施例,可以保证叶轮尽可能多地吸收风机输出的风能。
可选地,所述叶轮的直径小于或者等于所述风机的直径。
在另一个可选实施例中,所述叶轮的数量为多个,各个叶轮围绕所述空调器外机风机设置。由于风机输出的风能在传输一定距离后就会分散,因此,多个叶轮围绕风机设置,可以最大化的利用风机输出的风能。
可选地,每个叶轮对应一个发电机,多个发电机的输出端通过汇流电路将输出的交流电能汇集。
图2示出了风电装置的一个可选实施例的控制框图。
该可选实施例中,所述风电装置1包括:叶轮5、发电机10、第一变电电路40和蓄电池50;第一变电电路40的输入端接收所述发电机10输出的交流电压,将其转换为蓄电池充电电压,对蓄电池50进行充电;蓄电池50存储第一变电电路40输出的直流电能。
由于发电机10输出的交流电压稳定性较差,而且是交流电压,蓄电池充电电压为直流电压,因此,通过第一变电电路对发电机10的输出电压进行电能变换,将其变换为稳定的蓄电池充电电压。可选地,所述第一变电电路为AC/DC变换器。
可选地,所述蓄电池的电压为12V,容量为10A·h~20A·h。可选地,所述蓄电池为锂电池。
采用上述可选实施例,空调器外机启动后风机运行,与所述风电装置的叶轮形成强制对流,将风能转换为电能并在蓄电池中存储;当空调器处于待机或者关机状态时,可以将电网侧供电切断,开始使用蓄电池中的存储电量,用来保持机器中的信号接收装置和其中一些部件一直保持激活状态。待机状态或关机状态耗电量为蓄电池中储存的电能,由于蓄电池中的电量为风能转化,因此空调器的待机或关机耗电量为0。
图3示出了空调器的一个可选实施例。
该可选实施例中,所述空调器包括前文任一实施例所述的风电装置1,还包括用于接收控制信号的信号接收装置60,当信号接收装置60接收到待机或者关机信号时,所述信号接收装置由风电装置的蓄电池50或者电网70侧交流电源供电,空调器在待机或关机状态需要保持激活的部件也由风电装置的蓄电池50或者电网70侧交流电源供电,空调器的其他部件供电断开。该可选实施例中,所述空调器还包括第二变电电路45,用于将电网70侧的交流电压或蓄电池50的直流电压变换为信号接收装置60 或保持激活的部件66的供电电压。
采用上述可选实施例,空调器的风电装置将风能转换为电能并在蓄电池中存储;当空调器处于待机或关机状态时,信号接收装置和需要保持激活的部件从电网侧供电切断,使用蓄电池中存储电能,用来保持信号接收装置和一些部件一直保持激活状态,空调器的其他部件供电断开。空调器待机状态耗电量和关机状态耗电量为蓄电池中储存的电能,且耗电部件仅包括信号接收装置和必须要保持激活的部件,空调器的其他部件都处于断电状态,由于蓄电池中的电能为空调器外机风机输出的风能转化,因此空调器待机或关机状态耗电量为0。
图4示出了所述空调器的另一个可选实施例。
该可选实施例中,所述空调器还包括第一控制单元90,用于当信号接收装置接收到待机或关机信号时,检测蓄电池剩余电量是否大于等于第一门限值,如果蓄电池剩余电量大于等于第一门限值,控制切换电路80选通蓄电池50,信号接收装置60和需要保持激活的部件66通过蓄电池供电,如果蓄电池剩余电量小于第一门限值,则控制切换电路选通电网70侧交流电源,空调器待机或关机状态信号接收装置60和需要保持激活的部件66由交流电源供电。可选地,第一门限值为蓄电池总电量的20%。
可选地,当空调器待机或关机状态信号接收装置和需要保持激活的部件由蓄电池供电时,所述第一控制单元每固定时间间隔检测蓄电池剩余电量。采用该可选实施例,可以保证空调器待机或关机期间蓄电池剩余电量被有效监控,防止因蓄电池剩余电量耗尽而导致信号接收装置无法接收到开机信号,以及因为断电导致需要保持激活的部件在开机信号到达时无法及时运行。
可选地,当蓄电池剩余电量满足第一预设条件时,所述第一控制单元按照第一时间间隔检测蓄电池剩余电量。可选地,第一预设条件是蓄电池剩余电量大于等于蓄电池总电量的70%。可选地,第一时间间隔是1~2小时。
可选地,当蓄电池剩余电量满足第二预设条件时,所述第一控制单元按照第二时间间隔检测蓄电池剩余电量。可选地,第二预设条件是蓄电池剩余电量为蓄电池总电量的50~60%。可选地,第二时间间隔是0.5~1小时。
可选地,当蓄电池剩余电量满足第三预设条件时,所述第一控制单元按照第三时间间隔检测蓄电池剩余电量。可选地,第三预设条件是蓄电池剩余电量为蓄电池总电量的40~50%。可选地,第三时间间隔是10~20分钟。
可选地,当蓄电池剩余电量满足第四预设条件时,所述第一控制单元按照第四时 间间隔检测蓄电池剩余电量。可选地,第四预设条件是蓄电池剩余电量为蓄电池总电量的30~40%。可选地,第四时间间隔是5~10分钟。
可选地,当蓄电池剩余电量满足第五预设条件,所述第一控制单元按照第五时间间隔检测蓄电池剩余电量。可选地,第五预设条件是蓄电池剩余电量为蓄电池总电量的20~30%。可选地,第五时间间隔是1~2分钟。
可选地,当蓄电池剩余电量满足第六预设条件,所述第一控制单元按照第六时间间隔检测蓄电池剩余电量。可选地,第六预设条件是蓄电池剩余电量为蓄电池总电量的10~20%。可选地,第六时间间隔是1分钟。
可选地,当蓄电池剩余电量满足第七预设条件,所述第一控制单元控制切换电路选通电网侧交流电源。可选地,第七预设条件是蓄电池剩余电流为蓄电池总电量的5~10%。
图5示出了所述空调器的另一个可选实施例。
该可选实施例中,所述切换电路80包括反向驱动器82和继电器81,用于在蓄电池供电线路和电网侧供电线路之间切换。所述信号接收装置60接收到待机信号或者关机信号后,输出控制信号到第一控制单元,第一控制单元根据蓄电池50剩余电量控制反向驱动器82的输出信号,反向驱动器82的输出信号控制继电器81动作,在电网侧供电线路和蓄电池供电线路之间切换。
图6示出了所述控制方法的一个可选实施例。
该可选实施例中,所述控制方法用于控制上文任一实施例所述的空调器。所述方法包括:步骤101,接收到待机或关机信号;步骤102,检测蓄电池剩余电量是否大于等于第一门限值;步骤103,如果蓄电池剩余电量大于等于第一门限值,控制切换电路选通蓄电池,空调器待机或关机状态信号接收装置和需要保持激活的部件通过蓄电池供电;步骤104,如果蓄电池剩余电量小于第一门限值,则控制切换电路选通电网侧交流电源,空调器待机或关机状态信号接收装置和需要保持激活的部件由交流电源供电。可选地,第一门限值为蓄电池总电量的20%。
可选地,所述方法还包括:当空调器待机或关机状态信号接收装置和需要保持激活的部件由蓄电池供电时,每固定时间间隔检测蓄电池剩余电量。采用该可选实施例,可以保证空调器关机期间蓄电池剩余电量被有效监控,防止因蓄电池剩余电量耗尽而导致信号接收装置无法接收到开机信号,以及因为断电导致需要保持激活的部件在开机信号到达时无法及时运行。
可选地,所述方法还包括:当蓄电池剩余电量满足第一预设条件时,按照第一时间间隔检测蓄电池剩余电量。可选地,第一预设条件是蓄电池剩余电量大于等于蓄电池总电量的70%。可选地,第一时间间隔是1~2小时。
可选地,所述方法还包括:当蓄电池剩余电量满足第二预设条件时,按照第二时间间隔检测蓄电池剩余电量。可选地,第二预设条件是蓄电池剩余电量为蓄电池总电量的50~60%。可选地,第二时间间隔是0.5~1小时。
可选地,所述方法还包括:当蓄电池剩余电量满足第三预设条件时,按照第三时间间隔检测蓄电池剩余电量。可选地,第三预设条件是蓄电池剩余电量为蓄电池总电量的40~50%。可选地,第三时间间隔是10~20分钟。
可选地,所述方法还包括:当蓄电池剩余电量满足第四预设条件时,按照第四时间间隔检测蓄电池剩余电量。可选地,第四预设条件是蓄电池剩余电量为蓄电池总电量的30~40%。可选地,第四时间间隔是5~10分钟。
可选地,所述方法还包括:当蓄电池剩余电量满足第五预设条件,按照第五时间间隔检测蓄电池剩余电量。可选地,第五预设条件是蓄电池剩余电量为蓄电池总电量的20~30%。可选地,第五时间间隔是1~2分钟。
可选地,所述方法还包括:当蓄电池剩余电量满足第六预设条件,按照第六时间间隔检测蓄电池剩余电量。可选地,第六预设条件是蓄电池剩余电量为蓄电池总电量的10~20%。可选地,第六时间间隔是1分钟。
可选地,所述方法还包括:当蓄电池剩余电量满足第七预设条件,控制切换电路选通电网侧交流电源。可选地,第七预设条件是蓄电池剩余电流为蓄电池总电量的5~10%。
在一些可选实施例中,提出一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序被处理器执行时是实现前文所述的方法。上述计算机可读存储介质包括只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁带和光存储设备等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。所属技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和 简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种风电装置,其特征在于,包括:叶轮、发电机、第一变电电路和蓄电池;
    所述叶轮安装在空调器外机出风栅前面,与发电机转轴相连接;
    所述第一变电电路接收所述发电机输出的交流电能,并将其变换为蓄电池充电电压;
    蓄电池存储所述第一变电电路输出的直流电能。
  2. 如权利要求1所述的装置,其特征在于,所述叶轮转轴与空调器外机风机转轴在同一水平线。
  3. 如权利要求1所述的装置,其特征在于,所述叶轮的数量为多个,各个叶轮围绕所述空调器外机风机设置。
  4. 一种空调器,其特征在于,包括权利要求1至3任一项所述的风电装置,还包括用于接收控制信号的信号接收装置,所述信号接收装置由所述蓄电池或者电网供电,所述空调器待机或者关机状态需要保持激活的部件也由所述蓄电池或者电网供电。
  5. 如权利要求4所述的空调器,其特征在于,还包括第一控制单元,用于当信号接收装置接收到待机或关机信号时,检测蓄电池剩余电量是否大于等于第一门限值,如果蓄电池剩余电量大于等于第一门限值,控制切换电路选通蓄电池给信号接收装置和保持激活的部件供电,并控制空调器其他部件供电断开;如果蓄电池剩余电量小于第一门限值,则控制切换电路选通电网侧交流电源给信号接收装置和保持激活的部件供电,并控制空调器其他部件供电断开。
  6. 如权利要求5所述的空调器,其特征在于,当空调器待机或关机状态由蓄电池供电时,所述第一控制单元每固定时间间隔检测蓄电池剩余电量。
  7. 一种控制方法,用于控制权利要求4至6任一项所述的空调器,其特征在于,包括:当接收到待机或者关机信号时,检测蓄电池剩余电量是否大于等于第一门限值;
    如果蓄电池剩余电量大于等于第一门限值,控制切换电路选通蓄电池给信号接收装置和保持激活的部件供电,并控制空调器其他部件供电断开;
    如果蓄电池剩余电量小于第一门限值,则控制切换电路选通电网侧交流电源给信号接收装置和保持激活的部件供电,并控制空调器其他部件供电断开。
  8. 如权利要求7所述的方法,其特征在于,还包括:当空调器待机或关机状态由蓄电池供电时,每固定时间间隔检测蓄电池剩余电量。
  9. 如权利要求8所述的方法,其特征在于,还包括:当蓄电池剩余电量满足第一预设条件时,按照第一时间间隔检测蓄电池剩余电量。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,当所述计算机程序被处理器执行时实现如权利要求7至9任一项所述的方法。
PCT/CN2018/117453 2018-07-12 2018-11-26 一种风电装置、空调器、控制方法、计算机可读存储介质 WO2020010781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18925900.5A EP3822550A1 (en) 2018-07-12 2018-11-26 Wind power device, air conditioner, control method and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810761252.4 2018-07-12
CN201810761252.4A CN110779170A (zh) 2018-07-12 2018-07-12 一种风电装置、空调器、控制方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020010781A1 true WO2020010781A1 (zh) 2020-01-16

Family

ID=69142163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117453 WO2020010781A1 (zh) 2018-07-12 2018-11-26 一种风电装置、空调器、控制方法、计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP3822550A1 (zh)
CN (1) CN110779170A (zh)
WO (1) WO2020010781A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067401A (zh) * 2021-03-25 2021-07-02 南方电网电力科技股份有限公司 一种带储能装置的超导风机控制方法及装置
CN114738932A (zh) * 2022-03-28 2022-07-12 青岛海尔空调器有限总公司 一种压缩机预热控制方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473417A (zh) * 2020-04-17 2020-07-31 宁波奥克斯电气股份有限公司 一种空调挡风板、空调挡风板控制方法及空调器
CN113465132B (zh) * 2021-06-25 2023-06-23 Tcl空调器(中山)有限公司 空调器的启动控制方法、装置、空调器和存储介质
CN117267921A (zh) * 2022-06-13 2023-12-22 青岛海尔空调器有限总公司 空调的供电控制方法、装置、电子设备及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127446A (zh) * 2007-07-31 2008-02-20 陈施宇 一种风力发电的方法
US20110140511A1 (en) * 2010-10-25 2011-06-16 Einar Vaughn Larsen Electric power transmission system for wind turbine and wind turbine farm and method for operating same
CN102518563A (zh) * 2011-12-23 2012-06-27 浙江大学 一种发电装置
EP2565443A1 (en) * 2011-09-05 2013-03-06 XEMC Darwind B.V. Generating auxiliary power for a wind turbine
CN103234621A (zh) * 2013-04-19 2013-08-07 国电联合动力技术有限公司 一种基于动能电池的风电叶片无线振动监测装置及方法
CN104242369A (zh) * 2013-06-24 2014-12-24 湖南心澄新能源研究所 新型多能源多模式智能不间断电源
CN104654643A (zh) * 2015-01-26 2015-05-27 珠海格力电器股份有限公司 空调系统
CN105650763A (zh) * 2016-01-19 2016-06-08 珠海格力电器股份有限公司 一种空调室外机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003223A (zh) * 2010-11-04 2011-04-06 Tcl空调器(中山)有限公司 空调器风力发电装置及其供电方法
CN102012076B (zh) * 2010-11-09 2013-03-27 广东美的电器股份有限公司 以蓄电池作为辅助能源的空调系统的控制方法
CN103925165A (zh) * 2014-04-09 2014-07-16 天津网士通科技有限公司 一种利用空调室外机排风口发电的风力发电装置
CN204534413U (zh) * 2015-04-13 2015-08-05 江阴职业技术学院 一种采用风光能互补led路灯的照明系统
CN107763801A (zh) * 2017-09-06 2018-03-06 珠海格力电器股份有限公司 一种空调排风发电控制方法、装置、存储介质及空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127446A (zh) * 2007-07-31 2008-02-20 陈施宇 一种风力发电的方法
US20110140511A1 (en) * 2010-10-25 2011-06-16 Einar Vaughn Larsen Electric power transmission system for wind turbine and wind turbine farm and method for operating same
EP2565443A1 (en) * 2011-09-05 2013-03-06 XEMC Darwind B.V. Generating auxiliary power for a wind turbine
CN102518563A (zh) * 2011-12-23 2012-06-27 浙江大学 一种发电装置
CN103234621A (zh) * 2013-04-19 2013-08-07 国电联合动力技术有限公司 一种基于动能电池的风电叶片无线振动监测装置及方法
CN104242369A (zh) * 2013-06-24 2014-12-24 湖南心澄新能源研究所 新型多能源多模式智能不间断电源
CN104654643A (zh) * 2015-01-26 2015-05-27 珠海格力电器股份有限公司 空调系统
CN105650763A (zh) * 2016-01-19 2016-06-08 珠海格力电器股份有限公司 一种空调室外机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067401A (zh) * 2021-03-25 2021-07-02 南方电网电力科技股份有限公司 一种带储能装置的超导风机控制方法及装置
CN114738932A (zh) * 2022-03-28 2022-07-12 青岛海尔空调器有限总公司 一种压缩机预热控制方法及装置

Also Published As

Publication number Publication date
EP3822550A1 (en) 2021-05-19
CN110779170A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2020010781A1 (zh) 一种风电装置、空调器、控制方法、计算机可读存储介质
CN101630918B (zh) 节能的模块化高压直流电源系统
CN104197469A (zh) 一种太阳能空调的控制方法
JP2007028735A (ja) 分散電源システム及び方法
CN110661278A (zh) 储能空调系统及其控制方法和控制装置
WO2020010771A1 (zh) 一种光电装置、空调器、控制方法、计算机可读存储介质
EP3920360A1 (en) Photovoltaic air conditioning system starting method, controller, and photovoltaic air conditioning system
CN109494788B (zh) 光伏电器系统及其电压保护值控制方法、装置
JP2015050897A (ja) パワーコンディショナ
WO2023050793A1 (zh) 空调系统供电控制方法、装置及空调系统
CN114234307B (zh) 太阳能空调及其控制方法、电子设备和存储介质
CN114838459A (zh) 一种空调控制方法及装置
CN109361310A (zh) 残余电荷泄放电路、换流器和空调器
CN114893873A (zh) 空调的控制方法、装置及空调
CN204349852U (zh) 一种风力发电机极限保护组件的控制装置
CN106787644B (zh) 电源管理系统及其电力供应方法
JP2017070063A (ja) 電力制御装置
US9772859B2 (en) Wake-up judgment apparatus for generator
CN113465132B (zh) 空调器的启动控制方法、装置、空调器和存储介质
CN112671086B (zh) 一种轴承的供电控制装置、方法和磁悬浮系统
CN204578430U (zh) 一种用于直流家电的太阳能光伏发电系统
CN210167988U (zh) 控制器保护电路
CN220366471U (zh) 一种储能空调室内机
CN202652101U (zh) 可带动冰柜的小型太阳能电源逆变器
CN219329709U (zh) 一种智能快速门控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE