WO2022033142A1 - 空调系统及其控制方法和控制选择器 - Google Patents

空调系统及其控制方法和控制选择器 Download PDF

Info

Publication number
WO2022033142A1
WO2022033142A1 PCT/CN2021/098567 CN2021098567W WO2022033142A1 WO 2022033142 A1 WO2022033142 A1 WO 2022033142A1 CN 2021098567 W CN2021098567 W CN 2021098567W WO 2022033142 A1 WO2022033142 A1 WO 2022033142A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
solar photovoltaic
photovoltaic panel
grid
parameter information
Prior art date
Application number
PCT/CN2021/098567
Other languages
English (en)
French (fr)
Inventor
黄颂儒
黄猛
姜颖异
党培育
郭泳颖
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022033142A1 publication Critical patent/WO2022033142A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to the field of air conditioning systems, and in particular, to an air conditioning system, a control method thereof, and a control selector.
  • Optical storage air conditioning system is an air conditioning application system that can collect and consume new energy. Compared with the air-conditioning system powered by the mains, the optical storage air-conditioning system is more energy-saving and environmentally friendly.
  • an air conditioning system comprising: a DC bus; an AC grid, a solar photovoltaic panel, a wind turbine, and an air conditioner electrically connected to the DC bus, wherein the AC grid, all the The solar photovoltaic panels and the wind generator provide electrical energy to the DC bus; a DC DC control selector is configured to collect the DC bus, the AC grid, the solar photovoltaic panels and the wind power generation operating parameter information of the machine, and configure the operating states of the AC power grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information, so that the voltage provided by the DC bus is within the required level of the air conditioner. within the voltage range.
  • the DC control selector is configured to detect whether the AC power grid is in a normal state according to operating parameter information of the AC power grid, and select the AC power grid if the AC power grid is in a normal state Connect to the DC bus; select the wind turbine or solar photovoltaic panel to be connected to the DC bus when the AC power grid is in an abnormal state.
  • the DC control selector is configured to detect whether the DC bus is in a normal state according to the operation parameter information of the DC bus after the AC grid is connected to the DC bus, and then the DC bus is in a normal state.
  • the DC bus is in a normal state, the solar photovoltaic panel, the wind generator and the air conditioner are connected to the DC bus.
  • the DC control selector is configured to detect the DC bus according to operating parameter information of the DC bus after one of the wind turbine or the solar photovoltaic panel is connected to the DC bus. Whether the DC bus is in a normal state, when the DC bus is in a normal state, connect the solar photovoltaic panel or the other of the wind turbines and the air conditioner to the DC bus.
  • the air conditioning system further includes an unloading system electrically connected to the DC bus; the DC control selector is configured to connect the unloading system if the DC bus is in an abnormal state into the DC bus to maintain the voltage of the DC bus within a normal range.
  • the DC control selector is configured to, when the DC bus is in an abnormal state, according to the operating parameter information of the AC grid, the operating parameter information of the solar photovoltaic panel and all The operating parameter information of the wind power generator determines the faulty equipment, and cuts off the electrical connection between the faulty equipment and the DC bus.
  • the DC control selector is configured to preferentially select the solar photovoltaic panel to be connected to the DC bus during a preset first time period, and preferentially select the DC bus during a preset second time period
  • the wind generator is connected to the DC bus.
  • the air conditioning system further includes an energy storage battery electrically connected to the DC bus and configured to exchange electrical energy with the DC bus.
  • the air conditioning system further includes a backup load port electrically connected to the DC bus and configured to be electrically connected to the DC load.
  • a method for controlling an air-conditioning system comprising: collecting operating parameter information of a DC bus, an AC grid, a solar photovoltaic panel, and a wind turbine in the air-conditioning system, wherein the an alternating current grid, the solar photovoltaic panel, the wind generator and the air conditioner are electrically connected to the direct current bus, and the alternating current grid, the solar photovoltaic panel and the wind generator provide electrical energy to the direct current bus;
  • the operating states of the alternating current grid, the solar photovoltaic cell panel and the wind turbine are configured according to the operating parameter information, so that the voltage provided by the direct current bus is within the voltage range required by the air conditioner.
  • configuring the operating states of the AC power grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information includes: detecting the AC power grid according to the operating parameter information of the AC power grid Whether the power grid is normal; when the AC grid is in a normal state, select the AC grid to connect to the DC bus; when the AC grid is in an abnormal state, select the wind turbine or solar photovoltaic The battery board is connected to the DC bus.
  • configuring the operating states of the AC power grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information further includes: after the AC power grid is connected to the DC bus , detect whether the DC bus is normal according to the operating parameter information of the DC bus; when the DC bus is in a normal state, connect the solar photovoltaic panel, the wind turbine and the air conditioner to the power station the DC bus.
  • configuring the operating states of the AC power grid, the solar photovoltaic cell panel and the wind turbine according to the operating parameter information further includes: in the wind turbine or the solar photovoltaic cell After one of the panels is connected to the DC bus, check whether the DC bus is in a normal state according to the operating parameter information of the DC bus; if the DC bus is in a normal state, connect the solar photovoltaic panel Or the other one of the wind generators and the air conditioner are connected to the DC bus.
  • configuring the operating states of the AC power grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information further includes: when the DC bus is in an abnormal state , connecting the unloading system to the DC bus to maintain the voltage of the DC bus within a normal range, wherein the unloading system is electrically connected to the DC bus.
  • configuring the operating states of the AC power grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information further includes: when the DC bus is in an abnormal state , according to the operating parameter information of the AC power grid, the operating parameter information of the solar photovoltaic panel and the operating parameter information of the wind turbine to determine the faulty equipment; cut off the faulty equipment and the DC bus electrical connection.
  • selecting the wind turbine or the solar photovoltaic panel to be connected to the DC bus includes: preferentially selecting the solar photovoltaic panel to be connected to the DC bus during a preset first time period; The set second time period is preferentially selected to connect the wind turbine to the DC bus.
  • a DC control selector comprising: a memory configured to store instructions; a processor coupled to the memory, the processor configured to execute any of the above-mentioned instructions based on the instructions stored in the memory The method of an embodiment.
  • a non-transitory computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, any of the foregoing embodiments is implemented the method described.
  • FIG. 1 is a schematic structural diagram of an air conditioning system according to an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of an air conditioning system according to another embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of a control method of an air conditioning system when the AC grid is normal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a control method of an air conditioning system when an AC power grid is faulty according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for controlling an air conditioning system according to an embodiment of the disclosure
  • FIG. 6 is a schematic structural diagram of a DC control selector according to an embodiment of the present disclosure.
  • the present disclosure provides an air conditioning system capable of maintaining the voltage value of the DC bus within a normal range.
  • the air conditioning system includes a DC bus, an AC grid electrically connected to the DC bus for supplying electrical energy to the DC bus, solar photovoltaic panels, wind turbines and air conditioners, the AC grid, solar photovoltaic panels and wind power generation
  • the machine is used to supply power to the DC bus.
  • the air conditioning system also includes a DC (Direct Current, direct current) control selector, which is used to collect the operating parameter information of the DC bus, AC grid, solar photovoltaic panels and wind turbines, and configure the AC grid and solar photovoltaic panels according to the operating parameter information. and the operating state of the wind turbine so that the voltage provided by the DC bus is within the voltage range required by the air conditioner.
  • the present disclosure reduces the dependence of the air conditioner and other loads on the AC power grid by converting the light energy and wind energy into electric energy and providing it to the DC bus, air conditioner and other loads, and the system operation is more stable and reliable.
  • the air conditioning system includes a DC bus, and an AC grid, solar photovoltaic panels, wind turbines, energy storage batteries, unloading systems, air conditioners, and backup load ports electrically connected to the DC bus.
  • Solar photovoltaic panels and wind turbines are used to provide electrical energy to the DC bus
  • AC power grids and energy storage batteries are used to provide electrical energy to the DC bus or obtain power from the DC bus.
  • the air conditioning system, unloading system, and backup load port are used for the consumption of electric energy.
  • the AC grid is electrically connected to the DC bus through a first converter and a first switch K1, and the first converter is used to convert the AC voltage of the AC grid into a DC voltage and transmit it to the DC bus.
  • the first converter is a bidirectional AC (Alternating Current, alternating current)/DC converter, which realizes bidirectional circulation of energy between the DC bus and the AC grid.
  • the first converter transmits the electric energy of the DC bus to the AC grid. This situation is generally used when at least one of the solar photovoltaic panels or the wind turbine generates more power than the air conditioner and other loads require, and the first converter feeds back the excess power to the AC grid.
  • the first converter transmits the electrical energy of the AC grid to the DC bus to provide the air conditioner and other loads with electrical energy.
  • This situation is usually used when the electric energy generated by at least one of the solar photovoltaic panels or the wind turbine cannot meet the electric energy required by the air conditioner and other loads, and the alternating current grid supplements the electric energy to the direct current bus.
  • the solar photovoltaic panel is used to convert light energy into electrical energy, and the solar photovoltaic panel is electrically connected to the DC bus through the second converter and the second switch K2, and the second converter transmits the electrical energy to the DC bus.
  • the second converter is a unidirectional DC/DC converter.
  • the wind generator is used for converting wind energy into electrical energy, and the wind generator is electrically connected to the DC bus through a third converter and a third switch K3, and the third converter transmits the electrical energy to the DC bus.
  • the third converter is a unidirectional AC/DC converter.
  • the energy storage battery is electrically connected to the DC bus through a fourth converter and a fourth switch K4, and the fourth converter is a bidirectional DC/DC converter.
  • the energy storage battery is used to exchange electrical energy with the DC bus for backup.
  • the DC control selector activates the energy storage battery to supply power to the DC bus.
  • the power in the energy storage battery is used up, when the electric energy generated by at least one of the solar photovoltaic panels or wind turbines is sufficient or the AC power grid is operating normally, the energy storage battery is charged by the DC bus, and the energy storage battery is fully charged later for backup.
  • the air conditioner is electrically connected to the DC bus through a fifth converter and a fifth switch K5, and the fifth converter is a unidirectional AC/DC converter for converting the DC voltage of the DC bus into the AC voltage required by the air conditioner.
  • the unloading system is electrically connected to the DC bus through the sixth switch K6, and is used to unload in time to stabilize the DC bus voltage when an overvoltage fault occurs on the DC bus.
  • the DC bus is also electrically connected with a backup load port for electrically connecting the DC load.
  • the backup load port is electrically connected to the DC bus by being electrically connected to the seventh switch K7, so as to be used as a backup for an external DC load.
  • the above-mentioned first switch K1 to seventh switch K7 are controlled by the DC control selector.
  • the DC control selector includes at least one of a voltage collector or a current collector, and the DC control selector is respectively connected to the DC bus, the first converter, the second converter, the third converter, and the fourth converter. Electrically connected to collect at least one of the voltage or current of the DC bus, the first converter, the second converter, the third converter, and the fourth converter, so as to determine the DC bus, AC grid, solar energy Whether at least one of the voltage or current of the photovoltaic panel and the wind turbine is within the normal range, and it is judged whether at least one of the voltage, current or power of the energy storage battery is within the preset range.
  • the DC control selector detects whether the AC grid is normal, and if so, selects the AC grid to connect to the DC bus. If not, select wind turbines and/or solar photovoltaic panels to connect to the DC bus. In the case of failure of the AC power grid, one of the wind turbines or solar photovoltaic panels is preferentially connected to the DC bus, and the voltage of the controllable DC bus of the third converter is slowly rising, starting from 0V to the DC bus. Slow charging avoids the impact on the DC bus and its load, further improving the stability of the system operation.
  • the voltage and/or current information of the AC grid can be compared with a preset voltage and/or current or with the voltage and/or current required by the air conditioning system and other loads. If the voltage and/or current of the AC grid is within the preset voltage and/or current range, it is judged that the AC grid is working normally. If the voltage and/or current of the AC grid is not within the preset voltage and/or current range, it is determined that the AC grid is faulty. In other embodiments, specifically, it can be determined whether the AC power grid works normally by detecting the frequency, amplitude, and phase of the voltage and/or current of the AC power grid.
  • the DC bus After the AC grid is connected to the DC bus, check whether the DC bus is normal. If so, connect the solar photovoltaic panels, wind turbines, and air conditioning systems to the bus. Or after the wind turbine is connected to the DC bus, check whether the DC bus is normal, if so, connect the solar photovoltaic panel and the air conditioning system to the bus. It should be noted that, to detect whether the DC bus is normal, the voltage and/or current information of the DC bus can be compared with the preset voltage and/or current or with the voltage and/or current required by the air conditioning system and other loads.
  • the DC bus is within the preset voltage and/or current range or within the range of voltage and/or current required by the air conditioning system and other loads, it is judged that the DC bus is working normally. If the voltage and/or current of the DC bus is not within the preset voltage and/or current range or within the range of voltage and/or current required by the air conditioning system and other loads, it is determined that the DC bus is faulty.
  • the voltage of the DC bus is detected. If the voltage of the DC bus is too high, the unloading system is connected to the DC bus to unload it to maintain the DC bus. voltage to the normal range. At the same time, the DC control selector is based on the voltage and/ Or current, determine the faulty equipment, and cut off the faulty equipment.
  • the method for judging the equipment where the fault is located is also by detecting the voltage and/or current information of the corresponding equipment and comparing it with the preset voltage and/or current or Compare with the voltage and/or current required by the air conditioning system and other loads. If the voltage and/or current of the corresponding device is within the preset voltage and/or current range, it is determined that the device is working normally. If the voltage and/or current of the corresponding device is not within the preset voltage and/or current range, it is determined that the device is faulty.
  • the unloading system is used to relieve the DC bus voltage and cut off the equipment where the fault is located, so as to maintain the DC bus voltage in the normal range, and further improve the stability of the system operation.
  • the DC control selector is based on the AC grid and the first converter, the solar photovoltaic panel and the second converter, the wind turbine and the third converter, the energy storage battery and the fourth converter
  • the voltage and/or current and/or power of the device can be used to determine whether the AC power grid, solar photovoltaic panels, and wind turbines are faulty. Access to the DC bus for power supply. If the voltage and/or current and/or power of the energy storage battery is lower than the preset value, the DC bus is controlled to charge the energy storage battery.
  • the DC control selector is further used to preferentially select one of the solar photovoltaic panel and the wind turbine to connect to the DC bus in different time periods. For example, solar photovoltaic panels are selected to be connected to the DC bus during the day, and wind turbines are selected to be connected to the DC bus in the morning and at night.
  • the air conditioning system further includes a wind-solar hybrid controller that is communicatively connected to the DC selection controller, and the wind-solar hybrid controller is also electrically connected to the second converter and the third converter, respectively. , for receiving the voltage and/or current information of the second and third converters, and coordinating solar photovoltaic panels and wind power generation according to the voltage and/or current information of the second and third converters
  • the machines are used in conjunction with each other to access the DC bus.
  • the air conditioning system is further provided with a wind sensor and a light sensor electrically connected to the DC selection controller.
  • the wind sensor is used to detect the wind strength in the environment, and transmit the wind strength information in the environment to the DC control selector.
  • the light sensor is used to detect the light intensity in the environment, and transmit the light intensity information in the environment to the DC control selector.
  • the DC control selector compares the light intensity in the environment with the preset light intensity. When the light intensity in the environment is greater than the preset light intensity, the solar photovoltaic panel is preferably activated to supply power to the DC bus.
  • the DC control selector compares the wind strength in the environment with the preset wind strength, and when the wind strength in the environment is greater than the preset wind strength, it is preferable to start the wind generator to provide electrical energy to the DC bus.
  • the solar photovoltaic panel and the wind generator are selected to provide electrical energy to the DC bus at the same time. At this time, it is detected whether the power of the energy storage battery is insufficient. If the power of the energy storage battery is insufficient, the DC bus is controlled to charge the energy storage battery. If the power of the energy storage battery is sufficient, the DC bus is controlled to feed back the excess power to the AC grid.
  • the connection status of the solar photovoltaic panel, the wind turbine, the energy storage battery, and the AC power grid is reasonably configured according to the wind intensity and the light intensity, so as to be suitable for different weather environments, and the system can work normally. operation, which further improves the stability of the system operation.
  • the present invention also proposes a control method applied to the above-mentioned air-conditioning system, comprising: Step S1: collecting the electrical information of the DC bus, the AC grid, the solar photovoltaic panel, and the wind turbine; Step S2: Configure the AC grid, solar photovoltaic panels, and wind turbines according to the electrical information, so that the voltage provided by the DC bus is within the voltage range required by the air conditioning system.
  • the electrical information includes voltage and/or current information.
  • step S2 includes:
  • Step S21 Detect whether the AC grid is normal, if yes, select the AC grid to connect to the DC bus (FIG. 3); if not, select the wind turbine or solar photovoltaic panel to connect to the DC bus (FIG. 4).
  • the voltage and/or current information of the AC grid can be compared with a preset voltage and/or current or with the voltage and/or current required by the air conditioning system and other loads. If the voltage and/or current of the AC grid is within the preset voltage and/or current range, it is determined that the AC grid is working normally. If the voltage and/or current of the AC grid is not within the preset voltage and/or current range, it is determined that the AC grid is faulty. In other embodiments, specifically, it can be determined whether the AC power grid works normally by detecting the frequency, amplitude, and phase of the voltage and/or current of the AC power grid.
  • Step S22 Check whether the DC bus is normal, if so, connect the solar photovoltaic panels, wind turbines, and air conditioning systems to the bus or connect the solar photovoltaic panels and the air conditioning system to the DC bus; if the DC bus voltage is too high, then Connect the unloading system to the DC bus to maintain the DC bus voltage to the normal range, determine the faulty equipment, and cut off the faulty equipment.
  • the voltage and/or current information of the DC bus can be compared with the preset voltage and/or current or with the voltage and/or current required by the air conditioning system and other loads. If the voltage and/or current of the DC bus is within the preset voltage and/or current range or within the range of voltage and/or current required by the air conditioning system and other loads, it is judged that the DC bus is working normally. If the voltage and/or current of the DC bus is not within the preset voltage and/or current range or within the range of voltage and/or current required by the air conditioning system and other loads, it is determined that the DC bus is faulty.
  • the method of judging the equipment where the fault is located is also by detecting the voltage and/or current information of the corresponding equipment and comparing it with the preset voltage and/or current or with the air conditioning system and other. The voltage and/or current required by the load is compared. If the voltage and/or current of the corresponding device is within the preset voltage and/or current range, it is determined that the device is working normally. If the voltage and/or current of the corresponding device is not within the preset voltage and/or current range, it is determined that the device is faulty. In other embodiments, specifically, it may be determined whether the device works normally by detecting the frequency, amplitude, and phase of the voltage and/or current of the corresponding device.
  • FIG. 5 is a schematic flowchart of a method for controlling an air conditioning system according to an embodiment of the present disclosure. In some embodiments, the following control methods are performed by the DC control selector.
  • step 501 the operation parameter information of the DC bus, the AC grid, the solar photovoltaic panel and the wind turbine in the air conditioning system is collected.
  • the AC grid, solar photovoltaic panels, wind turbines, and air conditioners are electrically connected to the DC bus, and the AC grid, solar photovoltaic panels, and wind turbines provide electrical energy to the DC bus.
  • step 502 the operating states of the AC grid, the solar photovoltaic panel and the wind turbine are configured according to the operating parameter information, so that the voltage provided by the DC bus is within the voltage range required by the air conditioner.
  • whether the AC power grid is normal is detected according to the operating parameter information of the AC power grid.
  • the AC grid is in a normal state, select the AC grid to connect to the DC bus.
  • the AC power grid is in an abnormal state, choose wind turbines or solar photovoltaic panels to connect to the DC bus.
  • the solar photovoltaic panel is preferentially selected to be connected to the DC bus during the preset first time period, and the wind turbine is preferentially selected to be connected to the DC bus during the preset second time period.
  • solar photovoltaic panels are selected to be connected to the DC bus during the day, and wind turbines are selected to be connected to the DC bus in the morning and at night.
  • configuring the operating states of the AC grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information further includes: after the AC grid is connected to the DC bus, detecting whether the DC bus is normal according to the operating parameter information of the DC bus. When the DC bus is in a normal state, connect the solar photovoltaic panels, wind turbines and air conditioners to the DC bus.
  • configuring the operating states of the AC power grid, the solar photovoltaic panel and the wind turbine according to the operating parameter information further includes: after one of the wind turbine or the solar photovoltaic panel is connected to the DC bus, according to the operation state of the DC bus.
  • the operating parameter information detects whether the DC bus is in a normal state. When the DC bus is in a normal state, connect the other one of the solar photovoltaic panel or the wind turbine, and the air conditioner to the DC bus.
  • an unloading system is connected to the DC bus to maintain the voltage of the DC bus within a normal range, wherein the unloading system is electrically connected to the DC bus.
  • the faulty device when the DC bus is in an abnormal state, the faulty device is determined according to the operating parameter information of the AC power grid, the operating parameter information of the solar photovoltaic panel, and the operating parameter information of the wind turbine, and the cutoff occurs.
  • the electrical connection of the faulty device to the DC bus when the DC bus is in an abnormal state, the faulty device is determined according to the operating parameter information of the AC power grid, the operating parameter information of the solar photovoltaic panel, and the operating parameter information of the wind turbine, and the cutoff occurs.
  • FIG. 6 is a schematic structural diagram of a DC control selector according to another embodiment of the disclosure. As shown in FIG. 6 , the DC control selector includes a memory 61 and a processor 62 .
  • a memory 61 is used to store instructions, and a processor 62 is coupled to the memory 61, and the processor 62 is configured to implement a method as referred to in any of the embodiments of FIG. 5 based on the execution of the instructions stored in the memory.
  • the DC control selector further includes a communication interface 63 for exchanging information with other devices.
  • the DC control selector also includes a bus 64 , and the processor 62 , the communication interface 63 , and the memory 61 communicate with each other through the bus 64 .
  • the memory 61 may include high-speed RAM memory, and may also include non-volatile memory, such as at least one disk memory.
  • the memory 61 may also be a memory array.
  • the storage 61 may also be divided into blocks, and the blocks may be combined into virtual volumes according to certain rules.
  • processor 62 may be a central processing unit CPU, or may be an application specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present disclosure.
  • the present disclosure also relates to a non-transitory computer-readable storage medium, wherein the non-transitory computer-readable storage medium stores computer instructions, and the instructions are executed by a processor to implement the method involved in any of the embodiments in FIG. 5 .
  • the functional unit modules described above may be implemented as a general-purpose processor, a programmable logic controller (Programmable Logic Controller, PLC for short), a digital signal processor ( Digital Signal Processor (referred to as: DSP), Application Specific Integrated Circuit (referred to as: ASIC), Field-Programmable Gate Array (referred to as: FPGA) or other programmable logic devices, discrete gates or transistors Logic devices, discrete hardware components, or any suitable combination thereof.
  • a programmable logic controller Programmable Logic Controller, PLC for short
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the present disclosure has the following advantages:
  • one of the wind turbines or solar photovoltaic panels is preferentially connected to the DC bus, and the voltage of the controllable DC bus of the third converter is slowly rising, starting from 0V to the DC bus. Slow charging avoids the impact on the DC bus and its load, further improving the stability of the system operation.
  • the unloading system By detecting the DC bus voltage, when the DC bus voltage is too high, the unloading system is used to relieve the DC bus voltage and cut off the equipment where the fault is located, so as to maintain the DC bus voltage in the normal range, and further improve the stability of the system operation.
  • connection status of solar photovoltaic panels, wind turbines, energy storage batteries, and AC power grids can be reasonably configured according to wind intensity and light intensity, so that the system can operate normally under different weather conditions, and further Improve the stability of system operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提出一种空调系统及其控制方法和控制选择器,属于空调系统领域。空调系统包括直流母线;电连接于直流母线的交流电网、太阳能光伏电池板、风力发电机和空调,其中交流电网、太阳能光伏电池板和风力发电机被配置为给直流母线提供电能;DC控制选择器,被配置为采集直流母线、交流电网、太阳能光伏电池板和风力发电机的运行参数信息,并根据运行参数信息配置交流电网、太阳能光伏电池板和风力发电机的运行状态,以便直流母线提供的电压处于空调所需的电压范围内。

Description

空调系统及其控制方法和控制选择器
相关申请的交叉引用
本公开是以CN申请号为202010821118.6,申请日为2020年8月14日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调系统领域,特别是涉及一种空调系统及其控制方法和控制选择器。
背景技术
光储空调系统是一种能够采集和消纳新能源的空调应用系统。相比于市电供电的空调系统,光储空调系统更加的节能环保。
发明内容
根据本公开实施例的第一方面,提供一种空调系统,包括:直流母线;电连接于所述直流母线的交流电网、太阳能光伏电池板、风力发电机和空调,其中所述交流电网、所述太阳能光伏电池板和所述风力发电机给所述直流母线提供电能;直流DC控制选择器,被配置为采集所述直流母线、所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行参数信息,并根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态,以便所述直流母线提供的电压处于所述空调所需的电压范围内。
在一些实施例中,所述DC控制选择器被配置为根据所述交流电网的运行参数信息检测所述交流电网是否处于正常状态,在所述交流电网处于正常状态的情况下选择所述交流电网接入所述直流母线;在所述交流电网处于非正常状态的情况下选择所述风力发电机或太阳能光伏电池板接入所述直流母线。
在一些实施例中,所述DC控制选择器被配置为在所述交流电网接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否处于正常状态,在所述直流母线处于正常状态的情况下将所述太阳能光伏电池板、所述风力发电机和所述空调接入所述直流母线。
在一些实施例中,所述DC控制选择器被配置为在所述风力发电机或所述太阳能光伏电池板中的一个接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否处于正常状态,在所述直流母线处于正常状态的情况下将所述太阳能光伏电池板或所述风力发电机中的另一个、以及所述空调接入所述直流母线。
在一些实施例中,空调系统还包括电连接于所述直流母线的卸荷系统;所述DC控制选择器被配置为在所述直流母线处于非正常状态的情况下将所述卸荷系统接入所述直流母线,以维持所述直流母线的电压在正常范围内。
在一些实施例中,所述DC控制选择器被配置为在所述直流母线处于非正常状态的情况下,根据所述交流电网的运行参数信息、所述太阳能光伏电池板的运行参数信息和所述风力发电机的运行参数信息确定出发生故障的设备,并切断所述发生故障的设备与所述直流母线的电连接。
在一些实施例中,所述DC控制选择器被配置为在预设的第一时间段优先选择所述太阳能光伏电池板接入所述直流母线,在预设的第二时间段优先选择所述风力发电机接入所述直流母线。
在一些实施例中,空调系统还包括电连接于所述直流母线的储能电池,被配置为与所述直流母线交换电能。
在一些实施例中,空调系统还包括电连接于所述直流母线的备用负载端口,被配置为与直流负载电连接。
根据本公开实施例的第二方面,提供一种空调系统的控制方法,包括:采集所述空调系统中的直流母线、交流电网、太阳能光伏电池板和风力发电机的运行参数信息,其中所述交流电网、所述太阳能光伏电池板、所述风力发电机和空调与所述直流母线电连接,所述交流电网、所述太阳能光伏电池板和所述风力发电机给所述直流母线提供电能;根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态,以便所述直流母线提供的电压处于所述空调所需的电压范围内。
在一些实施例中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态包括:根据所述交流电网的运行参数信息检测所述交流电网是否正常;在所述交流电网处于正常状态的情况下,选择所述交流电网接入所述直流母线;在所述交流电网处于非正常状态的情况下,选择所述风力发电机或太阳能光伏电池板接入所述直流母线。
在一些实施例中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:在所述交流电网接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否正常;在所述直流母线处于正常状态的情况下,将所述太阳能光伏电池板、所述风力发电机和所述空调接入所述直流母线。
在一些实施例中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:在所述风力发电机或所述太阳能光伏电池板中的一个接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否处于正常状态;在所述直流母线处于正常状态的情况下,将所述太阳能光伏电池板或所述风力发电机中的另一个、以及所述空调接入所述直流母线。
在一些实施例中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:在所述直流母线处于非正常状态的情况下,将卸荷系统接入所述直流母线,以维持所述直流母线的电压在正常范围内,其中所述卸荷系统与所述直流母线电连接。
在一些实施例中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:在所述直流母线处于非正常状态的情况下,根据所述交流电网的运行参数信息、所述太阳能光伏电池板的运行参数信息和所述风力发电机的运行参数信息确定出发生故障的设备;切断所述发生故障的设备与所述直流母线的电连接。
在一些实施例中,选择所述风力发电机或太阳能光伏电池板接入所述直流母线包括:在预设的第一时间段优先选择所述太阳能光伏电池板接入所述直流母线;在预设的第二时间段优先选择所述风力发电机接入所述直流母线。
根据本公开实施例的第三方面,提供一种直流控制选择器,包括:存储器,被配置为存储指令;处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如上述任一实施例所述的方法。
根据本公开实施例的第四方面,提供一种非瞬态计算机可读存储介质,其中,非瞬态计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上述任一实施例所述的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开一个实施例的空调系统的结构示意图;
图2为本公开另一个实施例的空调系统的结构示意图;
图3为本公开一个实施例的空调系统在交流电网正常时的控制方法的示意图;
图4为本公开一个实施例的空调系统在交流电网故障时的控制方法的示意图;
图5为本公开一个实施例的空调系统控制方法的流程示意图;
图6为本公开一个实施例的DC控制选择器的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人注意到,在交流电网发生故障、与交流电网连接的变流器发生故障、或者 直流母线的电压值超过预设门限的情况下,无法维持直流母线的电压值处于正常范围内。
据此,本公开提供一种空调系统,能够维持直流母线的电压值处于正常范围内。
如图1所示,空调系统包括直流母线,电连接于直流母线的用于给直流母线提供电能的交流电网、太阳能光伏电池板、风力发电机和空调,交流电网、太阳能光伏电池板和风力发电机用于给直流母线提供电能。空调系统还包括DC(Direct Current,直流)控制选择器,用于采集直流母线、交流电网、太阳能光伏电池板和风力发电机的运行参数信息,并根据运行参数信息配置交流电网、太阳能光伏电池板和风力发电机的运行状态,以便直流母线提供的电压处于空调所需的电压范围内。本公开通过将光能、风能转换为电能并提供给直流母线、空调及其他负载,减少了空调及其他负载对交流电网的依赖,系统运行更加稳定可靠。
下面对空调系统的各个部分做详细说明。
在一些实施例中,空调系统包括直流母线,以及电连接于直流母线的交流电网、太阳能光伏电池板、风力发电机、储能电池、卸荷系统、空调、备用负载端口。太阳能光伏电池板、风力发电机用于提供电能给直流母线,交流电网、储能电池用于提供电能给直流母线或从直流母线获取电能。空调系统、卸荷系统、备用负载端口用于使用消耗电能。
交流电网通过第一变流器和第一开关K1电连接于直流母线,第一变流器用于将交流电网的交流电压转换为直流电压输送于直流母线上。第一变流器为双向AC(Alternating Current,交流)/DC变流器,实现直流母线与交流电网之间的能量的双向流通。当直流母线的电压高于交流电网的电压时,第一变流器将直流母线的电能输送于交流电网。此情况通常用于太阳能光伏电池板或风力发电机中的至少一个所产生的电能多于空调及其他负载所需电能的情况下,第一变流器把多于的电能反馈给交流电网。当交流电网的电压高于直流母线的电压时,第一变流器将交流电网的电能输送于直流母线进而给空调和其他负载提供电能。此情况通常用于太阳能光伏电池板或风力发电机中的至少一个所产生的电能无法满足空调及其他负载所需电能的情况下,交流电网给直流母线补充电能。
太阳能光伏电池板用于将光能转换为电能,太阳能光伏电池板通过第二变流器和第二开关K2电连接于直流母线,第二变流器将电能输送于直流母线上。第二变流器为单向DC/DC变流器。
风力发电机用于将风能转换为电能,风力发电机通过第三变流器和第三开关K3电连接于直流母线,第三变流器将电能输送于直流母线上。第三变流器为单向AC/DC变流器。
储能电池通过第四变流器和第四开关K4电连接于直流母线,第四变流器为双向DC/DC变流器。储能电池用于与直流母线交换电能,以供备用。当太阳能光伏电池板或风力发电机中的至少一个所产生的电能不足或者交流电网出现故障时,DC控制选择器启动储能电池给直流母线供电。当储能电池中电量用完后,在太阳能光伏电池板或风力发电机中的至少一个所产生的电能充足时或者交流电网正常运行时,用直流母线给储能电池充电,储能电池充满电后以供备用。
空调通过第五变流器和第五开关K5电连接于直流母线,第五变流器为单向AC/DC变流器,用于将直流母线的直流电压转换为空调所需要的交流电压。
卸荷系统通过电连接于第六开关K6电连接于直流母线,用于在直流母线发生过压故障时,及时卸荷以稳定直流母线电压。
直流母线上还电连接有用于电连接直流负载的备用负载端口。备用负载端口通过电连接于第七开关K7电连接于直流母线,以供外接直流负载备用。
上述第一开关K1至第七开关K7受控于DC控制选择器。
DC控制选择器包含有电压采集器或电流采集器中的至少一个,DC控制选择器分别与直流母线、第一变流器、第二变流器、第三变流器、第四变流器电连接,以采集直流母线、第一变流器、第二变流器、第三变流器、第四变流器的电压或电流中的至少一项,以便判断直流母线、交流电网、太阳能光伏电池板、风力发电机的电压或电流中的至少一项是否在正常范围内,以及判断储能电池的电压、电流或电量中的至少一项是否在预设范围内。
如图3-4所示,DC控制选择器检测交流电网是否正常,若是,则选择交流电网接入直流母线。若否,则选择风力发电机及/或太阳能光伏电池板接入直流母线。在交流电网出现故障的情况下,优先选择风力发电机或太阳能光伏电池板其中之一接入直流母线,利用第三变流器可控直流母线的电压缓慢上升的特性,从0V开始给直流母线缓慢充电,避免了对直流母线及其负载的冲击,进一步提升了系统运行的稳定性。需要说明的是,检测交流电网是否正常可以根据交流电网的电压及/或电流信息与预设的电压及/或电流进行比较或者与空调系统及其他负载所需电压及/或电流进行比较。如果交流电网的电压及/或电流在预设的电压及/或电流范围内,则判断交流电网工作 正常。如果交流电网的电压及/或电流没有在预设的电压及/或电流范围内,则判断交流电网出现故障。在其他实施例中,具体地,可以通过检测交流电网的电压及/或电流的频率、幅值、相位来判断交流电网是否工作正常。
在交流电网接入直流母线后,检测直流母线是否正常,若是,则将太阳能光伏电池板、风力发电机、空调系统接入母线。或在风力发电机接入直流母线后,检测直流母线是否正常,若是,则将太阳能光伏电池板、空调系统接入母线。需要说明的是,检测直流母线是否正常可以根据直流母线的电压及/或电流信息与预设的电压及/或电流进行比较或者与空调系统及其他负载所需电压及/或电流进行比较。如果直流母线的电压及/或电流在预设的电压及/或电流的范围内或者在空调系统及其他负载所需电压及/或电流的范围内,则判断直流母线工作正常。如果直流母线的电压及/或电流没有在预设的电压及/或电流的范围内或者没有在空调系统及其他负载所需电压及/或电流的范围内,则判断直流母线出现故障。
在交流电网接入直流母线后或在风力发电机接入直流母线后,检测直流母线的电压,若直流母线的电压过高,则将卸荷系统接入直流母线对其卸荷以维持直流母线电压至正常范围。同时,DC控制选择器根据交流电网及第一变流器、太阳能光伏电池板及第二变流器、风力发电机及第三变流器、储能电池及第四变流器的电压及/或电流,判断出故障所在的设备,并切断故障所在的设备。需要说明的是,同理于上述检测交流电网以及直流母线是否正常,判断故障所在的设备的方法也是通过检测对应设备的电压及/或电流信息并与预设的电压及/或电流进行比较或者与空调系统及其他负载所需电压及/或电流进行比较。如果对应设备的电压及/或电流在预设的电压及/或电流范围内,则判断该设备工作正常。如果对应设备的电压及/或电流没有在预设的电压及/或电流范围内,则判断该设备出现故障。在其他实施例中,具体地,可以通过检测对应设备的电压及/或电流的频率、幅值、相位来判断该设备是否工作正常。通过检测直流母线电压,在直流母线电压过高时,通过卸荷系统对直流母线卸压以及切断故障所在的设备,维持直流母线电压在正常范围,进一步提升了系统运行的稳定性。
在一优选实施例中,DC控制选择器根据交流电网及第一变流器、太阳能光伏电池板及第二变流器、风力发电机及第三变流器、储能电池及第四变流器的电压及/或电流及/或电量,判断出交流电网、太阳能光伏电池板、风力发电机是否故障,若交流电网、太阳能光伏电池板、风力发电机都出现故障,则接入储能电池接入直流母线用以供电。若储能电池的电压及/或电流及/或电量低于预设值,则控制直流母线给储能电 池充电。
在一些实施例中,DC控制选择器还用于在不同的时间段优先选择太阳能光伏电池板、风力发电机之一接入直流母线。例如,在白天选择太阳能光伏电池板接入直流母线,在早晨及夜间选择风力发电机接入直流母线。
如图2所示,在另一实施例中,空调系统还包括通信连接于DC选择控制器的风光互补控制器,风光互补控制器还分别电连接于第二变流器及第三变流器,用于接收第二变流器及第三变流器的电压及/或电流信息,根据第二变流器及第三变流器的电压及/或电流信息协调太阳能光伏电池板与风力发电机相互配合使用接入直流母线。
在一些实施例中,空调系统中还设有电连接于DC选择控制器的风力传感器及光传感器。风力传感器用于检测环境中风力强度,并将环境中风力强度信息传递给DC控制选择器。光传感器用于检测环境中光照强度,并将环境中光照强度信息传递给DC控制选择器。DC控制选择器将环境中光照强度与预设光照强度比较,当环境中光照强度大于预设光照强度时,优选启动太阳能光伏电池板给直流母线供电。DC控制选择器将环境中的风力强度与预设风力强度进行比较,当环境中风力强度大于预设风力强度时,优选启动风力发电机给直流母线提供电能。当环境中光照强度大于预设光照强度且风力强度大于预设风力强度时,同时选择太阳能光伏电池板和风力发电机给直流母线提供电能。此时检测储能电池的电量是否不足,如果储能电池电量不足,则控制直流母线给储能电池充电。如果储能电池电量充足,则控制直流母线将多余的电能反馈给交流电网。当环境中光照强度不大于预设光照强度且风力强度不大于预设风力强度时,检测储能电池电量是否充足。若储能电池电量充足,则控制储能电池给直流母线供电。若储能电池电量不足,则控制交流电网给直流母线供电。本实施例通过设置风力传感器及光传感器,根据风力强度及光照强度合理配置太阳能光伏电池板、风力发电机、储能电池、交流电网的接入状态,以适用于不同天气环境下,系统能够正常运行,进一步提升了系统运行的稳定性。
如图3-4所示,本发明还提出一种应用于上述空调系统的控制方法,包括:步骤S1:采集直流母线、交流电网、太阳能光伏电池板、风力发电机的电信息;步骤S2:根据电信息配置交流电网、太阳能光伏电池板、风力发电机,以实现直流母线提供的电压处于空调系统所需的电压范围内。需要说明的是,电信息包括电压及/或电流信息。
在一优选实施例中,步骤S2包括:
步骤S21:检测交流电网是否正常,若是,则选择交流电网接入直流母线(图3); 若否,则选择风力发电机或太阳能光伏电池板接入直流母线(图4)。
需要说明的是,检测交流电网是否正常可以根据交流电网的电压及/或电流信息与预设的电压及/或电流进行比较或者与空调系统及其他负载所需电压及/或电流进行比较。如果交流电网的电压及/或电流在预设的电压及/或电流范围内,则判断交流电网工作正常。如果交流电网的电压及/或电流没有在预设的电压及/或电流范围内,则判断交流电网出现故障。在其他实施例中,具体地,可以通过检测交流电网的电压及/或电流的频率、幅值、相位来判断交流电网是否工作正常。
步骤S22:检测直流母线是否正常,若是,则将太阳能光伏电池板、风力发电机、空调系统接入母线或则将太阳能光伏电池板、空调系统接入直流母线;若直流母线电压过高,则将卸荷系统接入直流母线以维持直流母线电压至正常范围,并判断出故障所在的设备,并切断故障所在的设备。
需要说明的是,检测直流母线是否正常可以根据直流母线的电压及/或电流信息与预设的电压及/或电流进行比较或者与空调系统及其他负载所需电压及/或电流进行比较。如果直流母线的电压及/或电流在预设的电压及/或电流的范围内或者在空调系统及其他负载所需电压及/或电流的范围内,则判断直流母线工作正常。如果直流母线的电压及/或电流没有在预设的电压及/或电流的范围内或者没有在空调系统及其他负载所需电压及/或电流的范围内,则判断直流母线出现故障。同理于上述检测交流电网以及直流母线是否正常,判断故障所在的设备的方法也是通过检测对应设备的电压及/或电流信息并与预设的电压及/或电流进行比较或者与空调系统及其他负载所需电压及/或电流进行比较。如果对应设备的电压及/或电流在预设的电压及/或电流范围内,则判断该设备工作正常。如果对应设备的电压及/或电流没有在预设的电压及/或电流范围内,则判断该设备出现故障。在其他实施例中,具体地,可以通过检测对应设备的电压及/或电流的频率、幅值、相位来判断该设备是否工作正常。
图5为本公开一个实施例的空调系统控制方法的流程示意图。在一些实施例中,下列的控制方法由DC控制选择器执行。
在步骤501,采集空调系统中的直流母线、交流电网、太阳能光伏电池板和风力发电机的运行参数信息。交流电网、太阳能光伏电池板、风力发电机和空调与直流母线电连接,交流电网、太阳能光伏电池板和风力发电机给直流母线提供电能。
在步骤502,根据运行参数信息配置交流电网、太阳能光伏电池板和风力发电机的运行状态,以便直流母线提供的电压处于空调所需的电压范围内。
在一些实施例中,根据交流电网的运行参数信息检测交流电网是否正常。在交流电网处于正常状态的情况下,选择交流电网接入直流母线。在交流电网处于非正常状态的情况下,选择风力发电机或太阳能光伏电池板接入直流母线。
在一些实施例中,在预设的第一时间段优先选择太阳能光伏电池板接入直流母线,在预设的第二时间段优先选择风力发电机接入直流母线。例如,在白天选择太阳能光伏电池板接入直流母线,在早晨及夜间选择风力发电机接入直流母线。
在一些实施例中,根据运行参数信息配置交流电网、太阳能光伏电池板和风力发电机的运行状态还包括:在交流电网接入直流母线后,根据直流母线的运行参数信息检测直流母线是否正常。在直流母线处于正常状态的情况下,将太阳能光伏电池板、风力发电机和空调接入直流母线。
在一些实施例中,根据运行参数信息配置交流电网、太阳能光伏电池板和风力发电机的运行状态还包括:在风力发电机或太阳能光伏电池板中的一个接入直流母线后,根据直流母线的运行参数信息检测直流母线是否处于正常状态。在直流母线处于正常状态的情况下,将太阳能光伏电池板或风力发电机中的另一个、以及空调接入直流母线。
在一些实施例中,在直流母线处于非正常状态的情况下,将卸荷系统接入直流母线,以维持直流母线的电压在正常范围内,其中卸荷系统与直流母线电连接。
在一些实施例中,在直流母线处于非正常状态的情况下,根据交流电网的运行参数信息、太阳能光伏电池板的运行参数信息和风力发电机的运行参数信息确定出发生故障的设备,切断发生故障的设备与直流母线的电连接。
图6为本公开另一个实施例的DC控制选择器的结构示意图。如图6所示,DC控制选择器包括存储器61和处理器62。
存储器61用于存储指令,处理器62耦合到存储器61,处理器62被配置为基于存储器存储的指令执行实现如图5中任一实施例涉及的方法。
如图6所示,该DC控制选择器还包括通信接口63,用于与其它设备进行信息交互。同时,该DC控制选择器还包括总线64,处理器62、通信接口63、以及存储器61通过总线64完成相互间的通信。
存储器61可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器61也可以是存储器阵列。存储器61还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器62可以是一个中央处理器CPU,或者可以是专用集成电路ASIC,或是被配置成实施本公开实施例的一个或多个集成电路。
本公开同时还涉及一种非瞬态计算机可读存储介质,其中非瞬态计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如图5中任一实施例涉及的方法。
在一些实施例中,在上面所描述的功能单元模块可以实现为用于执行本公开所描述功能的通用处理器、可编程逻辑控制器(Programmable Logic Controller,简称:PLC)、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
与现有技术比较,本公开具有如下优点:
在直流母线上接入交流电网、太阳能光伏电池板、风力发电机,通过DC控制选择器采集直流母线、交流电网、太阳能光伏电池板、风力发电机的电信息,并根据电信息配置交流电网、太阳能光伏电池板、风力发电机,以实现直流母线提供的电压处于空调系统所需的电压范围内,综合利用光能、风能,减少了空调对交流电网的依赖,系统运行更加稳定可靠。
在交流电网出现故障的情况下,优先选择风力发电机或太阳能光伏电池板其中之一接入直流母线,利用第三变流器可控直流母线的电压缓慢上升的特性,从0V开始给直流母线缓慢充电,避免了对直流母线及其负载的冲击,进一步提升了系统运行的稳定性。
通过检测直流母线电压,在直流母线电压过高时,通过卸荷系统对直流母线卸压以及切断故障所在的设备,维持直流母线电压在正常范围,进一步提升了系统运行的稳定性。
通过设置风力传感器及光传感器,根据风力强度及光照强度合理配置太阳能光伏电池板、风力发电机、储能电池、交流电网的接入状态,以适用于不同天气环境下,系统能够正常运行,进一步提升了系统运行的稳定性。
至此,已经详细描述了本公开的实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技 术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (18)

  1. 一种空调系统,包括:
    直流母线;
    电连接于所述直流母线的交流电网、太阳能光伏电池板、风力发电机和空调,其中所述交流电网、所述太阳能光伏电池板和所述风力发电机给所述直流母线提供电能;
    直流DC控制选择器,被配置为采集所述直流母线、所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行参数信息,并根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态,以便所述直流母线提供的电压处于所述空调所需的电压范围内。
  2. 如权利要求1所述的空调系统,其中,
    所述DC控制选择器被配置为根据所述交流电网的运行参数信息检测所述交流电网是否处于正常状态,在所述交流电网处于正常状态的情况下选择所述交流电网接入所述直流母线;在所述交流电网处于非正常状态的情况下选择所述风力发电机或太阳能光伏电池板接入所述直流母线。
  3. 如权利要求2所述的空调系统,其中,
    所述DC控制选择器被配置为在所述交流电网接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否处于正常状态,在所述直流母线处于正常状态的情况下将所述太阳能光伏电池板、所述风力发电机和所述空调接入所述直流母线。
  4. 如权利要求3所述的空调系统,其中,
    所述DC控制选择器被配置为在所述风力发电机或所述太阳能光伏电池板中的一个接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否处于正常状态,在所述直流母线处于正常状态的情况下将所述太阳能光伏电池板或所述风力发电机中的另一个、以及所述空调接入所述直流母线。
  5. 如权利要求4所述的空调系统,还包括电连接于所述直流母线的卸荷系统;
    所述DC控制选择器被配置为在所述直流母线处于非正常状态的情况下将所述卸荷系统接入所述直流母线,以维持所述直流母线的电压在正常范围内。
  6. 如权利要求5所述的空调系统,其中,
    所述DC控制选择器被配置为在所述直流母线处于非正常状态的情况下,根据所述交流电网的运行参数信息、所述太阳能光伏电池板的运行参数信息和所述风力发电机的运行参数信息确定出发生故障的设备,并切断所述发生故障的设备与所述直流母线的电连接。
  7. 如权利要求2所述的空调系统,其中,
    所述DC控制选择器被配置为在预设的第一时间段优先选择所述太阳能光伏电池板接入所述直流母线,在预设的第二时间段优先选择所述风力发电机接入所述直流母线。
  8. 如权利要求1所述的空调系统,还包括:
    电连接于所述直流母线的储能电池,被配置为与所述直流母线交换电能。
  9. 如权利要求1所述的空调系统,还包括:
    电连接于所述直流母线的备用负载端口,被配置为与直流负载电连接。
  10. 一种空调系统的控制方法,包括:
    采集所述空调系统中的直流母线、交流电网、太阳能光伏电池板和风力发电机的运行参数信息,其中所述交流电网、所述太阳能光伏电池板、所述风力发电机和空调与所述直流母线电连接,所述交流电网、所述太阳能光伏电池板和所述风力发电机给所述直流母线提供电能;
    根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态,以便所述直流母线提供的电压处于所述空调所需的电压范围内。
  11. 如权利要求10所述的控制方法,其中,所述根据所述运行参数信息配置所述 交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态包括:
    根据所述交流电网的运行参数信息检测所述交流电网是否正常;
    在所述交流电网处于正常状态的情况下,选择所述交流电网接入所述直流母线;
    在所述交流电网处于非正常状态的情况下,选择所述风力发电机或太阳能光伏电池板接入所述直流母线。
  12. 如权利要求11所述的控制方法,其中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:
    在所述交流电网接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否正常;
    在所述直流母线处于正常状态的情况下,将所述太阳能光伏电池板、所述风力发电机和所述空调接入所述直流母线。
  13. 如权利要求12所述的控制方法,其中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:
    在所述风力发电机或所述太阳能光伏电池板中的一个接入所述直流母线后,根据所述直流母线的运行参数信息检测所述直流母线是否处于正常状态;
    在所述直流母线处于正常状态的情况下,将所述太阳能光伏电池板或所述风力发电机中的另一个、以及所述空调接入所述直流母线。
  14. 如权利要求13所述的控制方法,其中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:
    在所述直流母线处于非正常状态的情况下,将卸荷系统接入所述直流母线,以维持所述直流母线的电压在正常范围内,其中所述卸荷系统与所述直流母线电连接。
  15. 如权利要求14所述的控制方法,其中,所述根据所述运行参数信息配置所述交流电网、所述太阳能光伏电池板和所述风力发电机的运行状态还包括:
    在所述直流母线处于非正常状态的情况下,根据所述交流电网的运行参数信息、所述太阳能光伏电池板的运行参数信息和所述风力发电机的运行参数信息确定出发生故障的设备;
    切断所述发生故障的设备与所述直流母线的电连接。
  16. 如权利要求11所述的控制方法,其中,选择所述风力发电机或太阳能光伏电池板接入所述直流母线包括:
    在预设的第一时间段优先选择所述太阳能光伏电池板接入所述直流母线;
    在预设的第二时间段优先选择所述风力发电机接入所述直流母线。
  17. 一种直流控制选择器,包括:
    存储器,被配置为存储指令;
    处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如权利要求10-16中任一项所述的方法。
  18. 一种非瞬态计算机可读存储介质,其中,非瞬态计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如权利要求10-16中任一项所述的方法。
PCT/CN2021/098567 2020-08-14 2021-06-07 空调系统及其控制方法和控制选择器 WO2022033142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010821118.6 2020-08-14
CN202010821118.6A CN111864725A (zh) 2020-08-14 2020-08-14 基于共直流母线的风光储一体化空调系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2022033142A1 true WO2022033142A1 (zh) 2022-02-17

Family

ID=72969037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098567 WO2022033142A1 (zh) 2020-08-14 2021-06-07 空调系统及其控制方法和控制选择器

Country Status (2)

Country Link
CN (1) CN111864725A (zh)
WO (1) WO2022033142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623509A (zh) * 2022-03-15 2022-06-14 青岛海信日立空调系统有限公司 光伏新风除湿一体机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864725A (zh) * 2020-08-14 2020-10-30 珠海格力电器股份有限公司 基于共直流母线的风光储一体化空调系统及其控制方法
CN112398171A (zh) * 2020-11-20 2021-02-23 珠海格力电器股份有限公司 光伏系统及其控制方法、以及空调系统
CN114234309B (zh) * 2021-11-30 2023-07-18 青岛海尔空调器有限总公司 新能源空调及其控制方法、电子设备和存储介质
CN114576796A (zh) * 2022-02-21 2022-06-03 青岛海尔空调电子有限公司 用于控制空调系统的方法及装置、空调系统、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734178A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 太阳能空调系统及其控制方法
CN106786489A (zh) * 2017-01-18 2017-05-31 珠海格力电器股份有限公司 直流微电网系统及其控制方法
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
CN107171362A (zh) * 2017-06-23 2017-09-15 深圳市盛路物联通讯技术有限公司 一种智能供电方法及装置
CN111864725A (zh) * 2020-08-14 2020-10-30 珠海格力电器股份有限公司 基于共直流母线的风光储一体化空调系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140951A (zh) * 2015-07-12 2015-12-09 深圳市行健自动化股份有限公司 多种新能源电能汇集与微电网协调运行系统及方法
CN205231729U (zh) * 2015-12-24 2016-05-11 珠海格力电器股份有限公司 直流微电网结构
CA3014647C (en) * 2016-02-15 2022-04-26 Pitt-Ohio Express LLC Combination wind/solar dc power system
CN105826952A (zh) * 2016-05-20 2016-08-03 上海电气分布式能源科技有限公司 一种供电接入装置及其保护方法
CN208028583U (zh) * 2018-03-29 2018-10-30 沈阳工程学院 直流供热系统的面向用户的多模态综合能量供给系统
CN211151538U (zh) * 2019-12-11 2020-07-31 江苏多益能源科技有限公司 一种应用于共交直流母线的多源供电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734178A (zh) * 2013-12-24 2015-06-24 珠海格力电器股份有限公司 太阳能空调系统及其控制方法
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
CN106786489A (zh) * 2017-01-18 2017-05-31 珠海格力电器股份有限公司 直流微电网系统及其控制方法
CN107171362A (zh) * 2017-06-23 2017-09-15 深圳市盛路物联通讯技术有限公司 一种智能供电方法及装置
CN111864725A (zh) * 2020-08-14 2020-10-30 珠海格力电器股份有限公司 基于共直流母线的风光储一体化空调系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623509A (zh) * 2022-03-15 2022-06-14 青岛海信日立空调系统有限公司 光伏新风除湿一体机

Also Published As

Publication number Publication date
CN111864725A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2022033142A1 (zh) 空调系统及其控制方法和控制选择器
CN102005817B (zh) 基于微电网的不间断电源装置及其调度控制方法
US8232676B2 (en) Uninterruptible fuel cell system
CN103269117B (zh) 多能源汇流协调控制系统的控制方法
US9293923B2 (en) Energy storage system and controlling method of the same
KR101863141B1 (ko) 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지관리시스템
CN105553391A (zh) 一种光伏储能电池发电系统及控制方法
CN105515167A (zh) 一种不间断电源ups装置及其供电方法
CN105556779A (zh) 用于提供电源接口的设备和方法
CN104092278A (zh) 应用于光伏储能系统的能量管理方法
CN103733465A (zh) 充电装置
US20150244209A1 (en) Islanded operating system
CN105978008B (zh) 一种具有风场黑启动功能的液流电池储能系统及其工作方法
CN111682569A (zh) 一种智能控制的储能系统
CN205791745U (zh) 一种发电机组蓄电池充电系统
CN201458456U (zh) 一种利用风能、太阳能及电能回收的电梯
EP3920360A1 (en) Photovoltaic air conditioning system starting method, controller, and photovoltaic air conditioning system
CN103795116A (zh) 一种电源转换及控制装置、供电方法和系统
CN110597377A (zh) 一种电源模块控制方法、装置及用电设备
EP4391295A1 (en) Backup power supply and operating method therefor
CN204304587U (zh) 一种用于输电线路在线监测系统的电源控制组件
CN102969754B (zh) 蓄电池组连接电路及智能蓄电池组
CN208955660U (zh) 变电站光伏交直流系统
CN110932333A (zh) 一种配电系统
WO2024131045A1 (zh) 光伏设备以及提升光伏设备的光伏利用率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855198

Country of ref document: EP

Kind code of ref document: A1