WO2023050693A1 - Compresseur à écoulement axial et procédé pour améliorer le champ d'écoulement à circonférence totale - Google Patents

Compresseur à écoulement axial et procédé pour améliorer le champ d'écoulement à circonférence totale Download PDF

Info

Publication number
WO2023050693A1
WO2023050693A1 PCT/CN2022/077490 CN2022077490W WO2023050693A1 WO 2023050693 A1 WO2023050693 A1 WO 2023050693A1 CN 2022077490 W CN2022077490 W CN 2022077490W WO 2023050693 A1 WO2023050693 A1 WO 2023050693A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
blade
modified
stator
circumference
Prior art date
Application number
PCT/CN2022/077490
Other languages
English (en)
Chinese (zh)
Inventor
孙鹏
Original Assignee
中国民航大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民航大学 filed Critical 中国民航大学
Publication of WO2023050693A1 publication Critical patent/WO2023050693A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the invention belongs to the technical field of aero-engine design and research, and in particular relates to an axial flow compressor and a method for improving a flow field around the entire circumference.
  • Compressor is one of the three core components of contemporary aero-engines, among which axial-flow compressors are widely used in large aero-engines.
  • the stator of a conventional axial flow compressor is arranged by the blades of the same blade shape with a certain consistency. When the incoming flow is uniform, the angle of attack of the incoming flow of each stator blade is approximate. The state is close.
  • the compressor is in a high-load operation state, due to the large reverse pressure gradient, the flow separation in the corner area of the stator vane is prone to flow separation and blockage of the flow channel.
  • This non-axisymmetric distribution vane axial flow compressor is mainly aimed at the situation where the incoming flow is uneven and there is local distortion.
  • the location of local distortion needs to be predicted according to the actual situation.
  • the distortion area may change; and, when it is in the middle stage of the compressor and later, after the diversion of the previous stages, the airflow distribution in the circumferential direction has become relatively
  • the scheme of uniform, partial vane modification is no longer applicable. Therefore, there are limitations in the application of the above-mentioned non-axisymmetric distributed vane axial-flow compressor, and it is impossible to ensure the optimization of the performance of the compressor all the time.
  • the invention aims at overcoming the defects in the prior art, and proposes an axial flow compressor and method for improving the flow field around the entire circumference.
  • An axial flow compressor for improving the flow field around the circumference.
  • blades with large attack angles and blades with small attack angles are arranged alternately.
  • the prototype blades and modified blades are arranged alternately, the gaps between the prototype blades and two adjacent modified blades are the same, and the angle of attack of the modified blades is smaller than that of the prototype blades.
  • the modified blade adopts a tip-swept blade, or adopts a modified blade whose chord length is changed from the prototype blade.
  • each remodeled blade is remodeled by changing the inlet geometric angle of the blade tip and simultaneously changing the geometric angle of the blade root inlet.
  • each blade adopts a modified stator blade.
  • each of the modified stationary blades adopts blade-top forward-swept blades, or adopts modified blades with changed chord lengths of the prototype blades.
  • each modified stator blade is modified by changing the geometric angle of the inlet of the blade top and changing the geometric angle of the inlet of the blade root at the same time.
  • the present invention has the following advantages:
  • part or all of the original blades in the original stator are replaced with modified blades that can suppress the separation of the angular area of the suction surface, thereby improving the flow field structure around the circumference and increasing the flow capacity.
  • This structure can not only ensure stable operation under the operating conditions of the original stator blade type, but also greatly improve the flow field structure in near-stall conditions, and reduce or even eliminate the flow separation range in the corner area of the suction surface.
  • Fig. 1 is the schematic diagram of the stationary vane in the embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the arrangement of the blades of the stator in the embodiment of the invention.
  • Fig. 3 is a schematic diagram of blade arrangement when the stator is flattened in an embodiment of the invention
  • Fig. 4 is a schematic diagram of the partial structure of the invention when the stationary vane cooperates with the moving vane;
  • Fig. 5 is a schematic diagram of the comparison between the prototype blade and the modified blade in the invention.
  • Fig. 6 is a schematic diagram of the position of the corner area in the creation of the present invention.
  • Figure 7 is a schematic diagram of the comparison of the pressure ratio characteristic line between the prototype and the modified single-stage compressor (the pressure ratio is the ratio of the total pressure at the outlet to the total pressure at the inlet, ori represents the prototype compressor, and opt represents the modified compressor according to this invention. );
  • Fig. 8 is a schematic diagram of the comparison of the efficiency characteristic line between the single-stage compressor prototype and the modification (ori represents the prototype compressor, and opt represents the modified compressor according to the invention).
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection.
  • Detachable connection, or integral connection it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • An axial flow compressor for improving the flow field around the circumference in the stator blades around the circumference, blades A with a large angle of attack and blades B with a small angle of attack are arranged alternately.
  • the gaps of the flow passages between the blades are the same.
  • the axial-flow compressor provided by the present invention can control the flow of the entire peripheral flow channel, suppress the separation of the angular area to improve the flow capacity of the whole stage engine, not only can suppress the separation of the angular area when facing a uniform incoming flow, but also can prevent the separation of the angular area when the incoming flow exists. Distortion, that is, when the incoming flow is uneven, it is guaranteed that the performance of the compressor will not deteriorate sharply, and no matter where the distortion is, it can ensure the effect of improving the flow field.
  • the prototype blades and modified blades are alternately arranged in the stator blades around the stator, the gaps between the prototype blades and two adjacent modified blades are the same, and the angle of attack of the modified blades is smaller than that of the prototype blades. angle of attack.
  • the above-mentioned modified blade adopts a tip-swept blade, or adopts a modified blade whose chord length of the original blade is changed.
  • each remodeled blade can also be remodeled by changing the geometric angle of the inlet of the blade top and changing the geometric angle of the inlet of the blade root at the same time.
  • the above-mentioned structural design can weaken the influence of corner separation, by replacing every second blade of the full-circumference stator blade with a modified blade that can suppress corner separation (as shown in Figure 2 and Figure 3, A represents the prototype blade, B represents the modified blade The last blade, two kinds of blades are arranged alternately on the whole circumference of the stator) to control the angle area range of the stator blade, especially the upper angle area with a large angle area range, and the prototype blades kept every other blade can balance the impact of the modified blade The impact of incoming air.
  • the staggered arrangement of the two types of blades can ensure the periodic uniformity of the flow field, thereby achieving the purpose of improving the flow field and improving the performance of the entire circumference of the flow channel.
  • each blade adopts a modified stator blade.
  • each modified stator blade adopts a tip-forward-swept blade, or adopts a modified blade whose chord length is changed from the original blade.
  • Each modified stator blade is modified by changing the geometric angle of the inlet of the blade top and changing the geometric angle of the inlet of the blade root at the same time.
  • the performance test of the axial flow compressor is carried out first, that is, the complete compressor characteristic curve is tested, the near-stall condition is found, and the flow field in the near-stall condition is analyzed to find the corner separation area. Afterwards, blade remodeling is carried out for the corner separation area, and the remodeled stator blades are alternately arranged and combined with the original blades to form full-circumferential blades.
  • the modification is based on the original airfoil shape, as shown in Fig. 4 to Fig. 6, by changing the twist degree of the leading edge of the stator blade tip to reduce the inlet geometric angle b, and then reduce the angle of attack c.
  • FIG. 5 it can be clearly seen that the shape of the blade changes.
  • the dotted line part shown in A is the prototype blade, and the solid line part shown in B is obtained by bending the front edge of the prototype blade tip toward the blade pot.
  • Modified blades In order to achieve the ideal fluency improvement effect and ensure wide adaptation, preferably, the leading edge of the blade tip of the modified blade is increased by 5-20° compared with the original blade.
  • FIG 7 it is a schematic diagram of the comparison of the pressure ratio characteristic line of the single-stage compressor prototype and after modification; as shown in Figure 8, it is a comparison diagram of the efficiency characteristic line of the single-stage compressor prototype and after modification. It can be seen intuitively that the flow in the compressor tends to be more stable, and the performance of the compressor is improved.
  • the reason for reducing the angle of attack is that the analysis of the flow field determines that the flow separation is mainly distributed in the three-dimensional angular area e above and below the suction surface of the stator blade, especially the upper angular area. Since the size of the angle of attack can affect the separation position, when the angle of attack is large, the separation often occurs on the suction surface. Therefore, by reducing the geometric angle of the inlet to reduce the angle of attack, more mainstream high-energy fluid is introduced into the three-dimensional corner area d on the suction surface, the occurrence of corner separation is suppressed, the flow field structure is improved, and the flow capacity is increased.
  • the two types of airfoils can be more easily matched to flow in Gas direction, in order to achieve the purpose of improving the stability margin of the compressor.
  • modified blades for the design and arrangement of modified blades, one way is to use modified blades with small inlet geometric angles to replace the original stator blades in the original stator at intervals, that is, replace half of the stator blades in the circumferential direction with modified or, another way is to replace all the prototype stator blades in the original stator with modified stator blades, and ensure that the inlet geometric angles of each modified stator blade are smaller than the prototype stator blades.
  • the modified stator blades The stator blades with high angle of attack and the stator blades with small angle of attack are arranged alternately. Usually, the gaps between the two adjacent blades are the same.
  • the role of the alternate arrangement of the two blade types is to ensure that under different working conditions, because the inlet angle is different, in order to obtain a more suitable angle of attack for the working conditions, different inlet geometric angles are required. Therefore, when the two types of blades are arranged alternately, in the direction of the entire circumference, when the inlet angle of the incoming flow is large, there are prototype blades distributed around the entire circumference to ensure the stability of the flow state; There are also modified blades in the direction, which can still ensure a stable flow state.
  • the blade modification scheme of the present invention can be adjusted according to the specific conditions of different compressors. When the number of stator blades around the circumference is even, a modified blade is installed every other original blade, that is, half of the blades are modified, and even All the retained prototype stator blades are replaced with new modified blades matching the modified blades, that is, all blades are replaced with two modified blades arranged alternately in the original position, so as to further improve the performance of the compressor.
  • the axial flow compressor provided by the invention, part or all of the original blades in the original stator are replaced with modified blades that can suppress the separation of the angular area of the suction surface, thereby improving the flow field structure around the circumference and increasing the flow capacity.
  • This structure can not only ensure stable operation under the operating conditions of the original stator vane type, but also greatly improve the flow field structure in the near-stall condition, and reduce or even eliminate the flow separation range in the corner area of the suction surface. Without affecting the efficiency, the pressure ratio of the compressor is greatly increased, thereby expanding the stability margin of the compressor, and laying the foundation for the design and development of high-load compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un compresseur à écoulement axial pour l'amélioration d'un champ d'écoulement à circonférence totale. Dans les aubes de stator pleine circonférence d'un stator, de grandes aubes d'angle d'attaque A et de petites aubes d'angle d'attaque B sont disposées en alternance. Les espaces de canal d'écoulement entre les aubes sont tous les mêmes. Dans les aubes de stator pleine circonférence du stator, des aubes d'origine et des aubes modifiées sont disposées en alternance, les espaces entre l'aube d'origine et deux aubes modifiées adjacentes sont identiques, et l'angle d'attaque de l'aube modifiée est inférieur à un angle d'attaque de l'aube d'origine. Selon le compresseur à écoulement axial, une partie ou la totalité des aubes d'origine dans un stator d'origine sont remplacées par des aubes modifiées qui peuvent inhiber la séparation d'une région d'angle d'une face d'aspiration, de sorte qu'une structure de champ d'écoulement à circonférence totale est améliorée, et la capacité de flux continu est augmentée. Non seulement le fonctionnement stable du compresseur à écoulement axial dans un état de fonctionnement d'un type d'aube de stator d'origine peut être assuré, mais une structure de champ d'écoulement pendant une condition de fonctionnement de quasi-décrochage peut également être améliorée, et une plage de séparation d'écoulement de la région d'angle de la face d'aspiration est réduite.
PCT/CN2022/077490 2021-09-10 2022-02-23 Compresseur à écoulement axial et procédé pour améliorer le champ d'écoulement à circonférence totale WO2023050693A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111061280 2021-09-10
CN202111150581.3A CN113864243A (zh) 2021-09-10 2021-09-29 一种改善全周流场的轴流压气机
CN202111150581.3 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023050693A1 true WO2023050693A1 (fr) 2023-04-06

Family

ID=78992579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077490 WO2023050693A1 (fr) 2021-09-10 2022-02-23 Compresseur à écoulement axial et procédé pour améliorer le champ d'écoulement à circonférence totale

Country Status (2)

Country Link
CN (1) CN113864243A (fr)
WO (1) WO2023050693A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864243A (zh) * 2021-09-10 2021-12-31 中国民航大学 一种改善全周流场的轴流压气机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88103093A (zh) * 1987-05-22 1988-12-07 联合工艺公司 可调节面积的推力换向叶片叶栅
CN1045288A (zh) * 1989-03-01 1990-09-12 西屋电气公司 特性改善的低压尾端叶片
CN2440115Y (zh) * 2000-09-20 2001-07-25 中国科学院力学研究所 不等距变叶型叶栅
US6350103B1 (en) * 1998-04-27 2002-02-26 Kawasaki Jukogyo Kabushiki Kaisha Jet engine booster structure
JP2004092482A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd 遠心圧縮機、ディフューザ翼、及び、その製造方法
CN1955492A (zh) * 2005-10-25 2007-05-02 西北工业大学 一种提高气动稳定性的叶栅布局
CN101169138A (zh) * 2006-10-27 2008-04-30 西北工业大学 一种轴流压缩机静子叶片排的排布形式
CN201547018U (zh) * 2009-07-28 2010-08-11 西北工业大学 一种轴流压气机的转动叶片排布局
CN104595245A (zh) * 2015-01-04 2015-05-06 南京航空航天大学 用于轴流压缩机末级的前半段可调静子叶片及其工作方法
CN112943686A (zh) * 2021-02-08 2021-06-11 中国科学院工程热物理研究所 一种离心压气机叶轮及其设计方法
CN113864243A (zh) * 2021-09-10 2021-12-31 中国民航大学 一种改善全周流场的轴流压气机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846100B (zh) * 2009-03-24 2012-05-30 西北工业大学 一种改善压气机气动稳定性的叶栅
DE102014205235A1 (de) * 2014-03-20 2015-09-24 Rolls-Royce Deutschland Ltd & Co Kg Schaufelreihengruppe
CN108953232B (zh) * 2018-07-20 2020-01-10 大连海事大学 一种非轴对称分布静叶轴流式压气机
CN110030038B (zh) * 2019-03-15 2021-05-25 北航(四川)西部国际创新港科技有限公司 考虑bli进气畸变效应的叶尖跨音风扇非对称静子设计方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88103093A (zh) * 1987-05-22 1988-12-07 联合工艺公司 可调节面积的推力换向叶片叶栅
CN1045288A (zh) * 1989-03-01 1990-09-12 西屋电气公司 特性改善的低压尾端叶片
US6350103B1 (en) * 1998-04-27 2002-02-26 Kawasaki Jukogyo Kabushiki Kaisha Jet engine booster structure
CN2440115Y (zh) * 2000-09-20 2001-07-25 中国科学院力学研究所 不等距变叶型叶栅
JP2004092482A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd 遠心圧縮機、ディフューザ翼、及び、その製造方法
CN1955492A (zh) * 2005-10-25 2007-05-02 西北工业大学 一种提高气动稳定性的叶栅布局
CN101169138A (zh) * 2006-10-27 2008-04-30 西北工业大学 一种轴流压缩机静子叶片排的排布形式
CN201547018U (zh) * 2009-07-28 2010-08-11 西北工业大学 一种轴流压气机的转动叶片排布局
CN104595245A (zh) * 2015-01-04 2015-05-06 南京航空航天大学 用于轴流压缩机末级的前半段可调静子叶片及其工作方法
CN112943686A (zh) * 2021-02-08 2021-06-11 中国科学院工程热物理研究所 一种离心压气机叶轮及其设计方法
CN113864243A (zh) * 2021-09-10 2021-12-31 中国民航大学 一种改善全周流场的轴流压气机

Also Published As

Publication number Publication date
CN113864243A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US8382438B2 (en) Blade of a turbomachine with enlarged peripheral profile depth
US9593584B2 (en) Turbine rotor blade of a gas turbine
US8419355B2 (en) Fluid flow machine featuring an annulus duct wall recess
JP2016109124A (ja) 漏洩流を制御するための軸流圧縮機端壁処理部
CN108953232B (zh) 一种非轴对称分布静叶轴流式压气机
CN106762747B (zh) 采用周向可变叶片高度非对称有叶扩压器的离心压气机
CN114135521B (zh) 离心压气机级串列扩压器
WO2023050693A1 (fr) Compresseur à écoulement axial et procédé pour améliorer le champ d'écoulement à circonférence totale
JP5430684B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
WO2023050692A1 (fr) Compresseur à écoulement axial résistant à la déformation des aubes fixes et procédé de résistance à la déformation des aubes fixes pour compresseur à écoulement axial
WO2018196198A1 (fr) Buse de type à tube de rotor pour turbine à gaz
CN110939601A (zh) 一种具有高性能叶片的涡轮增压器压气机叶轮
US11982204B2 (en) Turbomachine part or assembly of parts
CN112065737A (zh) 一种基于超大展弦比的超高压比单级轴流压气机
US20170268528A1 (en) Centrifugal compressor and system
CN114607641B (zh) 一种轴流风机的导叶结构和轴流风机
JP5954494B2 (ja) スクロール部構造及び過給機
CN113653672B (zh) 一种带有分流叶片的轴流叶轮
CN111810248B (zh) 一种燃气轮机静叶及其冷却结构
CN112814943A (zh) 一种整体成型的弯掠组合叶片、叶轮及轴流通风机
CN108374792B (zh) 一种采用蜗壳流道截面A/r非线性分布的离心压气机
CN219081917U (zh) 一种可调分流式的开槽叶片扩压器及其离心压气机
CN213775827U (zh) 一种轴流压缩机承缸和应用其的轴流压缩机
CN114046269B (zh) 轴流压气机的转子叶片及其设计方法
CN112343864B (zh) 一种工业应用压缩机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE