WO2023050681A1 - 一种电解槽系统及其工作方法 - Google Patents

一种电解槽系统及其工作方法 Download PDF

Info

Publication number
WO2023050681A1
WO2023050681A1 PCT/CN2022/075974 CN2022075974W WO2023050681A1 WO 2023050681 A1 WO2023050681 A1 WO 2023050681A1 CN 2022075974 W CN2022075974 W CN 2022075974W WO 2023050681 A1 WO2023050681 A1 WO 2023050681A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyzer
electrode
end plate
separator
processing module
Prior art date
Application number
PCT/CN2022/075974
Other languages
English (en)
French (fr)
Inventor
余智勇
王金意
王凡
张畅
任志博
王鹏杰
Original Assignee
中国华能集团清洁能源技术研究院有限公司
四川华能氢能科技有限公司
华能集团技术创新中心有限公司
四川华能太平驿水电有限责任公司
四川华能宝兴河水电有限责任公司
四川华能嘉陵江水电有限责任公司
四川华能东西关水电股份有限公司
四川华能康定水电有限责任公司
华能明台电力有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 四川华能氢能科技有限公司, 华能集团技术创新中心有限公司, 四川华能太平驿水电有限责任公司, 四川华能宝兴河水电有限责任公司, 四川华能嘉陵江水电有限责任公司, 四川华能东西关水电股份有限公司, 四川华能康定水电有限责任公司, 华能明台电力有限责任公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023050681A1 publication Critical patent/WO2023050681A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the technical field of hydrogen energy, and in particular relates to an electrolyzer system and a working method thereof.
  • Hydrogen energy is a kind of green secondary energy, which plays an important role in the transformation of energy structure and the reduction of industrial carbon emissions.
  • electrolysis of water to produce hydrogen is the most important production method of hydrogen in the future.
  • Hydrogen production by alkaline electrolysis of water is currently the most widely used hydrogen production technology by electrolysis of water due to its relatively mature technology, low equipment manufacturing cost, and large-scale single equipment.
  • Alkaline electrolytic cells are usually composed of end plates on both sides, pole plates, pole nets, diaphragms, sealing washers, and tension bolts.
  • the electrolytic cell Since the electrolytic cell is only fixed by the end plates on both sides and the tension bolts, it is necessary to disassemble the end plates on both sides, and disassemble each pole plate, pole net, diaphragm and sealing gasket in the middle when overhauling a large alkaline electrolyzer.
  • the workload of overhaul and maintenance is very large, and the sealing gasket needs to be replaced during reassembly, which increases the cost; at the same time, the gas production of the existing electrolyzer is usually achieved by adjusting the current density. In the process, due to the large range of current changes, it is easy to cause impact on the electrode, causing the catalytic layer on the surface of the electrode to fall off, the gas production efficiency is reduced, and the service life is reduced.
  • the purpose of the present invention is to provide an electrolytic cell system and its working method, which solves the problems of large maintenance work and high cost of large alkaline electrolytic cells.
  • An electrolyzer system comprising a multi-stage electrolyzer, an acquisition module, a storage module and a first processing module;
  • the multi-stage electrolytic cell includes two-end plate electrodes and multiple separator electrodes arranged between the two-end plate electrodes.
  • the end-plate electrodes are detachably connected to the multiple separator electrodes;
  • An electrolytic unit is provided between the two separator electrodes, and each electrolytic unit forms a first-stage electrolytic cell;
  • Terminals are installed on both the end plate electrode and the separator electrode, and the terminal is connected to the power supply.
  • the terminal on one of the end plate electrodes is used as the anode terminal, and the other terminals are used as the cathode terminal;
  • the anode terminal and each cathode terminal are connected to the collection module, and the collection module is used to collect the working voltage between the anode and each cathode;
  • the acquisition module is connected to the first processing module, and the first processing module is used to calculate the initial operating voltage of each level of electrolyzer in the initial operation stage;
  • the first processing module is connected to the storage module, and the storage module is used to store the initial working voltage of each electrolyzer;
  • the first processing module is also used to compare the operating voltage of a certain level of electrolyzer with a preset value. When the operating voltage of a certain level of electrolyzer is greater than the preset value, the first processing module disconnects the power supply; wherein, the preset value Greater than the initial working voltage of each electrolyzer.
  • the acquisition module is connected with a second processing module, and the second processing module is used to calculate the operating load of each level of electrolyzer in the initial operation stage;
  • the second processing module is connected with the storage module.
  • the storage module stores the operating loads of the electrolyzers at all levels.
  • the second processing module is used to compare the required load with the operating load of the electrolyzers to set the level of the electrolyzers connected to the power supply. number.
  • the end plate electrodes and the separator electrodes, and the two adjacent separator electrodes are respectively fixedly connected by fastening bolts.
  • the electrolysis unit includes a pole plate, and diaphragm units symmetrically arranged on both sides of the pole plate, and each diaphragm unit includes a diaphragm and pole nets symmetrically arranged on both sides of the diaphragm.
  • circular grooves are formed on both sides of the separator electrode, circular grooves are formed on both sides of the pole plate, and circular grooves are formed on the inner sides of the left end plate electrode and the right end plate electrode.
  • the groove, the pole net is embedded in the circular groove.
  • the polar net is a nickel net, wherein the surface of the nickel net on the side of the cathode chamber is coated with a catalytic layer.
  • the porous material in the middle of the diaphragm is woven polyphenylene sulfide cloth with a hydrophilic surface.
  • the materials of the two-end plate electrode, the separator electrode and the pole plate are all steel plates, the surface of the steel plate is plated with a nickel layer, and there are several lye openings on the edges of the two-end plate electrode, the separator electrode and the pole plate. Manhole.
  • the present invention also discloses the working method of the multi-stage electrolyzer system, comprising the following steps:
  • it also includes the adjustment of the operating load, assuming that the total load of the electrolyzer is Q, then the operating load of the x-level electrolyzer is xQ/n, x is an integer, 0 ⁇ x ⁇ n;
  • the present invention has the following beneficial technical effects:
  • the invention discloses an electrolytic cell system, which includes a multi-stage electrolytic cell.
  • a large-scale electrolytic cell is divided into multiple stages by adding partition electrodes, and then a terminal post is added on the end plate electrode and the partition electrode, and the terminal post is connected with an acquisition module.
  • the acquisition module is connected with the processing module, and the processing module judges the running conditions of the electrolyzers at all levels through the voltage change, when the operating voltage of a certain level of electrolyzers is greater than the preset
  • setting the value it indicates that the electrolytic cell of this level is faulty, which is convenient for locating the faulty section of the electrolytic cell. Only the electrolytic cell of this level can be overhauled, and it is not necessary to carry out overall maintenance of the entire electrolytic cell, which greatly reduces the amount of maintenance. Save maintenance costs.
  • the number of stages of the electrolyzer connected to the power supply can be set according to the needs of the operating load, avoiding the adjustment of the operating load by greatly changing the current density, and reducing the large change of the current density. Maintain the stability of system operation.
  • the multi-stage electrolyzers are respectively fixed with fastening bolts, installed from the middle to both ends, and fixed section by section.
  • Figure 1 is an exploded view of a multistage electrolyzer according to an embodiment of the present invention
  • Fig. 2 is the assembly schematic diagram of a kind of multistage electrolyzer according to the embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a separator electrode according to an embodiment of the present invention.
  • 1 is an end plate electrode
  • 2 is a separator electrode
  • 3 is a pole plate
  • 4 is a diaphragm
  • 5 is a pole net
  • 6 is an electrolytic unit
  • 7 is a terminal post
  • 8 is a fastening bolt
  • 9 is a fastening nut
  • 21 is a bolt hole
  • 22 is a circular protrusion.
  • the present invention discloses an electrolytic cell system, comprising a multi-stage electrolytic cell, an acquisition module, a storage module and a first processing module; Multiple separator electrodes 2 between plate electrodes 1, end plate electrodes 1 and multiple separator electrodes 2 are detachably connected; between end plate electrodes 1 and separator electrodes 2 and between two adjacent separator electrodes 2
  • Each electrolysis unit 6 is provided, and each electrolysis unit 6 forms a first-level electrolytic cell; a terminal post 7 is installed on the end plate electrode 1 and the separator electrode 2, and the terminal post 7 is connected to the power supply, and one of the end plate electrodes 1 is
  • the terminal 7 is used as the anode terminal, and the remaining terminals 7 are used as the cathode terminal; the anode terminal and each cathode terminal are connected to the acquisition module, and the acquisition module is used to collect the working voltage between the anode and each cathode ;
  • the acquisition module is connected to the first processing module, and the first processing module is used to calculate the initial operating
  • the acquisition module is connected with a second processing module, and the second processing module is used to calculate the operating load of each level of electrolyzer in the initial operation stage; the second processing module is connected with the storage module, and the storage module stores the For the operating load of the electrolyzer, the second processing module is used to compare the required operating load with the operating load of the electrolyzer, and set the number of stages of the electrolyzer connected to the power supply.
  • the electrolysis unit 6 includes a pole plate 3, a diaphragm unit symmetrically arranged on both sides of the pole plate 3, and the diaphragm unit includes a diaphragm 4 and a pole net 5 symmetrically arranged on both sides of the diaphragm 4.
  • the middle of both sides of the pole plate 3 is a circular groove, and there is a circular protrusion 22 inside the circular groove for supporting the pole net 5; the pole net 5 is braided by metal wire.
  • the diaphragm 4 divides the space between the pole plate 3 and the separator electrode 2, between the pole plate 3 and the end plate electrode 1 into a cathode chamber and an anode chamber;
  • the middle of the diaphragm 4 is a porous material, and the periphery is a sealing gasket.
  • the middle of both sides of the separator electrode 2 is a circular groove, and several circular protrusions 22 are arranged in the groove for supporting the pole net 5 .
  • a bolt hole 21 is provided on the periphery of the separator electrode 2 for passing through the fastening bolt 8 .
  • the middle of the end plate electrode 1 facing the inside of the electrolytic cell is a circular groove, and several circular protrusions 22 are arranged in the groove for supporting the pole net 5, and the other side is a planar structure; the end plate electrode 1
  • Bolt holes 21 are arranged on the periphery for passing fastening bolts 8 .
  • the fastening bolts 8 are threaded throughout the entire length; the fastening nuts 9 compress and seal the combination of the pole plate 3 , the pole net 5 and the diaphragm 4 by compressing the separator electrode 2 and the end plate electrode 1 .
  • the terminal post 7 is located on the separator electrode 2 and the end plate electrode 1 .
  • the pole plate 3, the separator electrode 2, and the end plate electrode 1 are made of nickel-plated steel plate, and the outer ring is provided with several lye access holes.
  • the polar net 5 is a nickel net, wherein the surface of the nickel net on the side of the cathode chamber is coated with a catalytic layer.
  • the porous material in the middle of the diaphragm 4 is polyphenylene sulfide woven cloth with surface hydrophilic modification.
  • the terminal 7 on the left end plate electrode 1 is connected to the anode of the DC power supply, and the terminal 7 on the remaining separator electrode 2 and the end plate electrode 1 is connected to the cathode of the DC power supply.
  • the first stage of the electrolytic cell is between the end plate electrode 1 and the separator electrode 2 or between the adjacent separator electrodes 2 .
  • the working method of the multi-stage electrolyzer system which is realized by using the electrolyzer system, comprises the following steps:
  • V 1 , V 2 -V 1 , V 3 -V 2 ... V n -V n-1 are greater than 120% of the initial value.
  • the electrolytic cell of the corresponding level needs to be disassembled for inspection and maintenance.
  • the power supply is disconnected, the lye is discharged, and the fastening nut 9, the end plate electrode 1, the pole net 5, the diaphragm 4, and the separator are disassembled from the side closest to the pole Electrode 2 is used for inspection and maintenance of this level of electrolyzer.
  • the present invention divides the electrolytic cell into multi-stages by increasing the separator electrode 2 with the terminal post 7, and can monitor the operation conditions of the electrolytic cells at each level in real time, and judge the operation of the electrolytic cell at each level through the change of the voltage. When the operation fails, it is convenient to locate the faulty section of the electrolyzer;
  • the number of electrolytic cells connected to the power supply can be set according to the needs of the operating load, avoiding the adjustment of the operating load by greatly changing the current density, reducing the large change of the current density, and maintaining the system Stability of operation;
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电解槽系统,包括多级电解槽、采集模块、存储模块和第一处理模块;多级电解槽包括两端板电极及设置在两端板电极之间的多个隔板电极;在端板电极和隔板电极上均安装有接线柱,其中一个端板电极上的接线柱作为阳极接线柱,其余接线柱作为阴极接线柱;阳极接线柱与每一个阴极接线柱之间均与采集模块连接;采集模块与第一处理模块连接。

Description

一种电解槽系统及其工作方法
相关申请的交叉引用
本申请基于申请号为2021111563433、申请日为2021年09月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于氢能技术领域,特别涉及一种电解槽系统及其工作方法。
背景技术
氢能是一种绿色的二次能源,在能源结构转型、工业碳减排领域具有重要的作用。为了克服传统化石原料制氢碳排放较高的问题,电解水制氢是未来氢气最重要的生产方式。碱性电解水制氢由于技术相对成熟、设备制造成本低、单台设备规模较大,因此是当前应用最为广泛的电解水制氢技术。碱性电解槽通常由两侧的端板、极板、极网、隔膜、密封垫圈、拉紧螺栓组成。由于电解槽仅仅依靠两侧端板和拉紧螺栓固定,因此,在大型碱性电解槽检修时,必须拆卸两侧端板,并拆解中间每个极板、极网、隔膜及密封垫圈,检修维护的工作量很大,且重新组装时需要更换密封垫圈,增加了成本;同时,现有电解槽气体的产量通常依靠调节电流密度的大小来实现,在采用波动性电源进行电解制氢过程中,由于电流变化幅度较大,容易对电极造成冲击,使得电极表面催化层脱落,产气效率下降,使用寿命降低。
发明内容
本发明的目的在于提供一种电解槽系统及其工作方法,解决了大型碱性电解槽检修维护工作大,成本高的问题。
本发明是通过以下技术方案来实现:
一种电解槽系统,包括多级电解槽、采集模块、存储模块和第一处理模块;
多级电解槽包括两端板电极及设置在两端板电极之间的多个隔板电极,端板电极与多个隔板电极可拆卸连接;端板电极与隔板电极之间及相邻两个隔板电极之间均设有电解单元,每个电解单元形成一级电解槽;
在端板电极和隔板电极上均安装有接线柱,接线柱与电源连接,其中一个端板电极上的接线柱作为阳极接线柱,其余接线柱作为阴极接线柱;
阳极接线柱与每一个阴极接线柱之间均与采集模块连接,采集模块用于采集阳极与每个阴极之间的工作电压;
采集模块与第一处理模块连接,第一处理模块用于计算初始运行阶段每级电解槽的初始工作电压;
第一处理模块与存储模块连接,存储模块用于存储每级电解槽的初始工作电压;
第一处理模块,还用于比较某级电解槽的运行工作电压与预设值,当某级电解槽的运行工作电压大于预设值时,第一处理模块断开电源;其中,预设值大于每级电解槽的初始工作电压。
在一种实施方案中,采集模块连接有第二处理模块,第二处理模块用于计算初始运行阶段每级电解槽的运行负荷;
第二处理模块与存储模块连接,存储模块内存储有各级电解槽的运行负荷,第二处理模块用于根据运行所需负荷与电解槽运行负荷进行比较,设置接入电源的电解槽的级数。
在一种实施方案中,端板电极与隔板电极之间,及相邻两个隔板电极之间分别通过紧固螺栓固定连接。
在一种实施方案中,电解单元包括极板、对称设置在极板两侧的隔膜单元,每个隔膜单元包括隔膜和对称设置在隔膜两侧的极网。
在一种实施方案中,隔板电极的两侧面上均开有圆形凹槽,极板的两侧面上均开有圆形凹槽,左端板电极和右端板电极的内侧均开有圆形凹槽,极网嵌入在圆形凹槽内。
在一种实施方案中,极网为镍网,其中阴极室一侧的镍网表面镀有催化层。
在一种实施方案中,隔膜中间的多孔材料为表面亲水改性的聚苯硫醚编制布。
在一种实施方案中,两端板电极、隔板电极及极板的材质均为钢板,钢板表面镀有镍层,两端板电极、隔板电极及极板的边缘开有若干个碱液出入孔。
本发明还公开了所述的多级电解槽系统的工作方法,包括以下步骤:
S1、接通电源,将阳极接线柱与其中一个阴极接线柱接通,设置工作电流密度为额定电流密度A;
S2、切换接通另一个阴极接线柱,同时调整电流,保持工作电流密度为额定电流密度A,依次采集阳极与每个阴极之间的工作电压,记阳极与第n个阴极间的工作电压为V n;n为电解槽的级数;
S3、计算初始运行阶段每级电解槽的工作电压,其中,第n级电解槽的工作电压为V n-V n-1
S4、运行一段时间后,当其中某一个电解槽的工作电压或多个电解槽的工作电压大于预设值时,则说明该级电解槽发生故障,断开电源。
在一种实施方案中,还包括对运行负荷的调节,设电解槽运行的总负荷为Q,则x级电解槽的运行负荷为xQ/n,x为整数,0≤x≤n;
当运行所需负荷为Qr,且(x-1)Q/n<Qr≤xQ/n,则调整工作电流密度为nAQr/(xQ),同时,接通第x个阴极。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开了一种电解槽系统,包括多级电解槽,通过增加隔板电极使得大型电解槽分为多级,然后在端板电极和隔板电极上增加接线柱,接线柱与采集模块连接,可以分别对各级电解槽的运行情况进行实时的监测,采集模块与处理模块连接,处理模块通过电压的变化,判断各级电解槽的运行情况,当某级电解槽的运行工作电压大于预设值时,说明该级电解槽 运行故障,便于定位电解槽故障的区间,只对这一级电解槽进行检修就可以,不需要对全电解槽进行整体的检修,大大地降低了检修量,节约检修费用。
进一步,通过将电解槽分为多级,可以根据运行负荷的需要,设置接入电源的电解槽的级数,避免通过大幅度改变电流密度的方式调节运行负荷,减少电流密度的大幅度变化,维持系统运行的稳定性。
进一步,多级电解槽之间分别用紧固螺栓固定,从中间向两端安装,一段一段固定,在判断某一级电解槽运行故障时,可以不对全电解槽进行拆卸,而是从临近一端拆卸,避免电解槽全部拆卸后造成大量密封材料更换,节约检修费用。
附图说明
图1为根据本发明的实施方案的一种多级电解槽的爆炸图;
图2为根据本发明的实施方案的一种多级电解槽的装配示意图;
图3为根据本发明的实施方案的隔板电极的结构示意图。
其中,1为端板电极,2为隔板电极,3为极板,4为隔膜,5为极网,6为电解单元,7为接线柱,8为紧固螺栓,9为紧固螺母;21为螺栓孔,22为圆形凸起。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1和2所示,本发明公开了一种电解槽系统,包括多级电解槽、采集模块、存储模块和第一处理模块;多级电解槽包括两端板电极1及设置在两端板电极1之间的多个隔板电极2,端板电极1与多个隔板电极2可拆卸连接;端板电极1与隔板电极2之间及相邻两个隔板电极2之间均设有电解单元6,每个电解单元6形成一级电解槽;在端板电极1和隔板电极2上均安装有接线柱7,接线柱7与电源连接,其中一个端板电极1上的接线柱7作为阳极接线柱,其余接线柱7作为阴极接线柱;阳极接线柱与每一个阴极接线柱之间均与采集模块连接,采集模块用于采集阳极与每个阴极之间的工作电压;采集模块与第一处理模块连接,第一处理模块用于计算初始运行阶段每级电解槽的初始工作电压;第一处理模块与存储模块连接,存储模块用于存储每级电解槽的初始工作电压;第一处理模块,还用于比较某级电解槽的运行工作电压与预设值,当某级电解槽的运行工作电压大于预设值时,第一处理模块断开电源;其中,预设值大于每级电解槽的初始工作电压。
在一种实施方案中,采集模块连接有第二处理模块,第二处理模块用于计算初始运行阶段每级电解槽的运行负荷;第二处理模块与存储模块连接,存储模块内存储有各级电解槽的运行负荷,第二处理模块用于根据运行所需负荷与电解槽运行负荷进行比较,设置接入电源的电解槽的级数。
电解单元6包括极板3、对称设置在极板3两侧的隔膜单元,隔膜单元包括隔膜4和对 称设置在隔膜4两侧的极网5。
具体地,极板3两侧的中间为圆形凹槽,圆形凹槽内有圆形凸起22,用于支撑极网5;极网5由金属丝编织而成。
隔膜4将极板3与隔板电极2之间、极板3与端板电极1之间的空间分隔为阴极室和阳极室;
隔膜4的中间为多孔材料,外围为密封垫圈。
如图3所示,隔板电极2两侧的中间为圆形凹槽,凹槽内设有若干个圆形凸起22,用于支撑极网5。
隔板电极2的外围设置有螺栓孔21,用于穿过紧固螺栓8。
端板电极1面向电解槽内部一侧的中间为圆形凹槽,凹槽内设有若干个圆形凸起22,用于支撑极网5,另一侧为平面结构;端板电极1的外围设置有螺栓孔21,用于穿过紧固螺栓8。
紧固螺栓8全长范围内均带螺纹;紧固螺母9通过压紧隔板电极2和端板电极1将极板3、极网5、隔膜4组合压紧密封。
接线柱7位于隔板电极2和端板电极1上。
所述极板3、隔板电极2、端板电极1为钢板镀镍材质,外圈开有若干个碱液出入孔。
所述极网5为镍网,其中阴极室一侧的镍网表面镀有催化层。
所述隔膜4中间的多孔材料为表面亲水改性的聚苯硫醚编制布。
如图1所示,左侧端板电极1上的接线柱7连接直流电源的阳极,剩余隔板电极2和端板电极1上的接线柱7连接直流电源的阴极。
所述端板电极1和隔板电极2之间或相邻隔板电极2之间为电解槽的一级。
所述的多级电解槽系统的工作方法,该方法是利用所述电解槽系统实现的,包括如下步骤:
1.接通直流电源,电解槽最左侧端板电极的接线柱7接通阳极,同时,接通其中一块隔板电极2或另一块端板电极1的接线柱7,作为阴极;设置工作电流密度为额定电流密度A;
2.切换接通阴极的接线柱7,同时调整电流,保持工作电流密度为额定电流密度A,依次记录阳极与每个阴极之间的工作电压,其中,阳极与从左向右第一个、第二个、第三个....第n个阴极间的工作电压依次为V 1、V 2、V 3......V n
3.计算初始运行阶段每级电解槽的工作电压,其中,第一级、第二级、第三级......第n级电解槽的工作电压分别为V 1、V 2-V 1、V 3-V 2......V n-V n-1
4.长时间运行后,当V 1、V 2-V 1、V 3-V 2......V n-V n-1中某一个或多个数值大于初始值的120%时,则相应一级的电解槽需要拆卸检修维护,此时断开电源,排出碱液,并从离该极最近一侧拆卸紧固螺母9、端板电极1、极网5、隔膜4、隔板电极2,对该级电解槽进行检修维护。
还包括对运行负荷的调节,设电解槽运行的总负荷为Q,则x级电解槽的运行负荷为xQ/n,x为整数,0≤x≤n;
当运行所需负荷为Qr,且(x-1)Q/n<Qr≤xQ/n(x为整数,0≤x≤n),则调整工作电流密 度为nAQr/(xQ),同时,接通第x个阴极。
本发明通过增加带有接线柱7的隔板电极2,使得电解槽分为多级,可以分别对各级电解槽的运行情况进行实时的监测,通过电压的变化,判断各级电解槽的运行情况,当运行故障时,便于定位电解槽故障的区间;
通过将电解槽分为多级,可以根据运行负荷的需要,设置接入电源的电解槽的级数,避免通过大幅度改变电流密度的方式调节运行负荷,减少电流密度的大幅度变化,维持系统运行的稳定性;
通过将电解槽分为多级,每级分别用紧固螺栓8固定,在判断某一级电解槽运行故障时,可以不对全电解槽进行拆卸,而是从临近一端拆卸,避免电解槽全部拆卸后造成大量密封材料更换,节约检修费用。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种电解槽系统,其特征在于,包括多级电解槽、采集模块、存储模块和第一处理模块;
    所述多级电解槽包括两端板电极(1)及设置在所述两端板电极(1)之间的多个隔板电极(2),所述端板电极(1)与所述多个隔板电极(2)可拆卸连接;所述端板电极(1)与所述隔板电极(2)之间及相邻两个隔板电极(2)之间均设有电解单元(6),每个电解单元(6)形成一级电解槽;
    在所述端板电极(1)和所述隔板电极(2)上均安装有接线柱(7),所述接线柱(7)与电源连接,其中一个端板电极(1)上的接线柱(7)作为阳极接线柱,其余接线柱(7)作为阴极接线柱;
    所述阳极接线柱与每一个阴极接线柱之间均与所述采集模块连接,所述采集模块用于采集阳极与每个阴极之间的工作电压;
    所述采集模块与所述第一处理模块连接,所述第一处理模块用于计算初始运行阶段每级电解槽的初始工作电压;
    所述第一处理模块与所述存储模块连接,所述存储模块用于存储每级电解槽的初始工作电压;
    所述第一处理模块还用于比较某级电解槽的运行工作电压与预设值,当某级电解槽的运行工作电压大于所述预设值时,所述第一处理模块断开所述电源;其中,所述预设值大于每级电解槽的初始工作电压。
  2. 根据权利要求1所述的电解槽系统,其特征在于,所述采集模块连接有第二处理模块,第二处理模块用于计算所述初始运行阶段每级电解槽的运行负荷;
    所述第二处理模块与所述存储模块连接,所述存储模块内存储有各级电解槽的运行负荷,所述第二处理模块用于根据运行所需负荷与电解槽运行负荷进行比较,设置接入所述电源的电解槽的级数。
  3. 根据权利要求1或2所述的电解槽系统,其特征在于,所述端板电极(1)与所述隔板电极(2)之间,及相邻两个隔板电极(2)之间分别通过紧固螺栓(8)固定连接。
  4. 根据权利要求1至3中任一项所述的电解槽系统,其特征在于,所述电解单元(6)包括极板(3)、对称设置在极板(3)两侧的隔膜单元,每个隔膜单元包括隔膜(4)和对称设置在所述隔膜(4)两侧的极网(5)。
  5. 根据权利要求4所述的电解槽系统,其特征在于,每个隔板电极(2)的两侧面上均开有圆形凹槽,所述极板(3)的两侧面上均开有圆形凹槽,左端板电极(1)和右端板电极(1)的内侧均开有圆形凹槽,所述极网(5)嵌入在相应圆形凹槽内。
  6. 根据权利要求4或5所述的电解槽系统,其特征在于,所述极网(5)为镍网,其中阴极室一侧的镍网表面镀有催化层。
  7. 根据权利要求4至6中任一项所述的电解槽系统,其特征在于,所述隔膜(4)中间的多孔材料为表面亲水改性的聚苯硫醚编制布。
  8. 根据权利要求4至7中任一项所述的电解槽系统,其特征在于,所述两端板电极(1)、所述隔板电极(2)及所述极板(3)的材质均为钢板,钢板表面镀有镍层,所述两端板电极(1)、所述隔板电极(2)及所述极板(3)的边缘开有若干个碱液出入孔。
  9. 根据权利要求5至8中任一项所述的电解槽系统,其特征在于,所述隔板电极(2)、所述极板(3)和所述端板电极(1)的所述圆形凹槽内分别设置有圆形凸起(22)用于支撑所述极网(5)。
  10. 根据权利要求3至9中任一项所述的电解槽系统,其特征在于,所述隔板电极(2)和所述端板电极(1)的外围均设置有螺栓孔,用于穿过所述紧固螺栓。
  11. 权利要求1至10中任意一项所述的电解槽系统的工作方法,其特征在于,包括以下步骤:
    S1、接通电源,将阳极接线柱与其中一个阴极接线柱接通,设置工作电流密度为额定电流密度A;
    S2、切换接通另一个阴极接线柱,同时调整电流,保持工作电流密度为额定电流密度A,依次采集阳极与每个阴极之间的工作电压,记阳极与第n个阴极间的工作电压为V n;n为电解槽的级数;
    S3、计算初始运行阶段每级电解槽的工作电压,其中,第n级电解槽的工作电压为V n-V n-1
    S4、运行一段时间后,当其中某一个电解槽的工作电压或多个电解槽的工作电压大于预设值时,则说明该级电解槽发生故障,断开电源。
  12. 根据权利要求11所述的电解槽系统的工作方法,其特征在于,还包括对运行负荷的调节,设电解槽运行的总负荷为Q,则x级电解槽的运行负荷为xQ/n,x为整数,0≤x≤n;
    当运行所需负荷为Qr,且(x-1)Q/n<Qr≤xQ/n,则调整工作电流密度为nAQr/(xQ),同时,接通第x个阴极。
PCT/CN2022/075974 2021-09-29 2022-02-11 一种电解槽系统及其工作方法 WO2023050681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111156343.3 2021-09-29
CN202111156343.3A CN113802136B (zh) 2021-09-29 2021-09-29 一种电解槽系统及其工作方法

Publications (1)

Publication Number Publication Date
WO2023050681A1 true WO2023050681A1 (zh) 2023-04-06

Family

ID=78939053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075974 WO2023050681A1 (zh) 2021-09-29 2022-02-11 一种电解槽系统及其工作方法

Country Status (2)

Country Link
CN (1) CN113802136B (zh)
WO (1) WO2023050681A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802136B (zh) * 2021-09-29 2023-10-20 中国华能集团清洁能源技术研究院有限公司 一种电解槽系统及其工作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205115613U (zh) * 2015-11-10 2016-03-30 中国科学院金属研究所 一种模拟工业电解水操作的测试用电解槽
CN205803608U (zh) * 2016-02-26 2016-12-14 派新(上海)能源技术有限公司 一种高电流密度的碱性水电解槽
WO2021104744A1 (de) * 2019-11-28 2021-06-03 Siemens Energy Global GmbH & Co. KG Elektrolysesystem zum zerlegen von wasser zu wasserstoff und sauerstoff und ein verfahren zum betreiben des elektrolysesystems
WO2021117096A1 (ja) * 2019-12-09 2021-06-17 富士通株式会社 水電気分解装置及び水電気分解システム
WO2021131416A1 (ja) * 2019-12-26 2021-07-01 Eneos株式会社 有機ハイドライド生成システム、有機ハイドライド生成システムの制御装置および有機ハイドライド生成システムの制御方法
CN113136592A (zh) * 2020-01-16 2021-07-20 睿彻驰2000有限公司 检测具有电解电池的电解装置中的故障的方法和系统
CN113235110A (zh) * 2021-06-22 2021-08-10 北京中电丰业技术开发有限公司 一种新型水电解制氢电解槽装置
CN113279002A (zh) * 2021-04-29 2021-08-20 全球能源互联网研究院有限公司 多槽并联电解制氢的控制方法及系统
CN113802136A (zh) * 2021-09-29 2021-12-17 中国华能集团清洁能源技术研究院有限公司 一种电解槽系统及其工作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634373B2 (ja) * 1993-09-09 1997-07-23 韓洋化學株式會▲社▼ 複極式電解槽
SK285920B6 (sk) * 1999-05-10 2007-11-02 Ineos Enterprises Limited Elektródová zostava
CN106757122A (zh) * 2015-11-23 2017-05-31 上海好旭新能源科技发展有限公司 用于电解水的无间距无隔膜电解装置
CN215856370U (zh) * 2021-09-29 2022-02-18 中国华能集团清洁能源技术研究院有限公司 一种电解槽系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205115613U (zh) * 2015-11-10 2016-03-30 中国科学院金属研究所 一种模拟工业电解水操作的测试用电解槽
CN205803608U (zh) * 2016-02-26 2016-12-14 派新(上海)能源技术有限公司 一种高电流密度的碱性水电解槽
WO2021104744A1 (de) * 2019-11-28 2021-06-03 Siemens Energy Global GmbH & Co. KG Elektrolysesystem zum zerlegen von wasser zu wasserstoff und sauerstoff und ein verfahren zum betreiben des elektrolysesystems
WO2021117096A1 (ja) * 2019-12-09 2021-06-17 富士通株式会社 水電気分解装置及び水電気分解システム
WO2021131416A1 (ja) * 2019-12-26 2021-07-01 Eneos株式会社 有機ハイドライド生成システム、有機ハイドライド生成システムの制御装置および有機ハイドライド生成システムの制御方法
CN113136592A (zh) * 2020-01-16 2021-07-20 睿彻驰2000有限公司 检测具有电解电池的电解装置中的故障的方法和系统
CN113279002A (zh) * 2021-04-29 2021-08-20 全球能源互联网研究院有限公司 多槽并联电解制氢的控制方法及系统
CN113235110A (zh) * 2021-06-22 2021-08-10 北京中电丰业技术开发有限公司 一种新型水电解制氢电解槽装置
CN113802136A (zh) * 2021-09-29 2021-12-17 中国华能集团清洁能源技术研究院有限公司 一种电解槽系统及其工作方法

Also Published As

Publication number Publication date
CN113802136B (zh) 2023-10-20
CN113802136A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN215856370U (zh) 一种电解槽系统
KR100784444B1 (ko) 스택 면압장치
WO2023050681A1 (zh) 一种电解槽系统及其工作方法
CN210215563U (zh) 一种高压水电解槽
CN104911628B (zh) 一种节能水电解制氢电解槽
CA1060842A (en) Electrolytic cell
CN219136946U (zh) 一种电解槽极板以及氢气发生器
CN114824338B (zh) 一种双极板上具有二分叉指型结构的液流电池流道
CN216838216U (zh) 一种常压碱性电解水制氢电解槽
CN215517660U (zh) 一种运用烧结网板的制氢电解槽
CN217628644U (zh) 基于三电极体系的两步法电解水制氢的电解槽
CN113755859A (zh) 一种内部设有多通道框架结构的电解槽
CN210736910U (zh) 离子膜电解槽
CN220079209U (zh) 一种用于电解水制氢的新型电解槽模块及电解槽
KR102662952B1 (ko) 알칼라인 수전해 스택 조립체
CN216947236U (zh) 电解槽组及制氢系统
CN213265853U (zh) 一种可降低污水中cod的电解装置
CN219280053U (zh) 一种电解硫酸氢铵生产双氧水及氢气的复极式电解装置
CN114525531B (zh) 一种水电解槽
CN216738555U (zh) 一种内部设有多通道框架结构的电解槽
CN216237301U (zh) 一种高效的质子交换膜电解槽
CN220685252U (zh) 一种新型碱性水电解槽
CN219808012U (zh) 三室双模连续流制取高压氢装置
CN216998606U (zh) 质子交换膜电解制氢系统
CN117187843A (zh) 一种立式桶形碱性水电解槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874084

Country of ref document: EP

Kind code of ref document: A1