WO2023050467A1 - 一种合成球形石英粉的装置和方法 - Google Patents
一种合成球形石英粉的装置和方法 Download PDFInfo
- Publication number
- WO2023050467A1 WO2023050467A1 PCT/CN2021/123207 CN2021123207W WO2023050467A1 WO 2023050467 A1 WO2023050467 A1 WO 2023050467A1 CN 2021123207 W CN2021123207 W CN 2021123207W WO 2023050467 A1 WO2023050467 A1 WO 2023050467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air supply
- quartz powder
- supply port
- temperature
- chamber
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000010453 quartz Substances 0.000 title claims abstract description 59
- 239000000843 powder Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 18
- 238000000889 atomisation Methods 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 7
- 239000007921 spray Substances 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 12
- 239000006004 Quartz sand Substances 0.000 claims description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 239000010431 corundum Substances 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 11
- 238000002360 preparation method Methods 0.000 abstract description 8
- 238000005280 amorphization Methods 0.000 abstract description 5
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 41
- 238000005516 engineering process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- -1 sols Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B20/00—Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/10—Forming beads
- C03B19/1005—Forming solid beads
Definitions
- the invention relates to the field of preparation of spherical quartz powder, in particular to a device and method for synthesizing spherical quartz powder.
- Spherical quartz powder refers to the amorphous powder whose particles are spherical and the main component is silicon dioxide.
- spherical quartz powder has been widely used in high-tech fields such as large-scale integrated circuits, aerospace, and chemical engineering.
- spherical quartz powder mainly relies on imports, and the preparation technology of spherical quartz powder is relatively backward. Therefore, it is very urgent to study the preparation technology of high-quality spherical quartz powder and solve the bottleneck problem that restricts the development of high-tech in my country.
- the preparation technologies of spherical quartz powder mainly include flame sphere forming method, plasma method, gas phase method, hydrothermal synthesis method, sol-gel method and so on.
- the flame balling method uses hydrogen, acetylene, etc. as fuel, and forms a high-temperature flame by burning to heat and melt the high-purity quartz powder.
- the flame temperature is above 2000°C. Transform into spherical droplets, and finally obtain spherical quartz powder by cooling into balls.
- the main disadvantage of this method is that the flame stability is extremely difficult to control, resulting in extremely unstable temperature field.
- the plasma method is similar to the flame balling method, except that the heating source of the plasma method comes from a plasma torch, and the temperature is much higher than that of hydrogen and acetylene flames, reaching more than 5000 ° C.
- the temperature of this method is stable and controllable, so the ball forming rate is high and the pollution is small, but the cost is extremely high and it is difficult to scale up; gas phase method, hydrothermal method Synthetic method and sol-gel method belong to chemical methods.
- the gas phase method uses silicon tetrachloride as raw material and hydrolyzes silicon dioxide particles in a high-temperature flame.
- the particle size of the prepared particles is too small to be dispersed in organic matter; hydrothermal
- the synthesis method is to combine organic and inorganic compounds with water below 400°C, ions and molecules form particles through crystallization, and obtain the required quartz powder after washing, filtering, drying and other processes. This method is limited by the size of the reactor. Difficult to scale production.
- the sol-gel method is to solidify metal-organic or inorganic substances through solutions, sols, and gels, and then sinter to form particles. This method can produce good uniformity, high purity, and small particles, but the process is complicated and the price of raw materials is high. , the particles are easy to agglomerate.
- the existing spherical quartz powder preparation technology has the disadvantages of low particle spherification and amorphization rate, complex process, high price, and difficulty in large-scale production.
- the present invention provides a device and method for synthesizing spherical quartz powder, the spheroidization rate and amorphization rate can both reach 100%, the preparation process is simple, and large-scale production is easy to realize.
- the device for synthesizing spherical quartz powder includes a melting furnace, a spray chamber and an atomization chamber, the outlet of the furnace communicates with the spray chamber, and the bottom of the spray chamber communicates with the spray chamber through a spray hole , the diameter of the injection hole is 0.1mm-10mm; the side wall of the atomization chamber is provided with an upper air supply port and a lower air supply port, and the air supply temperature and air supply speed of the upper air supply port are higher than that of the lower air supply port. Outlet.
- the inner wall material of the melting furnace and the injection chamber is selected from ceramic fiber, corundum, graphite or zirconia.
- the temperature in the furnace is 2000-2400°C.
- the pressure in the injection chamber is 2-10 atmospheres.
- the diameter of the injection hole is adjustable.
- the height difference between the spray hole, the upper air supply port and the lower air supply port is 10-50 cm; specifically, the upper air supply port is 10-50 cm below the spray hole, and the upper air supply port is 10-50 cm below the spray hole.
- the height is 10-50cm higher than the lower air supply port.
- both the upper air supply port and the lower air supply port are multiple, and are evenly distributed on the side wall of the atomization chamber along the circumferential direction.
- the temperature of the air supply from the upper air supply port (hereinafter referred to as primary air) is 20-100°C, and the wind speed is 0.01-1.0m/s; the air supply from the lower air supply port (hereinafter referred to as secondary air) The temperature is 10-30°C, and the wind speed is 0.1-2.0m/s.
- Another aspect of the present invention provides a method for synthesizing spherical quartz powder, comprising the following steps,
- the quartz raw material is quartz sand and/or quartz powder.
- the air cooling is performed twice, the temperature of the first air cooling is 20-100°C, and the wind speed is 0.01-1.0m/s; the temperature of the second air cooling is 10-30°C, The wind speed is 0.1-2.0m/s.
- the method uses the above-mentioned device, wherein the furnace can work at a temperature above 2000°C for a long time, and the heating method can be electric heating, high-frequency plasma heating, etc., and the material of the furnace body is made of high-temperature-resistant graphite, zirconia, etc.; After absorbing enough heat, it completely melts into a liquid, and then transfers to the spray chamber; the upper part of the spray chamber is connected to a piston, and the lower part has a spray hole.
- the piston can be pushed by other machinery (such as a cylinder, etc.), by increasing the pressure of the quartz liquid.
- the spray hole is ejected, the piston is in close contact with the wall of the spray chamber, and the diameter of the spray hole can be adjusted;
- the spray chamber is made of high-temperature heat-resistant materials, such as high-quality ceramic fiber, graphite, zirconia, etc.;
- the liquid droplets sprayed from the spray chamber Entering the atomization chamber the droplets present various shapes at the initial moment, but under the action of surface tension, the droplets will spontaneously shrink into a spherical shape, and the atomization chamber is equipped with primary air and secondary air nozzles from top to bottom, respectively. Air at different temperatures and flows is injected to cool the high-temperature quartz droplets, to control the spherical rate and amorphization rate of the droplets, and finally the solidified quartz powder is deposited at the bottom of the spray chamber.
- the technical solution of the present invention has the following advantages: the present invention adopts a high-temperature melt-spraying method, which melts high-purity quartz powder into a liquid at 2000-2400°C, and then atomizes the liquid through high-pressure spraying equipment.
- the silicon oxide droplets shrink into a spherical shape under the action of surface tension, and form spherical quartz powder under air cooling; the surface of the quartz powder prepared by this method is smooth, the spheroidization rate and amorphization rate can reach 100%, and the particle size is easy control, the preparation process is simple, secondary pollution is reduced, and large-scale production is easily realized.
- Fig. 1 is a structural schematic diagram of the device of the present invention.
- a device for synthesizing spherical quartz powder including a furnace 1, an injection chamber 2 and an atomization chamber 5, and the outlet of the furnace 1 is connected to the injection chamber 2.
- the injection chamber 2 includes an upper cylindrical section and a lower conical section.
- a piston 4 is arranged inside the cylindrical section. The movement of the piston 4 can be driven by a cylinder.
- the side wall of the atomization chamber 5 is provided with an upper air supply port 6 and a lower air supply port 7, and the upper air supply port 6 and the lower air supply port 7 can be air-supplied by a blower fan, and the air supply temperature and the air supply speed of the upper air supply port 6 are high.
- the inner wall material of the furnace and the injection chamber is made of high-temperature-resistant material, which can be selected from ceramic fiber, corundum, graphite or zirconia; the furnace is heated by electric heating or high-frequency plasma, and the temperature in the furnace is 2000-2400 °C; The pressure in the chamber is 2-10 atmospheres.
- the upper air supply port is 10-50cm below the injection hole, and the height of the upper air supply port is 10-50cm higher than the lower air supply port.
- the air supply temperature of the upper air supply port is 20-100°C, and the wind speed is 0.01-1.0m/s; the air supply temperature of the lower air supply port is 10-30°C, and the wind speed is 0.1-2.0m/s.
- quartz sand as the raw material, grind the quartz sand into powder and send it into the furnace for heating.
- the heating temperature is set at 2200°C.
- the completely melted quartz liquid is transferred to the spray chamber, and three atmospheres of pressure are applied to the liquid. Injected from a spray hole of 1.0mm, it is broken into small droplets in the atomization chamber.
- the temperature of the primary air is set at 50°C, and the speed is 0.1m/s.
- the temperature of the secondary air is set at 25°C, and the speed is 0.2m/s. .
- quartz sand as raw material, grind the quartz sand into powder and send it into the furnace for heating.
- the heating temperature is set at 2000°C.
- the completely melted quartz liquid is transferred to the spray chamber, and five atmospheres of pressure are applied to the liquid. Injected from a spray hole of 1.0mm, it is broken into small droplets in the atomization chamber.
- the temperature of the primary air is set at 50°C, and the speed is 0.1m/s.
- the temperature of the secondary air is set at 25°C, and the speed is 0.2m/s. .
- quartz sand as raw material, grind the quartz sand into powder and send it into the furnace for heating.
- the heating temperature is set at 2100°C.
- the completely melted quartz liquid is transferred to the spray chamber, and five atmospheres of pressure are applied to the liquid. It is injected from a spray hole of 0.5mm and broken into small droplets in the atomization chamber.
- the temperature of the primary air is set at 50°C, and the speed is 0.08m/s.
- the temperature of the secondary air is set at 25°C, and the speed is 0.15m/s. .
- quartz sand as the raw material, grind the quartz sand into powder and send it into the furnace for heating.
- the heating temperature is set at 2100°C.
- the completely melted quartz liquid is transferred to the spray chamber, and eight atmospheres of pressure are applied to the liquid.
- the spray hole is 2.0mm, and it is broken into small droplets in the atomization chamber.
- the temperature of the primary air is set at 50°C, and the speed is 0.5m/s.
- the temperature of the secondary air is set at 25°C, and the speed is 1.0m/s. .
- high-purity quartz powder as raw material, it is sent into the furnace for heating, and the heating temperature is set at 2000°C.
- the completely melted quartz liquid is transferred to the spray chamber, and five atmospheric pressures are applied to the liquid.
- the liquid is sprayed from a diameter of 1.0mm.
- the holes are ejected and broken into small droplets in the atomization chamber.
- the temperature of the primary air is set at 25°C, and the speed is 0.1m/s.
- the temperature of the secondary air is set at 25°C, and the speed is 0.2m/s.
- high-purity quartz powder as raw material, it is sent into the furnace for heating, and the heating temperature is set at 2000°C.
- the completely melted quartz liquid is transferred to the spray chamber, and ten atmospheric pressure is applied to the liquid.
- the liquid is sprayed from a diameter of 3.0mm.
- the holes are ejected and broken into small droplets in the atomization chamber.
- the temperature of the primary air is set at 50°C, and the speed is 0.5m/s.
- the temperature of the secondary air is set at 25°C, and the speed is 1.0m/s.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Silicon Compounds (AREA)
Abstract
一种合成球形石英粉的装置和方法,该合成球形石英粉的装置,包括熔炉、喷射室和雾化室,所述熔炉的出口连通所述喷射室,喷射室的底部通过喷射孔连通所述雾化室,所述喷射孔的直径为0.1mm-10mm;所述雾化室的侧壁上设有上送风口和下送风口,所述上送风口的送风温度和送风速度高于所述下送风口。所述装置和方法制备的石英粉,其表面光滑,球形化率和非晶化率均可以达到100%,颗粒大小容易控制,制备工艺简单,降低二次污染,容易实现规模化生产。
Description
本发明涉及球形石英粉的制备领域,具体涉及一种合成球形石英粉的装置和方法。
球形石英粉是指颗粒呈现球形且主要成分为二氧化硅的无定型粉体。球形石英粉作为重要的基础材料,已被广泛应用于大规模集成电路、航天航空、化工等高科技技术领域。在我国,球形石英粉主要依赖进口,球形石英粉制备技术比较落后,因此研究高品质球形石英粉制备技术,解决制约我国高新技术发展的卡脖子问题,变得十分紧迫。
目前,球形石英粉的制备技术主要包括火焰成球法、等离子体法、气相法、水热合成法、溶胶-凝胶法等。其中,火焰成球法以氢气、乙炔等为燃料,通过燃烧形成高温火焰,对高纯石英粉进行加热和熔化,火焰温度在2000℃以上,完全熔化后的石英粉在表面张力作用下,自行转变为球形液滴,最后通过冷却成球获得球形石英粉,该方法的主要不足是火焰稳定性极难控制,导致温度场也极不稳定,同时二氧化硅易与燃烧产物发生反应,导致产品的二次污染;等离子体法与火焰成球法类似,只不过等离子体法的加热源来自等离子体火炬,且温度要比氢气和乙炔火焰温度高很多,达到5000℃以上,如此高的温度能够快速地将石英粉熔化,在表面张力作用下,经过冷却形成球形粉末,该方法温度稳定可控,因此成球率很高,污染小,但成本极高,难以规模化;气相法、水热合成法、溶胶-凝胶法属于化学方法,气相法以四氯化硅为原料,在高温火焰中水解产生二氧化硅颗粒,所制备的颗粒粒径过小,在有机物中难以分散;水热合成法是在将有机和无机化合物在400℃以下与水化合,离子和分子通过结晶形成颗粒,经过洗涤、过滤、干燥等工序,获得需要的石英粉体,该方法受 反应器大小的限制,难以规模化生产。溶胶-凝胶法是将金属有机或无机物经过溶液、溶胶、凝胶而固化,然后经过烧结形成颗粒,该方法可以制备出均匀性好、纯度高、颗粒小,但是工艺复杂,原料价格高,颗粒容易团聚。
综上,现有的球形石英粉制备技术存在颗粒球形化和非晶化率不高,且工艺复杂,价格昂贵,难以规模化生产等缺点。
发明内容
本发明针对现有技术中存在的缺点,提供了一种合成球形石英粉的装置和方法,球形化率和非晶化率均可以达到100%,制备工艺简单,容易实现规模化生产。
按照本发明的技术方案,所述合成球形石英粉的装置,包括熔炉、喷射室和雾化室,所述熔炉的出口连通所述喷射室,喷射室的底部通过喷射孔连通所述雾化室,所述喷射孔的直径为0.1mm-10mm;所述雾化室的侧壁上设有上送风口和下送风口,所述上送风口的送风温度和送风速度高于所述下送风口。
进一步的,所述熔炉和所述喷射室的内壁材料选自陶瓷纤维、刚玉、石墨或氧化锆。
进一步的,所述熔炉内的温度为2000-2400℃。
进一步的,所述喷射室内的压力为2-10个大气压。
进一步的,所述喷射孔的直径可调。
进一步的,所述喷射孔、上送风口和下送风口之间的高度差均为10-50cm;具体的,所述上送风口在所述喷射孔下方10-50cm,所述上送风口的高度高于所述下送风口10-50cm。
进一步的,所述上送风口和所述下送风口均为多个,沿圆周方向均布于所述雾化室的侧壁上。
进一步的,所述上送风口的送风(以下称为一次风)温度为20-100℃,风速为0.01-1.0m/s;所述下送风口的送风(以下称为二次风)温度为10-30℃,风速为0.1-2.0m/s。
本发明的另一方面提供了一种合成球形石英粉的方法,包括以下步骤,
S1:将石英原料在2000-2400℃条件下加热,得到液体石英;
S2:将所述液体石英经喷射孔进行喷射,所述喷射孔的直径为0.1mm-10mm;
S3:对喷射后破碎的液体石英进行风冷,得到所述球形石英粉。
进一步的,所述石英原料为石英砂和/或石英粉。
进一步的,所述步骤S3中,风冷为两次,第一次风冷的温度为20-100℃,风速为0.01-1.0m/s;第二次风冷的温度为10-30℃,风速为0.1-2.0m/s。
具体的,该方法采用上述装置,其中熔炉可以长期工作在2000℃以上,加热方式可以是电加热、高频等离子体加热等,炉体材料采用耐高温的石墨、氧化锆等;石英原料在熔炉内吸收足够热量后完全熔化为液体,然后转移至喷射室;该喷射室上部连接活塞,下部开有喷射孔,活塞可由其它机械推动(如气缸等),通过增加石英液体的压力,将其从喷射孔喷出,活塞与喷射室壁面紧密接触,喷射孔的孔径大小可调;该喷射室由耐高温保温材料做成,如优质陶瓷纤维、石墨、氧化锆等;喷射室喷射出来的液滴进入雾化室,在初始时刻液滴呈现各种形状,但在表面张力作用下,液滴会自发收缩为球形,且雾化室从上往下设置有一次风和二次风喷口,分别通入不同温度和流量的空气,以冷却高温石英液滴,控制液滴成球率和非晶化率,最后固化的石英粉体沉积于雾化室底部。
本发明的技术方案相比现有技术具有以下优点:本发明采用了高温熔融喷射法,是将高纯石英粉在2000-2400℃下熔化为液体,然后经过高压喷射设备将液体雾化,二氧化硅液滴在表面张力作用下收缩为球形,在空气冷却下形成球形石英粉;该方法制备的石英粉,其表面光滑,球形化率和非晶化率均可以达到100%,颗粒大小容易控制,制备工艺简单,降低二次污染,容易实现规模化生产。
图1为本发明装置的结构示意图。
附图标记说明:1-熔炉、2-喷射室、3-喷射孔、4-活塞、5-雾化室、6-上送风口、7-下送风口。
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示:一种合成球形石英粉的装置,包括熔炉1、喷射室2和雾化室5,熔炉1的出口连通喷射室2。喷射室2包括上部的圆柱段和下部的圆锥段,圆柱段的内设有活塞4,活塞4的活动可以通过气缸推动,圆锥段的底部开有喷射孔3,喷射孔3的直径为0.1mm-10mm,喷射室2通过喷射孔3连通雾化室5。在雾化室5的侧壁上设有上送风口6和下送风口7,上送风口6和下送风口7可以通过送风机进行送风,上送风口6的送风温度和送风速度高于下送风口7。
具体的,熔炉和喷射室的内壁材料采用耐高温材质,可以选自陶瓷纤维、刚玉、石墨或氧化锆;熔炉通过电加热或高频等离子体加热,熔炉内的温度为2000-2400℃;喷射室内的压力为2-10个大气压。
上送风口在喷射孔下方10-50cm,上送风口的高度高于下送风口10-50cm。为保证送风温度和速度的均衡性,上送风口和下送风口均为多个,沿圆周方向均布于雾化室的侧壁上。上送风口的送风温度为20-100℃,风速为0.01-1.0m/s;下送风口的送风温度为10-30℃,风速为0.1-2.0m/s。
实施例1
以石英砂为原料,将石英砂研磨成粉,送入熔炉中进行加热,加热温度设定在2200℃,完全熔化后的石英液体转移至喷射室,给液体施加三个大气压力,液体从直径为1.0mm的喷射孔射出,在雾化室内破碎为小液滴,一次风温度设定为50℃,速度为0.1m/s,二次风温度设定为25℃,速度为0.2m/s。
实施例2
以石英砂为原料,将石英砂研磨成粉,送入熔炉中进行加热,加热温度设定在2000℃,完全熔化后的石英液体转移至喷射室,给液体施加五个大气压力, 液体从直径为1.0mm的喷射孔射出,在雾化室内破碎为小液滴,一次风温度设定为50℃,速度为0.1m/s,二次风温度设定为25℃,速度为0.2m/s。
实施例3
以石英砂为原料,将石英砂研磨成粉,送入熔炉中进行加热,加热温度设定在2100℃,完全熔化后的石英液体转移至喷射室,给液体施加五个大气压力,液体从直径为0.5mm的喷射孔射出,在雾化室内破碎为小液滴,一次风温度设定为50℃,速度为0.08m/s,二次风温度设定为25℃,速度为0.15m/s。
实施例4
以石英砂为原料,将石英砂研磨成粉,送入熔炉中进行加热,加热温度设定在2100℃,完全熔化后的石英液体转移至喷射室,给液体施加八个大气压力,液体从直径为2.0mm的喷射孔射出,在雾化室内破碎为小液滴,一次风温度设定为50℃,速度为0.5m/s,二次风温度设定为25℃,速度为1.0m/s。
实施例5
以高纯石英粉为原料,送入熔炉中进行加热,加热温度设定在2000℃,完全熔化后的石英液体转移至喷射室,给液体施加五个大气压力,液体从直径为1.0mm的喷射孔射出,在雾化室内破碎为小液滴,一次风温度设定为25℃,速度为0.1m/s,二次风温度设定为25℃,速度为0.2m/s。
实施例6
以高纯石英粉为原料,送入熔炉中进行加热,加热温度设定在2000℃,完全熔化后的石英液体转移至喷射室,给液体施加十个大气压力,液体从直径为3.0mm的喷射孔射出,在雾化室内破碎为小液滴,一次风温度设定为50℃,速度为0.5m/s,二次风温度设定为25℃,速度为1.0m/s。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (10)
- 一种合成球形石英粉的装置,其特征在于,包括熔炉、喷射室和雾化室,所述熔炉的出口连通所述喷射室,喷射室的底部通过喷射孔连通所述雾化室,所述喷射孔的直径为0.1mm-10mm;所述雾化室的侧壁上设有上送风口和下送风口,所述上送风口的送风温度和送风速度高于所述下送风口。
- 如权利要求1所述的合成球形石英粉的装置,其特征在于,所述熔炉和所述喷射室的内壁材料选自陶瓷纤维、刚玉、石墨或氧化锆。
- 如权利要求1或2所述的合成球形石英粉的装置,其特征在于,所述熔炉内的温度为2000-2400℃。
- 如权利要求1或2所述的合成球形石英粉的装置,其特征在于,所述喷射室内的压力为2-10个大气压。
- 如权利要求1所述的合成球形石英粉的装置,其特征在于,所述喷射孔、上送风口和下送风口之间的高度差均为10-50cm。
- 如权利要求1所述的合成球形石英粉的装置,其特征在于,所述上送风口和所述下送风口均为多个,沿圆周方向均布于所述雾化室的侧壁上。
- 如权利要求1、5或6所述的合成球形石英粉的装置,其特征在于,所述上送风口的送风温度为20-100℃,风速为0.01-1.0m/s;所述下送风口的送风温度为10-30℃,风速为0.1-2.0m/s。
- 一种合成球形石英粉的方法,其特征在于,包括以下步骤,S1:将石英原料在2000-2400℃条件下加热,得到液体石英;S2:将所述液体石英经喷射孔进行喷射,所述喷射孔的直径为0.1mm-10mm;S3:对喷射后破碎的液体石英进行风冷,得到所述球形石英粉。
- 如权利要求8所述的合成球形石英粉的方法,其特征在于,所述石英原料为石英砂和/或石英粉。
- 如权利要求8所述的合成球形石英粉的方法,其特征在于,所述步骤 S3中,风冷为两次,第一次风冷的温度为20-100℃,风速为0.01-1.0m/s;第二次风冷的温度为10-30℃,风速为0.1-2.0m/s。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111151352.3A CN113830999A (zh) | 2021-09-29 | 2021-09-29 | 一种合成球形石英粉的装置和方法 |
CN202111151352.3 | 2021-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023050467A1 true WO2023050467A1 (zh) | 2023-04-06 |
Family
ID=78967328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/123207 WO2023050467A1 (zh) | 2021-09-29 | 2021-10-12 | 一种合成球形石英粉的装置和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113830999A (zh) |
WO (1) | WO2023050467A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0801037A1 (en) * | 1996-04-09 | 1997-10-15 | Asahi Glass Company Ltd. | Process for producing inorganic microspheres and glass microballoons |
WO2002066914A1 (de) * | 2001-02-17 | 2002-08-29 | Messer Griesheim Gmbh | Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern |
US20070205303A1 (en) * | 2006-02-21 | 2007-09-06 | Council Of Scientific And Industrial Research. | Jet-wheel impact atomizer for spray drying and a process for the preparation of finely dispersed spray of slurry/liquid |
CN102784923A (zh) * | 2012-09-04 | 2012-11-21 | 柳州百韧特先进材料有限公司 | 一种铟粉制取系统 |
CN102974284A (zh) * | 2012-11-28 | 2013-03-20 | 蚌埠鑫源石英材料有限公司 | 球形无机粉体材料的制备方法 |
CN106348306A (zh) * | 2016-10-21 | 2017-01-25 | 浙江华飞电子基材有限公司 | 一种球形纳米二氧化硅的制备方法 |
CN109455728A (zh) * | 2018-12-29 | 2019-03-12 | 黄冈师范学院 | 一种燃气加热生产高纯超细球形硅微粉的装置及方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107262730B (zh) * | 2017-08-01 | 2019-04-23 | 北京有色金属研究总院 | 一种微细球形金属粉末的气体雾化制备方法及其设备 |
-
2021
- 2021-09-29 CN CN202111151352.3A patent/CN113830999A/zh active Pending
- 2021-10-12 WO PCT/CN2021/123207 patent/WO2023050467A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0801037A1 (en) * | 1996-04-09 | 1997-10-15 | Asahi Glass Company Ltd. | Process for producing inorganic microspheres and glass microballoons |
WO2002066914A1 (de) * | 2001-02-17 | 2002-08-29 | Messer Griesheim Gmbh | Vorrichtung und verfahren zum pulverisieren von werkstoffen, insbesondere gläsern |
US20070205303A1 (en) * | 2006-02-21 | 2007-09-06 | Council Of Scientific And Industrial Research. | Jet-wheel impact atomizer for spray drying and a process for the preparation of finely dispersed spray of slurry/liquid |
CN102784923A (zh) * | 2012-09-04 | 2012-11-21 | 柳州百韧特先进材料有限公司 | 一种铟粉制取系统 |
CN102974284A (zh) * | 2012-11-28 | 2013-03-20 | 蚌埠鑫源石英材料有限公司 | 球形无机粉体材料的制备方法 |
CN106348306A (zh) * | 2016-10-21 | 2017-01-25 | 浙江华飞电子基材有限公司 | 一种球形纳米二氧化硅的制备方法 |
CN109455728A (zh) * | 2018-12-29 | 2019-03-12 | 黄冈师范学院 | 一种燃气加热生产高纯超细球形硅微粉的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113830999A (zh) | 2021-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106378460B (zh) | 制备球形纯钛或钛合金粉末的等离子雾化方法及设备 | |
US9206085B2 (en) | Method for densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing | |
KR20100024663A (ko) | 열플라즈마를 이용한 나노 복합 분말의 직접적, 연속적 합성 방법과 이를 위한 플라즈마 토치 | |
AU2014394102B2 (en) | Method for the densification and spheroidization of solid and solution precursor droplets of materials using plasma | |
CN103801704B (zh) | 一种适用于3d打印的成型铜粉、制备方法及其用途 | |
CN109455728B (zh) | 一种燃气加热生产高纯超细球形硅微粉的装置及方法 | |
US20140131906A1 (en) | Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing | |
CN105562700A (zh) | 一种用于3d打印的球形钛粉的等离子体制备方法 | |
CN108128781A (zh) | 一种纳米二氧化硅粉的生产方法 | |
WO2023050467A1 (zh) | 一种合成球形石英粉的装置和方法 | |
CN107186209B (zh) | 用于高温金属粉体球化的高频等离子加热器 | |
CN108751961A (zh) | 一种铝氧燃烧合成水雾法制备氧化铝基固溶体陶瓷粉末的方法 | |
CN1314585C (zh) | 利用辅助燃烧反应器制备纳米二氧化硅的方法 | |
CN106315647B (zh) | 一种高纯导热球形氧化铝制备方法 | |
CN114472002B (zh) | 一种包胶哑铃的增材粉喷装置 | |
CN202113846U (zh) | 带有伴热夹套的液体汽化设备 | |
WO2023082494A1 (zh) | 一种导电材料超细粉体制备装置 | |
TWI744067B (zh) | 粉體圓球化設備 | |
CN202290053U (zh) | 热敏性液体汽化设备 | |
JP6543753B2 (ja) | プラズマを使用して固体材料および材料の溶液前駆体液滴を高密度化および球状化する方法 | |
CN201670734U (zh) | 一种制备纳米多孔氧化锡膜的喷涂装置 | |
JP2019122926A (ja) | 噴霧熱分解による微小粒子の製造法 | |
KR20090075100A (ko) | 열플라즈마를 이용한 나노 유리분말의 합성방법 | |
Suzuki et al. | A study of fine particle spheroidization process by elevated-pressure pure oxygen flame | |
KR100405095B1 (ko) | 화염 또는 반응로 내에 전기-수력학적 분사를 이용한비응집 미세입자 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21959031 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21959031 Country of ref document: EP Kind code of ref document: A1 |