WO2023050332A1 - 一种测距速率的切换控制方法及通信装置 - Google Patents

一种测距速率的切换控制方法及通信装置 Download PDF

Info

Publication number
WO2023050332A1
WO2023050332A1 PCT/CN2021/122221 CN2021122221W WO2023050332A1 WO 2023050332 A1 WO2023050332 A1 WO 2023050332A1 CN 2021122221 W CN2021122221 W CN 2021122221W WO 2023050332 A1 WO2023050332 A1 WO 2023050332A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
rate
ranging
data transmission
transmission rate
Prior art date
Application number
PCT/CN2021/122221
Other languages
English (en)
French (fr)
Inventor
王康
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/122221 priority Critical patent/WO2023050332A1/zh
Priority to CN202180102274.XA priority patent/CN117980767A/zh
Priority to EP21958904.1A priority patent/EP4400857A1/en
Publication of WO2023050332A1 publication Critical patent/WO2023050332A1/zh
Priority to US18/620,637 priority patent/US20240243833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder

Definitions

  • the present application relates to the field of communication technologies, and in particular to a ranging rate switching control method and a communication device.
  • UWB technology is a new type of wireless communication technology that can achieve centimeter-level positioning accuracy, and has the characteristics of high time resolution and strong multipath resistance. It can still achieve ranging and positioning in complex multipath environments. Therefore, It can be widely used in high-precision ranging and positioning scenarios.
  • the default UWB network parameters are usually negotiated or drawn up through Bluetooth, near field communication (near field communication, NFC) and other communication systems, and then the UWB group is performed based on the default UWB network parameters.
  • Network and ranging tasks after networking, etc. after the two nodes performing ranging have established UWB communication, they will always use a fixed ranging rate (ie, the data transmission rate in the default UWB network parameters) for data transmission.
  • a fixed ranging rate ie, the data transmission rate in the default UWB network parameters
  • the channel environment between nodes often changes. If a physical channel with a certain ranging rate is used all the time, the probability of data retransmission and packet error will be relatively high, which may lead to high power consumption and poor measurement performance.
  • the problem of poor distance performance may even lead to ranging failure.
  • the ranging process relies heavily on other communication systems. If the UWB network parameters need to be modified during the ranging process, it is necessary to establish a UWB communication network corresponding to the new UWB network parameters through Bluetooth, near-field communication and other communication systems.
  • the current ranging method based on the UWB communication technology has the problems of poor flexibility and poor ranging performance.
  • the present application provides a ranging rate switching control method and a communication device, which are used to switch and control the ranging rate adopted by the ranging node in the ranging process, thereby improving the flexibility of the ranging control, and improving the ranging rate. distance performance.
  • the present application provides a ranging rate switching control method, the method including: the first node receives the rate indication information from the second node during the current UWB ranging process with the second node; wherein , the rate indication information is used to indicate the first data transmission rate available to the second node; the first node according to the first data transmission rate indicated by the rate indication information and the first node's The quality of the communication link determines the target ranging rate when performing the next UWB ranging process with the second node.
  • the first node when the first node and the second node perform the current UWB ranging process, the first node can respectively determine the first node and the first node according to the rate indication information from the second node and the communication link quality of the first node.
  • the available data transmission rate of the second node can further determine the ranging rate when the second node performs the next UWB ranging process.
  • the first node can negotiate with the second node to determine a ranging rate supported by both parties and use it when performing the next ranging process.
  • the first node when the first node performs the UWB ranging process with the second node, it can flexibly switch and control the ranging rate adopted in the UWB ranging process, so as to select the most suitable ranging rate for the current environment to perform UWB ranging process, therefore, compared with the scheme in the prior art in which the two nodes have been using a fixed ranging rate to perform the ranging process after establishing UWB communication, the ranging rate can be selected in a targeted manner, as far as possible Reduce the probability of retransmission and mistransmission of data (data packets) during the ranging process, thereby improving the ranging performance. It can also reduce power consumption to a certain extent, speed up the execution of the ranging process, and further improve the ranging performance.
  • the first node and the second node can interact based on the UWB communication method, so it can reduce the need for other communication systems or communication methods.
  • Dependence simplify the process of switching the ranging rate, and then improve the switching efficiency.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • different data transmission rates correspond to different link quality parameters, so that the node can select a relatively appropriate data transmission rate for data transmission according to the link quality of the communication link.
  • the first data transmission rate is the corresponding data transmission rate determined according to the communication link quality of the second node, which can reflect the ranging rate currently suitable for the second node, so the first node can determine the current range of the second node according to the rate indication information.
  • the suitable first data transmission rate can then be combined with its own communication link quality to determine the ranging rate used when performing the next UWB ranging process.
  • the first node determines, according to the first data transmission rate indicated by the rate indication information and the communication link quality of the first node, to perform the next step with the second node.
  • the target ranging rate during a UWB ranging process includes: the first node determines the second data transmission rate of the first node according to the communication link quality of the first node; wherein, the second The data transmission rate is the data transmission rate corresponding to the second link quality parameter among the plurality of candidate data transmission rates, and the second link quality parameter is used to indicate the communication link quality of the first node; The first node determines the target ranging rate according to the first data transmission rate and the second data transmission rate.
  • the first node can quickly determine the data transmission rate currently suitable for the first node, and then can combine the second The currently applicable data transmission rate of the two nodes determines the target ranging rate, ensuring that the target ranging rate determined by the first node is acceptable to both the first node and the second node.
  • the first node determines the target ranging rate according to the first data transmission rate and the second data transmission rate, including: when the first data transmission rate and the When the second data transmission rate is the same and different from the data transmission rate used in the current UWB ranging process, the first node uses the first data transmission rate as the target ranging rate; when the first When the data transmission rate is different from the second data transmission rate or the first data transmission rate is the same as the data transmission rate used in the current UWB ranging process, the first node will perform the current UWB ranging process.
  • the data transmission rate is used as the target ranging rate.
  • the first node and the second node use the same data transmission rate to ensure normal communication quality, so the first node can compare the available data transmission rates of the first node and the second node, and compare with the current According to the comparison results, it can be determined whether it is necessary and whether it is possible to switch the currently used ranging rate, which can realize accurate control of the switching of the ranging rate, and at the same time ensure that the distance between the first node and the second node communication quality between them.
  • the method further includes: when the first node uses the first data transmission rate as the target ranging rate, the first node sends a rate to the second node A switching instruction, the rate switching instruction is used to instruct the second node to switch the ranging rate of the second node to the target ranging rate when performing the next UWB ranging process; the second node A node switches the ranging rate of the first node to the target ranging rate when performing the next UWB ranging process.
  • the first node indicates the new ranging rate to the second node, so that the second node switches the ranging rate when performing the next UWB ranging process, and at the same time, the first node performs the next UWB ranging process
  • the ranging rate is also switched during the process, so the first node and the second node can switch the ranging rate synchronously.
  • the first node sending the rate switching instruction to the second node includes: the first node forwarding the rate switching instruction to the second node through a management node; wherein, The management node is used to manage the first node and the second node.
  • the management node can uniformly manage the two nodes that perform ranging, and the related parameters in the ranging process between the two nodes can also be controlled by the management node. Therefore, in this method, the first node instructs the second node to switch the ranging rate through forwarding by the management node, which can adapt to the control mode of parameter switching in the UWB ranging scenario, and at the same time facilitates the management node to control the first node and the The second node performs unified control.
  • the The method further includes: the first node receiving the rate switching instruction from the management node; wherein, the rate switching instruction is also used to instruct the first node to perform the next UWB ranging process , switch the ranging rate of the first node to the target ranging rate.
  • the first node like the second node, can switch the ranging rate according to the instructions of the management node, so that it can adapt to the control mode of parameter switching in the UWB ranging scene, and at the same time, it is convenient for the management node to control the second node.
  • the first node and the second node perform unified control.
  • the method before the first node receives the rate indication information from the second node, the method further includes: the first node sends a rate switching request to the second node; wherein , the rate switching request is used to request the second node to feed back the rate indication information.
  • the first node can control the initiation of ranging rate switching, which improves the flexibility of ranging rate switching control.
  • the first node sending a rate switching request to the second node includes: the first node sending a first ranging frame carrying the rate switching request to the second node ;
  • the first ranging frame is used to instruct the second node to feed back a second ranging frame;
  • the first node receiving the rate indication information from the second node includes: the first The node receives the second ranging frame carrying the rate indication information from the second node.
  • ranging frames can be transmitted between nodes, and the distance between nodes can be calculated according to the transmission time of the ranging frames. Therefore, the first node transmits the rate switching request and rate indication information through the existing ranging frame in the UWB ranging process, which can reduce additional resource consumption and impact on the existing UWB ranging process, and improve the implementability of the solution.
  • the present application provides a ranging rate switching control method, which includes: the second node sends rate indication information to the first node during the current UWB ranging process with the first node; wherein, The rate indication information is used to indicate the first data transmission rate available to the second node.
  • the second node when the second node performs the current UWB ranging process with the first node, it indicates the available data transmission rate of the second node to the first node through the rate indication information, and the first node can use the available data transmission rate of the second node.
  • the data transmission rate is used as a reference to perform some processing procedures, such as the determination process of the ranging rate used when the first node and the second node perform the next ranging process.
  • the first node can fully refer to the available data transmission rate of the second node when determining the ranging rate for the next UWB ranging process with the second node, so as to determine a ranging rate supported by both parties and then Used when performing the next ranging process.
  • the second node can cooperate with the first node to perform flexible switching control on the ranging rate used in the process of UWB ranging, so as to select the most suitable ranging rate to perform UWB ranging process.
  • it is convenient to select the best ranging rate and reduce the ranging process as much as possible.
  • the probability of retransmission and mistransmission of data (data packets) in the middle thereby improving the ranging performance. It can also reduce power consumption to a certain extent, speed up the execution of the ranging process, and further improve the ranging performance.
  • the first node and the second node can interact based on the UWB communication method, so the dependence on other communication systems or communication methods can be reduced, the process of switching the ranging rate can be simplified, and the switching efficiency can be improved.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • different data transmission rates correspond to different link quality parameters, so that the node can select a relatively appropriate data transmission rate for data transmission according to the link quality of the communication link.
  • the first data transmission rate is the corresponding data transmission rate determined according to the communication link quality of the second node, which can reflect the ranging rate currently suitable for the second node, so the second node sends the first data transmission rate to the first.
  • the node can make the first node determine the ranging rate that the second node can support to be used in the next UWB ranging process in combination with the first data transmission rate.
  • the method further includes: the second node receiving a rate switching instruction from the first node; the second node performing the next ranging with the first node During the process, the ranging rate of the second node is switched to a target ranging rate according to the rate switching instruction.
  • the second node switches the ranging rate when performing the next ranging process, which can ensure that the second node and the first node perform the switching of the ranging rate synchronously, and improve the ranging rate switching. accuracy.
  • the second node receiving the rate switching instruction from the first node includes: the second node receiving the rate switching instruction from the first node forwarded by a management node, Wherein, the management node is used to manage the first node and the second node.
  • the management node can uniformly manage the two nodes that perform ranging, and related parameters in the ranging process between the two nodes can be controlled by the management node. Therefore, in this method, the second node receives the indication of the ranging rate switching from the first node through the forwarding mode of the management node, which can adapt to the control mode of parameter switching in the UWB ranging scenario, and at the same time, it is convenient for the management node to control the first node. Perform unified control with the second node.
  • the method before the second node sends rate indication information to the first node, the method further includes: the second node receives a rate switching request from the first node; wherein , the rate switching request is used to request the second node to feed back the rate indication information.
  • the second node can perform corresponding feedback according to the instruction of the first node, so that the first node can control the initiation of ranging rate switching, which improves the flexibility of ranging rate switching control.
  • the receiving the rate switching request from the first node by the second node includes: receiving, by the second node, a first test packet carrying the rate switching request from the first node ranging frame; wherein, the first ranging frame is used to instruct the second node to feed back a second ranging frame; the second node sends the rate indication information to the first node, including: the first The second node sends the second ranging frame carrying the rate indication information to the first node.
  • ranging frames can be transmitted between nodes, and the distance between nodes can be calculated according to the transmission time of the ranging frames. Therefore, the second node transmits the rate switching request and rate indication information through the existing ranging frame in the UWB ranging process, which can reduce additional resource consumption and impact on the existing UWB ranging process, and improve the implementability of the solution.
  • the present application provides a ranging rate switching control method, including: the management node receives a rate switching instruction from the first node during the current UWB ranging process between the first node and the second node; wherein , the rate switching instruction is used to instruct the second node to switch the ranging rate of the second node to a target ranging rate when performing the next UWB ranging process with the first node; the management The node sends the rate switching instruction to the second node.
  • the management node In the UWB ranging scenario, the management node, as the control terminal, can control the ranging process of the management node itself and the slave nodes. Therefore, in this method, when the first node and the second node execute the UWB ranging process, the management node can control the execution process of the first node and the second node.
  • the first node determines to switch the ranging rate, it sends the rate switching instruction information to the management node, and the management node can control the switching of the ranging rate of the second node according to the rate switching instruction information, thereby indirectly implementing the first node.
  • the control of the second node enables the second node to switch the ranging rate together with the first node, ensuring the consistency and synchronization of the ranging rate switching between the first node and the second node.
  • flexible switching control of the ranging rates adopted by the first node and the second node in the UWB ranging process can be realized, so as to select the most suitable ranging rate to execute the UWB ranging process, thereby improving the ranging performance.
  • the method further includes: the management node sending the rate switching instruction to the first node; wherein the rate switching instruction is also used to indicate that the first node is executing the During the next UWB ranging process, the ranging rate of the first node is switched to the target ranging rate.
  • the management node instructs the second node to switch the ranging rate when performing the next UWB ranging process
  • it also instructs the first node to switch the ranging rate when performing the next UWB ranging process, which can The consistency and synchronization of ranging rate switching between the first node and the second node are guaranteed.
  • the present application provides a communication device, which is applied to a first node, and the communication device includes a transceiver unit and a processing unit; the transceiver unit is used to receive Rate indication information from the second node; wherein, the rate indication information is used to indicate the first data transmission rate available to the second node; the processing unit is configured to, according to the rate indication information indicated by the rate indication information The first data transmission rate and the communication link quality of the first node determine a target ranging rate when performing a next UWB ranging process with the second node.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • the processing unit determines the next execution with the second node according to the first data transmission rate indicated by the rate indication information and the communication link quality of the first node.
  • the target ranging rate during the UWB ranging process is specifically used to: determine the second data transmission rate of the first node according to the communication link quality of the first node; wherein, the second data transmission rate is the data transmission rate corresponding to the second link quality parameter among the plurality of candidate data transmission rates, and the second link quality parameter is used to indicate the communication link quality of the first node; according to the first node A data transmission rate and the second data transmission rate to determine the target ranging rate.
  • the processing unit determines the target ranging rate according to the first data transmission rate and the second data transmission rate, it is specifically configured to: when the first data transmission rate When it is the same as the second data transmission rate and different from the data transmission rate used in the current UWB ranging process, the first data transmission rate is used as the target ranging rate; when the first data transmission rate When it is different from the second data transmission rate or the first data transmission rate is the same as the data transmission rate used in the current UWB ranging process, the data transmission rate used in the current UWB ranging process is used as the target Ranging rate.
  • the processing unit is further configured to: when the first data transmission rate is used as the target ranging rate, send a rate switching instruction to the second node through the transceiver unit, The rate switching instruction is used to instruct the second node to switch the ranging rate of the second node to the target ranging rate when performing the next UWB ranging process; During the UWB ranging process, switching the ranging rate of the first node to the target ranging rate.
  • the processing unit when the processing unit sends the rate switching instruction to the second node through the transceiver unit, it is specifically configured to: make the transceiver unit forward the information sent to the second node through the management node.
  • the rate switching instruction wherein, the management node is used to manage the first node and the second node.
  • the transceiver unit before the transceiver unit receives the rate indication information from the second node, the transceiver unit is further configured to: send a rate switching request to the second node; wherein the rate The handover request is used to request the second node to feed back the rate indication information.
  • the transceiving unit when the transceiving unit sends the rate switching request to the second node, it is specifically configured to: send the first ranging frame carrying the rate switching request to the second node; wherein, The first ranging frame is used to instruct the second node to feed back the second ranging frame; when the transceiver unit receives the rate indication information from the second node, it is specifically used for: the first node receiving the second ranging frame carrying the rate indication information from the second node.
  • the present application provides a communication device, which is applied to the second node, and the communication device includes a transceiver unit and a processing unit; the processing unit is used to perform the current UWB ranging process with the first node, through The transceiving unit sends rate indication information to the first node; wherein the rate indication information is used to indicate the first data transmission rate available to the second node.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • the processing unit is further configured to: receive a rate switching instruction from the first node through the transceiver unit; when performing the next ranging process with the first node, switching the ranging rate of the second node to a target ranging rate according to the rate switching instruction.
  • the processing unit receiving the rate switching instruction from the first node through the transceiver unit includes: causing the transceiver unit to receive the instruction from the first node forwarded by the management node.
  • the processing unit when the processing unit receives the rate switching request from the first node through the transceiver unit, it is specifically configured to: receive a request from the first node through the transceiver unit that carries the The first ranging frame of the rate switching request; wherein, the first ranging frame is used to instruct the second node to feed back the second ranging frame; the processing unit sends to the first node through the transceiver unit
  • the rate indication information is specifically configured to: send the second ranging frame carrying the rate indication information to the first node through the transceiver unit.
  • the present application provides a communication device, which is applied to a management node, and the communication device includes a transceiver unit and a processing unit; the processing unit is used to perform the current UWB ranging process between the first node and the second node, Receive a rate switching instruction from the first node through the transceiver unit; wherein, the rate switching instruction is used to instruct the second node to use the first node when performing the next UWB ranging process with the first node.
  • the ranging rate of the second node is switched to a target ranging rate; the processing unit sends the rate switching instruction to the second node through the transceiver unit.
  • the processing unit is further configured to: send the rate switching instruction to the first node through the transceiver unit; wherein the rate switching instruction is also used to instruct the first node When performing the next UWB ranging process, switch the ranging rate of the first node to the target ranging rate.
  • the present application provides a communication device, which is applied to a first node, and the communication device includes a transceiver and a processor; the transceiver is used to receive Rate indication information from the second node; wherein, the rate indication information is used to indicate the first data transmission rate available to the second node; the processor is configured to, according to the rate indicated by the rate indication information
  • the first data transmission rate and the communication link quality of the first node determine a target ranging rate when performing a next UWB ranging process with the second node.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • the processor determines the target ranging rate according to the first data transmission rate and the second data transmission rate, it is specifically configured to: when the first data transmission rate When it is the same as the second data transmission rate and different from the data transmission rate used in the current UWB ranging process, the first data transmission rate is used as the target ranging rate; when the first data transmission rate When it is different from the second data transmission rate or the first data transmission rate is the same as the data transmission rate used in the current UWB ranging process, the data transmission rate used in the current UWB ranging process is used as the target Ranging rate.
  • the processor is further configured to: when the first data transmission rate is used as the target ranging rate, send a rate switching instruction to the second node through the transceiver, The rate switching instruction is used to instruct the second node to switch the ranging rate of the second node to the target ranging rate when performing the next UWB ranging process; During the UWB ranging process, switching the ranging rate of the first node to the target ranging rate.
  • the processor when the processor sends the rate switching instruction to the second node through the transceiver, it is specifically configured to: make the transceiver forward the information sent to the second node through the management node.
  • the rate switching instruction wherein, the management node is used to manage the first node and the second node.
  • the transceiver before the transceiver receives the rate indication information from the second node, the transceiver is further configured to: send a rate switching request to the second node; wherein the rate The handover request is used to request the second node to feed back the rate indication information.
  • the transceiver when the transceiver sends the rate switching request to the second node, it is specifically configured to: send the first ranging frame carrying the rate switching request to the second node; wherein, The first ranging frame is used to instruct the second node to feed back the second ranging frame; when the transceiver receives the rate indication information from the second node, it is specifically used for: the first node receiving the second ranging frame carrying the rate indication information from the second node.
  • the present application provides a communication device, which is applied to a second node, and the communication device includes a transceiver and a processor; the processor is configured to, during the current UWB ranging process with the first node, through The transceiver sends rate indication information to the first node; wherein the rate indication information is used to indicate the first data transmission rate available to the second node.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • the processor is further configured to: receive a rate switching instruction from the first node through the transceiver; when performing the next ranging process with the first node, switching the ranging rate of the second node to a target ranging rate according to the rate switching instruction.
  • the processor receiving the rate switching instruction from the first node through the transceiver includes: enabling the transceiver to receive the instruction from the first node forwarded by the management node.
  • the processor before the processor sends the rate indication information to the first node through the transceiver, the processor is further configured to: receive a message from the first node through the transceiver A rate switching request; wherein, the rate switching request is used to request the second node to feed back the rate indication information.
  • the processor when the processor receives the rate switch request from the first node through the transceiver, it is specifically configured to: receive through the transceiver a request from the first node carrying the The first ranging frame of the rate switching request; wherein, the first ranging frame is used to instruct the second node to feed back the second ranging frame; the processor sends to the first node through the transceiver
  • the rate indication information is specifically configured to: send the second ranging frame carrying the rate indication information to the first node through the transceiver.
  • the present application provides a communication device, which is applied to a management node, and the communication device includes a transceiver and a processor; the processor is used to perform the current UWB ranging process between the first node and the second node, by The transceiver receives a rate switching instruction from the first node; wherein, the rate switching instruction is used to instruct the second node to use the The ranging rate of the second node is switched to a target ranging rate; the processor sends the rate switching instruction to the second node through the transceiver.
  • the processor is further configured to: send the rate switching instruction to the first node through the transceiver; wherein the rate switching instruction is also used to instruct the first node When performing the next UWB ranging process, switch the ranging rate of the first node to the target ranging rate.
  • the present application provides a computer-readable storage medium, where a computer-readable program is stored in the computer-readable storage medium, and when the computer-readable program is run on a computer, the computer executes the above-mentioned first
  • the method described in one aspect or any possible design of the first aspect or make the computer execute the method described in the second aspect or any possible design of the second aspect, or make the computer execute The method described in the above third aspect or any possible design of the third aspect.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method described in the first aspect or any possible design of the first aspect, Or, make the computer execute the method described in the second aspect or any possible design of the second aspect, or make the computer execute the method described in the third aspect or any possible design of the third aspect method.
  • the present application provides a chip, which is used to read the computer program stored in the memory, and execute the method described in the first aspect or any possible design of the first aspect, or execute the above-mentioned The method described in the second aspect or any possible design of the second aspect, or execute the method described in the above third aspect or any possible design of the third aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, and is used to support a computer device to implement the method described in the above-mentioned first aspect or any possible design of the first aspect, or, Realize the method described in the above second aspect or any possible design of the second aspect, or realize the method described in the above third aspect or any possible design of the third aspect.
  • the chip system further includes a memory, and the memory is used for storing necessary programs and data of the computer device.
  • the chip system is composed of a chip, or includes a chip and other discrete devices.
  • Figure 1a is a schematic diagram of the architecture of a UWB ranging system
  • Figure 1b is a schematic diagram of a UWB ranging process
  • FIG. 2a is a schematic diagram of a UWB signal transmission system in a node provided by an embodiment of the present application
  • FIG. 2b is a schematic diagram of a UWB signal receiving system in a node provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a UWB ranging method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a ranging rate switching control method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a ranging rate switching control method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a ranging rate switching control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • UWB is a wireless carrier communication technology that uses ultra-wide baseband pulses with extremely wide spectrum for communication.
  • UWB technology uses nanosecond-level non-sine wave narrow pulses to transmit data, so it occupies a large spectrum range. Although wireless communication is used, its data transmission rate can reach hundreds of megabits per second.
  • UWB technology has the advantages of low system complexity, low power spectral density of transmitted signals, insensitivity to channel fading, low interception capability, and high positioning accuracy. It is especially suitable for high-speed wireless access in dense multipath places such as indoors.
  • UWB distance measurement refers to the measurement of the distance between different nodes based on UWB communication technology.
  • the principle of UWB ranging is to calculate the distance between nodes according to the transmission time and speed (generally the speed of light) of wireless signals between nodes.
  • the ranging rate mentioned in the embodiment of the present application refers to the data transmission rate adopted by the node in the process of performing UWB ranging.
  • the data transmission rate refers to the data volume of data transmitted on the communication link per unit time. Under different channel environments (or communication link environments), the data transmission rates suitable for nodes are different.
  • the management node is a node that sends data scheduling information.
  • the management node can manage the slave nodes establishing a communication connection with the management node.
  • a slave node is a node that receives data scheduling information, and transmits and receives data or performs data processing according to the received data scheduling information.
  • the device form of the management node and the slave node provided in the embodiment of the present application may be a terminal device, a functional module or unit set in the terminal device, or a chip, an integrated circuit, etc. deployed in the terminal device.
  • the terminal device is a device with short-distance wireless communication and UWB communication functions.
  • the terminal equipment may also be called user equipment (user equipment, UE), mobile terminal (mobile terminal, MT) and so on.
  • Terminal devices include but are not limited to mobile phones (Mobile Phone), tablet computers, laptops, handheld computers, mobile Internet devices (Mobile Internet Device, MID), wearable devices (such as smart watches, smart bracelets, etc.), vehicles, vehicle-mounted devices (such as automobiles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (Virtual Reality, VR) equipment, augmented reality (Augmented Reality, AR) equipment, wireless terminals in industrial control (Industrial Control), smart Household equipment (such as refrigerators, TVs, air conditioners, electric meters, etc.), intelligent robots, workshop equipment, wireless terminals in self driving (Self Driving), wireless terminals in remote medical surgery (Remote Medical Surgery), smart grid (Smart Grid ), wireless terminals in Transportation Safety, wireless terminals in Smart City, or wireless terminals
  • the terminal devices in this embodiment of the application include but are not limited to carrying or other operating systems.
  • At least one in the embodiments of the present application refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one (item) of the following” or similar expressions refer to any combination of these items, including any combination of single item(s) or plural item(s).
  • At least one item (unit) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or a, b and c, wherein a, b, c Can be single or multiple.
  • Fig. 1a is a schematic diagram of the architecture of a UWB ranging system.
  • the UWB ranging system may include a management node and at least one slave node (for example, N slave nodes shown in FIG. 1a, where N is a positive integer).
  • a UWB ranging process may be performed between the management node and any two nodes in the at least one slave node.
  • the two nodes executing the UWB ranging process are respectively an initiator and a responder of the UWB ranging process.
  • the management node can control and manage all nodes in the UWB ranging system. For example, the management node may instruct two nodes that perform the ranging process in the UWB ranging system, configure the initiator and responder in the two nodes, and assign the two nodes to perform various steps in the UWB ranging process time period etc.
  • the at least one slave node as a controlled terminal (controlee), can perform a UWB ranging process with other nodes under the control of the management node.
  • the UWB ranging is briefly introduced below in combination with FIG. 1b.
  • node 1 and node 2 are two nodes performing the UWB ranging process. Among them, node 1 acts as the control end and the initiator at the same time, and node 2 acts as the controlled end and the responding end at the same time, then node 1 can be the management node shown in Figure 1a, and node 2 can be any of the slaves shown in Figure 1a node.
  • Node 1 and node 2 communicate through Bluetooth communication, and negotiate to determine UWB network parameters.
  • S102 Node 1 and Node 2 start UWB respectively, and establish a UWB communication connection according to UWB network parameters.
  • Node 1 sends a period control message (ranging control message, RCM) to node 2 during the RCP period.
  • RCM ranging control message
  • a UWB ranging process can be divided into multiple periods (or time periods), and the multiple periods are respectively ranging control phase (ranging control phase, RCP), ranging initial period (ranging initiation phase) , RIP), ranging response phase (ranging response phase, RRP), measurement report phase (measurement report phase, RRP) and ranging control update phase (ranging control update phase, RCUP).
  • ranging control phase ranging control phase, RCP
  • ranging initial period ranging initiation phase
  • RIP ranging response phase
  • RRP measurement report phase
  • ranging control update phase ranging control update phase
  • Node 1 as the management node, can assign the roles of each node and indicate to the corresponding node through RCM. For example, node 1 can configure its own role as the initiator of the UWB ranging process, and configure node 2 as the responding end of the UWB ranging process, then node 1 indicates the role of node 2 to node 2 in the RCM. At the same time, node 1 can configure multiple periods of the UWB ranging process based on time division multiple address (TDMA) technology and indicate to node 2 through RCM. Node 1 and Node 2 execute corresponding ranging steps in each period of the UWB ranging process according to each period configured by Node 1 .
  • TDMA time division multiple address
  • Node 1 sends an initial ranging frame to Node 2 during the RIP period.
  • Node 1 as the initiator of the UWB ranging process, sends an initial ranging frame to Node 2 as the responder during the RIP period.
  • the initial ranging frame may carry time information when node 1 sends the initial ranging frame.
  • Node 2 feeds back the ranging frame to Node 1 after receiving the initial ranging frame.
  • the ranging frame fed back by node 2 may carry the time information of the initial ranging frame fed back by node 2 .
  • node 1 and node 2 can calculate the distance between node 1 and node 2 according to the flight time of the ranging frame between node 1 and node 2.
  • any one of node 1 and node 2 may send the distance measurement value calculated by itself to the peer end during the MRP period.
  • node 1 As the control terminal, if node 1 needs to update the parameters in RCM (such as the role of the node, the specific time of each period, etc.), it can send the ranging information update data frame to node 2 during the RCUP period, so that the updated parameters can be indicated to node 2.
  • RCM the parameters in RCM
  • an embodiment of the present application provides a ranging rate switching control method and a communication device, the method is used to switch the ranging rate adopted by the ranging node in the ranging process, thereby improving the ranging control flexibility and improve ranging performance.
  • Fig. 2a is a schematic diagram of a UWB signal transmitting system in a node provided by an embodiment of the present application.
  • the UWB signal transmission system of a node may include a digital encoding module, a signal modulation module, a pulse shaping module, a radio frequency module, an antenna and the like.
  • the digital encoding module can determine the signal encoding rate according to the ranging rate, and digitally encode the data information to be sent according to the determined signal encoding rate, and send the encoded data bit information to Signal Modulation Module.
  • the signal modulation module can perform signal modulation on the data bit information, and transmit the modulated data bit information to the pulse shaping module.
  • the pulse shaping module can perform pulse shaping on the data bit information obtained after modulation to obtain a corresponding pulse signal, and send the pulse signal to the radio frequency module.
  • the pulse signal is converted into an analog signal after passing through the radio frequency module, and is broadcasted through the antenna.
  • Fig. 2b is a schematic diagram of a UWB signal receiving system in a node provided by an embodiment of the present application.
  • the UWB signal receiving system of the node may include an antenna, a radio frequency module, an analog-to-digital conversion module, a signal processing module, and the like.
  • the node can receive signals from other nodes through the antenna.
  • the radio frequency module can perform processing such as frequency mixing on the signal received by the antenna.
  • the module conversion module can perform analog-to-digital conversion on the signal processed by the radio frequency module to obtain a corresponding digital signal.
  • the signal processing module can perform corresponding digital signal processing on the digital signal obtained by the analog-to-digital conversion module to obtain corresponding data information.
  • the digital signal processing performed by the signal processing module on the digital signal may include processing processes such as signal acquisition, signal tracking, signal demodulation, and signal decoding.
  • the signal transmitting system shown in FIG. 2a and the signal receiving system shown in FIG. 2b may exist in the same node, and are used to realize the signal transmitting and signal receiving functions of the node respectively.
  • the node may be the first node or the second node provided in this embodiment of the present application.
  • the first node and the second node provided in the embodiment of the present application may be respectively the management node and any slave node in the system architecture shown in FIG. 1a , or may be any two slave nodes in the system architecture shown in FIG. 1a respectively.
  • Fig. 3 is a schematic diagram of a UWB ranging method provided by an embodiment of the present application.
  • node 1 is the initiator of the UWB ranging process
  • node 2 is the responding end of the UWB ranging process.
  • node 1 sends ranging frame 1 to node 2 at time t1
  • node 2 receives the ranging frame 1 at time t2
  • Node 1 receives the ranging frame 2 at time t4 .
  • the average transmission time of the ranging frame transmitted between node 1 and node 2 that is, the signal flight time, can be calculated according to the following formula:
  • T is the signal flight time
  • T 1 is the time interval between node 1 sending ranging frame 1 and receiving ranging frame 2
  • T 1 t 4 -t 1
  • T 2 is node 2 receiving ranging frame 1 and receiving ranging frame 2
  • the distance between node 1 and node 2 can be obtained by multiplying the time of flight of the signal by node 1 or node 2 by the propagation speed of electromagnetic waves (ie, the speed of light).
  • FIG. 4 is a schematic diagram of a ranging rate switching control method provided by an embodiment of the present application. As shown in Figure 4, the method includes:
  • the second node sends rate indication information to the first node, and the first node receives the rate indication information from the second node; wherein, the rate The indication information is used to indicate the first data transmission rate available to the second node.
  • the first node and the second node when the first node and the second node perform the UWB ranging process, the first node and the second node first need to establish a communication connection through short-distance wireless communication, and then the first node and the second node can be based on the short-distance
  • the UWB network parameters are determined through negotiation, and then the UWB communication connection is established based on the UWB parameters determined through negotiation.
  • a UWB ranging process may be performed based on the UWB communication mode.
  • the above-mentioned short-distance wireless communication methods include but are not limited to Bluetooth communication, Bluetooth low energy (bluetooth low energy, BLE) communication, WiFi communication, NFC communication and other methods.
  • the aforementioned UWB network parameters may include, for example, a channel number (channel number), a synchronization code (preamble code), a ranging rate, and the like.
  • the first node may serve as a distance measurement initiator, and the second node may serve as a distance measurement responder.
  • the first node as the ranging initiator, may initiate a process of switching the ranging rate used when the first node and the second node perform the UWB ranging process.
  • the first node may first send a rate switching request to the second node.
  • the rate switching request is used to request the second node to feed back the rate indication information.
  • the second node sends the rate indication information to the first node in response to the rate switching request, and the first node receives the rate indication information from the second node.
  • the rate switching request may be transmitted to the second node by sending the first ranging frame carrying the rate switching request to the second node. sent to the second node.
  • the second node determines the rate switching request by receiving the first ranging frame carrying the rate switching request.
  • the first ranging frame is used to instruct the second node to feed back the second ranging frame.
  • the second node may send a message carrying the rate indication information to the first node.
  • the second ranging frame is used to send rate indication information to the first node.
  • the first node determines the rate indication information by receiving the second ranging frame carrying the rate indication information from the second node.
  • the first ranging frame may serve as a ranging request frame
  • the second ranging frame may serve as a ranging response frame.
  • the first node and the second node can calculate the distance between the first node and the second node by sending and receiving the first ranging frame and the second ranging frame.
  • the first ranging frame may be ranging frame 1 shown in FIG. 3
  • the second ranging frame may be ranging frame 2 shown in FIG. 3 .
  • the first node sends the first ranging frame and the rate switching request to the second node at the same time, and the second node simultaneously receives the first ranging frame and the rate switching request from the first node.
  • the second node may simultaneously send the second ranging frame and the rate indication information to the first node, and the first node simultaneously receives the second ranging frame and the rate indication information from the second node.
  • the first node may directly send the rate switching request to the second node, and the second node directly receives the rate switching request from the first node.
  • the second node may directly send the rate indication information to the first node, and the first node directly receives the rate indication information from the second node.
  • the second node after the second node receives the rate switch request from the first node, it can determine the quality of the communication link of the second node by evaluating the quality of the communication link, and determine the quality of the communication link of the second node.
  • the first link quality parameter corresponding to the link quality.
  • link quality parameters corresponding to different data transmission rates are different.
  • the first node and the second node may pre-store correspondences between multiple candidate data transmission rates and multiple link quality parameters.
  • the corresponding relationship may be preset and indicated by the management node to at least one slave node, wherein the management node and the at least one slave node include at least a first node and a second node.
  • the specific value of the link quality parameter may be a value interval of the communication link quality.
  • the first rate to the nth rate are values of n different candidate data transmission rates respectively, where n is a positive integer.
  • the first interval to the nth interval are value intervals of communication link quality corresponding to the first rate to the nth rate respectively.
  • the rate corresponding to the interval to which the value of the communication link quality of the node belongs is the available data transmission rate of the node.
  • the second node After the second node receives the rate switching request from the first node, it can determine the communication quality of the communication link of the second node by performing communication link quality evaluation, and then according to the first link corresponding to the communication quality a link quality parameter, and among multiple candidate data transmission rates, select a data transmission rate corresponding to the first link quality parameter as the first data transmission rate available to the second node.
  • the second node may determine that the first link quality parameter is the second interval, so the second node may determine that it is available
  • the first data transmission rate is the second rate corresponding to the second interval.
  • the second node Since the first node and the second node store the same table of correspondence between data transmission rates and link quality parameters in advance, the second node stores the first data transmission rate available to the second node, the first data transmission rate corresponding to the first data transmission rate After at least one link quality parameter is fed back to the first node, the first node can determine the first data transmission rate available to the second node. Therefore, the rate indication information sent by the second node to the first node may include: first information used to indicate the first data transmission rate, and/or used to indicate the first information corresponding to the first data transmission rate Second information of the first link quality parameter.
  • the first information is the first data transmission rate. Then, by carrying the first data transmission rate in the rate indication information, the second node can enable the first node to directly obtain the first data transmission rate after receiving the rate indication information.
  • the first information is the position of the first data transmission rate in the correspondence table between candidate data transmission rates and link quality parameters, for example, the first data transmission rate is in the corresponding A positional index in a relational table.
  • the second node may carry the position index of the first data transmission rate in the correspondence table in the rate indication information.
  • the first node may search in the correspondence table to determine the first data transmission rate at the corresponding position according to the position index therein.
  • the second information is the first link quality parameter.
  • the second node may carry the first link quality parameter in the rate indication information.
  • the first node may search in a correspondence table to determine the first data transmission rate corresponding to the first link quality parameter according to the first link quality parameter therein.
  • the second information is the position of the first link quality parameter in the correspondence table between candidate data transmission rates and link quality parameters, for example, the position of the first link quality parameter in the corresponding A positional index in a relational table. Then the second node may carry the position index of the first link quality parameter in the correspondence table in the rate indication information. After the first node receives the rate indication information, it can search and determine the first link quality parameter at the corresponding position in the correspondence table according to the position index therein, and then further determine the first link quality parameter corresponding to the first link quality parameter. data transfer rate.
  • the second node can indicate the first data transmission rate available to the second node to the first node through the rate indication information, and the first node can determine the The first data transfer rate available to the second node.
  • the first node determines a target ranging rate when performing a next UWB ranging process with the second node according to the first data transmission rate indicated by the rate indication information and the communication link quality of the first node.
  • the above-mentioned first node after receiving the rate indication information from the second node, the above-mentioned first node can determine the quality of the communication link of the first node by evaluating the quality of the communication link, and then according to the communication link quality of the first node The quality is to determine the second link quality parameter corresponding to the corresponding relationship table between candidate data transmission rates and link quality parameters, and the second data transmission rate corresponding to the second link quality parameter.
  • the second link quality parameter may be a value interval to which the communication link quality of the first node belongs.
  • the second data transmission rate is the data transmission rate corresponding to the second link quality parameter among the plurality of candidate data transmission rates in the correspondence table.
  • the first node After the first node determines the available second data transmission rate, it may determine a target ranging rate when performing a next UWB ranging process with the second node according to the first data transmission rate and the second data transmission rate.
  • the first node may determine whether the first data transmission rate is the same as the second data transmission rate and different from the data transmission rate used in the current UWB ranging process.
  • the first node uses the first data transmission rate as the Target ranging rate; when the first data transmission rate is different from the second data transmission rate or the first data transmission rate is the same as the data transmission rate used in the current UWB ranging process, the first The node takes the data transmission rate adopted in the current UWB ranging process as the target ranging rate.
  • the two nodes performing the ranging process default to perform each UWB ranging process according to the initially determined ranging rate. Therefore, when the first node performs the data transmission rate adopted in the current UWB ranging process as the target ranging rate, since the ranging rate has not changed, the first node does not need to indicate the target ranging rate to the second node.
  • the two nodes, the first node and the second node deliberately follow the default method, and when performing the next UWB ranging process, still use the data transmission rate adopted in the current UWB ranging process as the ranging rate.
  • the first node may also instruct the second node not to switch the ranging rate, or indicate to the second node the data transmission rate adopted in the current UWB ranging process as the target ranging rate.
  • the first node When the first node uses the first data transmission rate as the target ranging rate, the first node needs to instruct the second node to switch the ranging rate. Specifically, the first node may send a rate switching instruction to the second node, and the rate switching instruction is used to instruct the second node to use the second The ranging rate of the node is switched to the target ranging rate. Thereafter, when the first node performs the next UWB ranging process, switch the ranging rate of the first node to the target ranging rate. After receiving the rate switching instruction, the second node also switches its ranging rate to the target ranging rate when performing the next UWB ranging process.
  • the first node may directly send the rate switching instruction to the second node. For example, after the first node receives the second data frame from the second node, it can calculate the distance measurement value between the first node and the second node, and then the first node can notify the distance measurement value to the second node. When the device is connected, the rate switching instruction is sent to the second node together.
  • the first node may forward the rate to the second node through the management node Toggle indication.
  • the first node may send a rate switching instruction to the management node to request the management node to control the first node and the second node to switch the ranging rate.
  • the management node may send the rate switching instruction to the second node and at the same time send the rate switching instruction to the first node, thereby instructing the first node and the second node to When the second node performs the next UWB ranging process, the ranging rate is switched to the target ranging rate.
  • the first node and the second node switch their respective ranging rates to the target ranging rate when performing the next UWB ranging process.
  • the target ranging rate is carried in the rate switching instruction.
  • the first node and the second node switch the ranging rate to the target ranging rate when performing the next ranging process.
  • the specific implementation is: the first node and the second node perform the next ranging process
  • the target ranging rate is used as a new data transmission rate
  • the new data transmission rate is used for data transmission.
  • the first node and the second node encode the data information to be sent to the opposite end using the encoding rate corresponding to the target ranging rate.
  • the first node when the first node and the second node are performing the current UWB ranging process, the first node can respectively determine the first node and the first node according to the rate indication information from the second node and the communication link quality of the first node.
  • the available data transmission rate of the second node can further determine the ranging rate when the second node performs the next UWB ranging process.
  • the first node and the second node can determine a ranging rate supported by both parties through negotiation and use it when performing the next ranging process.
  • the first node and the second node when they perform the UWB ranging process, they can flexibly switch and control the ranging rate adopted in the UWB ranging process, so as to select the most suitable ranging rate for the current environment to perform UWB ranging. distance process, thereby improving the ranging performance. It can also reduce power consumption to a certain extent, speed up the execution of the ranging process, and further improve the ranging performance.
  • the first node and the second node can interact based on the UWB communication method, so it can reduce the need for other communication systems or communication methods. Dependence, simplify the process of switching the ranging rate, and then improve the switching efficiency.
  • the rate switching request information element (information element, IE) may include the following fields:
  • Channel quality request channel quality request
  • channel quality request channel quality request field: used to indicate whether channel quality assessment (that is, communication link quality assessment) is required.
  • Channel quality list channel quality list
  • this field contains the addresses of the multiple nodes.
  • Address size specifier used to indicate the length type of the address of the target node.
  • the target node is a node that needs to respond to the rate switching request among the nodes receiving the rate switching request, and the target node may be determined by the sender of the rate switching request.
  • the length type of the address can be divided into long address and short address. For example, an address with a length of 2 bytes is a short address, and an address with a length of 8 bytes is a long address.
  • Channel quality list number channel quality list number
  • Channel quality list number used to indicate the number of nodes that need to respond to the rate switching request among the multiple nodes indicated by the channel quality list field.
  • the 0th bit is the channel quality request field, and the value of this field can be 0 or 1.
  • the value of the channel quality request field is 1, it can be used to indicate that communication link quality evaluation needs to be performed, and when the value of the channel quality request field is 0, it can be used to indicate that no communication link quality evaluation is required .
  • Bits 1-2 are the address length descriptor field. Exemplarily, when the value of the address length descriptor field is 1, it can be used to indicate that the address of the target node is a long address, and when the value of the address length descriptor field is 0, it can be used to indicate that the address of the target node is a short address address. It should be understood that the address length descriptor field may also have other values for indicating other length types, which will not be described in detail here.
  • Bits 3-6 are the channel quality list number field.
  • the bit length of the channel quality list field is variable (variable), specifically, it may vary according to the number of multiple nodes indicated by the channel quality list field and the address length.
  • the address of any node in the channel quality list may be a short address of 2 bytes, or a long address of 8 bytes.
  • bit length and bit position of each field in the Rate Switching Request IE shown in Table 2 is just an example, and does not limit the bit length and bit position of each field in the Rate Switching Request IE.
  • the rate indication information IE includes at least one of the following fields:
  • Quality level field used to indicate the link quality parameter corresponding to the communication link quality of the node in the corresponding relationship between the above multiple candidate data transmission rates and link quality parameters.
  • the quality parameter is the value interval to which the quality of the communication link belongs.
  • Estimated rate level field used to indicate the data transmission rate corresponding to the link quality parameter in the quality level interval field in the corresponding relationship between the above multiple candidate data transmission rates and link quality parameters .
  • the rate indication information IE may further include a reserved (reserved) field, and the reserved field may be used to indicate some other related information, which is not specifically limited here.
  • the data length of the rate indication information may be 8 bits, and the number of bits is 0 to 7 respectively.
  • bits 0-3 can carry a quality level interval field.
  • the value of the quality level interval field may be the link quality parameter selected and determined by the node in the above Table 1, or may be the position index in Table 1 of the link quality parameter selected and determined by the node in the above Table 1 value.
  • Bits 4-6 can be used to carry the estimated rate level field.
  • the value of the estimated rate level field may be the data transmission rate selected and determined by the node in the above Table 1, or may be the position index value in Table 1 of the data transmission rate selected and determined by the node in the above Table 1 .
  • the seventh bit can be used to carry a reserved field.
  • bit length and bit position of each field in the rate indication information IE shown in Table 4 above is only an example, and does not limit the bit length and bit position of each field in the rate indication information IE.
  • the rate switching indication IE may include the following fields:
  • Switch indication switch indication field: used to indicate switching ranging rate.
  • Switch rate index switch rate index
  • Rate switch list used to indicate multiple nodes. Wherein, this field contains the addresses of the multiple nodes.
  • Address size specifier (address size specifier) field: used to indicate the address size of the target node, wherein the target node is the node that needs to respond to the rate switching instruction among the nodes that receive the rate switching instruction, and the target node The node may be determined by the sender of the rate switching instruction.
  • the type of address length can be divided into long address and short address.
  • Rate switch list number used to indicate the number of nodes that need to respond to the rate switch instruction among the multiple nodes indicated by the rate switch list field.
  • the 0th bit is the switching indication field, and the value of this field can be 0 or 1.
  • the value of the handover indication field is 1, it may be used to indicate that the switching of the ranging rate is required, and when the value of the handover indication field is 0, it may be used to indicate that the switching of the ranging rate is not required.
  • Bits 1-4 are the switching rate index field.
  • the value of the switching rate index field may be the position index in Table 1 of the data transmission rate corresponding to the communication link quality of the node in the correspondence relationship shown in Table 1 above.
  • Bits 5-6 may be used to carry the Address Length Descriptor field.
  • the address length descriptor field when the value of the address length descriptor field is 1, it can be used to indicate that the address of the target node is a long address, and when the value of the address size descriptor field is 0, the address that can be used for the target node is a short address .
  • the address length descriptor field may also have other values for indicating other length types, which will not be described in detail here.
  • the 7th-10th bits are the rate switching list number field.
  • the bit length of the rate switching list field is variable, specifically according to the number of multiple nodes indicated by the rate switching list field and the address length.
  • the address of the node in the rate switching list can be a short address of 2 bytes, or a long address of 8 bytes.
  • bit length and bit position of each field in the rate switching indication IE shown in Table 5 is only an example, and does not limit the bit length and bit position of each field in the rate switching indication IE.
  • the ranging rate switching control method provided by the embodiment of the present application can be applied in one-to-one ranging (such as the above-mentioned ranging between the first node and the second node) scenarios, and can also be applied in one-to-many in the scene.
  • this solution may be applied to a scenario where the first node performs distance measurement with multiple other nodes.
  • the above-mentioned second node can be each node in the plurality of nodes, and then the first node can perform the solution provided by the above-mentioned embodiment with each node in the plurality of nodes , so as to realize the switching control of the ranging rate between the first node and each node.
  • the first node can use different ranging rates to perform the UWB ranging process with each node in the plurality of nodes, and can negotiate with each node to switch the ranging rate, so for the The scheme has strong flexibility for the switching control of distance rate.
  • the first node may determine a common ranging rate according to the data transmission rates available to the multiple nodes and the data transmission rate available to the first node itself, and may use the ranging rate Execute a UWB ranging process with the plurality of nodes respectively.
  • the first node uses the same ranging rate to perform a UWB ranging process with each of the plurality of nodes, which can reduce the time-consuming negotiation of the ranging rate, and then quickly realize the switching of the ranging rate.
  • Example 1 One-to-one ranging scenario
  • the switching control method of the ranging rate provided by the embodiment of the present application is introduced.
  • the first node serves as the control terminal and the initiator
  • the second node serves as the controlled terminal and the response terminal.
  • a switching control method of a ranging rate provided in an embodiment of the present application includes:
  • the first node sends an initial ranging frame and a rate switching request to the second node.
  • the first node and the second node can first establish a UWB communication connection by referring to steps S101-S103 described in Figure 1b, and configure node roles and various periods in the ranging process wait.
  • both the first node and the second node may include an upper-layer application (host side) and a link layer, wherein the upper-layer application can control the first node, and the link layer is used to provide the first node Provide data transmission services.
  • the upper layer application of the first node can send a rate switching request to the link layer.
  • the link layer replies with a confirmation message, the The initial ranging frame and rate switch request are sent to the second node.
  • the first node may send an initial ranging frame (that is, an initial ranging frame) and a rate switching request to the second node during the RIP period.
  • the rate switching request IE may be in the format shown in Table 2 above. Then, after the second node receives the rate switching request, it can sequentially judge whether the address conforming to the length type indicated by the address length descriptor field is the address of the second node in the first K addresses included in the channel quality list field. Wherein, K is the quantity value indicated by the channel quality list number.
  • the second node may perform communication link quality evaluation according to the indication of the channel quality request field, and determine the communication link quality of the second node.
  • the channel quality request field indicates communication link quality assessment
  • the address length descriptor field indicates a long address
  • the channel quality list number field indicates 10
  • the channel quality list field contains 30 The address of the node.
  • the address of the second node is the eighth address among the 30 addresses included in the channel quality list field, and is a long address.
  • the second node sequentially searches the first 10 addresses among the 30 addresses contained in the channel quality list field.
  • the long addresses are judged to determine whether each long address is the address of the second node.
  • the second node By judging the second node, it can be determined that the address of the second node is a long address included in the first 10 addresses in the channel quality list field, therefore, the second node can determine that it will respond to the indication of the channel quality request field to perform a communication link quality assessment.
  • the communication link quality of the second node is determined by performing the communication link quality assessment. Then the second node determines the link quality parameter whose communication link quality belongs in Table 1, and then determines that the data transmission rate corresponding to the link quality parameter is the first data transmission rate available to the second node.
  • S503 The second node feeds back the ranging frame and rate indication information to the first node.
  • the second node may feed back the ranging frame and rate indication information to the first node during the RRP period.
  • the rate indication information IE may be in the format shown in Table 4 above.
  • the value of the quality level interval field is the position index value in the above Table 2 of the link quality parameter corresponding to the communication link quality determined by the evaluation of the second node.
  • the estimated rate level field is the position index value in Table 2 of the available data transmission rate of the second node determined by the second node.
  • the first node after the first node receives the rate indication information from the second node, it also evaluates the communication link quality, determines the communication link quality of the first node, and determines the communication link quality of the first node according to Table 1 The corresponding link quality parameter and the second data transmission rate available to the first node.
  • the first node can compare the determined link quality parameter and the second data transmission rate of the first node with the link quality parameter and the first data transmission rate of the second node sent by the second node, and if they are all consistent and is different from the currently used ranging rate, the first node determines to switch the ranging rate, otherwise, the first node determines not to switch the ranging rate.
  • the first node sends a ranging information update data frame and a rate switching instruction to the second node.
  • the first node when it determines to switch the ranging rate, it may send a ranging information update data frame and a rate switching instruction to the second node during the RCUP period.
  • the rate switching indication IE may be in the format shown in Table 5 above.
  • the second node After the second node receives the rate switching instruction, it can search whether there is an address of the second node that meets the requirements of the address length descriptor field and the rate switching list number field in the rate switching list field. The second node needs to switch the ranging rate according to the indication of the handover indication field, and if it does not exist, the second node does not need to respond to the indication of the rate switching.
  • the first node and the second node When the first node and the second node perform the subsequent UWB ranging process, they can repeat the dynamic execution according to the above steps, so as to realize the flexible switching of the ranging rate.
  • the first node and the second node exchange information related to rate switching during the UWB ranging process, and evaluate the quality of the communication link of the ranging frame, and then combine the data transmission rate and link quality parameters.
  • the corresponding relationship can determine the ranging rate that is most suitable for the current environment of the first node and the second node for communication and ranging. Therefore, for network status changes in different environments, the ranging rate can be selected in a targeted manner.
  • Example 2 One-to-many ranging scenario
  • the multiple nodes include a second node, a third node, and a fourth node.
  • the first node serves as the control terminal and the initiator
  • the second node, the third node, and the fourth node serve as the controlled terminal and the responding terminal.
  • the first node may respectively perform the UWB ranging process shown in FIG. 1b with the second node, the third node, and the fourth node.
  • the first node may respectively configure various time periods in the process of performing UWB ranging with each node for the second node, the third node, and the fourth node.
  • the second node, the third node, and the fourth node perform corresponding ranging steps with the first node according to each time period configured by the first node.
  • a switching control method of a ranging rate provided in an embodiment of the present application includes:
  • the first node sends an initial ranging frame and a rate switching request to the second node, the third node, and the fourth node respectively.
  • the first node may be the management node in the UWB system shown in FIG. 1a
  • the second node, the third node, and the fourth node may be the slave nodes shown in FIG. 1a.
  • the first node configuration and each The periods during which the nodes perform UWB ranging may be the same or different.
  • the first node can simultaneously send the initial ranging frame and the rate switching request to the second node in the same RIP period , the third node, and the fourth node.
  • the first node can send data to the second node, the third node, and the fourth node respectively in the RIP time period corresponding to the second node, the third node, and the fourth node.
  • the three nodes and the fourth node send an initial ranging frame and a rate switching request.
  • the second node, the third node, and the fourth node respectively perform communication link quality assessment to determine available data transmission rates.
  • the second node, the third node, and the fourth node respectively feed back the ranging frame and the rate indication information to the first node.
  • the second node, the third node, and the fourth node feed back the ranging frame and rate to the first node at different times within the same RRP period Indication information
  • the first node receives the ranging frame and rate indication information fed back by the second node, the third node, and the fourth node respectively at different times within the RRP period.
  • the second node, the third node, and the fourth node respectively feed back the ranging frame and rate indication information to the first node within their corresponding RRP periods
  • the first node may respectively receive the ranging frame and rate indication information fed back by the second node, the third node, and the fourth node within the RRP periods corresponding to the second node, the third node, and the fourth node.
  • the first node determines whether to switch the ranging rate after receiving the ranging frame and rate indication information fed back by the second node, the third node, and the fourth node.
  • the first node After receiving the rate indication information fed back by the second node, the third node, and the fourth node, the first node determines the available data transmission rate of the first node by evaluating the communication link quality. Then compare whether the handover with the ranging rate of each node is valid or not. Specifically, for each of the second node, the third node, and the fourth node, the first node respectively compares whether the available data transmission rate of the node is the same as the available data transmission rate of the first node and is consistent with the current measurement If the ranging rate is different, if so, it is considered that the switching of the ranging rate between the node and the first node is valid, that is, the switching of the ranging rate can be performed.
  • the first node counts the effective ranging rate switching with each node, and determines the proportion of nodes that can switch to the same ranging rate among the nodes. When the proportion is greater than or equal to the set threshold, the first node can Switch the ranging rate to the same ranging rate with each node.
  • the first node can count the effective ranging rate switching with each node to obtain the content shown in the following table 7:
  • the second node, the third node, and the fourth node can all switch the ranging rate with the first node.
  • the first node determines that the first node and the second node can switch to a ranging rate of 850 kilobits per second (Kbps) after comparing the available data transmission rates of the first node and the second node.
  • Kbps kilobits per second
  • the first node After comparing the available data transmission rates of the first node and the fourth node, the first node determines that the first node and the fourth node can switch to a ranging rate of 6.8 megabits per second (Mbps). Then, among the second node, the third node, and the fourth node, the nodes (second node and third node) that can switch to the same ranging rate (ie, 850 Kbps) account for 2/3. If the threshold is set to 1/2, the first node may instruct the second node, the third node, and the fourth node to switch the ranging rate to 850 Kbps through the rate indication information.
  • the first node determines to switch the ranging rate, it sends a rate switching instruction to the second node, the third node, and the fourth node.
  • the first node can simultaneously send the ranging information update data frame and the rate switching instruction to the second node in the same RCUP period by broadcasting.
  • the first node can send data to the second node, the third node, and the fourth node respectively in the RCUP period corresponding to the second node, the third node, and the fourth node.
  • the three nodes and the fourth node send ranging information update data frames and rate switching instructions.
  • the first node and a plurality of nodes exchange information related to rate switching during the UWB ranging process, and evaluate the quality of the communication link of the ranging frame, and then combine the data transmission rate and the link quality parameter.
  • the ranging rate most suitable for the current environment of the first node and each node is determined. Therefore, for network status changes in different environments, the ranging rate can be selected in a targeted manner, thereby reducing the probability of data retransmission and error packets, reducing power consumption to a certain extent, and speeding up the execution of the ranging process.
  • the switching negotiation of the ranging rate is completed based on the UWB communication, so the dependence on other communication systems can be reduced, and the process of switching the ranging rate can be simplified. Improve the switching efficiency of the ranging rate.
  • the embodiment of the present application further provides a communication device, which is used to realize the function of the first node or the second node or the management node provided in the embodiment of the present application.
  • Figure 7 shows a communication device 700 provided by the embodiment of the present application.
  • the communication device 700 may be the first node, or a chip or chip system in the first node; or, the communication device 700 may be the second A node may also be a chip or a chip system in the second node; or, the communication device 700 may be a management node, or a chip or a chip system in the management node.
  • the communication device 700 includes a transceiver 701 and at least one processor 702 .
  • the processor 702 is coupled to the transceiver 701, the coupling in the embodiment of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, for Information exchange between devices, units or modules.
  • the transceiver 701 may be a circuit, a bus, a communication interface, or any other module that can be used for information exchange, and can be used for receiving or sending information.
  • the communication device 700 may further include a memory 703, the memory 703 is coupled with the transceiver 701 and the processor 702, and is used for storing program instructions.
  • the processor 702 is used to call the program instructions stored in the memory 703, so that the communication device 700 executes the method performed by the first node or the second node or the management node in the ranging rate switching control method provided by the embodiment of the present application .
  • the transceiver 701 is used to receive and transmit radio frequency signals, and is coupled to the receiver and transmitter of the communication device 700 .
  • the transceiver 701 communicates with communication networks and other communication devices through radio frequency signals, such as wireless local area networks (Wireless Local Area Networks, WLAN), Bluetooth communication networks, UWB, and the like.
  • the communication protocols supported by the transceiver 701 include at least the UWB protocol, and may also include short-distance wireless communication-related protocols such as the Bluetooth protocol and the WiFi protocol.
  • the processor 702 can be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, a specific application integrated circuit (Application-Specific Integrated Circuit, ASIC), or one or more programs used to control the program of this application implementation of the integrated circuit.
  • CPU Central Processing Unit
  • ASIC Application-Specific Integrated Circuit
  • the communication device 700 may further include an output device 704 and an input device 705 .
  • Output device 704 is in communication with processor 702 and can display information in a variety of ways.
  • the output device 704 can be a liquid crystal display (Liquid Crystal Display, LCD), a light emitting diode (Light Emitting Diode, LED) display device, a cathode ray tube (Cathode Ray Tube, CRT) display device, or a projector (projector) wait.
  • the input device 705 is in communication with the processor 702 and can receive user input in a variety of ways.
  • the input device 705 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the memory 703 can also store a user interface program, which can vividly display the content of the application program through a graphical operation interface Come out, and receive the user's control operations on the application through input controls such as menus, dialog boxes, and buttons.
  • a user interface program which can vividly display the content of the application program through a graphical operation interface Come out, and receive the user's control operations on the application through input controls such as menus, dialog boxes, and buttons.
  • FIG. 7 is only an implementation manner of the embodiment of the present application.
  • the communication device 700 may include more or fewer components, which is not limited here.
  • the transceiver 701 is used to receive the The rate indication information; wherein, the rate indication information is used to indicate the first data transmission rate available to the second node; the processor 702 is configured to transmit the first data according to the rate indication information
  • the transmission rate and the quality of the communication link of the first node determine the target ranging rate when performing the next UWB ranging process with the second node.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • the processor 702 determines, according to the first data transmission rate indicated by the rate indication information and the communication link quality of the first node, to perform the next step with the second node.
  • the target ranging rate during a UWB ranging process is specifically used to: determine the second data transmission rate of the first node according to the communication link quality of the first node; wherein the second data transmission The rate is the data transmission rate corresponding to the second link quality parameter among the plurality of candidate data transmission rates, and the second link quality parameter is used to indicate the communication link quality of the first node; according to the The first data transmission rate and the second data transmission rate determine the target ranging rate.
  • the processor 702 determines the target ranging rate according to the first data transmission rate and the second data transmission rate, it is specifically configured to: when the first data transmission When the rate is the same as the second data transmission rate and different from the data transmission rate used in the current UWB ranging process, the first node uses the first data transmission rate as the target ranging rate; when the When the first data transmission rate is different from the second data transmission rate or the first data transmission rate is the same as the data transmission rate used in the current UWB ranging process, the first node will perform the current UWB ranging The data transmission rate adopted in the process is used as the target ranging rate.
  • the processor 702 is further configured to: when the first data transmission rate is used as the target ranging rate, send a rate switch to the second node through the transceiver 701 indication, the rate switching indication is used to instruct the second node to switch the ranging rate of the second node to the target ranging rate when performing the next UWB ranging process; During the next UWB ranging process, the ranging rate of the first node is switched to the target ranging rate.
  • the processor 702 when the processor 702 sends the rate switching instruction to the second node through the transceiver 701, it is specifically configured to: make the transceiver 701 forward the rate switching instruction to the second node through the management node.
  • the node sends the rate switching instruction; wherein, the management node is used to manage the first node and the second node.
  • the transceiver 701 before the transceiver 701 receives the rate indication information from the second node, the transceiver 701 is further configured to: send a rate switching request to the second node; wherein, the The rate switching request is used to request the second node to feed back the rate indication information.
  • the transceiver 701 when the transceiver 701 sends the rate switching request to the second node, it is specifically configured to: send the first ranging frame carrying the rate switching request to the second node; wherein , the first ranging frame is used to instruct the second node to feed back a second ranging frame; when the transceiver 701 receives the rate indication information from the second node, it is specifically used to: the first A node receives the second ranging frame carrying the rate indication information from the second node.
  • the processor 702 is configured to, during the current UWB ranging process with the first node, send The first node sends rate indication information, so that the first node determines the communication link quality with the second node according to the first data transmission rate indicated by the rate indication information and the communication link quality of the first node.
  • the first data transmission rate is a data transmission rate corresponding to the first link quality parameter among multiple candidate data transmission rates; wherein, the link quality parameters corresponding to different data transmission rates are different , the first link quality parameter is used to indicate the communication link quality of the second node; the rate indication information includes: first information used to indicate the first data transmission rate, or, used to indicate The second information of the first link quality parameter corresponding to the first data transmission rate.
  • the processor 702 is further configured to: receive a rate switching instruction from the first node through the transceiver 701; and perform the next ranging process with the first node When , switch the ranging rate of the second node to a target ranging rate according to the rate switching instruction.
  • the processor 702 receiving the rate switching instruction from the first node through the transceiver 701 includes: enabling the transceiver 701 to receive the instruction from the first node forwarded by the management node.
  • the rate switching instruction wherein the management node is used to manage the first node and the second node.
  • the processor 702 before the processor 702 sends the rate indication information to the first node through the transceiver 701, the processor 702 is further configured to: receive a message from the first node through the transceiver 701 The rate switching request of the first node; wherein, the rate switching request is used to request the second node to feed back the rate indication information.
  • the processor 702 when the processor 702 receives the rate switching request from the first node through the transceiver 701, it is specifically configured to: receive the rate switching request from the first node through the transceiver 701 A first ranging frame carrying the rate switching request; wherein, the first ranging frame is used to instruct the second node to feed back a second ranging frame; the processor 702 sends the When the first node sends the rate indication information, it is specifically used to: use the transceiver 701 to send the second ranging frame carrying the rate indication information to the first node.
  • the processor 702 is configured to use the transceiver 701 during the current UWB ranging process between the first node and the second node receiving a rate switching instruction from the first node; wherein, the rate switching instruction is used to instruct the second node to use the second node's The ranging rate is switched to the target ranging rate; the processor 702 sends the rate switching instruction to the second node through the transceiver 701 .
  • the processor 702 is further configured to: send the rate switching instruction to the first node through the transceiver 701; A node switches the ranging rate of the first node to the target ranging rate when performing the next UWB ranging process.
  • the embodiment of the present application further provides a communication device, which is used to realize the function of the first node or the second node or the management node provided in the embodiment of the present application.
  • FIG. 8 shows a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 may be a terminal device, or may be a chip or a chip system in the terminal device.
  • the communication device 800 includes a transceiver unit 801 and a processing unit 802 .
  • the transceiver unit 801 is used to receive signals from other communication devices other than the communication device 800 and transmit them to the processing unit 802 or send signals from the processing unit 802 to the communication device 800 other communication devices.
  • the transceiver unit 801 cooperates with the processing unit 802 to implement the method performed by the first node provided in the embodiment of the present application.
  • the transceiver unit 801 cooperates with the processing unit 802 to implement the method performed by the second node provided in the embodiment of the present application.
  • the transceiver unit 801 cooperates with the processing unit 802 to execute the method performed by the management node provided in the embodiment of the present application.
  • each functional module in each embodiment of the present application can be integrated into a processing In the controller, it can also be physically present separately, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • embodiments of the present application further provide a communication system, where the communication system includes at least the first node and the second node provided in the above embodiments.
  • the communication system may further include the management node provided in the foregoing embodiments.
  • embodiments of the present application also provide a computer-readable storage medium, in which a computer-readable program is stored, and when the computer-readable program is run on a computer, The computer is made to execute the handover control method applied to the ranging rate of the first node or the second node or the management node provided in the above embodiments.
  • this embodiment of the present application also provides a computer program product, when the computer program product is run on a computer, it enables the computer to execute the method provided by the above embodiments and applied to the first node or the second node.
  • the embodiment of the present application also provides a chip, the chip is used to read the computer program stored in the memory, and execute the program provided by the above embodiments and applied to the first node or the second node or the management node The switching control method of the ranging rate.
  • the embodiments of the present application also provide a chip system, the chip system includes a processor, used to support the communication device to implement the above embodiment provided by the first node or the second node or the management node The switching control method of the ranging rate.
  • the chip system further includes a memory, and the memory is used for storing necessary programs and data of the computer device.
  • the chip system is composed of a chip, or includes a chip and other discrete devices.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), optical media (for example, digital video disc (digital video disc, DVD for short), or semiconductor media (for example, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测距速率的切换控制方法及通信装置,该方法包括:第一节点在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;所述第一节点根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。本申请提供的方案中,通过对进行测距的节点在测距过程中采用的数据传输速率进行切换控制,能够提高测距控制的灵活性,并提高测距性能。

Description

一种测距速率的切换控制方法及通信装置 技术领域
本申请涉及通信技术领域,尤其涉及一种测距速率的切换控制方法及通信装置。
背景技术
随着科技的发展,测距及定位技术的应用也越来越广泛。其中,传统的全球定位系统(global positioning system,GPS)需要接收卫星信号,但室内定位应用却无法接收到卫星信号,因此GPS无法实现室内定位。此外,GPS的定位精度一般在米级范围内,无法满足高精度定位的需求。无线局域网(wireless fidelity,WiFi)、蓝牙(bluetooth,BT)等通信系统可以实现室内测距及定位,但精度较低,通常在1~10米的范围内。当前的室内测距及定位应用场景如工业车间定位、手机测距、物品查找等,一般都是基于超宽带(ultra wide band,UWB)技术完成高精度测距、定位的。
UWB技术是一种新型的无线通信技术,可以实现厘米级的定位精度,并且具有时间辨率高、抗多径能力强的特点,在复杂的多径环境中仍可以实现测距、定位,因此可广泛应用于高精度测距、定位场景中。
当前不同节点之间基于UWB技术进行测距时,一般是通过蓝牙、近场通信(near field communication,NFC)等通信系统协商或者拟定默认的UWB网络参数,再基于默认的UWB网络参数进行UWB组网及组网后的测距任务等。在该过程中,进行测距的两个节点在建立UWB通信后,就会一直使用固定的某一测距速率(即默认的UWB网络参数中的数据传输速率)进行数据传输。但是,在实际应用中,节点之间的信道环境经常会发生变化,如果一直采用某一测距速率的物理信道,数据重传和错包的概率会比较高,可能会导致功耗大、测距性能差的问题,甚至可能导致测距失败。此外,测距流程对其它通信系统的依赖较大,在测距过程中如果需要修改UWB网络参数,则需要再通过蓝牙、近场通信等通信系统建立新的UWB网络参数对应的UWB通信网络。
因此,目前基于UWB通信技术进行测距的方法存在灵活性差、测距性能差的问题。
发明内容
本申请提供一种测距速率的切换控制方法及通信装置,用以对进行测距的节点在测距过程中采用的测距速率进行切换控制,进而提高测距控制的灵活性,并提高测距性能。
第一方面,本申请提供一种测距速率的切换控制方法,该方法包括:第一节点在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;所述第一节点根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。
在该方法中,第一节点在和第二节点执行当前UWB测距过程时,第一节点根据来自第二节点的速率指示信息和第一节点的通信链路质量,可以分别确定第一节点和第二节点可用的数据传输速率,进而可以确定与第二节点执行下一次UWB测距过程时的测距速率。基于该方案,第一节点可以通过和第二节点协商确定一个双方均支持的测距速率并在执行 下一次测距过程时使用。因此,第一节点在和第二节点执行UWB测距过程时,能够对UWB测距过程中采用的测距速率进行灵活的切换控制,以便选择最合适于当前环境的测距速率执行UWB测距过程,因此,该方案与现有技术中两个节点建立UWB通信后就一直采用固定的测距速率执行测距流程的方案相比,可以有针对性的进行测距速率的择优选取,尽可能减少测距过程中重传、错传数据(数据包)的概率,进而提高测距性能。还可以在一定程度上减少功耗,加快测距流程的执行,进一步提升测距性能。此外,由于是建立UWB通信的第一节点与第二节点之间的速率切换速率的协商,第一节点与第二节点可以基于UWB通信方式进行交互,因此可以减少对其它通信系统或通信方式的依赖,简化切换测距速率的流程,进而提高切换效率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在该方法中,不同数据传输速率对应不同的链路质量参数,使得节点可以根据通信链路的链路质量选择相对合适的数据传输速率进行数据传输。第一数据传输速率是根据第二节点的通信链路质量确定的对应的数据传输速率,可以反映第二节点当前适合采用的测距速率,因此第一节点可以根据速率指示信息确定第二节点当前适合采用的第一数据传输速率,进而可以结合自身的通信链路质量确定在执行下一次UWB测距过程时采用的测距速率。
在一种可能的设计中,所述第一节点根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率,包括:所述第一节点根据所述第一节点的通信链路质量,确定所述第一节点的第二数据传输速率;其中,所述第二数据传输速率为所述多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率,所述第二链路质量参数用于指示所述第一节点的通信链路质量;所述第一节点根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率。
在该方法中,第一节点根据第一节点的通信链路质量,以及不同数据传输速率与链路质量参数的对应关系,可以快速确定第一节点当前适合采用的数据传输速率,进而可以结合第二节点当前适合采用的数据传输速率确定目标测距速率,保证第一节点确定的目标测距速率是第一节点和第二节点均能接受的。
在一种可能的设计中,所述第一节点根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率,包括:当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,所述第一节点将所述第一数据传输速率作为所述目标测距速率;当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,所述第一节点将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
在该方法中,第一节点和第二节点采用相同的数据传输速率才能保证正常通信质量,因此第一节点可以通过对第一节点和第二节点可用的数据传输速率进行对比,并与当前采用的数据传输速率进行对比,根据对比结果能够确定是否有必要以及是否能够对当前采用 的测距速率进行切换,可以实现对测距速率的切换的准确控制,同时保证第一节点和第二节点之间的通信质量。
在一种可能的设计中,所述方法还包括:当所述第一节点将所述第一数据传输速率作为所述目标测距速率时,所述第一节点向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率;所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
在该方法中,第一节点将新的测距速率指示给第二节点,使得第二节点在执行下一次UWB测距过程时切换测距速率,同时,第一节点在执行下一次UWB测距过程时也切换测距速率,因此第一节点和第二节点可以同步进行测距速率的切换。
在一种可能的设计中,所述第一节点向所述第二节点发送速率切换指示,包括:所述第一节点通过管理节点转发向所述第二节点发送所述速率切换指示;其中,所述管理节点用于管理所述第一节点和所述第二节点。
在UWB测距场景下,管理节点可以对进行测距的两个节点进行统一管理,且两个节点之间的测距过程中的相关参数也可以由管理节点进行控制。因此,在该方法中,第一节点通过管理节点转发的方式指示第二节点进行测距速率的切换,可以适应UWB测距场景下的参数切换的控制方式,同时便于管理节点对第一节点和第二节点进行统一控制。
在一种可能的设计中,在所述第一节点通过管理节点转发向所述第二节点发送所述速率切换指示之后,在所述第一节点执行所述下一次UWB测距过程之前,所述方法还包括:所述第一节点接收来自所述管理节点的所述速率切换指示;其中,所述速率切换指示还用于指示所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
在该方法中,第一节点可以与第二节点一样,均按照管理节点的指示,进行测距速率的切换,从而可以适应UWB测距场景下的参数切换的控制方式,同时便于管理节点对第一节点和第二节点进行统一控制。
在一种可能的设计中,在所述第一节点接收来自所述第二节点的速率指示信息之前,所述方法还包括:所述第一节点向所述第二节点发送速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在该方法中,第一节点可以对测距速率切换的发起进行控制,提高测距速率切换控制的灵活性。
在一种可能的设计中,所述第一节点向所述第二节点发送速率切换请求,包括:所述第一节点向所述第二节点发送携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述第一节点接收来自所述第二节点的所述速率指示信息,包括:所述第一节点接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧。
在该方法中,在UWB测距流程中,节点间可以通过传输测距帧,并根据测距帧的传输时间计算节点间的距离。因此,第一节点通过UWB测距过程中已有的测距帧传输速率切换请求和速率指示信息,可以降低额外的资源消耗和对已有UWB测距流程的影响,提高方案的可实施性。
第二方面,本申请提供一种测距速率的切换控制方法,该方法包括:第二节点在与第 一节点执行当前UWB测距过程中,向所述第一节点发送速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的所述第一数据传输速率。
在该方法中,第二节点在和第一节点执行当前UWB测距过程时,通过速率指示信息将第二节点可用的数据传输速率指示给第一节点,则第一节点可以以第二节点可用的数据传输速率为参考执行一些处理过程,如执行第一节点与第二节点执行下一次测距过程时采用的测距速率的确定过程。基于该方案,第一节点在确定与第二节点执行下一次UWB测距过程时的测距速率时能够充分参考第二节点可用的数据传输速率,便于确定一个双方均支持的测距速率并在执行下一次测距过程时使用。因此,第二节点在和第一节点执行UWB测距过程中,能够配合第一节点对UWB测距过程中采用的测距速率进行灵活的切换控制,以便选择最合适的测距速率进执行UWB测距过程。这样,与现有技术中两个节点建立UWB通信后就一直采用固定的测距速率执行测距流程的方案相比,便于有针对性的进行测距速率的择优选取,尽可能减少测距过程中重传、错传数据(数据包)的概率,进而提高测距性能。还可以在一定程度上减少功耗,加快测距流程的执行,进一步提升测距性能。此外,第一节点与第二节点可以基于UWB通信方式进行交互,因此可以减少对其它通信系统或通信方式的依赖,简化切换测距速率的流程,进而提高切换效率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在该方法中,不同数据传输速率对应不同的链路质量参数,使得节点可以根据通信链路的链路质量选择相对合适的数据传输速率进行数据传输。第一数据传输速率是根据第二节点的通信链路质量确定的对应的数据传输速率,可以反映第二节点当前适合采用的测距速率,因此第二节点将第一数据传输速率发送到第一节点,可以使第一节点结合第一数据传输速率确定在下一次UWB测距过程采用的、第二节点能够支持的测距速率。
在一种可能的设计中,所述方法还包括:所述第二节点接收来自所述第一节点的速率切换指示;所述第二节点在与所述第一节点执行所述下一次测距过程时,根据所述速率切换指示将所述第二节点的测距速率切换为目标测距速率。
在该方法中,第二节点根据第一节点的指示,在执行下一次测距过程时切换测距速率,可以保证第二节点与第一节点同步进行测距速率的切换,提高测距速率切换的准确性。
在一种可能的设计中,所述第二节点接收来自所述第一节点的速率切换指示,包括:所述第二节点接收管理节点转发的来自所述第一节点的所述速率切换指示,其中,所述管理节点用于管理所述第一节点和所述第二节点。
在UWB测距场景下,管理节点可以对进行测距的两个节点进行统一管理,且两个节点之间的测距过程中的相关参数可以由管理节点进行控制。因此,在该方法中,第二节点通过管理节点转发的方式接收第一节点进行测距速率切换的指示,可以适应UWB测距场景下的参数切换的控制方式,同时便于管理节点对第一节点和第二节点进行统一控制。
在一种可能的设计中,在所述第二节点向所述第一节点发送速率指示信息之前,所述方法还包括:所述第二节点接收来自所述第一节点的速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在该方法中,第二节点可以根据第一节点的指示进行相应反馈,使得第一节点可以对测距速率切换的发起进行控制,提高了测距速率切换控制的灵活性。
在一种可能的设计中,所述第二节点接收来自所述第一节点的速率切换请求,包括:所述第二节点接收来自所述第一节点的携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述第二节点向所述第一节点发送所述速率指示信息,包括:所述第二节点向所述第一节点发送携带所述速率指示信息的所述第二测距帧。
在该方法中,在UWB测距流程中,节点间可以通过传输测距帧,并根据测距帧的传输时间计算节点间的距离。因此,第二节点通过UWB测距过程中已有的测距帧传输速率切换请求和速率指示信息,可以降低额外的资源消耗和对已有UWB测距流程的影响,提高方案的可实施性。
第三方面,本申请提供一种测距速率的切换控制方法,包括:管理节点在第一节点和第二节点执行当前UWB测距过程中,接收来自所述第一节点的速率切换指示;其中,所述速率切换指示用于指示所述第二节点在与所述第一节点执行下一次UWB测距过程时,将所述第二节点的测距速率切换为目标测距速率;所述管理节点向所述第二节点发送所述速率切换指示。
在UWB测距场景下,管理节点作为控制端,可以对管理节点自身以及从节点的测距过程进行控制。因此,在该方法中,第一节点和第二节点在执行UWB测距过程中,管理节点可以对第一节点和第二节点的执行过程进行控制。当第一节点确定切换测距速率时,将速率切换指示信息发送到管理节点,则管理节点可以根据该速率切换指示信息对第二节点的测距速率的切换进行控制,从而间接实现第一节点对第二节点的控制,使得第二节点能够与第一节点一起进行测距速率的切换,保证第一节点和第二节点进行测距速率切换的一致性及同步性。同时能够实现对第一节点和第二节点在UWB测距过程中采用的测距速率进行灵活的切换控制,以便选择最合适的测距速率执行UWB测距过程,进而提高测距性能。
在一种可能的设计中,所述方法还包括:所述管理节点向所述第一节点发送所述速率切换指示;其中,所述速率切换指示还用于指示所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
在该方法中,管理节点指示第二节点在执行下一次UWB测距过程时进行测距速率的切换后,还指示第一节点在执行下一次UWB测距过程时进行测距速率的切换,可以保证第一节点和第二节点进行测距速率的切换的一致性和同步性。
第四方面,本申请提供一种通信装置,应用于第一节点,所述通信装置包括收发单元和处理单元;所述收发单元,用于在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;所述处理单元,用于根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用 于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在一种可能的设计中,所述处理单元根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率时,具体用于:根据所述第一节点的通信链路质量,确定所述第一节点的第二数据传输速率;其中,所述第二数据传输速率为所述多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率,所述第二链路质量参数用于指示所述第一节点的通信链路质量;根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率。
在一种可能的设计中,所述处理单元根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率时,具体用于:当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,将所述第一数据传输速率作为所述目标测距速率;当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
在一种可能的设计中,所述处理单元还用于:当将所述第一数据传输速率作为所述目标测距速率时,通过所述收发单元向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率;在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
在一种可能的设计中,所述处理单元通过所述收发单元向所述第二节点发送速率切换指示时,具体用于:使所述收发单元通过管理节点转发向所述第二节点发送所述速率切换指示;其中,所述管理节点用于管理所述第一节点和所述第二节点。
在一种可能的设计中,在所述收发单元接收来自所述第二节点的速率指示信息之前,所述收发单元还用于:向所述第二节点发送速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在一种可能的设计中,所述收发单元向所述第二节点发送速率切换请求时,具体用于:向所述第二节点发送携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述收发单元接收来自所述第二节点的所述速率指示信息时,具体用于:所述第一节点接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧。
第五方面,本申请提供一种通信装置,应用于第二节点,所述通信装置包括收发单元和处理单元;所述处理单元,用于在与第一节点执行当前UWB测距过程中,通过所述收发单元向所述第一节点发送速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的所述第一数据传输速率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在一种可能的设计中,所述处理单元还用于:通过所述收发单元接收来自所述第一节点的速率切换指示;在与所述第一节点执行所述下一次测距过程时,根据所述速率切换指示将所述第二节点的测距速率切换为目标测距速率。
在一种可能的设计中,所述处理单元通过所述收发单元接收来自所述第一节点的速率切换指示,包括:使所述收发单元接收管理节点转发的来自所述第一节点的所述速率切换指示,其中,所述管理节点用于管理所述第一节点和所述第二节点。
在一种可能的设计中,所述处理单元在通过所述收发单元向所述第一节点发送速率指示信息之前,所述处理单元还用于:通过所述收发单元接收来自所述第一节点的速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在一种可能的设计中,所述处理单元通过所述收发单元接收来自所述第一节点的速率切换请求时,具体用于:通过所述收发单元接收来自所述第一节点的携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述处理单元通过所述收发单元向所述第一节点发送所述速率指示信息时,具体用于:通过所述收发单元向所述第一节点发送携带所述速率指示信息的所述第二测距帧。
第六方面,本申请提供一种通信装置,应用于管理节点,所述通信装置包括收发单元和处理单元;所述处理单元用于在第一节点和第二节点执行当前UWB测距过程中,通过所述收发单元接收来自所述第一节点的速率切换指示;其中,所述速率切换指示用于指示所述第二节点在与所述第一节点执行下一次UWB测距过程时,将所述第二节点的测距速率切换为目标测距速率;所述处理单元通过所述收发单元向所述第二节点发送所述速率切换指示。
在一种可能的设计中,所述处理单元还用于:通过所述收发单元向所述第一节点发送所述速率切换指示;其中,所述速率切换指示还用于指示所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
第七方面,本申请提供一种通信装置,应用于第一节点,所述通信装置包括收发器和处理器;所述收发器,用于在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;所述处理器,用于根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在一种可能的设计中,所述处理器根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率时,具体用于:根据所述第一节点的通信链路质量,确定所述第一节点的第二数据传输速率;其中,所述第二数据传输速率为所述多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率,所述第二链路质量参数用于指示所述第一节点的通信链路质量;根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速 率。
在一种可能的设计中,所述处理器根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率时,具体用于:当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,将所述第一数据传输速率作为所述目标测距速率;当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
在一种可能的设计中,所述处理器还用于:当将所述第一数据传输速率作为所述目标测距速率时,通过所述收发器向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率;在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
在一种可能的设计中,所述处理器通过所述收发器向所述第二节点发送速率切换指示时,具体用于:使所述收发器通过管理节点转发向所述第二节点发送所述速率切换指示;其中,所述管理节点用于管理所述第一节点和所述第二节点。
在一种可能的设计中,在所述收发器接收来自所述第二节点的速率指示信息之前,所述收发器还用于:向所述第二节点发送速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在一种可能的设计中,所述收发器向所述第二节点发送速率切换请求时,具体用于:向所述第二节点发送携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述收发器接收来自所述第二节点的所述速率指示信息时,具体用于:所述第一节点接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧。
第八方面,本申请提供一种通信装置,应用于第二节点,所述通信装置包括收发器和处理器;所述处理器,用于在与第一节点执行当前UWB测距过程中,通过所述收发器向所述第一节点发送速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的所述第一数据传输速率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在一种可能的设计中,所述处理器还用于:通过所述收发器接收来自所述第一节点的速率切换指示;在与所述第一节点执行所述下一次测距过程时,根据所述速率切换指示将所述第二节点的测距速率切换为目标测距速率。
在一种可能的设计中,所述处理器通过所述收发器接收来自所述第一节点的速率切换指示,包括:使所述收发器接收管理节点转发的来自所述第一节点的所述速率切换指示,其中,所述管理节点用于管理所述第一节点和所述第二节点。
在一种可能的设计中,所述处理器在通过所述收发器向所述第一节点发送速率指示信息之前,所述处理器还用于:通过所述收发器接收来自所述第一节点的速率切换请求;其 中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在一种可能的设计中,所述处理器通过所述收发器接收来自所述第一节点的速率切换请求时,具体用于:通过所述收发器接收来自所述第一节点的携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述处理器通过所述收发器向所述第一节点发送所述速率指示信息时,具体用于:通过所述收发器向所述第一节点发送携带所述速率指示信息的所述第二测距帧。
第九方面,本申请提供一种通信装置,应用于管理节点,所述通信装置包括收发器和处理器;所述处理器用于在第一节点和第二节点执行当前UWB测距过程中,通过所述收发器接收来自所述第一节点的速率切换指示;其中,所述速率切换指示用于指示所述第二节点在与所述第一节点执行下一次UWB测距过程时,将所述第二节点的测距速率切换为目标测距速率;所述处理器通过所述收发器向所述第二节点发送所述速率切换指示。
在一种可能的设计中,所述处理器还用于:通过所述收发器向所述第一节点发送所述速率切换指示;其中,所述速率切换指示还用于指示所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
第十方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读程序,当所述计算机可读程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任一可能的设计所描述的方法,或者,使得所述计算机执行上述第二方面或第二方面的任一可能的设计所描述的方法,或者,使得所述计算机执行上述第三方面或第三方面的任一可能的设计所描述的方法。
第十一方面,本申请提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任一可能的设计所描述的方法,或者,使得所述计算机执行上述第二方面或第二方面的任一可能的设计所描述的方法,或者,使得所述计算机执行上述第三方面或第三方面的任一可能的设计所描述的方法。
第十二方面,本申请提供一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述第一方面或第一方面的任一可能的设计所描述的方法,或者,执行上述第二方面或第二方面的任一可能的设计所描述的方法,或者,执行上述第三方面或第三方面的任一可能的设计所描述的方法。
第十三方面,本申请实施例提供一种芯片系统,所述芯片系统包括处理器,用于支持计算机装置实现上述第一方面或第一方面的任一可能的设计所描述的方法,或者,实现上述第二方面或第二方面的任一可能的设计所描述的方法,或者,实现上述第三方面或第三方面的任一可能的设计所描述的方法。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于存储所述计算机装置必要的程序和数据。
在一种可能的设计中,所述芯片系统由芯片构成,或者包含芯片和其他分立器件。
上述第四方面到第十三方面的有益效果,请参见上述第一方面或第二方面或第三方面的有益效果的描述,这里不再重复赘述。
附图说明
图1a为一种UWB测距系统的架构示意图;
图1b为一种UWB测距过程的示意图;
图2a为本申请实施例提供的一种节点中的UWB信号发射系统的示意图;
图2b为本申请实施例提供的一种节点中的UWB信号接收系统的示意图;
图3为本申请实施例提供的一种UWB测距方法的示意图;
图4为本申请实施例提供的一种测距速率的切换控制方法的示意图;
图5为本申请实施例提供的一种测距速率的切换控制方法的示意图;
图6为本申请实施例提供的一种测距速率的切换控制方法的示意图;
图7为本申请实施例提供的一种通信装置的示意图;
图8为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。其中,在本申请实施例的描述中,以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
为了便于理解,示例性的给出了与本申请相关概念的说明以供参考。
1)UWB,是一种利用频谱极宽的超宽基带脉冲进行通信的无线载波通信技术。UWB技术利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很大,尽管使用无线通信,但其数据传输速率可以达到几百兆比特每秒以上。UWB技术具有系统复杂度低、发射信号功率谱密度低、对信道衰落不敏感、截获能力低、定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入。
UWB测距,指不同节点间基于UWB通信技术进行节点间距离的测量。UWB测距的原理是根据无线信号在节点之间的传输时间和速度(一般为光速)计算出节点之间的距离。
本申请实施例中所述的测距速率,指节点在执行UWB测距过程中所采用的数据传输速率。数据传输速率指单位时间内在通信链路上传输的数据的数据量。在不同信道环境(或通信链路环境)下,节点适合采用的数据传输速率是不同的。
2)管理节点,是发送数据调度信息的节点。管理节点可以管理与该管理节点建立通信连接的从节点。
从节点,是接收数据调度信息,并根据接收的数据调度信息收发数据或进行数据处理的节点。
本申请实施例中提供的管理节点和从节点的设备形态可以是终端设备,也可以是设置在终端设备中的功能模块或单元,还可以是部署在终端设备中的芯片、集成电路等。
终端设备是具备短距离无线通信和UWB通信功能的设备。终端设备又可以称为用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备包括但不限于手机(Mobile Phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备(例如智能手表、智能手环等),车辆、车载设备(例如,汽车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(Industrial Control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(Self Driving)中的无线终端、远程手术(Remote Medical Surgery)中的无线终端、智能电网(Smart  Grid)中的无线终端、运输安全(Transportation Safety)中的无线终端、智慧城市(Smart City)中的无线终端,或智慧家庭(Smart Home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。
示例性的,本申请实施例中的终端设备包括但不限于搭载
Figure PCTCN2021122221-appb-000001
或者其它操作系统。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
图1a为一种UWB测距系统的架构示意图。如图1a中所示,UWB测距系统中可以包括管理节点和至少一个从节点(例如图1a中所示的N个从节点,其中,N为正整数)。
所述管理节点和至少一个从节点中的任意两个节点之间可以执行UWB测距过程。执行UWB测距过程的两个节点分别为UWB测距过程的发起端(initiator)和应答端(responder)。
管理节点作为该UWB测距系统中的控制端(controller),可以对该UWB测距系统中的所有节点进行控制管理。例如,管理节点可以指示该UWB测距系统中执行测距过程的两个节点、配置所述两个节点中的发起端和应答端、分配所述两个节点在UWB测距过程中执行各个步骤的时间段等。所述至少一个从节点作为被控端(controlee),可以根据管理节点的控制,与其它节点执行UWB测距过程。
下面结合图1b对UWB测距进行简单介绍。
假设节点1和节点2为执行UWB测距过程的两个节点。其中,节点1同时作为控制端和发起端,节点2同时作为被控端和应答端,则节点1可以为图1a中所示的管理节点,节点2可以为图1a中所示的任一从节点。
参照图1b,基于当前UWB测距方法,上述节点1与节点2执行UWB测距过程时,主要包括以下步骤:
S101:节点1与节点2通过蓝牙通信方式进行通信,并协商确定UWB网络参数。
S102:节点1和节点2分别启动UWB,并根据UWB网络参数建立UWB通信连接。
S103:节点1在RCP时段向节点2发送时段控制帧(ranging control message,RCM)。
在UWB测距中,一次UWB测距过程可以分为多个时段(或时间段),所述多个时段分别为测距控制时段(ranging control phase,RCP)、测距初始时段(ranging initiation phase,RIP)、测距响应时段(ranging response phase,RRP)、测量值上报时段(measurement report phase,RRP)和测距控制更新时段(ranging control update phase,RCUP)。
节点1作为管理节点,可以将各节点的角色分配好,并通过RCM指示给对应节点。例如,节点1可以将自身的角色配置为UWB测距过程的发起端,将节点2的角色配置为UWB测距过程的应答端,则节点1在RCM中将节点2的角色指示给节点2。同时,节点1可以基于时分多址(time division multiple address,TDMA)技术配置UWB测距过程的 多个时段并通过RCM指示给节点2。节点1和节点2根据节点1配置的各个时段,分别在UWB测距过程的各个时段执行对应的测距步骤。
S104:节点1在RIP时段向节点2发送初始测距帧。
节点1作为UWB测距过程的发起端,在RIP时段向作为应答端的节点2发送初始测距帧。
可选的,初始测距帧中可以携带节点1发送该初始测距帧的时间信息。
S105:节点2接收到初始测距帧后,向节点1反馈测距帧。
可选的,节点2反馈的测距帧中可以携带节点2反馈该初始测距帧的时间信息。
节点2向节点1反馈测距帧后,节点1和节点2可以根据测距帧在节点1和节点2之间的飞行时间,计算得到节点1与节点2之间的距离。此外,节点1和节点2中的任一节点可以在MRP时段向对端发送自身计算得到的距离测量值。
节点1作为控制端,如果需要更新RCM中的参数(如节点的角色、各时段的具体时间等),则可以在RCUP时段向节点2发送测距信息更新数据帧,从而将更新后的参数指示给节点2。
如图1b中所示,节点1和节点2之间可以重复进行多轮测距过程,但是,在多轮测距过程中,节点1与节点2采用的测距速率和调制参数等都是固定不变的,因此测距期间灵活性很差,而且一直使用一种固定的测距速率进行通信,可能会导致功耗差、测距性能差等问题。
鉴于此,本申请实施例提供一种测距速率的切换控制方法及通信装置,该方法用于对进行测距的节点在测距过程中采用的测距速率进行切换控制,进而提高测距控制的灵活性,并提高测距性能。
下面结合具体实施例对本申请提供的方案进行说明。
图2a为本申请实施例提供的一种节点中的UWB信号发射系统的示意图。如图2a中所示,节点的UWB信号发射系统可以包括数字编码模块、信号调制模块、脉冲成形模块、射频模块、天线等。
在节点执行UWB测距流程的过程中,数字编码模块可以根据测距速率确定信号编码速率,并根据确定的信号编码速率对待发送的数据信息进行数字编码,并将编码得到的数据比特信息发送到信号调制模块。信号调制模块可以对数据比特信息进行信号调制后,将调制后的数据比特信息传输到脉冲成形模块。脉冲成形模块可以对调制后得到数据比特信息进行脉冲成形,得到对应的脉冲信号,并将脉冲信号发送到射频模块。脉冲信号经过射频模块后转换为模拟信号,并通过天线被播发出去。
图2b为本申请实施例提供的一种节点中的UWB信号接收系统的示意图。如图2b中所示,节点的UWB信号接收系统可以包括天线、射频模块、模数转换模块、信号处理模块等。
在节点执行测距流程的过程中,节点可以通过天线接收来自其它节点的信号。射频模块可以对天线接收到的信号进行混频等处理。模块转换模块可以对射频模块处理后的信号进行模数转换,得到对应的数字信号。信号处理模块可以对模数转换模块得到的数字信号进行相应的数字信号处理,得到对应的数据信息。其中,信号处理模块对数字信号进行的数字信号处理可以包括信号捕获、信号跟踪、信号解调、信号解码等处理过程。
需要说明的是,上述图2a所示的信号发射系统和图2b所示的信号接收系统可以存在于同一节点中,并分别用于实现该节点的信号发射和信号接收的功能。该节点可以为本申请实施例提供的第一节点或第二节点。本申请实施例提供的第一节点和第二节点可以分别为图1a所示系统架构中的管理节点和任一个从节点,或者可以分别为图1a所示系统架构中的任意两个从节点。
图3为本申请实施例提供的一种UWB测距方法的示意图。如图3中所示,假设节点1为UWB测距过程的发起端,节点2为UWB测距过程的应答端。则在执行UWB测距过程中,节点1在t 1时刻向节点2发送测距帧1,节点2在t 2时刻接收到该测距帧1,并在t 3时刻向节点1返回测距帧2,节点1在t 4时刻接收到该测距帧2。
则节点1和节点2之间传输的测距帧的平均传输时间即信号飞行时间可根据如下公式进行计算:
T=(T 1-T 2)/2
其中,T为信号飞行时间,T 1为节点1发送测距帧1和接收测距帧2之间的时间间隔,T 1=t 4-t 1,T 2为节点2接收测距帧1和发送测距帧2之间的时间间隔,T 2=t 3-t 2
节点1或节点2再进一步将该信号飞行时间与电磁波传播速度(即光速)相乘即可得到节点1与节点2之间的距离。
图4为本申请实施例提供的一种测距速率的切换控制方法的示意图。如图4所示,该方法包括:
S401:第一节点和第二节点在执行当前UWB测距过程中,第二节点向第一节点发送速率指示信息,第一节点接收来自第二节点的所述速率指示信息;其中,所述速率指示信息用于指示第二节点可用的第一数据传输速率。
本申请实施例中,第一节点和第二节点执行UWB测距过程时,第一节点和第二节点首先需通过短距离无线通信方式建立通信连接,然后第一节点和第二节点可以基于短距离无线通信,通过协商确定UWB网络参数,再基于协商确定的UWB参数建立UWB通信连接。第一节点和第二节点建立UWB通信连接后,可以基于UWB通信方式执行UWB测距过程。
其中,上述短距离无线通信方式包括但不限于蓝牙通信、低功耗蓝牙(bluetooth low energy,BLE)通信、WiFi通信、NFC通信等方式。上述UWB网络参数例如可以包括信道号(channel number)、同步码(preamble code)、测距速率等。
本申请实施例中,第一节点可以作为测距发起端,第二节点可以作为测距应答端。其中,第一节点作为测距发起端,可以发起对第一节点与第二节点执行UWB测距过程时采用的测距速率进行切换的流程。
具体的,在第二节点向第一节点发送速率指示信息,第一节点接收来自第二节点的所述速率指示信息之前,第一节点可以先向第二节点发送速率切换请求。其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。然后第二节点响应于该速率切换请求,向所述第一节点发送所述速率指示信息,第一节点再接收来自第二节点的所述速率指示信息。
在一种可能的方式中,第一节点向第二节点发送速率切换请求时,可以通过向所述第二节点发送携带所述速率切换请求的第一测距帧,来将所述速率切换请求发送到第二节点。 第二节点通过接收携带所述速率切换请求的第一测距帧,来确定所述速率切换请求。其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧。所述第二节点接收到携带所述速率切换请求的第一测距帧后,在向所述第一节点反馈速率指示信息时,可以通过向所述第一节点发送携带所述速率指示信息的所述第二测距帧,来将速率指示信息发送到第一节点。所述第一节点通过接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧,来确定所述速率指示信息。
其中,所述第一测距帧可以作为测距请求帧,所述第二测距帧可以作为测距响应帧。第一节点和第二节点通过收发第一测距帧和第二测距帧可以计算第一节点和第二节点之间的距离。例如,所述第一测距帧可以为图3中所示的测距帧1,所述第二测距帧可以为图3中所示的测距帧2。
在另一种可能的方式中,第一节点分别同时向第二节点发送第一测距帧和所述速率切换请求,第二节点同时接收来自第一节点的第一测距帧和所述速率切换请求。第二节点可以分别同时向第一节点发送第二测距帧和所述速率指示信息,第一节点同时接收来自第二节点的第二测距帧和所述速率指示信息。
在又一种可能的方式中,第一节点可以直接向第二节点发送所述速率切换请求,第二节点直接接收来自第一节点的所述速率切换请求。第二节点可以直接向第一节点发送所述速率指示信息,第一节点直接接收来自第二节点的所述速率指示信息。
在本申请一些实施例中,第二节点接收到来自第一节点的速率切换请求后,可以通过进行通信链路质量评估,确定第二节点的通信链路质量,并确定第二节点的通信链路质量对应的第一链路质量参数。然后在多个候选的数据传输速率中,选择与所述第一链路质量参数对应的数据传输速率作为所述第二节点可用的第一数据传输速率。其中,不同数据传输速率对应的链路质量参数不同。
具体实施时,第一节点与第二节点可以预先保存多个候选的数据传输速率与多个链路质量参数的对应关系。其中,该对应关系可以为预设的,并由管理节点指示给至少一个从节点,其中,所述管理节点和至少一个从节点中至少包含第一节点和第二节点。
在数据传输速率与链路质量参数的对应关系中,多个数据传输速率各不相同,不同的数据传输速率分别对应不同的链路质量参数。示例性的,链路质量参数具体取值可以为通信链路质量的取值区间。
本申请实施例中的一种可能的候选的数据传输速率与链路质量参数的对应关系如下表1中所示:
表1数据传输速率与链路质量参数的对应关系表
链路质量参数 数据传输速率
第一区间 第一速率
第二区间 第二速率
第n区间 第n速率
示例性的,如表1中所示,第一速率至第n速率分别为n个不同的候选的数据传输速率的取值,其中,n为正整数。第一区间至第n区间分别为与第一速率至第n速率一一对应的通信链路质量的取值区间。其中,节点的通信链路质量的取值所属的区间对应的速率 即为该节点可用的数据传输速率。
则第二节点接收到来自第一节点的速率切换请求后,可以通过进行通信链路质量评估,确定所述第二节点的通信链路的通信质量,再根据该通信质量所对应的第一链路质量参数,在多个候选的数据传输速率中,选择与所述第一链路质量参数对应的数据传输速率作为所述第二节点可用的第一数据传输速率。
例如,第二节点确定的通信链路质量的取值位于上述表1所示的第二区间时,第二节点可以确定第一链路质量参数为第二区间,因此第二节点可以确定其可用的第一数据传输速率为第二区间对应的第二速率。
由于第一节点和第二节点预先保存相同的数据传输速率与链路质量参数的对应关系表,因此,第二节点将第二节点可用的第一数据传输速率、第一数据传输速率对应的第一链路质量参数中的至少一项反馈给第一节点后,第一节点就能确定第二节点可用的第一数据传输速率。因此,第二节点向第一节点发送的所述速率指示信息可以包含:用于指示所述第一数据传输速率的第一信息,和/或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
具体的,在一种可能的方式中,所述第一信息为所述第一数据传输速率。则第二节点通过在该速率指示信息中携带所述第一数据传输速率,可以使第一节点在接收到所述速率指示信息后直接得到所述第一数据传输速率。
在另一种可能的方式中,所述第一信息为所述第一数据传输速率在候选的数据传输速率与链路质量参数的对应关系表中的位置,例如第一数据传输速率在该对应关系表中的位置索引。则第二节点可以在该速率指示信息中携带所述第一数据传输速率在对应关系表中的位置索引。第一节点接收到速率指示信息后,可以根据其中的位置索引,在对应关系表中查找确定对应位置处的第一数据传输速率。
在一种可能的方式中,第二信息为所述第一链路质量参数。则第二节点可以在该速率指示信息中携带所述第一链路质量参数。第一节点接收到速率指示信息后,可以根据其中的第一链路质量参数,在对应关系表中查找确定第一链路质量参数对应的所述第一数据传输速率。
在另一种可能的方式中,第二信息为所述第一链路质量参数在候选的数据传输速率与链路质量参数的对应关系表中的位置,例如第一链路质量参数在该对应关系表中的位置索引。则第二节点可以在该速率指示信息中携带所述第一链路质量参数在对应关系表中的位置索引。第一节点接收到速率指示信息后,可以根据其中的位置索引,在对应关系表中查找确定对应位置处的第一链路质量参数,再进一步确定第一链路质量参数对应的所述第一数据传输速率。
通过上述方式,第二节点可以通过速率指示信息将所述第二节点可用的第一数据传输速率指示给第一节点,第一节点可以根据来自第二节点的所述速率指示信息,确定所述第二节点可用的所述第一数据传输速率。
S402:第一节点根据所述速率指示信息所指示的所述第一数据传输速率和第一节点的通信链路质量,确定与第二节点执行下一次UWB测距过程时的目标测距速率。
本申请实施例中,上述第一节点接收来自第二节点的所述速率指示信息后,可以通过进行通信链路质量评估确定第一节点的通信链路质量,进而根据第一节点的通信链路质量,确定在候选的数据传输速率与链路质量参数的对应关系表中对应的第二链路质量参数、以 及第二链路质量参数对应的第二数据传输速率。其中,所述第二链路质量参数可以为所述第一节点的通信链路质量所属的取值区间。所述第二数据传输速率为所述对应关系表中的多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率。
第一节点确定可用的第二数据传输速率后,可以根据所述第一数据传输速率和所述第二数据传输速率,确定与第二节点执行下一次UWB测距过程时的目标测距速率。
具体的,所述第一节点可以确定所述第一数据传输速率是否与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同。当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,所述第一节点将所述第一数据传输速率作为所述目标测距速率;当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,所述第一节点将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
其中,在UWB测距中,若无特别指示,执行测距过程的两个节点均默认按照初始时确定的测距速率执行每次UWB测距过程。因此,当所述第一节点执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率时,由于测距速率未发生改变,第一节点无需将该目标测距速率指示给第二节点,第一节点和第二节点刻意按照默认方法,在执行下一次UWB测距流程时,仍将在当前UWB测距过程中采用的数据传输速率作为测距速率。当然,第一节点也可以指示第二节点不进行测距速率的切换,或者将当前UWB测距过程中采用的数据传输速率作为目标测距速率指示给第二节点。
当所述第一节点将所述第一数据传输速率作为所述目标测距速率时,所述第一节点需要指示所述第二节点进行测距速率的切换。具体的,所述第一节点可以向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率。此后,所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。所述第二节点接收到速率切换指示后,在执行所述下一次UWB测距过程时,也将其测距速率切换为所述目标测距速率。
在一种可能的情况中,当所述第一节点为管理节点,所述第二节点为从节点时,或者,当所述第一节点和所述第二节点为两个不同的从节点时,所述第一节点可以直接将所述速率切换指示发送到第二节点。例如,第一节点在接收来自第二节点的第二数据帧后,可以计算得到第一节点和第二节点之间的距离测量值,则第一节点可以在将该距离测量值通知给第二设备时,将速率切换指示一起发送到第二节点。
在另一种可能的情况中,当所述第一节点和所述第二节点为两个不同的从节点时,所述第一节点可以通过管理节点转发向所述第二节点发送所述速率切换指示。
例如,第一节点和第二节点执行当前UWB测距过程中,第一节点可以将速率切换指示发送到管理节点,以请求管理节点控制第一节点、第二节点进行测距速率的切换。则管理节点接收到来自第一节点的速率切换指示后,可以向所述第二节点发送所述速率切换指示,同时向所述第一节点发送所述速率切换指示,从而指示第一节点和第二节点在执行下一次UWB测距过程时,将测距速率切换为目标测距速率。第一节点和第二节点接收来自所述管理节点的所述速率切换指示后,在执行下一次UWB测距过程时,分别将各自采用的测距速率切换为所述目标测距速率。
可选的,所述速率切换指示中携带所述目标测距速率。
本申请实施例中,第一节点和第二节点在执行下一次测距过程时,将测距速率切换为目标测距速率,具体实施为:第一节点和第二节点在执行下一次测距过程时,将目标测距速率作为新的数据传输速率,并采用所述新的数据传输速率进行数据传输。更具体的,第一节点和第二节点采用目标测距速率对应的编码速率,对待发送给对端的数据信息进行编码。
上述实施例中,第一节点和第二节点在执行当前UWB测距过程时,第一节点根据来自第二节点的速率指示信息和第一节点的通信链路质量,可以分别确定第一节点和第二节点可用的数据传输速率,进而可以确定与第二节点执行下一次UWB测距过程时的测距速率。基于该方案,第一节点和第二节点可以通过协商确定一个双方均支持的测距速率并在执行下一次测距过程时使用。因此,第一节点和第二节点在执行UWB测距过程时,能够对UWB测距过程中采用的测距速率进行灵活的切换控制,以便选择最合适于当前环境的测距速率进执行UWB测距过程,进而提高测距性能。还可以在一定程度上减少功耗,加快测距流程的执行,进一步提升测距性能。此外,由于是建立UWB通信的第一节点与第二节点之间的速率切换速率的协商,第一节点与第二节点可以基于UWB通信方式进行交互,因此可以减少对其它通信系统或通信方式的依赖,简化切换测距速率的流程,进而提高切换效率。
下面分别对上述实施例中的速率切换请求、速率指示信息、速率切换指示的数据格式进行介绍。
一、速率切换请求
本申请实施例中,速率切换请求信息元素(information element,IE)可以包括以下字段:
1)信道质量请求(channel quality request)字段:用于指示是否需要进行信道质量评估(即通信链路质量评估)。
2)信道质量列表(channel quality list)字段:用于指示多个节点。其中,该字段中包含所述多个节点的地址。
3)地址长度描述符(address size specifier)字段:用于指示目标节点的地址的长度类型。其中,所述目标节点为接收到所述速率切换请求的节点中需要响应所述速率切换请求的节点,目标节点可以由所述速率切换请求的发送端确定。地址的长度类型可以分为长地址和短地址。例如,长度为2字节的地址是短地址,长度为8字节的地址是长地址。
4)信道质量列表数(channel quality list number)字段:用于指示在信道质量列表字段指示的多个节点中,需要响应所述速率切换请求的节点的数量。
示例性的,所述速率切换请求IE的一种可能的格式如下表2中所示:
表2速率切换请求IE
Figure PCTCN2021122221-appb-000002
如表2中所示,在速率切换请求IE中,第0比特位为信道质量请求字段,该字段的取 值可以为0或1。示例性的,信道质量请求字段的取值为1时,可以用于指示需要进行通信链路质量评估,信道质量请求字段的取值为0时,可以用于指示不需要进行通信链路质量评估。
第1-2比特位为地址长度描述符字段。示例性的,地址长度描述符字段的取值为1时,可以用于指示目标节点的地址为长地址,地址长度描述符字段的取值为0时,可以用于指示目标节点的地址为短地址。应理解,地址长度描述符字段也可以有用于指示其它长度类型的其它取值,此处不再详述。
第3-6比特位为信道质量列表数字段。
信道质量列表字段的比特长度是可变(variable)的,具体可根据信道质量列表字段所指示的多个节点的数量及地址长度而变化。
其中,所述信道质量列表中任一节点的地址的格式如下表3中所示:
表3信道质量列表字段中的节点地址
字节(Octets):2/8
节点的地址
示例性的,如表3中所示,信道质量列表中任一节点的地址可以为2字节的短地址,或者为8字节的长地址。
应理解,上述表2所示的速率切换请求IE中各字段的比特长度和比特位置仅作为一种示例,并不对速率切换请求IE中各字段的比特长度和比特位置造成限制。
二、速率指示信息
本申请实施例中,速率指示信息IE包括如下至少一个字段:
1)质量水平区间(quality level field)字段:用于指示节点的通信链路质量在上述多个候选的数据传输速率与链路质量参数的对应关系中所对应的链路质量参数,该链路质量参数为通信链路质量所属的取值区间。
2)预估速率水平字段(estimated rate level):用于指示质量水平区间字段中的链路质量参数在上述多个候选的数据传输速率与链路质量参数的对应关系中所对应的数据传输速率。
在本申请一些实施例中,所述速率指示信息IE中还可以包括预留(reserved)字段,预留字段可以用于指示一些其它的相关信息,此处不做具体限定。
示例性的,所述速率指示信息IE的一种可能的格式如下表4中所示:
表4速率指示信息IE
比特位数 0-3 4-6 7
字段 质量水平区间 预估速率水平 预留
如表4中所示,速率指示信息的数据长度可以为8比特位,各比特位位数分别为0至7。在各比特位中,第0-3比特位可以承载质量水平区间字段。示例性的,质量水平区间字段的取值可以为节点在上述表1中选择确定的链路质量参数,或者可以为节点在上述表1中选择确定的链路质量参数在表1中的位置索引值。
第4-6比特位可以用于承载预估速率水平字段。示例性的,预估速率水平字段的取值可以为节点在上述表1中选择确定的数据传输速率,或者可以为节点在上述表1中选择确 定的数据传输速率在表1中的位置索引值。
第7比特位可以用于承载预留字段。
应理解,上述表4所示的速率指示信息IE中各字段的比特长度和比特位置仅作为一种示例,并不对速率指示信息IE中各字段的比特长度和比特位置造成限制。
三、速率切换指示
本申请实施例中,速率切换指示IE可以包括以下字段:
1)切换指示(switch indication)字段:用于指示切换测距速率。
2)切换速率索引(switch rate index)字段:用于指示切换后的测距速率。
3)速率切换列表(rate switch list)字段:用于指示多个节点。其中,该字段中包含所述多个节点的地址。
4)地址长度描述符(address size specifier)字段:用于指示目标节点的地址大小,其中,所述目标节点为接收到所述速率切换指示的节点中需要响应所述速率切换指示的节点,目标节点可以由所述速率切换指示的发送端确定。地址长度的类型可以分为长地址和短地址。
5)速率切换列表数(rate switch list number)字段:用于指示在速率切换列表字段指示的多个节点中,需要响应所述速率切换指示的节点的数量。
示例性的,所述速率切换指示IE的一种可能的格式如下表5中所示:
表5速率切换指示IE
Figure PCTCN2021122221-appb-000003
如表5中所示,在速率切换指示IE中,第0比特位为切换指示字段,该字段的取值可以为0或1。示例性的,切换指示字段的取值为1时,可以用于指示需要进行测距速率的切换,切换指示字段的取值为0时,可以用于指示不需要进行测距速率的切换。
第1-4比特位为切换速率索引字段。示例性的,所述切换速率索引字段的取值可以为节点的通信链路质量在上述表1所示的对应关系中所对应的数据传输速率在表1中的位置索引。
第5-6比特位可以用于承载地址长度描述符字段。示例性的,地址长度描述符字段的取值为1时,可以用于指示目标节点的地址为长地址,地址大小描述符字段的取值为0时,可以用于目标节点的地址为短地址。应理解,地址长度描述符字段也可以有用于指示其它长度类型的其它取值,此处不再详述。
第7-10比特位为速率切换列表数字段。
速率切换列表字段的比特长度是可变的,具体可根据速率切换列表字段所指示的多个节点的数量及地址长度而变化。
其中,所述速率切换列表中的节点的地址的格式如下表6中所示:
表6速率切换列表字段
字节(Octets):2/8
节点的地址
如表6中所示,速率切换列表中的节点的地址可以为2字节的短地址,或者为8字节的长地址。
应理解,上述表5所示的速率切换指示IE中各字段的比特长度和比特位置仅作为一种示例,并不对速率切换指示IE中各字段的比特长度和比特位置造成限制。
本申请实施例提供的测距速率的切换控制方法除了可以应用在一对一测距(例如上述的第一节点与第二节点之间的测距)场景中,还可以应用在一对多测距场景中。
示例性的,该方案可以应用于第一节点与其它的多个节点进行测距的场景中。
在一种可能的方案中,上述的第二节点可以为所述多个节点中的每个节点,则第一节点可以分别与所述多个节点中的每个节点执行上述实施例提供的方案,从而实现第一节点与每个节点之间的测距速率的切换控制。该方案具体实施例可参照上述实施例中的介绍,此处不再赘述。该方案中,第一节点可以分别采用不同的测距速率与所述多个节点中的每个节点执行UWB测距过程,并可以分别与每个节点协商进行测距速率的切换,因此对于测距速率的切换控制,该方案具有很强的灵活性。
在另一种可能的方案中,第一节点可以根据所述多个节点可用的数据传输速率以及第一节点自身可用的数据传输速率,确定一个公共的测距速率,并可以采用该测距速率分别与所述多个节点执行UWB测距过程。则该方案中,第一节点采用同一测距速率与所述多个节点中的每个节点执行UWB测距过程,这样可以降低测距速率的协商耗时,进而快速实现测距速率的切换。
下面分别结合一对一测距场景和一对多测距场景,对本申请实施例提供的方案进行介绍。
实例一、一对一测距场景
本实例中,基于图1b中所示的节点1与节点2执行UWB测距过程的方法及上述实施例提供的方法,对本申请实施例提供的测距速率的切换控制方法进行介绍。其中,第一节点作为控制端和发起端,第二节点作为被控端和应答端。
参照图5,本申请实施例提供的一种测距速率的切换控制方法包括:
S501:第一节点向第二节点发送初始测距帧和速率切换请求。
本实例中,在步骤S501之前,第一节点与第二节点可以参照图1b中所述的步骤S101~S103的方式,先建立UWB通信连接,并配置好节点角色及测距过程中的各个时段等。
如图5中所示,第一节点和第二节点中均可以包括上层应用(主机侧)和链路层,其中,上层应用可以对第一节点进行控制,链路层用于为第一节点提供数据传输服务。第一节点在与第二节点执行当前测距过程中,确定要切换测距速率时,第一节点的上层应用可以向链路层发送速率切换请求,链路层回复确认信息后,通过天线将初始测距帧和速率切换请求发送到第二节点。
在执行步骤S501时,第一节点可以在RIP时段向第二节点发送初始测距帧(即初始测距帧)和速率切换请求。
示例性的,速率切换请求IE可以为上述表2所示的格式。则第二节点接收到速率切换请求后,可以在信道质量列表字段包含的前K个地址中,按地址顺序依次判断符合地址长度描述符字段指示长度类型的地址是否是第二节点的地址。其中,K为信道质量列表数所 指示的数量值。当确定存在一个地址是第二节点的地址时,第二节点可以根据信道质量请求字段的指示进行通信链路质量评估,确定第二节点的通信链路质量。
例如,假设在表2中,信道质量请求字段指示的是进行通信链路质量评估,地址长度描述符字段指示的是长地址,信道质量列表数字段指示的是10,信道质量列表字段包含30个节点的地址。第二节点的地址为信道质量列表字段包含的30个地址中的第8个,且为长地址。则第二节点接收到速率指示信息后,根据地址长度描述符字段和信道质量列表数字段的指示,第二节点在信道质量列表字段包含的30个地址中,按顺序依次对前10个地址中的长地址进行判断,确定各长地址是否是第二节点的地址。通过判断第二节点可以确定第二节点的地址是包含在信道质量列表字段中的前10个地址中的长地址,因此,第二节点可以确定要响应信道质量请求字段的指示,进行通信链路质量评估。
S502:第二节点接收到来自第一节点的速率切换请求后,进行通信链路质量评估。
示例性的,第二节点根据来自第一节点的速率切换请求确定进行通信链路质量评估时,通过进行通信链路质量评估确定所述第二节点的通信链路质量。然后第二节点确定其通信链路质量在表1中所属的链路质量参数,进而确定该链路质量参数对应的数据传输速率为第二节点可用的第一数据传输速率。
S503:第二节点向第一节点反馈测距帧和速率指示信息。
上述第二节点确定可用的数据传输速率后,可以在RRP时段向第一节点反馈测距帧和速率指示信息。
示例性的,速率指示信息IE可以为上述表4所示的格式。其中,质量水平区间字段取值为第二节点评估确定的通信链路质量所对应的链路质量参数在上述表2中的位置索引值。预估速率水平字段为第二节点确定的第二节点可用的数据传输速率在上述表2中的位置索引值。
S504:第一节点接收到来自第二节点的速率指示信息后,进行通信链路质量评估。
示例性的,第一节点接收到来自第二节点的速率指示信息后,同样进行通信链路质量评估,确定第一节点的通信链路质量,并根据表1确定第一节点的通信链路质量所对应的链路质量参数和第一节点可用的第二数据传输速率。
然后第一节点可以将确定的第一节点的链路质量参数和第二数据传输速率,分别与第二节点发送的第二节点的链路质量参数和第一数据传输速率进行比较,如果都一致且与当前使用的测距速率不同,则第一节点确定进行测距速率的切换,否则,第一节点确定不进行测距速率的切换。
S505:第一节点向第二节点发送测距信息更新数据帧和速率切换指示。
该步骤中,第一节点确定进行测距速率的切换时,可以在RCUP时段向第二节点发送测距信息更新数据帧和速率切换指示。
示例性的,速率切换指示IE可以为上述表5所示的格式。则第二节点接收到速率切换指示后,可以在速率切换列表字段中,查找是否存在符合地址长度描述符字段和速率切换列表数字段的要求的所述第二节点的地址,若存在,则第二节点需根据切换指示字段的指示进行测距速率的切换,若不存在,则第二节点无需响应该速率切换指示。
第一节点与第二节点执行后续UWB测距过程时,可按照以上步骤重复动态执行,实现测距速率的灵活切换。
该实例中,第一节点和第二节点通过UWB测距过程中速率切换相关信息的交互,及 对测距帧的通信链路的质量评估,再结合数据传输速率与链路质量参数之间的对应关系,能够确定出最适合于第一节点和第二节点当前环境的测距速率进行通信和测距,因此,对于不同环境的网络状态变化,可以有针对性的对测距速率进行择优选取,从而减少数据重传、错包的概率,还可以在一定程度上减少功耗,加快测距过程的执行,提升测距性能;同时第一节点和第二节点是在建立UWB通信连接后,基于UWB通信完成测距速率的切换协商,因此可以降低对其它通信系统的依赖,简化切换测距速率的流程,提高测距速率的切换效率。
实例二、一对多测距场景
本实例中,基于图1b中所示的节点1与节点2执行UWB测距过程的方法及上述实施例提供的方法,以第一节点与多个节点进行测距为例,对本申请实施例提供的方案进行介绍。示例性的,所述多个节点中包括第二节点、第三节点和第四节点。其中,第一节点作为控制端和发起端,第二节点、第三节点、第四节点作为被控端和应答端。第一节点可以分别与第二节点、第三节点、第四节点执行图1b所示的UWB测距过程。其中,第一节点可以针对第二节点、第三节点和第四节点,分别配置与各节点执行UWB测距过程中的各个时段。第二节点、第三节点、第四节点分别按照第一节点配置的各个时段,与第一节点执行对应的测距步骤。
参照图6,本申请实施例提供的一种测距速率的切换控制方法包括:
1)第一节点分别向第二节点、第三节点、第四节点发送初始测距帧和速率切换请求。
示例性的,第一节点可以为图1a所示的UWB系统中的管理节点,第二节点、第三节点、第四节点可以为图1a中所示的从节点。
在一种可能的方式中,第一节点分别与第二节点、第三节点、第四节点建立UWB通信连接后,针对第二节点、第三节点、第四节点,第一节点配置的与各节点执行UWB测距过程中的时段可以相同或不同。
在第一节点配置的与各节点执行UWB测距过程中的时段相同时,第一节点可以在同一个RIP时段内,通过广播的方式将初始测距帧和速率切换请求同时发送给第二节点、第三节点、第四节点。
在第一节点配置的与各节点执行UWB测距过程中的时段不同时,第一节点可以分别在第二节点、第三节点、第四节点对应的RIP时段内,分别向第二节点、第三节点、第四节点发送初始测距帧和速率切换请求。
2)第二节点、第三节点、第四节点在接收到来自第一节点的初始测距帧和速率切换指示后,分别进行通信链路质量评估确定可用的数据传输速率。
具体实施方式可参照上述实施例中的介绍,此处不再详述。
3)第二节点、第三节点、第四节点分别向第一节点反馈测距帧和速率指示信息。
在第一节点配置的与各节点执行UWB测距过程中的时段相同时,第二节点、第三节点、第四节点分别在同一RRP时段内的不同时刻向第一节点反馈测距帧和速率指示信息,第一节点在该RRP时段内的不同时刻分别接收第二节点、第三节点、第四节点反馈的测距帧和速率指示信息。
在第一节点配置的与各节点执行UWB测距过程中的时段不同时,第二节点、第三节点、第四节点分别在各自对应的RRP时段内向第一节点反馈测距帧和速率指示信息,第一 节点可以分别在第二节点、第三节点、第四节点对应的RRP时段内,分别接收第二节点、第三节点、第四节点反馈的测距帧和速率指示信息。
4)第一节点接收第二节点、第三节点、第四节点反馈的测距帧和速率指示信息后,确定是否切换测距速率。
第一节点接收第二节点、第三节点、第四节点反馈的速率指示信息后,通过进行通信链路质量评估,确定第一节点可用的数据传输速率。然后分别比较与各节点的测距速率的切换是否有效。具体的,针对第二节点、第三节点、第四节点中的每个节点,第一节点分别比较该节点可用的数据传输速率与第一节点可用的数据传输速率是否相同且与当前采用的测距速率不同,若是,则认为该节点与第一节点之间的测距速率的切换有效,即可以进行测距速率的切换。
第一节点统计与各节点的有效的测距速率切换,并确定各节点中能够切换为同一测距速率的节点的占比,在该占比大于或等于设定阈值时,则第一节点可以与各节点将测距速率切换为同一测距速率。
示例性的,第一节点可以统计与各节点的有效的测距速率切换得到如下表7所示的内容:
表7第一节点与不同节点进行测距速率的切换的有效性统计表
Figure PCTCN2021122221-appb-000004
如表7中所示,第二节点、第三节点、第四节点均可以与第一节点进行测距速率切换。假设第一节点比较第一节点与第二节点可用的数据传输速率后,确定第一节点和第二节点可以切换为850千比特每秒(Kbps)的测距速率。第一节点比较第一节点与第三节点可用的数据传输速率后,确定第一节点和第三节点可以切换为850Kbps的测距速率。第一节点比较第一节点与第四节点可用的数据传输速率后,确定第一节点和第四节点可以切换为6.8兆比特每秒(Mbps)的测距速率。则第二节点、第三节点、第四节点中能够切换为同一测距速率(即850Kbps)的节点(第二节点和第三节点)的占比为2/3。若设定阈值为1/2,则第一节点可以通过速率指示信息指示第二节点、第三节点、第四节点将测距速率切换为850Kbps。
5)第一节点确定切换测距速率时,向第二节点、第三节点、第四节点发送速率切换指示。
在第一节点配置的与各节点执行UWB测距过程中的时段相同时,第一节点可以在同一个RCUP时段内,通过广播的方式将测距信息更新数据帧和速率切换指示同时发送给第二节点、第三节点、第四节点。
在第一节点配置的与各节点执行UWB测距过程中的时段不同时,第一节点可以分别在第二节点、第三节点、第四节点对应的RCUP时段内,分别向第二节点、第三节点、第四节点发送测距信息更新数据帧和速率切换指示。
该实例中,第一节点和多个节点通过UWB测距过程中速率切换相关信息的交互,及 对测距帧的通信链路的质量评估,再结合数据传输速率与链路质量参数之间的对应关系,确定出最适合于第一节点和各个节点当前环境的测距速率。因此,对于不同环境的网络状态变化,可以有针对性的对测距速率进行择优选取,从而减少数据重传、错包的概率,还可以在一定程度上减少功耗,加快测距过程的执行,提升测距性能;同时第一节点和各个节点是在建立UWB通信连接后,基于UWB通信完成测距速率的切换协商,因此可以降低对其它通信系统的依赖,简化切换测距速率的流程,提高测距速率的切换效率。
基于以上实施例及相同构思,本申请实施例还提供一种通信装置,用于实现本申请实施例提供的第一节点或第二节点或管理节点的功能。图7所示为本申请实施例提供的一种通信装置700,该通信装置700可以是第一节点,也可以是第一节点中的芯片或芯片系统;或者,该通信装置700可以是第二节点,也可以是第二节点中的芯片或芯片系统;或者,该通信装置700可以是管理节点,也可以是管理节点中的芯片或芯片系统。
具体的,所述通信装置700包括收发器701和至少一个处理器702。其中,所述处理器702和所述收发器701耦合,本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
具体的,所述收发器701可以是电路、总线、通信接口或者其它任意可以用于进行信息交互的模块,可用于接收或发送信息。
可选的,所述通信装置700还可以包括存储器703,所述存储器703与所述收发器701和所述处理器702耦合,用于存储程序指令。
所述处理器702用于调用存储器703中存储的程序指令,使得通信装置700执行本申请实施例提供的测距速率的切换控制方法中由第一节点或第二节点或管理节点所执行的方法。
所述收发器701用于接收和发送射频信号,耦合于通信装置700的接收器和发射器。所述收发器701通过射频信号与通信网络和其它通信装置通信,如无线局域网(Wireless Local Area Networks,WLAN)、蓝牙通信网络、UWB等。具体实现中,所述收发器701支持的通信协议至少包括UWB协议,还可以包括蓝牙协议、WiFi协议等短距无线通信相关协议。
具体实现中,所述存储器703可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。所述存储器703可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。所述存储器703可用于存储本申请实施例的实现程序。所述存储器703还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个用户设备,一个或多个网络设备进行通信。
所述处理器702可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
在一些实施例中,所述通信装置700还可以包括输出设备704和输入设备705。输出设备704和处理器702通信,可以以多种方式来显示信息。例如,输出设备704可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备705和 处理器702通信,可以以多种方式接收用户的输入。例如,输入设备705可以是鼠标、键盘、触摸屏设备或传感设备等。为了便于输出设备704和输入设备705的用户使用,在一些实施例中,所述存储器703还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
需要说明的,图7仅仅是本申请实施例的一种实现方式,实际应用中,通信装置700还可以包括更多或更少的部件,这里不作限制。
在一个示例中,当该通信装置700应用于上述实施例中的第一节点时,所述收发器701,用于在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;所述处理器702,用于根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在一种可能的设计中,所述处理器702根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率时,具体用于:根据所述第一节点的通信链路质量,确定所述第一节点的第二数据传输速率;其中,所述第二数据传输速率为所述多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率,所述第二链路质量参数用于指示所述第一节点的通信链路质量;根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率。
在一种可能的设计中,所述处理器702根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率时,具体用于:当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,所述第一节点将所述第一数据传输速率作为所述目标测距速率;当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,所述第一节点将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
在一种可能的设计中,所述处理器702还用于:当将所述第一数据传输速率作为所述目标测距速率时,通过所述收发器701向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率;在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
在一种可能的设计中,所述处理器702通过所述收发器701向所述第二节点发送速率切换指示时,具体用于:使所述收发器701通过管理节点转发向所述第二节点发送所述速率切换指示;其中,所述管理节点用于管理所述第一节点和所述第二节点。
在一种可能的设计中,在所述收发器701接收来自所述第二节点的速率指示信息之前, 所述收发器701还用于:向所述第二节点发送速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在一种可能的设计中,所述收发器701向所述第二节点发送速率切换请求时,具体用于:向所述第二节点发送携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述收发器701接收来自所述第二节点的所述速率指示信息时,具体用于:所述第一节点接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧。
在一个示例中,当该通信装置700应用于上述实施例中的第二节点时,所述处理器702,用于在与第一节点执行当前UWB测距过程中,通过所述收发器701向所述第一节点发送速率指示信息,以使所述第一节点根据所述速率指示信息所指示的第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率;其中,所述速率指示信息用于指示所述第二节点可用的所述第一数据传输速率。
在一种可能的设计中,所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
在一种可能的设计中,所述处理器702还用于:通过所述收发器701接收来自所述第一节点的速率切换指示;在与所述第一节点执行所述下一次测距过程时,根据所述速率切换指示将所述第二节点的测距速率切换为目标测距速率。
在一种可能的设计中,所述处理器702通过所述收发器701接收来自所述第一节点的速率切换指示,包括:使所述收发器701接收管理节点转发的来自所述第一节点的所述速率切换指示,其中,所述管理节点用于管理所述第一节点和所述第二节点。
在一种可能的设计中,所述处理器702在通过所述收发器701向所述第一节点发送速率指示信息之前,所述处理器702还用于:通过所述收发器701接收来自所述第一节点的速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
在一种可能的设计中,所述处理器702通过所述收发器701接收来自所述第一节点的速率切换请求时,具体用于:通过所述收发器701接收来自所述第一节点的携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;所述处理器702通过所述收发器701向所述第一节点发送所述速率指示信息时,具体用于:通过所述收发器701向所述第一节点发送携带所述速率指示信息的所述第二测距帧。
在一个示例中,当该通信装置700应用于上述实施例中的管理节点时,所述处理器702用于在第一节点和第二节点执行当前UWB测距过程中,通过所述收发器701接收来自所述第一节点的速率切换指示;其中,所述速率切换指示用于指示所述第二节点在与所述第一节点执行下一次UWB测距过程时,将所述第二节点的测距速率切换为目标测距速率;所述处理器702通过所述收发器701向所述第二节点发送所述速率切换指示。
在一种可能的设计中,所述处理器702还用于:通过所述收发器701向所述第一节点发送所述速率切换指示;其中,所述速率切换指示还用于指示所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
基于以上实施例及相同构思,本申请实施例还提供一种通信装置,用于实现本申请实施例提供的第一节点或第二节点或管理节点的功能。图8所示为本申请实施例提供的一种通信装置800,该通信装置800可以是终端设备,也可以是终端设备中的芯片或芯片系统。
具体的,所述通信装置800包括收发单元801和处理单元802。其中,所述收发单元801用于接收来自所述通信装置800之外的其它通信装置的信号并传输至所述处理单元802或将来自所述处理单元802的信号发送给所述通信装置800之外的其它通信装置。
所述通信装置800应用于上述实施例中的第一节点时,所述收发单元801与所述处理单元802配合,可用于执行本申请实施例提供的由第一节点所执行的方法。
所述通信装置800应用于上述实施例中的第二节点时,所述收发单元801与所述处理单元802配合,可用于执行本申请实施例提供的由第二节点所执行的方法。
所述通信装置800应用于上述实施例中的管理节点时,所述收发单元801与所述处理单元802配合,可用于执行本申请实施例提供的由管理节点所执行的方法。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于以上实施例及相同构思,本申请实施例还提供一种通信系统,所述通信系统至少包括上述实施例中提供的第一节点和第二节点。可选的,所述通信系统还可以包括上述实施例中提供的管理节点。
基于以上实施例及相同构思,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读程序,当所述计算机可读程序在计算机上运行时,使得所述计算机执行以上实施例提供的应用于第一节点或第二节点或管理节点的测距速率的切换控制方法。
基于以上实施例及相同构思,本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行以上实施例提供的应用于第一节点或第二节点或管理节点的测距速率的切换控制方法。
基于以上实施例及相同构思,本申请实施例还提供一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行以上实施例提供的应用于第一节点或第二节点或管理节点的测距速率的切换控制方法。
基于以上实施例及相同构思,本申请实施例还提供一种芯片系统,所述芯片系统包括处理器,用于支持通信装置实现以上实施例提供的应用于第一节点或第二节点或管理节点的测距速率的切换控制方法。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于存储所述计算机装置必要的程序和数据。
在一种可能的设计中,所述芯片系统由芯片构成,或者包含芯片和其他分立器件。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、 专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD)、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种测距速率的切换控制方法,其特征在于,包括:
    第一节点在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;
    所述第一节点根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;
    所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一节点根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率,包括:
    所述第一节点根据所述第一节点的通信链路质量,确定所述第一节点的第二数据传输速率;其中,所述第二数据传输速率为所述多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率,所述第二链路质量参数用于指示所述第一节点的通信链路质量;
    所述第一节点根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率。
  4. 根据权利要求3所述的方法,其特征在于,所述第一节点根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率,包括:
    当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,所述第一节点将所述第一数据传输速率作为所述目标测距速率;
    当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,所述第一节点将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    当所述第一节点将所述第一数据传输速率作为所述目标测距速率时,所述第一节点向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率;
    所述第一节点在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
  6. 根据权利要求5所述的方法,其特征在于,所述第一节点向所述第二节点发送速率切换指示,包括:
    所述第一节点通过管理节点转发向所述第二节点发送所述速率切换指示;其中,所述管理节点用于管理所述第一节点和所述第二节点。
  7. 根据权利要求1~6任一所述的方法,其特征在于,在所述第一节点接收来自所述第 二节点的速率指示信息之前,所述方法还包括:
    所述第一节点向所述第二节点发送速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一节点向所述第二节点发送速率切换请求,包括:
    所述第一节点向所述第二节点发送携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;
    所述第一节点接收来自所述第二节点的所述速率指示信息,包括:
    所述第一节点接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧。
  9. 一种测距速率的切换控制方法,其特征在于,包括:
    第二节点在与第一节点执行当前UWB测距过程中,向所述第一节点发送速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的所述第一数据传输速率。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;
    所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收来自所述第一节点的速率切换指示;
    所述第二节点在与所述第一节点执行所述下一次测距过程时,根据所述速率切换指示将所述第二节点的测距速率切换为目标测距速率。
  12. 根据权利要求11所述的方法,其特征在于,所述第二节点接收来自所述第一节点的速率切换指示,包括:
    所述第二节点接收管理节点转发的来自所述第一节点的所述速率切换指示,其中,所述管理节点用于管理所述第一节点和所述第二节点。
  13. 根据权利要求9~12任一所述的方法,其特征在于,在所述第二节点向所述第一节点发送速率指示信息之前,所述方法还包括:
    所述第二节点接收来自所述第一节点的速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第二节点接收来自所述第一节点的速率切换请求,包括:
    所述第二节点接收来自所述第一节点的携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;
    所述第二节点向所述第一节点发送所述速率指示信息,包括:
    所述第二节点向所述第一节点发送携带所述速率指示信息的所述第二测距帧。
  15. 一种通信装置,应用于第一节点,其特征在于,所述通信装置包括收发器和处理器;
    所述收发器,用于在与第二节点执行当前UWB测距过程中,接收来自所述第二节点的速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的第一数据传输速率;
    所述处理器,用于根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;
    所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
  17. 根据权利要求16所述的通信装置,其特征在于,所述处理器根据所述速率指示信息所指示的所述第一数据传输速率和所述第一节点的通信链路质量,确定与所述第二节点执行下一次UWB测距过程时的目标测距速率时,具体用于:
    根据所述第一节点的通信链路质量,确定所述第一节点的第二数据传输速率;其中,所述第二数据传输速率为所述多个候选的数据传输速率中与第二链路质量参数对应的数据传输速率,所述第二链路质量参数用于指示所述第一节点的通信链路质量;
    根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率。
  18. 根据权利要求17所述的通信装置,其特征在于,所述处理器根据所述第一数据传输速率和所述第二数据传输速率,确定所述目标测距速率时,具体用于:
    当所述第一数据传输速率与所述第二数据传输速率相同且与执行当前UWB测距过程中采用的数据传输速率不同时,将所述第一数据传输速率作为所述目标测距速率;
    当所述第一数据传输速率与所述第二数据传输速率不同或所述第一数据传输速率与执行当前UWB测距过程中采用的数据传输速率相同时,将执行当前UWB测距过程中采用的数据传输速率作为所述目标测距速率。
  19. 根据权利要求18所述的通信装置,其特征在于,所述处理器还用于:
    当将所述第一数据传输速率作为所述目标测距速率时,通过所述收发器向所述第二节点发送速率切换指示,所述速率切换指示用于指示所述第二节点在执行所述下一次UWB测距过程时,将所述第二节点的测距速率切换为所述目标测距速率;
    在执行所述下一次UWB测距过程时,将所述第一节点的测距速率切换为所述目标测距速率。
  20. 根据权利要求19所述的通信装置,其特征在于,所述处理器通过所述收发器向所述第二节点发送速率切换指示时,具体用于:
    使所述收发器通过管理节点转发向所述第二节点发送所述速率切换指示;其中,所述管理节点用于管理所述第一节点和所述第二节点。
  21. 根据权利要求15~20任一所述的通信装置,其特征在于,在所述收发器接收来自所述第二节点的速率指示信息之前,所述收发器还用于:
    向所述第二节点发送速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
  22. 根据权利要求21所述的通信装置,其特征在于,所述收发器向所述第二节点发送速率切换请求时,具体用于:
    向所述第二节点发送携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;
    所述收发器接收来自所述第二节点的所述速率指示信息时,具体用于:
    所述第一节点接收来自所述第二节点的携带所述速率指示信息的所述第二测距帧。
  23. 一种通信装置,应用于第二节点,其特征在于,所述通信装置包括收发器和处理器;
    所述处理器,用于在与第一节点执行当前UWB测距过程中,通过所述收发器向所述第一节点发送速率指示信息;其中,所述速率指示信息用于指示所述第二节点可用的所述第一数据传输速率。
  24. 根据权利要求23所述的通信装置,其特征在于,
    所述第一数据传输速率为多个候选的数据传输速率中与第一链路质量参数对应的数据传输速率;其中,不同数据传输速率对应的链路质量参数不同,所述第一链路质量参数用于指示所述第二节点的通信链路质量;
    所述速率指示信息包含:用于指示所述第一数据传输速率的第一信息,或,用于指示所述第一数据传输速率对应的所述第一链路质量参数的第二信息。
  25. 根据权利要求23或24所述的通信装置,其特征在于,所述处理器还用于:
    通过所述收发器接收来自所述第一节点的速率切换指示;
    在与所述第一节点执行所述下一次测距过程时,根据所述速率切换指示将所述第二节点的测距速率切换为目标测距速率。
  26. 根据权利要求25所述的通信装置,其特征在于,所述处理器通过所述收发器接收来自所述第一节点的速率切换指示,包括:
    使所述收发器接收管理节点转发的来自所述第一节点的所述速率切换指示,其中,所述管理节点用于管理所述第一节点和所述第二节点。
  27. 根据权利要求23~26任一所述的通信装置,其特征在于,所述处理器在通过所述收发器向所述第一节点发送速率指示信息之前,所述处理器还用于:
    通过所述收发器接收来自所述第一节点的速率切换请求;其中,所述速率切换请求用于请求所述第二节点反馈所述速率指示信息。
  28. 根据权利要求27所述的通信装置,其特征在于,所述处理器通过所述收发器接收来自所述第一节点的速率切换请求时,具体用于:
    通过所述收发器接收来自所述第一节点的携带所述速率切换请求的第一测距帧;其中,所述第一测距帧用于指示所述第二节点反馈第二测距帧;
    所述处理器通过所述收发器向所述第一节点发送所述速率指示信息时,具体用于:
    通过所述收发器向所述第一节点发送携带所述速率指示信息的所述第二测距帧。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可读程序,当所述计算机可读程序在计算机上运行时,使得所述计算机执行如权利要求1~8任一所述的方法,或执行如权利要求9~14任一所述的方法。
  30. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1~8任一所述的方法,或执行如权利要求9~14任一所述的方法。
PCT/CN2021/122221 2021-09-30 2021-09-30 一种测距速率的切换控制方法及通信装置 WO2023050332A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/122221 WO2023050332A1 (zh) 2021-09-30 2021-09-30 一种测距速率的切换控制方法及通信装置
CN202180102274.XA CN117980767A (zh) 2021-09-30 2021-09-30 一种测距速率的切换控制方法及通信装置
EP21958904.1A EP4400857A1 (en) 2021-09-30 2021-09-30 Ranging rate switching control method and communication apparatus
US18/620,637 US20240243833A1 (en) 2021-09-30 2024-03-28 Ranging rate switch control method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122221 WO2023050332A1 (zh) 2021-09-30 2021-09-30 一种测距速率的切换控制方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/620,637 Continuation US20240243833A1 (en) 2021-09-30 2024-03-28 Ranging rate switch control method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2023050332A1 true WO2023050332A1 (zh) 2023-04-06

Family

ID=85781111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122221 WO2023050332A1 (zh) 2021-09-30 2021-09-30 一种测距速率的切换控制方法及通信装置

Country Status (4)

Country Link
US (1) US20240243833A1 (zh)
EP (1) EP4400857A1 (zh)
CN (1) CN117980767A (zh)
WO (1) WO2023050332A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243636A (zh) * 2005-08-18 2008-08-13 索尼株式会社 数据传输系统、无线通信装置和无线通信方法以及计算机程序
CN108964867A (zh) * 2018-09-28 2018-12-07 四川中电昆辰科技有限公司 一种测距方法及测距系统
US20200228943A1 (en) * 2019-01-11 2020-07-16 Sensormatic Electronics, LLC Power efficient ultra-wideband (uwb) tag for indoor positioning
CN111432402A (zh) * 2019-01-10 2020-07-17 恩智浦有限公司 用于安全访问的rf通信

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243636A (zh) * 2005-08-18 2008-08-13 索尼株式会社 数据传输系统、无线通信装置和无线通信方法以及计算机程序
CN108964867A (zh) * 2018-09-28 2018-12-07 四川中电昆辰科技有限公司 一种测距方法及测距系统
CN111432402A (zh) * 2019-01-10 2020-07-17 恩智浦有限公司 用于安全访问的rf通信
US20200228943A1 (en) * 2019-01-11 2020-07-16 Sensormatic Electronics, LLC Power efficient ultra-wideband (uwb) tag for indoor positioning

Also Published As

Publication number Publication date
CN117980767A (zh) 2024-05-03
US20240243833A1 (en) 2024-07-18
EP4400857A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
US11892538B2 (en) Method and apparatus for controlling ranging in wireless communication system
TWI710279B (zh) 端到端傳輸數據的方法、設備和系統
WO2020024756A1 (zh) 通信方法及装置
WO2008088186A1 (en) Method and system for wireless communication using out-of-band channels
CN109804691B (zh) 一种数据传输方法及装置、计算机存储介质
JP2021513786A (ja) キャリア集合の決定方法およびデバイス、記憶媒体、および電子デバイス
US11558081B1 (en) Data transfer protocol for ultra-wideband (UWB)
CN113455026A (zh) 接入方法及通信装置
CN113691358A (zh) 能力信息上报方法及其装置
US11265100B2 (en) Error vector magnitude requirement negotiation for ranging operation
US10034227B1 (en) Access point association using trigger-based uplink single user transmission
US10681625B1 (en) Single-user acknowledgement options for wireless communication in a multi-user environment
WO2023050332A1 (zh) 一种测距速率的切换控制方法及通信装置
CN111328127B (zh) 通信方法、通信装置及存储介质
WO2014166201A1 (zh) 多频段无线通信通信方法、协调设备以及网络
WO2022253150A1 (zh) 数据传输方法及装置
WO2022148218A1 (zh) 时间资源分配和接收方法及相关装置
WO2022140996A1 (zh) 一种信道接入方法及通信装置
EP3941129B1 (en) Wi-fi communication method and apparatus
WO2020125635A1 (zh) 一种通信方法及装置
WO2024131745A1 (zh) 信息处理方法及装置
WO2024041185A1 (zh) 一种通信方法及装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2023019575A1 (zh) 一种收发切换控制方法、管理节点及终端节点
WO2023024982A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102274.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021958904

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958904

Country of ref document: EP

Effective date: 20240411

NENP Non-entry into the national phase

Ref country code: DE