WO2023050311A1 - 电池及其制造方法和制造系统、用电装置 - Google Patents

电池及其制造方法和制造系统、用电装置 Download PDF

Info

Publication number
WO2023050311A1
WO2023050311A1 PCT/CN2021/122180 CN2021122180W WO2023050311A1 WO 2023050311 A1 WO2023050311 A1 WO 2023050311A1 CN 2021122180 W CN2021122180 W CN 2021122180W WO 2023050311 A1 WO2023050311 A1 WO 2023050311A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
along
battery cells
module
cells
Prior art date
Application number
PCT/CN2021/122180
Other languages
English (en)
French (fr)
Inventor
唐彧
王鹏
刘越
王增忠
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023501547A priority Critical patent/JP2023547300A/ja
Priority to PCT/CN2021/122180 priority patent/WO2023050311A1/zh
Priority to KR1020237001268A priority patent/KR20230047998A/ko
Priority to EP21944408.0A priority patent/EP4187670A4/en
Priority to US18/064,939 priority patent/US20230116169A1/en
Publication of WO2023050311A1 publication Critical patent/WO2023050311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery, a manufacturing method and system thereof, and an electrical device.
  • Batteries are widely used in electrical devices, such as electric cabinets, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery, a manufacturing method thereof, a manufacturing system, and an electrical device, which can improve the flexibility and rationality of the internal structural layout of the battery.
  • the embodiment of the present application provides a battery, including: a plurality of battery modules, each battery module includes a plurality of battery cells stacked along the first direction, and the battery cells have oppositely disposed along the second direction
  • the first end face and the second end face are provided with electrode terminals, and a plurality of battery modules are stacked along the third direction; the first direction, the second direction, and the third direction are perpendicular to each other.
  • the battery cells are stacked along the first direction to form a battery module, and the battery modules are stacked along the third direction, so that a suitable second battery can be set according to the spatial layout of the electric device such as a vehicle.
  • the number of battery cells in one direction and the appropriate size and quantity of battery modules in the third direction are set to make full use of the space in the first direction and the third direction to increase the capacity of the battery.
  • the direction of the electrode terminals is different from the stacking direction of the battery cells and the stacking direction of the battery module, so the gap between the battery cells along the stacking direction and the gap between the battery modules along the stacking direction can be saved, and the battery life can be effectively improved. volumetric energy density.
  • each battery module includes a plurality of battery packs arranged side by side along the second direction, each battery pack includes a plurality of battery cells stacked along the first direction, and two adjacent battery packs The second end faces of the battery cells are oppositely arranged, so that the battery can be assembled more conveniently, for example, components such as sampling wiring harness can be easily installed.
  • Such an arrangement can make full use of the space of the electrical device such as a vehicle in the second direction, and improve the space utilization rate of the second direction.
  • the side walls of the battery cell casing include two opposite first side walls and two opposite second side walls, wherein the area of the first side wall is larger than that of the second side The area of the wall, the first side wall is perpendicular to the first direction. It is beneficial to improve the structural stability of the battery pack formed by the battery cells, thereby improving the structural stability of the battery module and the battery.
  • the maximum dimension of the battery module along the first direction is L 1
  • the maximum dimension along the second direction is L 2
  • L 1 L 2
  • the second end faces of the battery cells of adjacent battery modules are perpendicular to each other. It is beneficial to improve the bonding strength between adjacent battery modules, thereby improving the structural strength of the entire battery.
  • the battery further includes a reinforcing plate, and the reinforcing plate is arranged between two adjacent battery modules.
  • the reinforcement plate With the reinforcement plate, the battery is not easy to be deformed, displaced and other problems, thereby improving the overall structural strength of the battery.
  • a flow channel is formed in the reinforcing plate, and the flow channel contains fluid, and the fluid is used for heat exchange with the battery module.
  • the fluid can exchange heat with the battery module, thereby heating or cooling the battery module.
  • the battery further includes a pipe, and the pipe is used to communicate with flow channels of adjacent reinforcement plates along the third direction.
  • the pipe is used to communicate with flow channels of adjacent reinforcement plates along the third direction.
  • the battery module further includes an end plate, and the end plate is arranged on both sides of the plurality of stacked battery cells along the first direction; the battery also includes a frame, and the frame is arranged on the outer peripheral side of the battery module , the end plate connects the battery module and the frame.
  • the arrangement of the end plates is convenient for the assembly of the battery cells, and the arrangement of the frame can form a certain protection for the battery module and improve the service life of the battery module.
  • a first boss is formed on the end plate, a second boss is formed on the frame, and the first boss is engaged with the second boss.
  • Such arrangement is beneficial to the connection between the end plate and the frame, and at the same time is beneficial to the sealing performance of the battery after the two are connected.
  • the battery includes a plurality of frames stacked along the third direction, and adjacent frames along the third direction are sealed and connected. Adjacent frames are arranged to be sealed and connected, which can effectively reduce the entry of external water and oxygen into the interior of the battery module, thereby reducing the possibility of certain corrosion of the battery cells by external water and oxygen.
  • the battery also includes a mounting frame, and multiple battery modules are connected to the mounting frame through the frame.
  • the mounting frame is formed with a mounting plate, and two frames adjacent to each other are connected through the mounting plate. It is convenient to set the position of the battery module and the frame, avoids the possibility of dislocation or deformation of the battery module and the frame during the connection process of the mounting frame, reduces installation errors, and is beneficial to improve the sealing of the battery.
  • an embodiment of the present application provides a battery manufacturing method, including: providing a plurality of battery cells, the battery cells have a first end surface and a second end surface oppositely arranged along the second direction, and the first end surface is provided with an electrode terminals; a plurality of battery cells are stacked along a first direction to form a battery module; a plurality of battery modules are stacked along a third direction, wherein the first direction, the second direction and the third direction are perpendicular to each other.
  • an embodiment of the present application provides a battery manufacturing system, including: providing a module for providing a plurality of battery cells, the battery cells have a first end surface and a second end surface oppositely arranged along the second direction, the first One end surface is provided with electrode terminals; the first assembly module is used to stack multiple battery cells along the first direction to form a battery module; the second assembly module is used to stack multiple assembly modules along the third direction , wherein the first direction, the second direction and the third direction are perpendicular to each other.
  • the battery cells are stacked along the first direction to form a battery module, and the battery modules are stacked along the third direction, so that the battery can be stacked according to the electrical device
  • the battery cells are stacked along the first direction to form a battery module
  • the battery modules are stacked along the third direction, so that the battery can be stacked according to the electrical device
  • the space layout inside the vehicle set an appropriate number of battery cells in the first direction, and set an appropriate number of battery modules in the third direction, so as to make full use of the space in the first direction and the third direction, and increase the capacity of the battery.
  • the direction of the electrode terminals is different from the stacking direction of the battery cells and the stacking direction of the battery module, so the gap between the battery cells along the stacking direction and the gap between the battery modules along the stacking direction can be saved, and the battery life can be effectively improved. volumetric energy density.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of batteries provided in other embodiments of the present application.
  • Fig. 4 is a schematic explosion diagram of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic structural diagram of the connection between the battery module and the frame provided by some embodiments of the present application.
  • Fig. 6 is the explosion diagram of Fig. 5;
  • Fig. 7 is a partially enlarged schematic diagram of the connecting structure of the frame and the end plate provided by some embodiments of the present application;
  • Fig. 8 is a schematic structural diagram of a battery provided in yet another embodiment of the present application.
  • Fig. 9 is a partial enlarged view of place A in Fig. 8;
  • Figure 10 is a schematic diagram of the explosion of Figure 9;
  • Fig. 11 is a schematic flowchart of a battery manufacturing method provided by some embodiments of the present application.
  • Fig. 12 is a schematic block diagram of a battery manufacturing system provided by some embodiments of the present application.
  • battery cell 31, shell assembly; 311, shell; 311a, second end face; 311b, first side wall; 311c, second side wall; 312, cover assembly; 3121, end cover; 3121a, first End face; 3122, electrode terminal; 32, electrode assembly;
  • Manufacturing system 110. Provide module; 120. First assembly module; 130. Second assembly module.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include electrical cabinets or battery packs.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector;
  • the positive electrode current collector includes a positive electrode current collector and a positive electrode protrusion protruding from the positive electrode current collector, and the positive electrode current collector part is coated with a positive electrode active material layer, at least part of the positive electrode convex part is not coated with a positive electrode active material layer, and the positive electrode convex part is used as a positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode protrusion protruding from the negative electrode current collector. part is coated with a negative electrode active material layer, at least part of the negative electrode convex part is not coated with a negative electrode active material layer, and the negative electrode convex part is used as a negative electrode tab.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery cell may also include a casing assembly, and the casing assembly has an accommodating chamber inside, and the accommodating chamber is a closed space provided by the casing assembly for the electrode assembly and the electrolyte.
  • the main safety hazard comes from the charging and discharging process, and at the same time, there is a suitable ambient temperature design.
  • the protective measures include at least the switching element, the selection of an appropriate spacer material, and a pressure relief mechanism.
  • the switching element refers to an element that can stop charging or discharging the battery when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive pole piece and the negative pole piece. When the temperature rises to a certain value, it can automatically dissolve the micron-scale (or even nanoscale) micropores attached to it, so that metal ions cannot pass through the separator. Terminate the internal reaction of the battery cell.
  • the inventor improved the structure of the battery, and the technical solution described in the embodiment of the present application is applicable to the battery and the electric device using the battery.
  • Batteries can be electrical cabinets or battery packs.
  • Electric devices can be vehicles, energy storage cabinets, ships, spacecraft, electric toys and electric tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiments of the present application do not impose special limitations on the above-mentioned electrical devices.
  • the following embodiments take the vehicle 1 as an example for illustration.
  • Fig. 1 is a schematic structural diagram of a vehicle 1 provided by some embodiments of the present application.
  • a battery 2 is arranged inside the vehicle 1 , and the battery 2 can be arranged at the bottom, head or tail of the vehicle 11 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may further include a controller 4 and a motor 5 , the controller 4 is used to control the battery 2 to supply power to the motor 5 , for example, for the starting, navigation and working power requirements of the vehicle 1 during driving.
  • the battery 2 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 to provide driving power for the vehicle 1 instead of or partially replacing fuel oil or natural gas.
  • FIG. 2 and FIG. 3 are schematic structural diagrams of different batteries 2 provided in the embodiment of the present application, and FIG. 4 shows an exploded schematic view of the battery cell 3 in the battery 2 provided in the embodiment of the present application.
  • the battery 2 there may be one battery cell 3, or there may be a plurality of them. If there are multiple battery cells 3 , the multiple battery cells 3 can be connected in series, in parallel or in parallel.
  • the hybrid connection means that the multiple battery cells 3 are both in series and in parallel.
  • a plurality of battery cells 3 can be directly connected in series, in parallel or mixed together, and the plurality of battery cells 3 form a whole; of course, it is also possible that a plurality of battery cells 3 are first connected in series, in parallel or in combination to form a battery module 21 , multiple battery modules 21 are then connected in series, in parallel or in parallel to form a whole.
  • the plurality of battery cells 3 in the battery module 21 can be electrically connected through a confluence component (not shown in the figure), so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 3 in the battery module 21 .
  • the battery cell 3 provided in the embodiment of the present application includes an electrode assembly 32 and a casing assembly 31 , and the electrode assembly 32 is accommodated in the casing assembly 31 .
  • housing assembly 31 may also be used to contain electrolyte, such as electrolytic solution.
  • the housing assembly 31 can be in various structural forms.
  • the shell assembly 31 may include a housing 311 and a cover assembly 312, the housing 311 is a hollow structure with one side open, the cover assembly 312 covers the opening of the housing 311 and forms a sealed connection to form a The accommodating cavity for accommodating the electrode assembly 32 and the electrolyte.
  • the cover assembly 312 includes an end cover 3121 , and the end cover 3121 covers the opening of the housing 311 .
  • the end cap 3121 can be of various structures, for example, the end cap 3121 is a plate-shaped structure, a hollow structure with one end open, and the like.
  • the housing 311 is a cuboid structure
  • the end cover 3121 is a plate-shaped structure
  • the end cover 3121 covers the opening at the top of the housing 311 .
  • the end cap 3121 can be made of insulating material (such as plastic) or conductive material (such as metal). When the end cap 3121 is made of a metal material, the cap assembly 312 may further include an insulator located on a side of the end cap 3121 facing the electrode assembly 32 to insulate the end cap 3121 from the electrode assembly 32 .
  • the cover assembly 312 may further include an electrode terminal 3122 installed on the end cover 3121 .
  • the housing assembly 31 can also be of other structures.
  • the housing assembly 31 includes a housing 311 and two cover assemblies 312.
  • the housing 311 is a hollow structure with openings on opposite sides, and one cover assembly 312 corresponds to Covering an opening of the housing 311 to form a sealed connection to form a housing chamber for housing the electrode assembly 32 and the electrolyte.
  • two electrode terminals 3122 may be provided on one cover assembly 312 while no electrode terminal 3122 is provided on the other cover assembly 312 , or one electrode terminal 3122 may be provided on each of the two cover assemblies 312 .
  • the battery cell 3 there may be one electrode assembly 32 accommodated in the case assembly 31 , or there may be a plurality of them. Exemplarily, in FIG. 4 , there are two electrode assemblies 32 .
  • the battery 2 includes a plurality of battery modules 21 , and each battery module 21 includes a plurality of battery cells 3 stacked along the first direction X.
  • the battery cell 3 has a first end surface 3121 a and a second end surface 311 a opposite to each other along the second direction Y, and the first end surface 3121 a is provided with an electrode terminal 3122 .
  • a plurality of battery modules 21 are stacked along the third direction Z.
  • the first direction X, the second direction Y, and the third direction Z are perpendicular to each other.
  • the first direction X and the second direction Y are directions determined based on the structure and positional relationship of the battery cells 3 , and different battery modules 21 are stacked along the third direction Z. It may be arranged that battery modules 21 of different layers along the third direction Z have the same orientation in the first direction X and the same orientation in the second direction Y. The first direction X and the second direction Y of the battery modules 21 of different layers along the third direction Z may also be perpendicular to each other.
  • Each battery module 21 includes a plurality of battery cells 3 stacked along the first direction X, and the plurality of battery cells 3 may be distributed in one row or in multiple rows.
  • FIG. 5 shows an embodiment in which a plurality of battery cells 3 are distributed in two rows
  • FIG. 6 is an exploded schematic diagram of FIG. 5 .
  • the battery cells 3 are stacked along the first direction X, and the electrode terminals 3122 are arranged on the opposite side of the battery cells 3 along the second direction Y, and the first direction X and the second direction Y are perpendicular to each other, that is, the battery cells are arranged
  • the stacking direction of the body 3 is perpendicular to the orientation of the electrode terminals 3122 on the battery cells 3 , which facilitates the stacking of the battery cells 3 along the first direction X.
  • the electrode terminal 3122 is provided only on the first end surface 3121a, and the electrode terminal 3122 includes a positive terminal and a negative terminal, and both the positive terminal and the negative terminal are provided on the first end surface 3121a.
  • the electrode terminal 3122 is provided on the first end surface 3121a, and the electrode terminal 3122 is provided on the second end surface 311a, and the positive terminal and the negative terminal are respectively provided on the first end surface 3121a and the second end surface 311a. one.
  • the battery cells 3 stacked along the first direction X can be connected together by glue, or can be directly bonded or arranged with gaps.
  • the battery modules 21 stacked along the third direction Z may be arranged at intervals through intermediate objects, or may not be arranged at intervals through intermediate objects.
  • the battery cells 3 are stacked along the first direction X to form a battery module 21, and the battery modules 21 are stacked along the third direction Z, so that the battery cells 3 can be stacked along the third direction Z.
  • Space layout set the appropriate number of battery cells 3 in the first direction X, and set the appropriate size and quantity of battery modules 21 in the third direction Z, make full use of the space in the first direction X and the third direction Z, and improve The capacity of battery 2.
  • the direction of the electrode terminals 3122 is different from the stacking direction of the battery cells 3 and the stacking direction of the battery modules 21, so the gap between the battery cells 3 along the stacking direction and the gap between the battery modules 21 along the stacking direction can be saved. , can effectively increase the volumetric energy density of the battery 2 .
  • each battery module 21 includes a plurality of battery packs 211 arranged side by side along the second direction Y, each battery pack 211 includes a plurality of battery cells 3 stacked along the first direction X, two adjacent The second end faces 311 a of the battery cells 3 of the battery pack 211 are oppositely disposed.
  • the battery module 21 is set to include multiple sets of battery packs 211 arranged side by side along the second direction Y. Such arrangement can make full use of the space of the electric device such as the vehicle 1 in the second direction Y, improve the space utilization rate in the second direction Y, and further improve The capacity of battery 2.
  • the second end faces 311a of the battery cells 3 of the adjacent two groups of battery groups 211 are oppositely arranged, that is, the electrode terminals 3122 of the battery cells 3 of the adjacent two groups of battery groups 211 are facing opposite directions, so that the two adjacent groups
  • the battery packs 211 are arranged more closely, which is beneficial to improve the space utilization of the battery packs 211 along the second direction Y.
  • the battery 2 can be assembled more conveniently, for example, components such as a sampling harness can be easily installed.
  • the side walls of the casing 311 of the battery cell 3 include two opposite first side walls 311b and two opposite second side walls 311c, wherein the area of the first side walls 311b is larger than that of the second side walls.
  • the area of the two sidewalls 311c, the first sidewall 311b is perpendicular to the first direction X.
  • the first side walls 311b of adjacent battery cells 3 are adjacent
  • the area of the first side wall 311b is larger than the area of the second side wall 311c, that is, the first side wall 311b is the surface with a larger area of the battery cell 3, so that the adjacent battery cells 3 stacked along the first direction X
  • Adjacently arranging the surfaces with larger areas is beneficial to improve the structural stability of the battery pack 211 formed by the battery cells 3 , thereby improving the structural stability of the battery module 21 and the battery 2 .
  • the maximum dimension of the battery module 21 along one direction is L 1
  • the maximum dimension along the second direction Y is L 2
  • L 1 L 2 .
  • the maximum dimension L1 of the battery module 21 along the first direction X is the longest distance between any two points of the battery module 21 along the first direction X.
  • the maximum dimension of the battery module 21 along the second direction Y is L 2 is the longest distance between any two points of the battery module 21 along the second direction Y.
  • L 1 L 2
  • the rectangular envelope of the orthographic projection of the battery module 21 perpendicular to the third direction Z can be square, and the orientation of the electrode terminals 3122 of the battery cells 3 of different battery modules 21 can be set as required, It is beneficial to improve the flexibility of arrangement of the battery module 21 .
  • the second end faces 311 a of the battery cells 3 of adjacent battery modules 21 are perpendicular to each other.
  • the second end faces 311a of the battery cells 3 of the adjacent battery modules 21 are perpendicular to each other, that is, the stacking direction of the battery cells 3 of the adjacent battery modules 21 , that is, the first direction X is perpendicular to each other. In this way, when the battery 2 is subjected to vibration or impact load, the modules of the adjacent battery 2 are less likely to be deformed, displaced, etc., which is conducive to improving the bonding strength between adjacent battery modules 21 and further improving the structural strength of the entire battery 2 .
  • the space utilization ratio of the first direction X and the second direction Y is the largest.
  • the battery 2 further includes a reinforcing plate 22 disposed between adjacent battery modules 21 .
  • the reinforcing plate 22 can be arranged between two adjacent battery modules 21 and on the outer side of the outermost battery module 21 along the third direction Z, and the reinforcing plate 22 can be attached to the battery module 21 adjacent thereto, They can also be arranged at intervals along the third direction Z. In this way, when the battery 2 is subjected to external loads such as vibration and impact, part of the load can be borne by the reinforcing plate 22, and the load-carrying capacity of the battery 2 is improved, so that the battery 2 is not prone to deformation, displacement, etc., thereby improving the overall structural strength of the battery 2 .
  • the reinforcing plate 22 may be just a plate-shaped structure, which only serves to strengthen the structural strength of the battery 2 .
  • the reinforcing plate 22 can also be integrated with other functions, such as cooling, etc., so as to have a corresponding structure.
  • a flow channel (not shown in the figure) is formed in the reinforcing plate 22 , and fluid is contained in the flow channel, and the fluid is used for heat exchange with the battery module 21 .
  • the fluid may be liquid or gas, as long as it can flow in the channel and exchange heat with the battery module 21 .
  • the battery module 21 itself needs to be maintained within a reasonable temperature range in order to work better.
  • the fluid can heat or cool the battery module 21 .
  • the battery 2 works in an extremely cold environment, and the battery module 21 needs to be heated to ensure its normal operation. Therefore, a reasonable temperature of the fluid can be set so that the fluid can heat the battery module 21 during the process of flowing in the flow channel.
  • the battery module 21 when the battery 2 works in a normal environment, the battery module 21 needs to be cooled to ensure its normal operation. Therefore, a reasonable temperature of the fluid can be set so that the battery module 21 can be cooled when the fluid flows in the flow channel.
  • each reinforcing plate 22 can be directly connected to the relevant pipeline 23 outside the battery 2, and also Part or all of the flow channels of the reinforcement plates 22 in the battery 2 may be set to communicate with each other, and then communicate with the outside together.
  • the battery 2 further includes a pipe 23 for communicating with the flow channels of the reinforcement plates 22 adjacent along the third direction Z.
  • the battery cells 3 may be stacked directly, or assembled together with the battery cells 3 through other structures.
  • the battery module 21 further includes end plates 212 disposed on both sides of the plurality of stacked battery cells 3 along the first direction X.
  • the battery 2 further includes a frame 24 , the frame 24 surrounds the outer peripheral side of the battery module 21 , and the end plate 212 connects the battery module 21 and the frame 24 .
  • the end plates 212 are disposed on both sides of the battery pack 211 or the battery 2 module along the stacking direction of the battery cells 3 .
  • Each battery 2 module may correspond to two end plates 212
  • each battery pack 211 may also be provided with two end plates 212 correspondingly.
  • the end plate 212 is beneficial to the assembly of the battery cells 3 during the stacking process of the battery cells 3 , and the end plate 212 has the function of protecting the battery cells 3 and reducing the risk of the battery cells 3 being damaged during the assembly process.
  • setting frame 24 can further protect battery module 21, improve the service life of battery module 21.
  • the end plate 212 is a part of the battery module 21.
  • the maximum dimension L2 of the battery cell 3 and the end plate 212 are respectively the maximum dimensions along the first direction X and the second direction Y after the combination of the battery cell 3 and the end plate 212, which is set so that the assembled structure of the battery cell 3 and the end plate 212 is square. envelope.
  • the end plate 212 and the frame 24 can be directly abutted, screwed, or clamped.
  • FIG. 7 shows a partially enlarged schematic view of the connection structure between the frame 24 and the end plate 212 .
  • a first boss 212a is formed on the end plate 212
  • a second boss 24b is formed on the frame 24, and the second boss 24b is engaged with the first boss 212a.
  • first boss 212a and the second boss 24b may protrude toward the first direction X or toward the second direction Y at the same time.
  • the frame 24 is sleeved on the peripheral side of the battery module 21, and the frame 24 is moved along the third direction Z, so that the second boss 24b moves from the upper side of the first boss 212a Gradually approaching the first boss 212a, when they partially overlap in the first direction X, an interference fit is formed, and the second boss 24b continues to move along the third direction Z until the second boss 24b passes through the first boss 212a is located on the lower side of the first boss 212a, and stops applying force to the frame 24. Due to the stop effect of the first boss 212a on the second boss 24b, the second boss 24b cannot recover without external force Up to the upper side of the first boss 212a, that is, the locking of the first boss 212a and the second boss 24b is completed.
  • One battery module 21 of a battery 2 may be set to correspond to one frame 24 , and multiple or all battery modules 21 of one battery 2 may be set to correspond to one frame 24 , which is not limited here.
  • the battery 2 includes a plurality of frames 24 stacked along the third direction Z, and adjacent frames 24 along the third direction Z are sealed and connected.
  • One frame 24 can be set around only one battery module 21, that is, one frame 24 corresponds to one battery module 21, or one frame 24 can be set around multiple battery modules 21, that is, one frame 24 corresponds to one battery module 21. Multiple battery modules 21 can be reasonably selected according to specific application conditions. Adjacent frames 24 can be hermetically connected by applying sealant, or can realize the hermetic connection of the two by setting a sealing member between them. By arranging the adjacent frames 24 to be sealed and connected, it is possible to effectively reduce the external water and oxygen from entering the interior of the battery module 21 , thereby reducing the possibility of certain corrosion of the battery cells 3 by the external water and oxygen.
  • FIG. 8 is a schematic structural diagram of a battery provided by another embodiment of the present application.
  • the battery 2 further includes a mounting frame 25 , and a plurality of battery modules 21 are connected to the mounting frame 25 through the frame 24 .
  • the overall structure of the mounting frame 25 is adapted to the overall structure of the stacked battery modules 21 .
  • the battery module 21 is connected to the mounting frame 25 through the frame 24.
  • the mounting frame 25 is used as the supporting structure of the battery module 21 and bears the weight of the battery module 21.
  • the mounting frame 25 can block the battery module 21. Partial impact and vibration loads reduce the possibility of damage to the battery module 21 due to external impact and vibration. Therefore, by setting the frame 24, it is beneficial to improve the overall structural strength of the battery 2, facilitate the transportation and installation of the battery 2, and improve the service life of the battery 2.
  • the mounting frame 25 is formed with a mounting plate 251 , and two adjacent frames 24 are connected through the mounting plate 251 .
  • the mounting plate 251 may be in the shape of a straight plate, or in an “L” shape or other shapes, as long as it can connect adjacent beam frames 24 .
  • the mounting plate 251 can be integrally formed with the mounting frame 25 during the manufacturing process of the mounting frame 25, or can be separately formed and installed on the mounting frame 25, which is not limited here.
  • a first mounting hole 251a can be provided on the mounting plate 251
  • a second mounting hole 24a can be provided on the frame 24, and two adjacent frames 24 are respectively arranged on the mounting plate 251.
  • two adjacent frames 24 are respectively connected to the first mounting holes 251a on the mounting plate 251 through the second mounting holes 24a.
  • the mounting frame 25 is provided with a mounting plate 251, and the mounting plate 251 is connected to the battery module 21 through the frame 24, and a suitable position of the connecting plate can be set in advance according to the mounting positions of the frame 24 and the battery module 21, thus, It is convenient to set the positions of the battery module 21 and the frame 24 , avoids the possibility of misalignment or deformation of the battery module 21 and the frame 24 during the connection process of the mounting frame 25 , reduces installation errors, and is conducive to improving the sealing of the battery 2 .
  • FIG. 11 is a schematic flowchart of a method for manufacturing a battery cell 3 provided by some embodiments of the present application.
  • An embodiment of the present application provides a method for manufacturing a battery 2 including:
  • the battery cells 3 have a first end surface 3121a and a second end surface 311a opposite to each other along the second direction Y, and the first end surface 3121a is provided with an electrode terminal 3122;
  • Fig. 12 is a schematic block diagram of a battery 2 manufacturing system 100 provided by some embodiments of the present application.
  • the manufacturing system 100 of the battery 2 includes:
  • the battery cells 3 have a first end surface 3121a and a second end surface 311a oppositely arranged along the second direction Y, and the first end surface 3121a is provided with an electrode terminal 3122;
  • the first assembly The module 120 is used for stacking a plurality of battery cells 3 along the first direction X to form the battery module 21;
  • the second assembly module 130 is used for stacking a plurality of assembly modules along the third direction Z, wherein the first The first direction X, the second direction Y and the third direction Z are perpendicular to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池及其制造方法和制造系统、用电装置。本申请实施例的电池包括多个电池模块,每个电池模块包括沿第一方向层叠设置的多个电池单体,电池单体沿第二方向具有相对设置的第一端面和第二端面,第一端面设置有电极端子,多个电池模块沿第三方向层叠设置;第一方向、第二方向、第三方向两两垂直。如此可以根据用电装置如车辆内部的空间布局,设置合适的第一方向的电池单体的数量,同时设置合适的第三方向的电池模块的尺寸和数量,充分利用第一方向和第三方向的空间。另外,电极端子的朝向与电池单体的层叠方向和电池模块的层叠方向均不同,节省电池单体沿层叠方向的间隙以及电池模块沿层叠方向的间隙,提高电池的体积能量密度。

Description

电池及其制造方法和制造系统、用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池及其制造方法和制造系统、用电装置。
背景技术
电池广泛用于用电装置,例如电柜、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,人们对用电装置的体积也越来越重视,希望用电装置的体积尽可能地减小,这就对电池的内部布局提出了新的要求,如何对电池内部结构进行合理、灵活地布局是目前亟待解决的一个问题。
发明内容
本申请提供了一种电池及其制造方法和制造系统、用电装置,能够提高电池内部结构布局的灵活性和合理性。
第一方面,本申请实施例提供了一种电池,包括:多个电池模块,每个电池模块包括沿第一方向层叠设置的多个电池单体,电池单体沿第二方向具有相对设置的第一端面和第二端面,第一端面设置有电极端子,多个电池模块沿第三方向层叠设置;第一方向、第二方向、第三方向两两垂直。
本申请实施例提供的电池,设置电池单体沿第一方向层叠设置形成电池模块,同时设置电池模块沿第三方向层叠设置,如此可以根据用电装置如车辆内部的空间布局,设置合适的第一方向的电池单体的数量,同时设置合适的第三方向的电池模块的尺寸和数量,充分利用第一方向和第三方向的空间,提高电池的容量。另外,电极端子的朝向与电池单体的层叠方向和电池模块的层叠方向均不同,因而可以节省电池单体沿层叠方向的间隙以及电池模块沿层叠方向之间的间隙,可以有效地提高电池的体积能量密度。
根据本申请实施例提供的电池,每个电池模块包括沿第二方向并排设置的多组电池组,每个电池组包括沿第一方向层叠设置的多个电池单体,相邻两组电池组的电池单体的第二端面相对设置,可以更加方便地对电池进行组装,比如便于安装采样线束等部件。如此设置可以充分利用用电装置如车辆在第二方向的空间,提高第二方向的空间利用率。
根据本申请实施例提供的电池,电池单体的壳体侧壁包括相对设置的两个第一侧壁和相对设置的两个第二侧壁,其中,第一侧壁的面积大于第二侧壁的面积,第一侧壁垂直于第一方向。有利于提高电池单体形成的电池组的结构稳定性,进而提高电池模块和电池的结构稳定性。
根据本申请实施例提供的电池,电池模块沿第一方向的最大尺寸为L 1,沿第二方向的最大尺寸为L 2,L 1=L 2。便于电池模块形成方形包络,有利于提高电池模块布置的灵活性。
根据本申请实施例提供的电池,相邻电池模块的电池单体的第二端面相互垂直。有利于提高相邻电池模块之间的结合强度,进而提高整个电池的结构强度。
根据本申请实施例提供的电池,电池还包括加强板,加强板设置在相邻两个电池模块之间。设置加强板,电池不易发生变形、移位等问题,从而提高电池的整体结构强度。
根据本申请实施例提供的电池,加强板内形成有流道,流道内容纳流体,流体用于与电池模块进行热交换。如此可以通过流体与电池模块进行热交换,从而对电池模块进行加热或者冷却。
根据本申请实施例提供的电池,电池还包括管道,管道用于连通沿第三方向相邻的加强板的流道。如此设置,可以简化加强板内的流道与外界连通的结构。
根据本申请实施例提供的电池,电池模块还包括端板,端板设置在层叠设置的多个电池单体沿第一方向的两侧;电池还包括框架,框架围设在电池模块的外周侧,端板连接电池模块和框架。设置端板便于电池单体的组装,而设置框架可以对电池模块形成一定的保护,提高电池模块的使用寿命。
根据本申请实施例提供的电池,端板上形成有第一凸台,框架上形成有第二凸台,第一凸台与第二凸台卡接。如此设置有利于端板和框架的连接,同时有利于二者连接后电池的密封性能。
根据本申请实施例提供的电池,电池包括多个沿第三方向层叠设置的多个框架,沿第三方向相邻的框架密封连接。设置相邻框架密封连接,可以有效地降低外界的水氧等进入电池模块的内部,进而降低外界的水氧对电池单体造成一定腐蚀的可能性。
电池还包括安装架,多个电池模块通过框架连接于安装架。
根据本申请实施例提供的电池,安装架形成有安装板,相邻两层框架通过安装板连接。便于设置电池模块和框架的位置,避免电池模块和框架在于安装架连接的过程中发生错位或者变形的可能性,降低安装误差,有利于提高电池的密封性。
第二方面,本申请实施例提供一种电池的制造方法,包括:提供多个电池单体,电池单体沿第二方向具有相对设置的第一端面和第二端面,第一端面设置有电极端子;将多个电池单体沿第一方向层叠设置,以形成电池模块;将多个电池模块沿第三方向层叠设置,其中,第一方向、第二方向以及第三方向两两垂直。
第三方面,本申请实施例提供一种电池的制造系统,包括:提供模块,用于提供多个电池单体,电池单体沿第二方向具有相对设置的第一端面和第二端面,第一端面设置有电极端子;第一组装模块,用于将多个电池单体沿第一方向层叠设置,以形 成电池模块;第二组装模块,用于将多个组装模块沿第三方向层叠设置,其中,第一方向、第二方向以及第三方向两两垂直。
本申请实施例提供的电池及其制造方法和制造系统、用电装置,设置电池单体沿第一方向层叠设置形成电池模块,同时设置电池模块沿第三方向层叠设置,如此可以根据用电装置如车辆内部的空间布局,设置合适的第一方向的电池单体的数量,同时设置合适的第三方向的电池模块的数量,充分利用第一方向和第三方向的空间,提高电池的容量。另外,电极端子的朝向与电池单体的层叠方向和电池模块的层叠方向均不同,因而可以节省电池单体沿层叠方向的间隙以及电池模块沿层叠方向之间的间隙,可以有效地提高电池的体积能量密度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构示意图;
图3为本申请另一些实施例提供的电池的结构示意图;
图4为本申请一些实施例提供的电池单体的爆炸示意图;
图5为本申请一些实施例提供的电池模块与框架连接的结构示意图;
图6为图5的爆炸示意图;
图7为本申请一些实施例提供的框架和端板的连接结构的局部放大示意图;
图8为本申请再一实施例提供的电池的结构示意图;
图9为图8中A处的局部放大图;
图10为图9的爆炸示意图;
图11为本申请一些实施例提供的电池的制造方法的流程示意图;
图12为本申请一些实施例提供的电池的制造系统的示意性框图。
附图标记说明:
1、车辆;
2、电池;21、电池模块;211、电池组;212、端板;212a、第一凸台;22、加强板;23、管道;24、框架;24a、第二安装孔;24b、第二凸台;25、安装架;251、安装板;251a、第一安装孔;
3、电池单体;31、外壳组件;311、壳体;311a、第二端面;311b、第一侧壁;311c、第二侧壁;312、盖组件;3121、端盖;3121a、第一端面;3122、电极端子;32、电极组件;
4、控制器;
5、马达;
100、制造系统;110、提供模块;120、第一组装模块;130、第二组装模块。
X、第一方向;Y、第二方向;Z、第三方向。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电柜或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极凸部,正极集流部涂覆有正极活性物质层,正极凸部的至少部分未涂覆正极活性物质层,正极凸部作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和凸出于负极集流部的负极凸部,负极集流部涂覆有负极活性物质层,负极凸部的至少部分未涂覆负极活性物质层,负极凸部作为负极极耳。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还可以包括外壳组件,外壳组件内部具有容纳腔,该容纳腔是外壳组件为电极组件和电解质提供的密闭空间。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离件材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离件用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离件上通过,终止电池单体的内部反应。
发明人发现电池组装的过程中,多个电池单体沿第一方向层叠设置后,无法对多个层叠设置的电池单体再进行层叠设置,也就无法充分利用充分利用用电装置内部的空间,造成电池内部空间浪费的问题。为了满足单位面积内电量的需求,需要多层堆叠设置沿第一方向层叠设置后的电池单体,但是由于对多个沿第一方向层叠设置后的电池单体再进行多层堆叠的装配操作较为复杂。
基于发明人发现的上述问题,发明人对电池的结构进行了改进,本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
电池可以是电柜或电池包。
用电装置可以是车辆、储能电柜、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合 动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆1为例进行说明。
图1为本申请一些实施例提供的车辆1的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆11的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器4和马达5,控制器4用来控制电池2为马达5供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
如图2和图3所示,分别为本申请实施例提供的不同电池2的结构示意图,图4示出了本申请实施例提供的电池2中电池单体3的分解示意图。
在电池2中,电池单体3可以是一个,也可以是多个。若电池单体3为多个,多个电池单体3之间可串联或并联或混联,混联是指多个电池单体3中既有串联又有并联。多个电池单体3之间可直接串联或并联或混联在一起,多个电池单体3构成整体;当然,也可以是多个电池单体3先串联或并联或混联组成电池模块21,多个电池模块21再串联或并联或混联形成一个整体。
电池模块21中的多个电池单体3之间可通过汇流部件(图中未示出)实现电连接,以实现电池模块21中的多个电池单体3的并联或串联或混联。
本申请实施例提供的电池单体3包括电极组件32和外壳组件31,电极组件32容纳于外壳组件31内。
在一些实施例中,外壳组件31还可用于容纳电解质,例如电解液。外壳组件31可以是多种结构形式。
在一些实施例中,外壳组件31可以包括壳体311和盖组件312,壳体311为一侧开口的空心结构,盖组件312盖合于壳体311的开口处并形成密封连接,以形成用于容纳电极组件32和电解质的容纳腔。
在一些实施例中,盖组件312包括端盖3121,端盖3121盖合于壳体311的开口处。端盖3121可以是多种结构,比如,端盖3121为板状结构、一端开口的空心结构等。示例性的,在图4中,壳体311为长方体结构,端盖3121为板状结构,端盖3121盖合于壳体311顶部的开口处。
端盖3121可以由绝缘材料(例如塑胶)制成,也可以由导电材料(例如金属)制成。当端盖3121由金属材料制成时,盖组件312还可包括绝缘件,绝缘件位于端盖3121面向电极组件32的一侧,以将端盖3121和电极组件32绝缘隔开。
在一些实施例中,盖组件312还可以包括电极端子3122,电极端子3122安装于端盖3121上。电极端子3122为两个,两个电极端子3122分别定义为正极电极端子 和负极电极端子,正极电极端子和负极电极端子均用于与电极组件32电连接,以输出电极组件32所产生的电能。
在另一些实施例中,外壳组件31也可以是其他结构,比如,外壳组件31包括壳体311和两个盖组件312,壳体311为相对的两侧开口的空心结构,一个盖组件312对应盖合于壳体311的一个开口处并形成密封连接,以形成用于容纳电极组件32和电解质的容纳腔。在这种结构中,可以一个盖组件312上设有两个电极端子3122,而另一个盖组件312上未设置电极端子3122,也可以两个盖组件312各设置一个电极端子3122。
在电池单体3中,容纳于外壳组件31内的电极组件32可以是一个,也可以是多个。示例性的,在图4中,电极组件32为两个。
本申请实施例提供的电池2中,电池2包括多个电池模块21,每个电池模块21包括沿第一方向X层叠设置的多个电池单体3。电池单体3沿第二方向Y具有相对设置的第一端面3121a和第二端面311a,第一端面3121a设置有电极端子3122。多个电池模块21沿第三方向Z层叠设置。第一方向X、第二方向Y、第三方向Z两两垂直。
第一方向X、第二方向Y为基于电池单体3的结构和摆放位置关系确定的方向,不同的电池模块21分别沿第三方向Z层叠设置。可以设置沿第三方向Z不同层的电池模块21的第一方向X朝向相同,且第二方向Y朝向也相同。沿第三方向Z不同层的电池模块21的第一方向X也可以相互垂直、第二方向Y也相互垂直。
每一个电池模块21包括多个沿第一方向X层叠设置的电池单体3,多个电池单体3可以分布呈一列,也可以分布呈多列。
如图5示出了多个电池单体3分布呈两列的实施方式,图6是图5的分解示意图。
设置电池单体3沿第一方向X层叠,而电极端子3122设置在电池单体3沿第二方向Y相对的一个侧面,而第一方向X和第二方向Y相互垂直,也就是设置电池单体3的层叠方向与电池单体3上电极端子3122的朝向相互垂直,便于电池单体3沿第一方向X层叠设置。
在一些实例中,仅在第一端面3121a设置电极端子3122,电极端子3122包括正极端子和负极端子,正极端子和负极端子均设置在第一端面3121a。
在另一些实施例中,既在第一端面3121a设置有电极端子3122,又在第二端面311a设置有电极端子3122,正极端子和负极端子分别设置于第一端面3121a和第二端面311a其中之一。
沿第一方向X层叠设置的电池单体3之间可以通过胶粘的方式连接在一起,也可以直接贴合或者间隙设置。沿第三方向Z层叠设置的电池模块21可以通过中间物体间隔设置,也可以不通过中间物体间隔设置。
本申请实施例提供的电池2,设置电池单体3沿第一方向X层叠设置形成电池模块21,同时设置电池模块21沿第三方向Z层叠设置,如此可以根据用电装置如车辆1内部的空间布局,设置合适的第一方向X的电池单体3的数量,同时设置合适的第三方向Z的电池模块21的尺寸和数量,充分利用第一方向X和第三方向Z的空间,提高 电池2的电容量。另外,电极端子3122的朝向与电池单体3的层叠方向和电池模块21的层叠方向均不同,因而可以节省电池单体3沿自身层叠方向的间隙以及电池模块21沿自身层叠方向之间的间隙,可以有效地提高电池2的体积能量密度。
在一些实施例中,每个电池模块21包括沿第二方向Y并排设置的多组电池组211,每个电池组211包括沿第一方向X层叠设置的多个电池单体3,相邻两组电池组211的电池单体3的第二端面311a相对设置。
设置电池模块21包括沿第二方向Y并排设置的多组电池组211,如此设置可以充分利用用电装置如车辆1在第二方向Y的空间,提高第二方向Y的空间利用率,进而提高电池2的电容量。而设置相邻两组电池组211的电池单体3的第二端面311a相对设置,即设置相邻两组电池组211的电池单体3的电极端子3122的朝向相反,便于该相邻两组电池组211布置得更加紧密,进而有利于提高电池组211沿第二方向Y的空间利用率。同时可以更加方便地对电池2进行组装,比如便于安装采样线束等部件。
在一些实施例中,电池单体3的壳体311侧壁包括相对设置的两个第一侧壁311b和相对设置的两个第二侧壁311c,其中,第一侧壁311b的面积大于第二侧壁311c的面积,第一侧壁311b垂直于第一方向X。
设置第一侧壁311b垂直于第一方向X,即设置第一侧壁311b垂直于电池单体3的层叠方向,沿第一方向X,相邻电池单体3的第一侧壁311b相邻设置,而第一侧壁311b面积大于第二侧壁311c面积,即第一侧壁311b为电池单体3的面积较大的面,从而沿第一方向X层叠设置的相邻电池单体3的面积较大的面相邻设置,有利于提高电池单体3形成的电池组211的结构稳定性,进而提高电池模块21和电池2的结构稳定性。
在一些实施例中,电池模块21沿一方向的最大尺寸为L 1,沿第二方向Y的最大尺寸为L 2,L 1=L 2
电池模块21沿第一方向X的最大尺寸L 1即为电池模块21沿第一方向X上任意两点连线的最长距离,同理,电池模块21沿第二方向Y的最大尺寸为L 2即为电池模块21沿第二方向Y上任意两点连线的最长距离。对设置L 1=L 2,可以使电池模块21在垂直于第三方向Z的正投影的矩形包络呈正方形,可以根据需要设置不同电池模块21的电池单体3的电极端子3122的朝向,有利于提高电池模块21布置的灵活性。
在一些实施例中,相邻电池模块21的电池单体3的第二端面311a相互垂直。
设置相邻电池模块21的电池单体3的第二端面311a相互垂直,即设置相邻电池模块21的电池单体3的层叠方向即第一方向X相互垂直。如此,在电池2受到振动或者冲击载荷时,相邻电池2模组不易产生变形、移位等问题,有利于提高相邻电池模块21之间的结合强度,进而提高整个电池2的结构强度。
在一些实施例中,既设置L 1=L 2,又设置相邻电池模块21的电池单体3的第二端面311a相互垂直,如此可以既提高电池2的结构强度,又使得电池2在第一方向X和第二方向Y的空间利用率最大。
在一些实施例中,电池2还包括加强板22,加强板22设置在相邻电池模块21之间。
具体地,加强板22可以设置在相邻两电池模块21之间以及沿第三方向Z上最外侧的电池模块21的外侧,加强板22可以同与之相邻的电池模块21相互贴合,也可以沿第三方向Z相互间隔设置。如此设置,电池2受到振动、冲击等外部载荷时,可以通过加强板22承受部分载荷,提高电池2的承载能力,使得电池2不易发生变形、移位等问题,从而提高电池2的整体结构强度。
加强板22可以仅仅是一块板状结构,仅起到加强电池2结构强度的功能。另外,加强板22还可以集成有其它功能,如冷却等,从而具有相应的结构。
在一些实施例中,加强板22内形成有流道(图未示出),流道内容纳流体,流体用于与电池模块21进行热交换。
具体地,流体可以是液体,也可以是气体,只要能够在流道内流动,并与电池模块21进行热交换即可。
可以理解的是,电池模块21自身需要维持在合理的温度范围内方能更好地工作,通过设置流体具备合适的温度,可以使流体对电池模块21进行加热或者冷却。在一些实施例中,电池2工作在极寒的环境下,需要对电池模块21加热方能保证其正常工作。因此可以设置流体的合理温度,以使流体在流道中流动的过程中对电池模块21加热。
在另一些实施例中,电池2正常环境下工作时,需要对电池模块21进行冷却方能保证其正常工作。因此可以设置流体的合理温度,以使流体在流道中流动的过程中对电池模块21进行冷却。
为了使流体与外界进行热交换,以使加强板22内部流动的流体始终保持的对应的温度范围内,可以设置每一个加强板22中的流道直接与电池2外部的相关管道23连接,也可以设置电池2内的部分或者全部加强板22的流道相互连通后,再共同与外界连通。
在一些实施例中,电池2还包括管道23,管道23用于连通沿第三方向Z相邻的加强板22的流道。
具体地,电池2内部的加强板22的流道通过管道23连通后,再与电池2外部的相关管道23连接,便于流道内的流体与外界进行热交换。如此设置,可以简化加强板22内的流道与外界连通的结构。
在电池单体3组装成电池组211或者电池2模组的过程中,可以直接对电池单体3进行堆叠,也可以通过其它结构与电池单体3一起组装。
在一些实施例中,电池模块21还包括端板212,端板212设置在层叠设置的多个电池单体3沿第一方向X的两侧。电池2还包括框架24,框架24围设在电池模块21的外周侧,端板212连接电池模块21和框架24。
具体地,端板212设置在电池组211或者电池2模组沿电池单体3的层叠方向的两侧。可以每一个电池2模组对应两个端板212,也可以每一个电池组211均对应设置两个端板212。端板212在电池单体3层叠设置的过程中,有利于电池单体3的组装,且端板212具有保护电池单体3的作用,降低电池单体3在组装过程中受到损坏等风险。而设置框架24可以进一步对电池模块21进行保护,提高电池模块21的使用寿 命。
可以理解的是,端板212作为电池模块21的一部分,在设置电池模块21的L 1=L 2的实施例中,电池模块21沿第一方向X的最大尺寸L 1以及沿第一方向X的最大尺寸L 2分别为电池单体3和端板212组合后沿第一方向X和第二方向Y的最大尺寸,如此设置,使得电池单体3与端板212组装后的结构成体呈方形包络。
端板212和框架24可以直接抵接,也可以螺纹连接,也可以卡接。
图7示出了框架24和端板212连接结构的局部放大示意图。
在一些实施例中,端板212上形成有第一凸台212a,框架24上形成有第二凸台24b,第二凸台24b与第一凸台212a卡接。
具体地,第一凸台212a和第二凸台24b可以同时朝向第一方向X或者同时朝向第二方向Y突出设置。如图7所示,在安装的过程中,框架24套设在电池模块21的周侧,将框架24沿第三方向Z移动,以使第二凸台24b从第一凸台212a的上侧逐渐靠近第一凸台212a,二者在第一方向X上有部分重叠时,形成过盈配合,第二凸台24b继续沿第三方向Z移动,直至第二凸台24b通过第一凸台212a位于第一凸台212a的下侧,停止对框架24施力,由于第一凸台212a对第二凸台24b的止挡作用,第二凸台24b在没有外力作用的情况下,无法回复至第一凸台212a的上侧,即完成第一凸台212a与第二凸台24b的卡接。
可以理解的是,设置端板212和框架24卡接,可以保证端板212和框架24具有一定的连接强度的同时,也可以降低因设置连接孔等结构而降低电池2内部密封性的可能性。
可以设置电池2的一个电池模块21对应一个框架24,也可以设置一个电池2的多个或者全部电池模块21对应一个一个框架24,这里不做限制。
在一些实施例中,电池2包括多个沿第三方向Z层叠设置的多个框架24,沿第三方向Z相邻的框架24密封连接。
可以设置一个框架24围设仅在一个电池模块21的周侧,即一个框架24对应一个电池模块21,也可以设置一个框架24围设在多个电池模块21的周侧,即一个框架24对应多个电池模块21,可以根据具体的应用情况进行合理地选取。相邻框架24可以通过涂抹密封胶的方式密封连接,也可以通过在二者之间设置密封件实现二者的密封连接。通过设置相邻框架24密封连接,可以有效地降低外界的水氧等进入电池模块21的内部,进而降低外界的水氧对电池单体3造成一定腐蚀的可能性。
如图8所示为本申请另一实施例提供的电池的结构示意图。
在一些实施例中,电池2还包括安装架25,多个电池模块21通过框架24连接于安装架25。
具体地,安装架25的整体结构型式与堆叠后的电池模块21的整体结构型式相适配。设置电池模块21通过框架24连接于安装架25,安装架25作为电池模块21的支撑结构,承载着电池模块21的重量,同时,在电池2受到冲击时,安装架25能够为电池模块21阻挡部分冲击、振动载荷,降低电池模块21因受到外界的冲击、振动而发生破损的可能性。因此,通过设置框架24,有利于提高电池2的整体结构强度,便于 电池2的运输和安装,提高电池2的使用寿命。
在一些实施例中,如图9和10所示,安装架25形成有安装板251,相邻两层框架24通过安装板251连接。
安装板251可以呈平直的板状,也可以呈“L”形或者其它形状的板状,只要能够连接相邻梁层框架24即可。
安装板251可以在安装架25制造的过程中与安装架25一体成型,也可以单独成型后安装在安装架25上,这里不做限制。
在一些实施例中,如图9和图10所示,可以设置安装板251上具有第一安装孔251a,框架24上具有第二安装孔24a,相邻两个框架24分别设置在安装板251沿第三方向Z的两侧,相邻两框架24分别通过第二安装孔24a与安装板251上的第一安装孔251a连接。
可以理解的是,设置安装架25形成有安装板251,安装板251通过框架24与电池模块21连接,可以预先根据框架24以及电池模块21的安装位置,设置合适的连接板的位置,如此,便于设置电池模块21和框架24的位置,避免电池模块21和框架24在于安装架25连接的过程中发生错位或者变形的可能性,降低安装误差,有利于提高电池2的密封性。
图11为本申请一些实施例提供的电池单体3的制造方法的流程示意图。
本申请实施例提供一种电池2的制造方法包括:
S10、提供多个电池单体3,电池单体3沿第二方向Y具有相对设置的第一端面3121a和第二端面311a,第第一端面3121a设置有电极端子3122;
S20、将多个电池单体3沿第一方向X层叠设置,以形成电池模块21;
S30、将多个电池模块21沿第三方向Z层叠设置,其中,第一方向X、第二方向Y以及第三方向Z两两垂直。
需要说明的是,通过上述电池2的制造方法制造出的电池2的相关结构,可参见上述各实施例提供的电池2。
图12为本申请一些实施例提供的电池2的制造系统100的示意性框图。
如图12所示,本申请实施例的电池2的制造系统100包括:
提供模块110,用于提供多个电池单体3,电池单体3沿第二方向Y具有相对设置的第一端面3121a和第二端面311a,第一端面3121a设置有电极端子3122;第一组装模块120,用于将多个电池单体3沿第一方向X层叠设置,以形成电池模块21;第二组装模块130,用于将多个组装模块沿第三方向Z层叠设置,其中,第一方向X、第二方向Y以及第三方向Z两两垂直。
通过上述制造系统100制造出的电池2的相关结构,可参见上述各实施例提供的电池2。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种电池,包括:
    多个电池模块,每个所述电池模块包括沿第一方向层叠设置的多个电池单体,所述电池单体沿第二方向具有相对设置的第一端面和第二端面,所述第一端面设置有电极端子,多个所述电池模块沿第三方向层叠设置;所述第一方向、所述第二方向、所述第三方向两两垂直。
  2. 根据权利要求1所述的电池,其中,每个所述电池模块包括沿所述第二方向并排设置的多组电池组,每个所述电池组包括沿所述第一方向层叠设置的多个所述电池单体,相邻两组所述电池组的所述电池单体的所述第二端面相对设置。
  3. 根据权利要求1或2所述的电池,其特征在于,
    所述电池单体的壳体侧壁包括相对设置的两个第一侧壁和相对设置的两个第二侧壁,其中,所述第一侧壁的面积大于所述第二侧壁的面积,所述第一侧壁垂直于所述第一方向。
  4. 根据权利要求1至3任意一项所述的电池,其中,所述电池模块沿所述第一方向的最大尺寸为L 1,沿第二方向的最大尺寸为L 2,L 1=L 2
  5. 根据权利要求1至4任意一项所述的电池,其中,相邻所述电池模块的所述电池单体的所述第二端面相互垂直。
  6. 根据权利要求1至5任意一项所述的电池,其中,所述电池还包括加强板,所述加强板设置在相邻两个所述电池模块之间。
  7. 根据权利要求6所述的电池,其中,所述加强板内形成有流道,所述流道内容纳流体,所述流体用于与所述电池模块进行热交换。
  8. 根据权利要求7所述的电池,其中,所述电池还包括管道,所述管道用于连通沿所述第三方向相邻的所述加强板的所述流道。
  9. 根据权利要求1至8任一项所述的电池,其中,所述电池模块还包括端板,所述端板设置在层叠设置的多个所述电池单体沿所述第一方向的两侧;
    所述电池还包括框架,所述框架围设在所述电池模块的外周侧,所述端板连接所述电池模块和所述框架。
  10. 根据权利要求9所述的电池,其中,所述端板上形成有第一凸台,所述框架上形成有第二凸台,所述第一凸台与所述第二凸台卡接。
  11. 根据权利要求9或10所述的电池,其特征在于,所述电池包括多个沿所述第三方向层叠设置的多个所述框架,沿所述第三方向相邻的所述框架密封连接。
  12. 根据权利要求9至11任意一项所述的电池,其中,所述电池还包括安装架,多个所述电池模块通过框架连接于所述安装架。
  13. 根据权利要求12所述的电池,其中,所述安装架形成有安装板,相邻两层所述框架通过所述安装板连接。
  14. 一种用电装置,包括如权利要求1至13任意一项所述的电池,所述电池用于提供电能。
  15. 一种电池的制造方法,包括:
    提供多个电池单体,所述电池单体沿第二方向具有相对设置的第一端面和第二端面,所述第一端面设置有电极端子;
    将多个所述电池单体沿第一方向层叠设置,以形成电池模块;
    将多个所述电池模块沿第三方向层叠设置,其中,所述第一方向、所述第二方向以及所述第三方向两两垂直。
  16. 一种电池的制造系统,包括:
    提供模块,用于提供多个电池单体,所述电池单体沿第二方向具有相对设置的第一端面和第二端面,所述第一端面设置有电极端子;
    第一组装模块,用于将多个所述电池单体沿第一方向层叠设置,以形成电池模块;
    第二组装模块,用于将多个所述组装模块沿第三方向层叠设置,其中,所述第一方向、所述第二方向以及所述第三方向两两垂直。
PCT/CN2021/122180 2021-09-30 2021-09-30 电池及其制造方法和制造系统、用电装置 WO2023050311A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023501547A JP2023547300A (ja) 2021-09-30 2021-09-30 電池及びその製造方法と製造システム、電力消費装置
PCT/CN2021/122180 WO2023050311A1 (zh) 2021-09-30 2021-09-30 电池及其制造方法和制造系统、用电装置
KR1020237001268A KR20230047998A (ko) 2021-09-30 2021-09-30 배터리 및 이의 제조 방법과 제조 시스템, 전기 장치
EP21944408.0A EP4187670A4 (en) 2021-09-30 2021-09-30 BATTERY, CORRESPONDING MANUFACTURING METHOD AND MANUFACTURING SYSTEM, AND ELECTRICAL DEVICE
US18/064,939 US20230116169A1 (en) 2021-09-30 2022-12-13 Battery, manufacturing method and manufacturing system thereof, and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122180 WO2023050311A1 (zh) 2021-09-30 2021-09-30 电池及其制造方法和制造系统、用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,939 Continuation US20230116169A1 (en) 2021-09-30 2022-12-13 Battery, manufacturing method and manufacturing system thereof, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2023050311A1 true WO2023050311A1 (zh) 2023-04-06

Family

ID=85781139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122180 WO2023050311A1 (zh) 2021-09-30 2021-09-30 电池及其制造方法和制造系统、用电装置

Country Status (5)

Country Link
US (1) US20230116169A1 (zh)
EP (1) EP4187670A4 (zh)
JP (1) JP2023547300A (zh)
KR (1) KR20230047998A (zh)
WO (1) WO2023050311A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201876A (zh) * 2010-11-17 2013-07-10 本田技研工业株式会社 车辆用电池单元
CN209249567U (zh) * 2018-12-30 2019-08-13 宁德时代新能源科技股份有限公司 一种电池模组
CN209447945U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池包
CN112331926A (zh) * 2021-01-04 2021-02-05 苏州清陶新能源科技有限公司 一种电池包、车辆及储能装置
CN112703632A (zh) * 2018-09-20 2021-04-23 三洋电机株式会社 电池模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293211B1 (ko) * 2010-12-28 2013-08-05 주식회사 엘지화학 배터리 모듈 수납장치, 배터리 모듈 온도조절 장치 및 이들을 포함하는 전력 저장 시스템
KR102490868B1 (ko) * 2015-11-09 2023-01-20 삼성에스디아이 주식회사 배터리 랙
US10644275B2 (en) * 2017-10-13 2020-05-05 Toshiba International Corporation Front access battery tray and battery storage system
KR102249488B1 (ko) * 2018-03-12 2021-05-06 주식회사 엘지화학 훅 구조가 적용된 에너지 저장 장치 및 이를 포함하는 에너지 저장 시스템
CN111009629B (zh) * 2019-11-18 2022-02-08 比亚迪股份有限公司 一种电池包和电动车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201876A (zh) * 2010-11-17 2013-07-10 本田技研工业株式会社 车辆用电池单元
CN112703632A (zh) * 2018-09-20 2021-04-23 三洋电机株式会社 电池模块
CN209249567U (zh) * 2018-12-30 2019-08-13 宁德时代新能源科技股份有限公司 一种电池模组
CN209447945U (zh) * 2018-12-30 2019-09-27 宁德时代新能源科技股份有限公司 一种电池包
CN112331926A (zh) * 2021-01-04 2021-02-05 苏州清陶新能源科技有限公司 一种电池包、车辆及储能装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187670A4 *

Also Published As

Publication number Publication date
JP2023547300A (ja) 2023-11-10
US20230116169A1 (en) 2023-04-13
EP4187670A1 (en) 2023-05-31
KR20230047998A (ko) 2023-04-10
EP4187670A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
EP3965213B1 (en) Battery and related apparatus thereof, preparation method and preparation device
JP2022543185A (ja) 電池、その関連装置、製造方法及び製造機器
EP3965214B1 (en) Battery and related apparatus thereof and preparation method and preparation device therefor
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
WO2023078109A1 (zh) 一种电池冷却结构、电池、用电装置
KR20230015325A (ko) 엔드캡 조립체, 전지 셀, 전지 및 전지를 사용하는 장치
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
US20220013839A1 (en) Battery and related apparatus, porduction method and porduction device therefof
JP2023517820A (ja) 電池セル、電池、電力消費機器、電池セルの製造機器及び方法
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2023134319A1 (zh) 电池和用电设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023050311A1 (zh) 电池及其制造方法和制造系统、用电装置
EP4106087A1 (en) Battery cell, battery, power-consuming device, and manufacturing method and device for battery
EP4280369A1 (en) Battery cell, battery, electrical apparatus, and battery preparation method and apparatus
CN220510145U (zh) 电池、用电设备和储能设备
US20240162579A1 (en) Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus
WO2024065514A1 (zh) 电池单体的端盖组件、电池单体、电池以及用电装置
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
US20230369712A1 (en) End cap, battery cell, battery and power consuming device
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023230746A1 (zh) 电池单体、电池及用电装置
EP4181295A1 (en) Battery box, battery, electric apparatus, and method and apparatus for preparing battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021944408

Country of ref document: EP

Effective date: 20221212

WWE Wipo information: entry into national phase

Ref document number: 2023501547

Country of ref document: JP