WO2023050193A1 - 充电控制方法、装置及充电系统 - Google Patents

充电控制方法、装置及充电系统 Download PDF

Info

Publication number
WO2023050193A1
WO2023050193A1 PCT/CN2021/121821 CN2021121821W WO2023050193A1 WO 2023050193 A1 WO2023050193 A1 WO 2023050193A1 CN 2021121821 W CN2021121821 W CN 2021121821W WO 2023050193 A1 WO2023050193 A1 WO 2023050193A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
guns
battery module
output power
power
Prior art date
Application number
PCT/CN2021/121821
Other languages
English (en)
French (fr)
Inventor
符湛渝
张鹏
胡风生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/121821 priority Critical patent/WO2023050193A1/zh
Priority to CN202180102535.8A priority patent/CN118044089A/zh
Publication of WO2023050193A1 publication Critical patent/WO2023050193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of new energy vehicles, and more specifically, to a charging control method, device and charging system.
  • two DC charging interfaces are designed.
  • the charging gun on the charging pile is inserted into the DC charging interface, and the charging pile can output charging power through the charging gun to charge the car.
  • the user may insert two charging guns due to the high charging power required at the beginning of charging, but the required power of the car will change with time. After charging for a period of time, the required charging power may decrease.
  • two charging guns are still used to charge at the same time, resulting in a waste of charging resources, and may cause other cars that have charging needs to be unable to complete charging in time due to the low output power of other charging guns on the same charging pile.
  • the present application provides a charging control method, device and charging system, in order to flexibly adjust the number of charging guns required for charging according to actual needs, and realize rational utilization of charging resources.
  • the present application provides a charging control method, which can be executed by a charging control device, or can also be executed by components (such as circuits, chips, chip systems, etc.) configured in the charging control device, or, It can also be realized by a logic module or software capable of realizing all or part of the functions of the charging control device, which is not limited in this application.
  • the method includes: obtaining the required power of the battery module, the battery module having a plurality of charging interfaces, the required power being the charging power required by the battery module; obtaining the charging piles to which the M charging guns respectively belong
  • the maximum output power of the M charging guns includes a charging gun that is connected to any charging interface in the plurality of charging interfaces; according to the required power of the battery module, the maximum output power of the charging piles to which the M charging guns belong Output power, from N target charging guns, the required power is the charging power required by the battery module, N ⁇ M, M>1, and M and N are integers; the charging control device controls the use of N target charging guns for the battery module group charging.
  • the charging control device determines that at least two charging guns have been inserted into multiple charging ports, it compares the current demand power of the battery module with the maximum output of the charging pile to which each charging gun is inserted.
  • the total charging power output by the quantity matches the current demand power of the battery module, so it will not take up too much charging resources, and improve the charging speed of other vehicles that use other charging guns on the same charging pile. On the whole, charging resources can be used reasonably.
  • each charging gun can be connected to a charging interface, and each charging gun can charge the battery module through the connected charging interface.
  • the M charging guns mentioned above are the charging guns that are connected to the M charging ports among the multiple charging ports.
  • the maximum output power of the charging pile can be understood as follows: if the charging pile includes a charging gun, the maximum output power of the charging gun is the maximum output power of the charging pile. If the charging pile includes multiple charging guns, the sum of the output powers of the multiple charging guns does not exceed the maximum output power of the charging pile. Specifically, if one or more charging guns in the charging pile are outputting power to the outside world, then for any remaining charging gun, the maximum output power can be the maximum output power of the charging pile minus the current output power of the charging pile. Output power; if the charging guns in the charging pile are all external output power, then for any charging gun, its maximum output power can be the maximum output power of the charging pile.
  • the sum of the maximum output powers of the charging posts of the N target charging guns is greater than or equal to the required power, and the N target charging guns The sum of the maximum output powers of the charging piles to which any N-1 charging guns in the target charging guns belong is less than the required power.
  • the N target charging guns are the charging piles that can provide the maximum output power that just meets the required power. If one of the charging guns is disconnected from the charging interface at will, the remaining N-1 The sum of the maximum output power provided by the charging gun does not meet the required power. That is, the total charging power output by the N target charging guns involved in charging the battery module matches the current power demand of the battery module.
  • the sum of the maximum output power of the charging piles belonging to any M-i charging guns among the M charging guns is less than the required power, but the sum of the maximum output power of M-i+1 charging guns is greater than or equal to the required power
  • M-i+1 charging guns are determined as N target charging guns; 0 ⁇ i ⁇ M-1, i is an integer.
  • the battery module needs to be charged by two charging guns, that is, the target charging gun is the Two charging guns; if the maximum output power of one of the charging piles to which the two charging guns belong is greater than or equal to the required power, the battery module can be charged through the charging gun on the charging pile, that is, The target charging gun is the charging gun on the charging pile whose maximum output power is greater than or equal to the required power.
  • the rule for determining N target charging guns can be obtained when M is greater than or equal to 2: If the sum of the maximum output power of the charging piles to which any M-i charging guns belong to among the M charging guns is less than the required power, but In the case where the sum of the maximum output powers of M-i+1 charging guns is greater than or equal to the required power, the charging piles to which M-i+1 charging guns belong are determined as N target charging guns.
  • the charging control device can flexibly adjust the target charging gun for charging according to the current demand power of the battery module, so as to reduce power waste , It will not take up too much charging resources, and the charging speed of other vehicles that use other charging guns to charge on the same charging pile is improved. On the whole, charging resources can be used reasonably.
  • the method before controlling the use of the N target charging guns to charge the battery module, the method further includes: charging one of the N target charging guns
  • the charging pile to which each target charging gun belongs sends a first charging request, and the first charging request includes a requested output power, and the requested output power is the required output power of the charging pile that receives the first charging request.
  • the battery module By sending the first charging requests to the charging posts to which the N target charging guns belong, the battery module can be controlled to use the N target charging guns to charge the battery module. Since each first charging request carries the required output power of each charging pile, the total output power of the charging piles to which the N target charging guns belong can match the required power of the battery module, avoiding the need for charging resources. waste.
  • the method further includes: determining the requested output power of each of the N charging piles according to the required power of the battery module and the maximum output power of each of the N charging piles.
  • the requested output powers of the N charging piles are determined to be their respective maximum output powers.
  • the requested output power of the first charging pile among the N charging piles is determined as XP N-1 ,
  • the first charging pile is any one of the N charging piles
  • X is the required power
  • P N-1 is the sum of the maximum output power of the N charging piles except the first charging pile
  • the first charging pile is the charging pile with the smallest maximum output power among the N charging piles.
  • the required power of the battery module is less than the sum of the maximum output power of the N charging piles, determine the charging pile with the smallest maximum output power among the N charging piles as the first charging pile, and let the N charging piles except the first charging pile
  • the charging piles other than one charging pile output their respective maximum output power, so that the output value of the first charging pile is the power of XP N-1 , and XP N-1 is the maximum power required by the battery module and the output of other charging piles.
  • the difference of the sum of the output power ensures that the required power of the battery module matches the charging resources provided for the battery module, that the provided charging resources are neither insufficient nor excessive, and that the charging resources are rationally utilized.
  • the method further includes: charging to the charging pile to which each charging gun belongs in the other charging guns except the N target charging guns among the M charging guns Sending a second charging request, where the second charging request is used to indicate not to output power.
  • Exemplarily, a possible manner in which the second charging request is used to indicate no output power is to indicate that the requested output power is zero.
  • the battery module By sending a second charging request to the charging post to which other charging guns other than the target charging gun belong to, to indicate no output power, the battery module is controlled not to continue to use other charging guns for charging. Therefore, unnecessary power output can be avoided, and the waste of charging resources can be reduced.
  • One possible scenario is that the battery module is originally charged by two charging guns, but as the charging time advances, the required power of the battery module gradually decreases. After a period of time, the battery module It may be possible that only one charging gun is required to charge to meet the required power. In this case, the above method can be used to control the other charging gun to stop charging, thereby avoiding unnecessary power output and reducing the waste of charging resources.
  • the positive pole of each charging interface is connected to the battery module through a positive switch
  • the negative pole of each charging interface is connected to the battery module through a negative switch. battery module.
  • the charging control device can realize the connection between the charging gun and the battery module by controlling the respective states of the positive pole switch or the negative pole switch, such as closing or opening.
  • the control of the conduction state of the circuit, the conduction state includes conduction or disconnection, so as to ensure that the charging power output by the charging pile can be smoothly transmitted into the battery module, or cannot be transmitted into the battery module.
  • the method further includes: controlling the charging with the N target charging guns The positive switches and negative switches of the connected N charging interfaces are turned on; the positive switches and negative switches of other charging interfaces among the plurality of charging interfaces are controlled to be turned off.
  • the multiple charging interfaces are DC charging interfaces.
  • the DC charging interface can not only reduce the cost, but also increase the charging speed.
  • the present application provides a charging control device, including a module or unit for implementing the first aspect and the method in any possible implementation manner of the first aspect. It should be understood that each module or unit can realize corresponding functions by executing computer programs.
  • the present application provides a charging control device, including a processor configured to execute the first aspect and the charging control method in any possible implementation manner of the first aspect.
  • the device may also include memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the methods described in the above aspects can be implemented.
  • the apparatus may further include a communication interface, which is used for the apparatus to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the present application provides a system-on-a-chip, which includes at least one processor, configured to support the implementation of the above-mentioned first aspect and the functions involved in any possible implementation of the first aspect, for example, receiving or Processing of data and/or information involved in the methods described above.
  • system-on-a-chip further includes a memory for storing program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a charging system, which includes: a battery module, a plurality of DC charging interfaces connected to the battery module, and each of the plurality of DC charging interfaces is used to communicate with The charging gun is connected; the charging control device is connected to each of the multiple DC charging ports through a communication line, and the charging control device is used to perform the charging control in the first aspect and any possible implementation of the first aspect method.
  • the charging control device is a battery management system (battery management system, BMS).
  • BMS battery management system
  • the present application provides a computer-readable storage medium, including a computer program, which, when run on a computer, causes the computer to implement the first aspect and the charging control method in any possible implementation manner of the first aspect.
  • the present application provides a computer program product
  • the computer program product includes: a computer program (also called code, or instruction), when the computer program is executed, the computer executes the first aspect and the second aspect
  • a charging control method in any possible implementation manner.
  • FIG. 1 is a schematic diagram of a circuit structure of a charging system of a charging control method provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of another circuit structure of the charging system of the charging control method provided by the embodiment of the present application;
  • Fig. 3 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of charging by two charging piles provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of a charging scene of two charging piles provided by the embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a battery management system provided by an embodiment of the present application.
  • Fig. 7 is another schematic block diagram of the battery management system provided by the embodiment of the present application.
  • the charging system provided by the embodiment of the present application is described below with reference to multiple drawings.
  • the energy is shown by a solid line and the data is shown by a dotted line in the figure.
  • the energy specifically refers to the energy input by the charging gun to the charging interface;
  • the data specifically refers to the signal, message or instruction sent by the charging control device (such as BMS) to the switch or the charging interface.
  • a charging pile can include one charging gun or multiple charging guns. In order to ensure that the charging power output by the charging pile can meet the charging needs of the vehicle, it also ensures convenient operation.
  • each charging gun can be connected to charging ports of different vehicles respectively.
  • the maximum output power of the charging pile may be the sum of the maximum output power of multiple charging guns included in the charging pile. If the charging pile includes a charging gun, the maximum output power of the charging gun is the maximum output power of the charging pile. If the charging pile includes multiple charging guns, the sum of the output powers of the multiple charging guns does not exceed the maximum output power of the charging pile. Specifically, if one or more charging guns in the charging pile are outputting power to the outside world, then for any remaining charging gun, the maximum output power can be the maximum output power of the charging pile minus the current output power of the charging pile. Output power; if the charging guns in the charging pile are all external output power, then for any charging gun, its maximum output power can be the maximum output power of the charging pile.
  • the maximum output power of a certain charging pile is 300 kilowatts (kW), and the charging pile includes two charging guns, which are denoted as charging gun 1 and charging gun 2, for example. If charging gun 1 is in use and the output power is 200kW, the maximum output power of charging gun 2 can be 100kW; but if charging pile 1 is in use and the output power is 300kW, the maximum output power of charging gun 2 is 0.
  • the M charging guns connected to the charging interface mentioned below are in one-to-one correspondence with the M charging posts, and the N target charging guns are in one-to-one correspondence with the N charging posts.
  • multiple charging guns When multiple charging guns are inserted into the charging interface, it means that multiple charging piles are connected to the charging interface through their respective charging guns.
  • multiple charging guns charge the same battery module, it means that multiple charging piles output energy to the same battery module through their respective charging guns.
  • the charging interface mentioned in the embodiments of the present application may specifically refer to an interface assembly.
  • the DC charging interface assembly may specifically include a DC charging interface defined in the national standard GB20234.3, a high-voltage wiring harness, a high-voltage connector, and the like.
  • the DC charging interface can be used to provide a power conduction loop for DC charging.
  • New energy vehicles refer to the use of unconventional vehicle fuels as power sources (or the use of conventional vehicle fuels, the use of new vehicle power devices), integrated vehicle power control and advanced technology in driving, the formation of advanced technical principles, with Automobiles with new technology and new structure.
  • Fig. 1 is a schematic diagram of a circuit structure of a charging system applicable to the charging control method provided by the embodiment of the present application.
  • the charging system includes: a battery module, a charging control device, and multiple charging interfaces connected to the battery module.
  • the battery module and the charging control device can be designed in the battery pack, and connected to multiple charging interfaces outside the battery pack through bus bars.
  • the plurality of charging interfaces may include charging interface 1, ..., charging interface Q shown in the figure.
  • Q is a positive integer greater than or equal to 2.
  • Each charging interface can be connected with a charging gun, and the charging gun is connected to the charging pile.
  • each charging interface can be connected to the battery module through a positive pole switch, and the negative pole of each charging interface can be connected to the battery module through a negative pole switch (the positive and negative poles of the charging interface are not shown in the figure).
  • a plurality of high-voltage connectors are also provided outside the shell of the battery pack, such as high-voltage connector 1 to high-voltage connector Q as shown in the figure.
  • the plurality of high-voltage connectors can connect the positive busbar and the negative busbar between the battery module and the charging interface, and the high-voltage connectors can ensure the voltage safety of the circuit between the charging interface and the battery module.
  • the battery module can also be directly connected to the high-voltage connector outside the battery pack casing (high-voltage connector 0 shown in the figure), which can be used to extend the positive busbar and negative busbar of the battery module Connected to ensure voltage safety at the circuit where the battery module is located.
  • the charging control device and each charging interface can be connected through a communication line, through which the charging control device can interact with each charging interface with signals, messages or instructions.
  • the charging control device can also be connected to each switch through a communication line, and the communication line can be used to control the closing or opening of each switch.
  • the charging control device can also be connected with the components of the circuit where the battery module is located through a communication line (the circuit structure where the battery module is located is not shown in the figure), and use the communication line to realize the control of the circuit where the battery module is located.
  • the charging control device may be a BMS.
  • any number of charging interfaces can be connected to the charging gun, and when the charging control device controls the switch between the arbitrary number of charging interfaces and the battery module to be closed, the charging power output by the charging pile can pass through any number of charging ports.
  • a number of charging interfaces are input into the battery module to realize charging of the battery module. It should be noted that the value of the arbitrary number is at least 1.
  • the battery module, charging control device, switch and high-voltage connector are integrated as a whole, called a battery pack. It should be understood that the battery pack also includes other devices, and the circuit structure in the battery pack should not be limited by what is shown in FIG. 1 .
  • the Q charging ports may be Q DC charging ports, or Q AC charging ports. It can be understood that, based on different types of charging interfaces, the components included in the battery pack may also be different.
  • the battery pack can also include Q chargers connected to the Q charging interfaces one by one, and the Q chargers can be further connected to the battery module to realize Q charging The connection between the interface and the battery module.
  • Fig. 2 is a schematic diagram of another circuit structure of a charging system applicable to the charging control method provided by the embodiment of the present application.
  • Figure 2 shows the circuit structure of a charging system suitable for DC charging.
  • the charging system 200 includes: a battery pack 210, a DC charging interface 221, and a DC charging interface 222, and three high-voltage connectors located outside the battery pack 210 housing.
  • the three high-voltage connectors are respectively high-voltage connection Connector 230, high voltage connector 231 and high voltage connector 232.
  • the battery pack 210 may include a battery module 211 , a current shunt 212 , a fuse 213 , a positive main switch 214 , a pre-charging switch 215 , a pre-charging resistor 216 and a negative main switch 217 .
  • the pre-charging switch 215 and the pre-charging resistor 216 are connected in parallel with both ends of the positive pole main switch 214, and the current shunt 212, the fuse 213, the positive pole main switch 214, the pre-charging switch 215 and the pre-charging resistor 216 can be set where the battery module 210 is located.
  • the negative main switch 217 can be set on the negative DC bus of the circuit where the battery module 210 is located (marked “DC-” in the figure).
  • DC means direct current (digital current)
  • + means positive and negative.
  • the positive DC bus and the negative DC bus of the circuit where the battery module 210 is located are connected through the high voltage connector 230 .
  • the precharge switch 215 and the precharge resistor 216 can also be connected in parallel to both ends of the positive main switch 214, and the current shunt 212, the fuse 213, the positive main switch 214, the precharge switch 215 and the precharge resistor 216 can be set on the negative DC bus of the circuit where the battery module 210 is located, and the negative main switch 217 can be set on the positive DC bus of the circuit where the battery module 210 is located.
  • This application is not limited to this.
  • the battery module 211 is connected to the DC charging interface 1 through the positive DC bus bar and the negative DC bus bar of the DC charging interface 1 .
  • One end of the positive DC bus bar of the DC charging interface 1 is connected to the DC charging interface 1, the other end is connected to the positive DC bus bar of the circuit where the battery module 211 is located, one end of the negative DC bus bar of the DC charging interface 1 is connected to the DC charging interface 1, and the other end is connected to the DC charging interface 1.
  • One end is connected to the negative DC bus bar of the circuit where the battery module 211 is located.
  • the positive DC bus bar and the negative DC bus bar of the DC charging interface 1 are connected through the high voltage connector 231 .
  • a positive switch S2 may be provided on the positive DC bus of the DC charging interface 1
  • a negative switch S1 may be provided on the negative DC bus of the DC charging interface 1 .
  • the battery module 211 is connected to the DC charging interface 2 through the positive DC bus bar and the negative DC bus bar of the DC charging interface 2 .
  • One end of the positive DC bus bar of the DC charging interface 2 is connected to the DC charging interface 2, the other end is connected to the positive DC bus bar of the circuit where the battery module 211 is located, one end of the negative DC bus bar of the DC charging interface 2 is connected to the DC charging interface 2, and the other end is connected to the DC charging interface 2.
  • One end is connected to the negative DC bus bar of the circuit where the battery module 211 is located.
  • the positive DC bus bar and the negative DC bus bar of the DC charging interface 2 are connected through the high voltage connector 232 .
  • a positive switch S4 may be provided on the positive DC bus of the DC charging interface 2
  • a negative switch S3 may be provided on the negative DC bus of the DC charging interface 2 .
  • the positive switch of the DC charging interface is a positive loop switch, the positive loop is turned on when it is closed, and the positive loop is turned off when it is turned off.
  • the negative pole switch is a negative pole circuit switch, the negative pole circuit is turned on when it is closed, and the negative pole circuit is turned off when it is opened.
  • a positive switch and a negative switch are respectively provided on the positive DC bus and the negative DC bus of the DC charging interface, but this should not limit the present application.
  • a switch may also be set on any one of the positive DC bus or the negative DC bus of the DC charging interface. This application is not limited to this.
  • a positive switch and a negative switch are respectively set on the positive DC bus bar and the negative DC bus bar of the DC charging interface. In the case of electricity, avoid the positive pole of the DC charging interface from being exposed to high voltage on the charging interface, so as to avoid accidental electric shock.
  • the battery pack 210 also includes a charging control device 218, which is connected to the DC charging interface through a communication line.
  • the communication line is a communication channel between the charging control device 218 and the charging pile connected to the DC charging interface.
  • the charging control device 218 is connected to the DC charging interface 1 through a communication line, and is connected to the DC charging interface 2 through another communication line.
  • the charging control device 218 is also connected to the positive and negative switches of each DC charging interface through communication lines, and the charging control device 218 can control the positive and negative switches to turn on or off through the communication lines.
  • the charging control device 218 is connected to the positive switch S2 of the DC charging interface 1 through a communication line, and is connected to the negative switch S1 of the DC charging interface 1 through another communication line.
  • the positive switch S4 of the interface 2 is connected through another communication line, and is connected with the negative switch S3 of the DC charging interface 2 through another communication line.
  • the charging control device 218 can also be connected with the positive main switch 214, the pre-charging switch 215 and the negative main switch 217 on the circuit where the battery module 211 is located respectively through communication lines to control the positive main switch 214, the pre-charging switch 215 and the negative main switch. 217 on-off state.
  • the DC charging interface, the positive DC bus bar of the DC charging interface, the negative DC bus bar of the DC charging interface, and the high-voltage connector can form a power conduction circuit.
  • the charging control device controls the closing of the positive switch and the negative switch of the DC charging interface, and the closing of the positive main switch, the pre-charging switch and the negative main switch of the circuit where the battery module is located, the charging gun outputs charging.
  • the power can be input into the battery module through the power conduction loop, so as to realize the charging of the vehicle.
  • the user may insert multiple charging guns due to the high power demand of the vehicle at the beginning of charging, but as the charging progresses, the power demand of the car will gradually decrease. Still using multiple charging guns to charge at the same time will cause a waste of charging resources, and may also cause other cars with charging needs to be unable to complete charging in time due to the low output power of other charging guns on the same charging pile. Therefore, it is currently impossible to adjust the number of charging guns required for charging according to actual needs, so as to achieve reasonable utilization of charging resources.
  • the present application provides a charging control method.
  • the charging control device determines that at least two charging guns are inserted into a plurality of charging ports, it compares the current required power of the battery module of the vehicle with the respective charging guns inserted.
  • the relationship between the maximum output power of the corresponding charging piles is used to determine which charging guns are inserted into the charging guns to charge the vehicle, so as to control the determined charging guns to charge the vehicle, so that the currently participating charging
  • the total charging power output by the number of charging guns matches the current demand power of the battery module, so it will not take up too much charging resources and improve the efficiency of other vehicles that use other charging guns on the same charging pile.
  • the charging speed realizes the reasonable utilization of charging resources.
  • FIG. 3 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • the method 300 shown in FIG. 3 includes step 310 to step 350 .
  • the method 300 can be executed by the charging control device, or by components configured in the charging control device (such as circuits, chips, chip systems, etc.), or can also be executed by a logic module that can realize all or part of the functions of the charging control device or software implementation. This application is not limited to this.
  • the charging control device may be, for example, a BMS.
  • step 310 the required power of the battery module is obtained.
  • the required power of the battery module is the charging power required by the battery module.
  • the charging control device can monitor the state of the battery module and know the charging power currently required by the battery module.
  • step 320 the maximum output power of the charging posts to which the M charging guns belong is acquired.
  • the M charging guns include charging guns that are connected to any one of the multiple charging interfaces in the battery module.
  • each charging interface can be connected to a charging gun, and each charging gun can charge the battery module through the connected charging interface.
  • the M charging guns may be charging guns connected to the M charging interfaces of the battery module. M>1 and is an integer. In other words, multiple charging interfaces in the battery module are connected to multiple charging guns.
  • the user can select multiple charging guns to charge the vehicle at the same time.
  • M charging interfaces among the Q charging interfaces can be connected to M charging guns one by one.
  • Q ⁇ M>1, and Q is an integer.
  • the maximum number of charging guns inserted into the charging interface does not exceed the total number of multiple charging interfaces of the vehicle.
  • the vehicle has 4 charging ports, and the user can choose 2, 3 or 4 charging ports to plug into the charging guns respectively.
  • the user will insert a sufficient number of charging cables according to the required power of the battery module to ensure that the sum of the maximum output power of the inserted charging cables is greater than or equal to that of the battery module.
  • the charging control device can perform a handshake process with the M charging piles to which the M charging guns belong through the communication line.
  • the charging control device can respectively send parameter acquisition requests to the M charging piles to which the M charging guns belong through the communication line, and the parameter acquisition requests are used to request the maximum output power of the charging piles, and the M charging piles can Based on the received parameter acquisition request, the maximum output power supported by itself is fed back to the charging control device through the communication line, so that the charging control device obtains the maximum output power of the charging piles to which the M charging guns respectively belong. It should be noted that the maximum output power of different charging piles may be the same or different.
  • the method of obtaining the maximum output power of each charging pile is not limited to the above.
  • each charging gun after each charging gun is inserted into the charging interface, it can actively report its maximum output power, and each charging interface can receive the maximum output power. Upload to the charging control unit.
  • the user after inserting each charging gun into the charging interface, the user can manually input the maximum output power of the charging pile to which each charging gun belongs to the charging control device. Since the charging control device can obtain the maximum output power of the charging pile through existing schemes, for the sake of brevity, no examples are given here.
  • step 330 according to the required power of the battery module and the maximum output power of the charging piles to which the M charging guns belong, N target charging guns are obtained from the M charging piles.
  • the N target charging guns are the charging guns that are actually used to charge the battery module determined according to the required power of the current battery module.
  • N can be a positive integer not greater than M.
  • the determination of the N target charging guns in the embodiment of the present application can be satisfied: the sum of the maximum output powers of the charging piles described in each of the N target charging guns is greater than or equal to the required power, and the N target charging guns The sum of the maximum output powers of the charging piles to which any N-1 charging guns belong is less than the required power. That is to say, by obtaining N target charging guns from M charging guns, the charging power received by the battery module is just greater than or equal to the required power, and even if it is greater than the required power, it will not exceed too much. That is, the total charging power output by the N target charging guns involved in charging the battery module matches the current demand power of the battery module.
  • the relationship between the required power of the battery module and the maximum output power of the charging piles to which the M charging guns belong is different, and the determined target charging guns are also different. Specifically, it can be divided into the following situations:
  • the vehicle has 4 charging interfaces, and the user inserts 2 charging guns, namely charging gun 1 and charging gun 2, and the two charging guns belong to charging pile 1 and charging pile 2 respectively.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the maximum output power of the charging gun 1 may be 100 kW
  • the maximum output power of the charging gun 2 may be 200 kW.
  • the charging control device judges that the demand power of the battery module is 400kW greater than the sum of the maximum output power of charging gun 1 and charging gun 2, which is 300kW, then charging gun 1 and charging gun 2 Charging gun 2 is used as the target charging gun.
  • the inserted M charging guns are all target charging guns. Since there is no waste of resources in this case, and when there are enough charging ports and charging piles, users usually insert a sufficient number of charging cables according to the required power to ensure that the maximum output power of the inserted charging cables is within and greater than or equal to the required power of the battery module.
  • the embodiment of the present application is mainly described for the case where the sum of the maximum output powers of the M charging guns is greater than or equal to the required power.
  • i can be incremented from 1, and each value is taken to determine whether it is satisfied: the sum of the maximum output power of any M-i charging guns in M charging guns is less than the required power, but there is a maximum output power of M-i+1 charging guns The sum of the output power is greater than or equal to the required power, until the value of i makes the above condition true, that is, the M-i+1 charging guns can be determined as the target charging guns.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the user inserts the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 into the charging interface. If the current demand power of the battery module of the vehicle is 300kW, the charging control device judges that the demand power of the battery module is 300kW, which is equal to the sum of the maximum output power of charging gun 1 and charging gun 2, which is 300kW, and the demand power of 300kW is greater than that of charging gun 1.
  • the maximum output power of 100kW is also greater than the maximum output power of 200kW of the charging gun 2, then the charging gun 1 and the charging gun 2 are used as the target charging guns for charging.
  • the charging control device determines that the required power of the battery module is 250kW less than the sum of the maximum output power of charging gun 1 and charging gun 2, which is 300kW, and the required power of 250kW is greater than that of charging gun 1
  • the maximum output power of 100kW is also greater than the maximum output power of 200kW of the charging gun 2, then the charging gun 1 and the charging gun 2 are used as the target charging guns for charging.
  • the charging control device determines the charging gun with the highest output power among the M charging guns as the target charging gun when the maximum output power of any one of the M charging guns is greater than or equal to the required power.
  • the output power of the M charging guns with the largest The charging gun is used as the target charging gun.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW. The user inserts the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 into the charging interface.
  • the charging gun will be 2 as the target charging gun.
  • step 340 the control uses N target charging guns to charge the battery module.
  • the charging control device After the charging control device determines the target charging guns, it can control the battery module to use the N target charging guns to charge the battery module.
  • the charging control device may send a first charging request to the charging post to which each target charging gun of the N target charging guns belongs, the first charging request carries a requested output power, and the requested output power is The output power of the charging pile receiving the first charging request, or the required output power of the charging pile receiving the first charging request.
  • a possible implementation is that the charging control device determines the maximum output power of the charging pile to which each target charging gun belongs as the corresponding requested output power, and the first charging request sent to each charging pile can carry the maximum output power of each charging pile respectively.
  • the maximum output power that is, each charging pile can charge the battery module according to its respective maximum output power.
  • the charging control device may further determine the requested output power of each charging pile according to the required power of the battery module and the maximum output power of the charging pile to which each target charging gun belongs. Since this implementation manner will be described below in conjunction with a specific example, it will not be described in detail here.
  • the charging control device can send a second charging request to the charging piles to which other charging guns belong , the second charging request is used to indicate not to output power.
  • other charging guns may refer to M-N charging guns among the M charging guns except the above-mentioned N target charging guns.
  • a possible manner in which the second charging request is used to indicate no output power is to indicate that the requested output power is zero.
  • the charging post that receives the first charging request and the second charging request can respectively output power to charge the battery module according to the received request.
  • the charging control device may not send a charging request to other charging guns, and the charging pile that has not received the charging request may default to not need to output power.
  • the maximum output power of the charging pile 1 is 100kW, and the maximum output power of the charging pile 2 is 200kW.
  • the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 are connected to the two charging interfaces of the battery module. If the required power of the battery module is 90kW, and the charging control device determines that the target charging gun is the charging gun 2, the charging control device can send the first charging request to the charging pile 2, carrying the requested output power greater than zero; The pile 1 sends the second charging request, which carries the requested output power value of zero, or does not send the second charging hydrogen to the charging pile 1 .
  • the method further includes step 350, the charging control device determines the corresponding requested output power according to the required power of the battery module and the maximum output power of each of the N charging piles.
  • the charging control device can determine how much power should be output to the battery module by each charging pile to which each target charging gun belongs in the following manner:
  • the charging control device determines that the requested output power of the N charging piles is the respective maximum output power when the sum of the maximum output powers of the N charging piles is equal to the required power.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 are connected to the two charging interfaces of the battery module.
  • the required power of the battery module is 300kW
  • the charging control device determines that the target charging guns are charging gun 1 and charging gun 2, then the charging control device can determine that the output power requested from charging pile 1 is 100kW, and the output power requested from charging pile 2 is 100kW.
  • the output power is 200kW.
  • the first charging request sent by the charging control device to charging pile 1 may indicate a requested output power of 100kW
  • the first charging request sent by the charging control device to charging pile 2 may indicate a requested output power of 200kW.
  • the charging control device determines the requested output power of the first charging pile among the N charging piles as XP N-1 when the sum of the maximum output powers of the N charging piles is greater than the required power, and the first charging pile It is any one of the N charging piles, X is the required power, P N-1 is the sum of the maximum output power of the other N-1 charging piles in the N charging piles except the first charging pile, X>P N-1 >0; determine that the requested output powers of the N-1 charging piles except the first charging pile among the N charging piles are their respective maximum output powers.
  • the first charging pile is the charging pile with the smallest maximum output power among the N charging piles.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 are connected to the two charging interfaces of the battery module.
  • the required power of the battery module is 250kW
  • the charging control device determines that the target charging guns are charging gun 1 and charging gun 2 .
  • the charging control device can determine that the charging pile with the smallest maximum output power among the charging pile 1 and the charging pile 2 is the charging pile 1, and use the charging pile 1 as the first charging pile, and use the charging pile 2 as the charging pile other than the charging pile 1.
  • the charging control device requests the output power of the charging pile 2 to be the maximum output power of 200 kW
  • the first charging request sent by the charging control device to charging pile 1 may indicate a requested output power of 50 kW
  • the first charging request sent by the charging control device to charging pile 2 may indicate a requested output power of 200 kW.
  • the charging control device determines that the requested output power of the charging gun with the smallest output power among the M charging guns is the required power when the maximum output power of any one of the M charging guns is greater than or equal to the required power.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 are connected to the two charging interfaces of the battery module. If the required power of the battery module is 90kW, and the controller determines that the target charging gun is the charging gun 2, the controller requests the charging pile 2 to output power of 90kW.
  • the second charging request sent by the charging control device to charging pile 1 or no charging request, and the first charging request sent by the charging control device to charging pile 2 may indicate a requested output power of 90 kW.
  • the charging control device sends the first charging After the request and the second charging request, it can also have the following control operations:
  • the charging control device controls the conduction of the positive switch and the negative switch of each charging interface in the N charging ports connected to the N target charging guns; the charging control device controls M-N charging guns except for the N target charging guns The positive switch and the negative switch of each of the M-N charging ports connected to the charging gun are disconnected.
  • the charging control device will turn off the switches of these charging interfaces; switch is off.
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the charging gun 1 of the charging pile 1 and the charging gun 2 of the charging pile 2 are connected to the two charging interfaces of the battery module. If the required power of the battery module is 90kW, and the charging control device determines that the target charging gun is charging gun 2, the charging control device turns on the positive switch and the negative switch of the charging interface 2, and turns on the positive switch and the negative switch of the charging interface 1. Disconnect to ensure that only the charging pile 2 can charge the battery module.
  • Step 310 is executed after the charging control device and the charging piles to which the M charging piles respectively belong pass the insulation test.
  • the charging piles to which the M charging guns respectively belong can respectively judge whether the insulation test of the local terminal has passed. When failing, the insulation detection result may not be fed back to the charging control device or the insulation detection result may be sent as a failure.
  • the charging control device receives the insulation detection results sent by each charging pile, it can judge whether the insulation detection of the local end has passed. When the insulation detection of the local end also passes, it can execute the determination of the target charging gun and the subsequent steps; charging control When the device receives an insulation test result that fails, or does not receive an insulation test result from any charging pile, it can suspend work, and no longer perform the determination of the target charging gun and subsequent steps.
  • the present application does not limit the execution order of the insulation detection of the charging pile and the insulation detection of the charging control device.
  • the charging pile can perform insulation detection first, and then the charging control device can perform insulation detection after the detection is passed; or, the charging control device can also perform insulation detection first, and the charging pile can perform insulation detection after the detection is passed; or, charging The control device and the charging pile conduct insulation testing at the same time.
  • the charging control device determines that at least two charging guns are inserted into multiple charging ports, by comparing the current demand power of the battery module of the vehicle with the maximum output power of the charging pile to which each charging gun is inserted To determine which charging guns in the charging guns that have been inserted to charge the vehicle, so as to control the determined charging guns to charge the vehicle, so that the total output of the current number of charging guns participating in charging
  • the charging power matches the current demand power of the battery module, so it will not take up too much charging resources, which improves the charging speed of other vehicles that use other charging guns on the same charging pile, and realizes the utilization of charging resources. Reasonable use.
  • the charging control device may periodically execute the above method with a preset period of time as a period. It should be understood that the preset duration can be set by those skilled in the art according to actual needs, or can also be set before the charging control device leaves the factory, or can also be set by a user, which is not limited in this application.
  • Fig. 4 is a schematic diagram of a scene applicable to two charging piles provided in the embodiment of the present application for charging.
  • the charging control device determines that the required power of the battery module is greater than the sum of the maximum output power of charging pile 1 and charging pile 2, or that the required power of the battery module is greater than the maximum output power of one charging pile, and When it is less than or equal to the sum of the maximum output power of the two charging piles, both the charging pile 1 and the charging pile 2 charge the battery module.
  • the charging pile 1 will no longer charge the battery module, and the charging pile 2 will continue to charge the battery module until the battery When the required power of the module becomes 0kW, the charging pile 2 also stops charging the battery module, and the charging process ends.
  • FIG. 5 further shows a schematic flowchart of using the charging control method provided by the embodiment of the present application in the scenario shown in FIG. 4 .
  • the process shown in FIG. 5 may be executed by the charging control device described above, or by components configured in the charging control device (such as circuits, chips, chip systems, etc.), or may also be executed by A logic module or software implementation capable of realizing all or part of the functions of the charging control device. This application is not limited to this.
  • X represents the required power of the battery module
  • Y represents the maximum output power of the charging pile 1
  • Z represents the maximum output power of the charging pile 2 .
  • the maximum output power of charging pile 1 is 100kW
  • the maximum output power of charging pile 2 is 200kW.
  • the charging control device can determine that charging gun 1 and charging pile The guns 2 are all target charging guns, and the charging control device sends a first charging request to both the charging pile 1 and the charging pile 2, so as to request the charging piles to output their respective maximum output power. For example, when the required power X of the battery module is 400kW, the charging control device sends a first charging request to charging pile 1 to request charging pile 1 to output a power of 100kW, and at the same time sends a first charging request to charging pile 2 to request charging Pile 2 outputs a power of 200kW.
  • the charging control device will continuously judge the magnitude relationship between X, Y, and Z with a preset time period.
  • the charging control device can determine that the charging Gun 1 and charging gun 2 are both target charging guns, and the maximum output power of charging pile 1 is the smallest, so it can be used as the first charging pile, then the charging control device sends the first charging request to charging pile 2 to request the output of the maximum output power ZkW , and at the same time send a first charging request to the charging pile 1 to request the output of (X-Z)kW power.
  • the charging control device sends the first charging request to the charging pile 2 to request the charging pile 2 to output a power of 200kW, and at the same time sends the first charging request to the charging pile 1 Charging request to request charging pile 1 to output 50kW of power.
  • charging pile 1 and charging pile 2 can enter the charging phase according to the first charging request.
  • the charging control device still continuously judges the size relationship between X, Y, and Z with the preset time as the cycle.
  • the charging control device will no longer send the first charging request to the charging pile 1, and can send The charging post 1 sends a second charging request to request that the charging post 1 no longer output power, and at the same time continues to send the first charging request to the charging post 2 to request to output the required power of the battery module.
  • the required power X of the battery module is 150kW
  • the charging control device sends a second charging request to the charging pile 1 to request the output power of 0kW, and sends a first charging request to the charging pile 2 to A power output of 150kW is requested.
  • the charging pile 2 After the charging pile 2 receives the first charging request, it can continue to charge the battery module. During this process, the charging control device will continue to judge the required power to adjust the output power of the charging pile 2. Stop charging until the required power of the battery module becomes 0kW.
  • Fig. 6 is a schematic block diagram of a charging control device provided by an embodiment of the present application.
  • the charging control device 600 may include: an acquisition unit 610 and a control unit 620 .
  • Each unit in the battery management system 600 can be used to execute each step executed by the charging control device in the method 300 shown in FIG. 3 , and can also be used to execute each step executed by the charging control device in the process shown in FIG. 5 .
  • the acquisition unit 610 can be used to acquire the required power of the battery module, the battery module has multiple charging interfaces, and the required power is the charging power required by the battery module; the acquisition unit 610 can also be used In order to obtain the maximum output power of the charging piles to which the M charging guns belong, the M charging guns include a charging gun that is connected to any charging interface in the plurality of charging interfaces; the acquisition unit 610 can also be used to The required power of the charging guns, the maximum output power of the charging piles to which the M charging guns belong, and N target charging guns are obtained from the M charging guns, N ⁇ M, M>1, and M and N are integers.
  • the control unit 620 can be used to control the charging of the battery module using the N target charging guns.
  • the sum of the maximum output powers of the charging piles of each of the N target charging guns is greater than or equal to the required power, and any N-1 charging guns in the N target charging guns belong to The sum of the maximum output powers of the charging piles is less than the required power.
  • the charging control device 600 may further include a sending unit, configured to send a first charging request to the charging pile to which each of the N target charging guns belongs, the first charging request includes the requested output power, The requested output power is the required output power of the charging pile that receives the first charging request.
  • a sending unit configured to send a first charging request to the charging pile to which each of the N target charging guns belongs, the first charging request includes the requested output power, The requested output power is the required output power of the charging pile that receives the first charging request.
  • the sending unit can also be used to send a second charging request to the charging pile to which each charging gun belongs in other charging guns except the N target charging guns among the M charging guns, and the second charging request is used for Indicates output power.
  • the charging control device 600 may further include a determination unit, configured to determine the corresponding requested output power according to the required power of the battery module and the maximum output power of the charging piles to which the N target charging guns belong.
  • the determination unit may be specifically configured to determine the requested output of the charging piles to which the N target charging guns belong respectively under the condition that the sum of the maximum output powers of the charging piles to which the N target charging guns respectively belong is equal to the required power Power is the respective maximum output power.
  • the determination unit 610 may be specifically configured to output the request of the first charging pile among the N charging piles when the sum of the maximum output powers of the charging piles to which the N target charging guns belong is greater than the required power
  • the power is determined as XP N-1 , the first charging pile is one of the N charging piles, X is the required power, and P N-1 is the maximum value of other charging piles except the first charging pile among the N charging piles.
  • the first charging pile is the charging pile with the smallest maximum output power among the N charging piles.
  • the positive pole of each of the multiple charging interfaces is connected to the battery module through a positive switch
  • the negative pole of each of the multiple charging interfaces is connected to the battery module through a negative switch.
  • the control unit 620 can also be used to control the conduction of the positive switch and the negative switch of each of the N charging interfaces connected to the N target charging guns; The positive switch and the negative switch are open.
  • the multiple charging interfaces are DC charging interfaces.
  • the charging control device is a BMS.
  • each functional unit in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • Fig. 7 is another schematic block diagram of a charging control device provided by an embodiment of the present application.
  • the battery management system 700 can be used to realize the function of the charging control device in the above method.
  • the battery management system 700 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the battery management system 700 may include at least one processor 710 configured to implement the function of the charging control device in the method provided by the embodiment of the present application.
  • the processor 710 can be used to: obtain the required power of the battery module, the battery module has multiple charging interface, the required power is the charging power required by the battery module; obtain the maximum output power of the charging piles to which the M charging guns belong respectively, and the M charging guns include a charging interface established with any of the charging interfaces. Connected charging guns; according to the required power of the battery module and the maximum output power of the charging piles to which the M charging guns belong, N target charging guns are obtained from the M charging guns, N ⁇ M, M>1, and M and N are integers; control the use of N target charging guns to charge the battery module. For details, refer to the detailed description in the method example, and details are not repeated here.
  • the battery management system 700 may also include at least one memory 720 for storing program instructions and/or data.
  • the memory 720 is coupled to the processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 710 may cooperate with memory 720 .
  • Processor 710 may execute program instructions stored in memory 720 . At least one of the at least one memory may be included in the processor.
  • the battery management system 700 may also include a communication interface 730 for communicating with other devices through a transmission medium, so that the battery management system 700 can communicate with other devices.
  • the other device may be a charging pile;
  • the communication interface 730 may be, for example, a transceiver, an interface, a bus, A circuit or a device capable of transmitting and receiving functions.
  • the processor 710 can use the communication interface 730 to send and receive data and/or information, and be used to implement the method executed by the charging control device in the embodiment corresponding to FIG. 3 .
  • a specific connection medium among the processor 710, the memory 720, and the communication interface 730 is not limited.
  • the processor 710 , the memory 720 and the communication interface 730 are connected through a bus.
  • the bus is represented by a thick line in FIG. 7 , and the connection manners between other components are only for schematic illustration and are not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the processor in this embodiment of the present application may be an integrated circuit chip that has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a charging system, which includes: a battery module, a plurality of DC charging interfaces connected to the battery module, each of the plurality of DC charging interfaces is used to connect to a charging gun;
  • the charging control device is connected to multiple DC charging interfaces through communication lines, and the charging control device is used to execute the method in the embodiment shown in FIG. 3 or FIG. 5 .
  • the charging control device is a BMS.
  • the present application also provides a computer program product, the computer program product including: a computer program (also called code, or instruction), when the computer program is executed, the computer executes the program in the embodiment shown in FIG. 3 or FIG. 5 .
  • a computer program also called code, or instruction
  • the present application also provides a computer-readable storage medium, where a computer program (also called code, or instruction) is stored in the computer-readable storage medium.
  • a computer program also called code, or instruction
  • the computer program is executed, the computer is made to execute the method in the embodiment shown in FIG. 3 or FIG. 5 .
  • unit may be used to denote a computer-related entity, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the unit described as a separate component may or may not be physically separated, and the component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or may also be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium, (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a tape
  • an optical medium for example, a digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (SSD)
  • this function is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了充电控制方法、装置及充电系统。该方法包括:获取电池模组的需求功率、M个充电枪各自所属的充电桩的最大输出功率,该电池模组具有多个充电接口,M个充电枪包括与该多个充电接口中任一充电接口连接的充电枪;根据电池模组需求功率、M个充电枪各自所属的充电桩的最大输出功率,从该M个充电枪中获取N个目标充电枪,并控制使用该N个目标充电枪为电池模组进行充电,使得当前参与为电池模组充电的充电枪的数量所输出的总的充电功率与电池模组在当前的需求功率契合,有利于充电资源的合理利用。

Description

充电控制方法、装置及充电系统 技术领域
本申请涉及新能源汽车领域,并且更具体地,涉及充电控制方法、装置及充电系统。
背景技术
随着新能源汽车的普及,新能源汽车的充电速度受到了越来越多的关注。其中,直流充电因其较高的充电速度,使用越来越广泛。
为了加快充电速度,目前在一些新能源汽车的充电系统中,设计有两个直流充电接口。充电桩上的充电枪插入直流充电接口中,充电桩便可通过充电枪输出充电功率以实现对汽车的充电。但是,在实际充电过程中,用户在充电开始时可能因需求充电功率较高,插入两个充电枪,但汽车的需求功率会随着时间推进而变化,充电一段时间后,需求充电功率可能降低了,但仍使用两个充电枪同时充电,造成了充电资源的浪费,而且可能造成其它有充电需求的汽车因同一个充电桩上其它充电枪的输出功率较低而无法及时完成充电。
因此,希望提供一种方法,能够根据实际需求,调整充电所需的充电枪数量,从而合理利用充电资源。
发明内容
本申请提供了一种充电控制方法、装置及充电系统,以期根据实际需求,灵活调整充电所需的充电枪数量,实现充电资源的合理利用。
第一方面,本申请提供了一种充电控制方法,该方法可以由充电控制装置执行,或者,也可以由配置在充电控制装置中的部件(如电路、芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分充电控制装置功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:获取电池模组的需求功率,该电池模组具有多个充电接口,所述需求功率为该电池模组需要的充电功率;获取M个充电枪各自所属的充电桩的最大输出功率,所述M个充电枪包括与所述多个充电接口中任一充电接口建立连接的充电枪;根据该电池模组的需求功率、M个充电枪各自所属的充电桩的最大输出功率,从N个目标充电枪,该需求功率为电池模组需要的充电功率,N≤M,M>1,且M和N为整数;充电控制装置控制使用N个目标充电枪为电池模组充电。
基于上述技术方案,充电控制装置在判断出在多个充电接口中插入了至少两个充电枪时,通过比较电池模组在当前的需求功率与插入的各个充电枪各自所属的充电桩的最大输出功率之间的大小关系,来确定由已插入的充电枪中的哪些充电枪来为车辆充电,从而控制确定出的这些充电枪来为车辆充电,使得当前参与为电池模组充电的充电枪的数量所输出的总的充电功率与电池模组当前的需求功率契合,也就不会占用过多的充电资源,提高了在同一个充电桩上使用其它充电枪进行充电的其它车辆的充电速度,从整体上来说,充电资源得以合理利用。
其中,每个充电枪可以与一个充电接口建立连接,每个充电枪可通过所连接的充电接口为电池模组充电。上述的M个充电枪也就是与多个充电接口中的M个充电接口建立连接的充电枪。
充电桩的最大输出功率可以这样理解:若充电桩包括一个充电枪,该充电枪的最大输出功率为该充电桩的最大输出功率。若充电桩包括多个充电枪,则该多个充电枪的输出功率之和不超过该充电桩的最大输出功率。具体来说,如果该充电桩中的一个或一个以上的充电枪正在对外输出功率,则对于剩余的任意一个充电枪来说,其最大输出功率可为该充电桩的最大输出功率减去正在对外输出的功率;如果该充电桩中的充电枪均为对外输出功率,则对于任意一个充电枪来说,其最大输出功率可以是该充电桩的最大输出功率。因此,通常情况下,若使用多个充电枪给电池模组充电,则表示一个充电枪的最大输出功率(也即,该充电枪所属的充电桩当前的最大输出功率)不足以满足电池模组的需求功率,因此,需要多个充电桩的输出功率累加来满足电池模组的需求功率,也即,该多个充电枪应为来自多个充电桩的充电枪。
结合第一方面,在第一方面的某些可能的实现方式中,所述N个目标充电枪各自所述的充电桩的最大输出功率之和大于或等于所述需求功率,且所述N个目标充电枪中的任意N-1个充电枪各自所属的充电桩的最大输出功率之和小于所述需求功率。
也就是说,N个目标充电枪所是能过提供的最大输出功率之和刚好满足需求功率的充电桩,如果任意将其中的一个充电枪与充电接口断开连接,剩下的N-1个充电枪所提供的最大输出功率之和就不满足需求功率。也即,参与为电池模组充电的N个目标充电枪所输出的总的充电功率与电池模组当前的需求功率契合。
换句话说,在M个充电枪中的任意M-i个充电枪所属的充电桩的最大输出功率之和小于需求功率,但存在M-i+1个充电枪的最大输出功率之和大于或等于需求功率的情况下,将M-i+1个充电枪确定为N个目标充电枪;0<i≤M-1,i为整数。
以M等于2为例,若两个充电枪所属的充电桩中的任意一个的最大输出功率小于需求功率,则需通过两个充电枪为该电池模组充电,也即,目标充电枪为该两个充电枪;若两个充电枪所属的充电桩中的某个充电桩的最大输出功率大于或等于需求功率,则可通过该充电桩上的充电枪为该电池模组充电,也即,目标充电枪为最大输出功率大于或等于需求功率的充电桩上的充电枪。
以此类推,可以得到M大于或等于2的情况下确定N个目标充电枪的规则:若M个充电枪中的任意M-i个充电枪所属的充电桩的最大输出功率之和小于需求功率,但存在M-i+1个充电枪的最大输出功率之和大于或等于需求功率的情况下,将M-i+1个充电枪所属的充电桩确定为N个目标充电枪。
如此一来,充电控制装置可以在电池模组的充电接口与M个充电枪建立连接的情况下,根据电池模组当前的需求功率,灵活地调整用于充电的目标充电枪,以减少功率浪费,也就不会占用过多的充电资源,提高了在同一个充电桩上使用其它充电枪进行充电的其它车辆的充电速度。从整体上来说,充电资源得以合理利用。
结合第一方面,在第一方面的某些可能的实现方式中,在控制使用该N个目标充电枪为电池模组进行充电之前,该方法还包括:向所述N个目标充电枪中的每个目标充电枪所属的充电桩发送第一充电请求,所述第一充电请求包括请求输出功率,所述请 求输出功率为接收到所述第一充电请求的充电桩需要输出的功率。
通过向N个目标充电枪所属的充电桩分别发送第一充电请求,可以控制电池模组使用该N个目标充电枪为电池模组充电。由于各个第一充电请求中携带了每个充电桩需要输出的功率大小,就可使得该N个目标充电枪所属的充电桩输出的总功率与电池模组的需求功率契合,避免了充电资源的浪费。
进一步地,该方法还包括:根据电池模组的需求功率、以及N个充电桩中各充电桩的最大输出功率,确定N个充电桩中各充电桩的请求输出功率。
下面提供了确定N个充电桩中各充电桩的请求输出功率的两种可能的实现方式。
在第一种可能的实现方式中,在N个充电桩的最大输出功率之和等于需求功率的情况下,确定N个充电桩的请求输出功率为各自的最大输出功率。
在电池模组的需求功率等于N个充电桩的最大输出功率之和时,通过让该N个充电桩均输出各自的最大输出功率,保证了为电池模组提供的充电资源足够且不过量,充电资源得到合理利用。
在第二种可能的实现方式中,在N个充电桩的最大输出功率之和大于需求功率的情况下,将N个充电桩中的第一充电桩的请求输出功率确定为X-P N-1,该第一充电桩为N个充电桩中的任意一个,X为需求功率,P N-1为N个充电桩中除第一充电桩之外的其他充电桩的最大输出功率之和,X>P N-1>0;确定其他充电桩的请求输出功率为各自的最大输出功率。
再进一步地,第一充电桩为N个充电桩中最大输出功率最小的充电桩。
在电池模组的需求功率小于N个充电桩的最大输出功率之和的情况下,确定出N个充电桩中最大输出功率最小的充电桩作为第一充电桩,让N个充电桩中除第一充电桩之外的其它充电桩均输出各自的最大输出功率,让第一充电桩输出值为X-P N-1的功率,X-P N-1为电池模组的需求功率与其它充电桩输出的最大输出功率之和的差值,保证了电池模组的需求功率与为电池模组提供的充电资源相契合,提供的充电资源既没有不足也没有过量,充电资源得到合理利用。
结合第一方面,在第一方面的某些可能的实现方式中,该方法还包括:向M个充电枪中除N个目标充电枪之外的其他充电枪中每个充电枪所属的充电桩发送第二充电请求,该第二充电请求用于指示不输出功率。
示例性地,第二充电请求用于指示不输出功率的一种可能的方式是,指示请求输出功率为零。
通过向除了目标充电枪之外的其它充电枪所属的充电桩发送第二充电请求,以指示不输出功率,控制了该电池模组不再继续使用其它充电枪进行充电。从而可以避免不必要的功率输出,减少充电资源的浪费。一种可能的场景是,电池模组在原本是通过两个充电枪充电的,但随着充电时间的向前推进,电池模组的需求功率逐渐减小,经过一段时间之后,该电池模组可能仅需一个充电枪充电就能够满足需求功率,此情况下,可以通过上述方法来控制另一个充电枪停止充电,从而避免不必要的功率输出,减少充电资源的浪费。
结合第一方面,在第一方面的某些可能的实现方式中,多个充电接口中,每个充电接口的正极通过正极开关连接于电池模组,每个充电接口的负极通过负极开关连接于电池模组。
通过在充电接口和电池模组之间设置正极开关和负极开关,充电控制装置可通过控制正极开关或负极开关的各自状态,如闭合或断开,来实现对充电枪与电池模组之间的电路的导通状态的控制,所述导通状态包括导通或断开,从而确保充电桩所输出的充电功率能顺利输送进电池模组,或无法输送进电池模组。
由于在高压上电的工况上,尤其是在对电池模组进行慢充的工况上,如果仅在每个直流充电接口设计一个正极开关或负极开关,即便断开开关,高压电会暴露在开关两端的正负极上,若某个人体恰好同时触碰到开关两端的正负极,则会形成一个导电回路,有触电风险。本申请中在每个直流充电接口设计了正极开关和负极开关,在直流充电接口断开时,同时控制正极开关和负极开关断开,即使某个人体触碰到了某个开关两端的正负极,由于另一个开关已断开,高压电不会暴露在正极开关或负极开关的正负极,从而降低了人员触电的风险。
结合第一方面,在第一方面的某些可能的实现方式中,在控制使用所述N个目标充电枪为所述电池模组进行充电之后,该方法还包括:控制与N个目标充电枪建立连接的N个充电接口的正极开关和负极开关导通;控制该多个充电接口中的其他充电接口的正极开关和负极开关断开。
通过控制目标充电枪所连接的充电接口所在的回路导通,其它充电接口所在的回路关断,保证了目标充电枪所属的充电桩的输出功率可以正常传送到电池模组进行充电,且避免了除目标充电枪之外的其它充电枪所属的充电桩误输出功率,避免了充电资源的浪费。
结合第一方面,在第一方面的某些可能的实现方式中,所述多个充电接口为直流充电接口。
采用直流充电接口相比于交流充电接口,既可以减少成本,又可以提供充电速度。
第二方面,本申请提供了一种充电控制装置,包括用于实现第一方面以及第一方面任一种可能实现方式中的方法的模块或单元。应理解,各个模块或单元可通过执行计算机程序来实现相应的功能。
第三方面,本申请提供了一种充电控制装置,包括处理器,该处理器用于执行第一方面以及第一方面任一种可能实现方式中的充电控制方法。
该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行存储器中存储的指令时,可以实现上述各方面中描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性地,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第四方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持实现上述第一方面以及第一方面任一种可能实现方式中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,该芯片系统还包括存储器,存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第五方面,本申请提供了一种充电系统,该充电系统包括:电池模组,连接于电池模组的多个直流充电接口,该多个直流充电接口中的每个直流充电接口用于与充电枪连接;充电控制装置,与多个直流充电接口中的每个直流充电接口通过通讯线连接, 且充电控制装置用于执行第一方面以及第一方面任一种可能实现方式中的充电控制方法。
结合第二方面、第三方面或第五方面,在某些可能的实现方式中,所述充电控制装置为电池管理系统(battery management system,BMS)。
第六方面,本申请提供了一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得计算机实现第一方面以及第一方面任一种可能实现方式中的充电控制方法。
第七方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行第一方面以及以及第一方面任一种可能实现方式中的充电控制方法。
应当理解的是,本申请的第二方面至第七方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是本申请实施例提供的充电控制方法的充电系统的一种电路结构示意图;
图2是本申请实施例提供的充电控制方法的充电系统的另一种电路结构示意图;
图3是本申请实施例提供的充电控制方法的示意性流程图;
图4是本申请实施例提供的两个充电桩进行充电的示意性流程图;
图5是本申请实施例提供的两个充电桩进行充电的场景示意图;
图6是本申请实施例提供的电池管理系统的示意性框图;
图7是本申请实施例提供的电池管理系统的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解,首先做出如下几点说明:
第一,下文中结合多个附图描述了本申请实施例提供的充电系统。为便于区分,图中将能量用实线示出,将数据用虚线示出。其中,能量具体可以是指充电枪输入至充电接口的能量;数据具体可以是指由充电控制装置(如BMS)发送至开关或充电接口等的信号、消息或指令等。
第二,一个充电桩可包括一个充电枪或多个充电枪。为了充电桩输出的充电功率可以满足车辆的充电需求的同时,也保证操作便捷。在一个充电桩包括多个充电枪时,各个充电枪可分别与不同车辆的充电接口连接。
充电桩的最大输出功率可以是该充电桩所包括的多个充电枪能够输出的最大功率之和。若充电桩包括一个充电枪,该充电枪的最大输出功率为该充电桩的最大输出功率。若充电桩包括多个充电枪,则该多个充电枪的输出功率之和不超过该充电桩的最大输出功率。具体来说,如果该充电桩中的一个或一个以上的充电枪正在对外输出功率,则对于剩余的任意一个充电枪来说,其最大输出功率可为该充电桩的最大输出功率减去正在对外输出的功率;如果该充电桩中的充电枪均为对外输出功率,则对于任意一个充电枪来说,其最大输出功率可以是该充电桩的最大输出功率。
比如,某充电桩的最大输出功率均为300千瓦(kW),该充电桩包括两个充电枪,例如记为充电枪1和充电枪2。若充电枪1正在使用,且输出功率为200kW,充电枪2的最大输出功率可以为100kW;但若充电桩1正在使用,且输出功率为300kW,充电枪2的最大输出功率为0。
第三,下文中所提及的连接至充电接口的M个充电枪与M个充电桩一一对应,N个目标充电枪与N个充电桩一一对应。当多个充电枪插入充电接口时,表示有多个充电桩通过各自的充电枪连接至充电接口。当多个充电枪为同一电池模组充电时,表示有多个充电桩通过各自的充电枪向同一电池模组输出能量。
应理解,在通常情况下,若使用多个充电枪给电池模组充电,则表示一个充电枪的最大输出功率(也即,该充电枪所属的充电桩当前的最大输出功率)不足以满足电池模组的需求功率,因此,需要多个充电桩的输出功率累加来满足电池模组的需求功率,也即,该多个充电枪应为来自多个充电桩的充电枪。因此,在一个充电桩的最大输出功率不足以满足电池模组的需求功率时,用户不会使用同一个充电桩的两个充电枪同时给电池模组充电。换言之,当使用多个充电枪为电池模组充电时,表示该电池模组接收到了来自多个充电桩的输出功率。
第四,为便于理解,下文中的各个附图结合直流充电所涉及的电路结构来描述了本申请实施例提供的方法,但这不应对本申请构成任何限定。本申请所提供的方法也可应用于交流充电,虽然电路结构略有不同,但并不妨碍本申请提供的充电控制方法的实施。
第五,本申请实施例中所述的充电接口具体可以是指接口总成。充电接口总成具体包括的器件可以参看相关标准。例如,直流充电接口总成具体可以包括国标GB20234.3定义的直流充电接口、高压线束、高压连接器等。直流充电接口可用于为直流充电提供功率传导回路。
第六,在本申请实施例中,“当…时”、“假设”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请提供的技术方案可以应用于新能源汽车(new energy vehicle)领域。新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。
图1是适用于本申请实施例提供的充电控制方法的充电系统的一种电路结构示意图。如图1所示,该充电系统包括:电池模组、充电控制装置和连接于电池模组的多个充电接口。其中,电池模组和充电控制装置可以设计在电池包内,通过母线与电池包外部的多个充电接口相连。
如图所示,该多个充电接口可以包括图中示出的充电接口1,…,充电接口Q。其中,Q为大于或等于2的正整数。每个充电接口可与充电枪连接,充电枪连接于充电桩上。
每个充电接口的正极可以通过正极开关与电池模组连接,每个充电接口的负极可以通过负极开关与电池模组连接(图中未示出充电接口的正负极)。
在电池包的壳体外部还设置有多个高压连接器,如图中示出的高压连接器1至高压连接器Q。该多个高压连接器可将电池模组与充电接口之间的正极母线和负极母线连通,该高压连接器可确保充电接口与电池模组之间回路的电压安全。
此外,电池模组还可与电池包壳体外部的高压连接器(如图中所示的高压连接器0)直接连接,该高压连接器可用于将电池模组延伸在外的正极母线和负极母线连通,以确保电池模组所在电路处的电压安全。
充电控制装置与每个充电接口之间可通过通讯线连接,通过该通讯线充电控制装置可与各个充电接口进行信号、消息或指令的交互。对于电池模组与每个充电接口之间的开关,充电控制装置也可通过通讯线与各个开关进行连接,利用该通讯线实现对各个开关的闭合或断开的控制。充电控制装置还可与电池模组所在电路的器件通过通讯线连接(图中未示出电池模组所在的电路结构),利用通讯线来实现对电池模组所在电路的控制。在实际应用中,充电控制装置可以为BMS。
在实际充电过程中,任意数量的充电接口可以与充电枪连接,且充电控制装置控制该任意数量个充电接口与电池模组之间的开关闭合时,充电桩输出的充电功率就可经过该任意数量个充电接口从而输入进电池模组,实现对电池模组的充电。需要说明的是,该任意数量的取值至少为1。
在有些设计中,将电池模组、充电控制装置、开关以及高压连接器作为一个整体,称为电池包。应理解,电池包中还包括其他器件,图1所示不应对电池包内的电路结构构成任何限定。
还应理解,图1所示的电路结构中,Q个充电接口可以是Q个直流充电接口,也可以是Q个交流充电接口。可以理解的是,基于不同类型的充电接口,电池包中所包括的器件也可能不同。例如,对于Q个交流充电接口来说,该电池包中还可以包括Q个充电机,与Q个充电接口一一连接,该Q个充电机可进一步连接至电池模组,以实现Q个充电接口与电池模组的连接。
图2是适用于本申请实施例提供的充电控制方法的充电系统的另一种电路结构示意图。图2所示为适用于直流充电的充电系统的电路结构。如图2所示,该充电系统200包括:电池包210、直流充电接口221和直流充电接口222,以及位于电池包210壳体外部的三个高压连接器,三个高压连接器分别为高压连接器230、高压连接器231和高压连接器232。
该电池包210可以包括电池模组211、电流分流器212、保险丝213、正极主开关214、预充开关215、预充电阻216和负极主开关217。其中,预充开关215、预充电阻216并联正极主开关214的两端,电流分流器212、保险丝213、正极主开关214、预充开关215和预充电阻216可以设置在电池模组210所在电路的正极直流母线(如图中标识的“DC+”)上,负极主开关217可以设置在电池模组210所在电路的负极直流母线(如图中标识的“DC-”)上。其中,“DC”表示直流(digital current),“+”、“-”表示正、负。并且,电池模组210所在电路的正极直流母线和负极直流母线通过高压连接器230连通。在另一些可能的设计中,也可将预充开关215、预充电阻216并联正极主开关214的两端,电流分流器212、保险丝213、正极主开关214、预充开关215和预充电阻216可以设置在电池模组210所在电路的负极直流母线上, 负极主开关217可以设置在电池模组210所在电路的正极直流母线上。本申请对此不作限定。
电池模组211与直流充电接口1之间通过直流充电接口1的正极直流母线和负极直流母线连接。直流充电接口1的正极直流母线的一端与直流充电接口1连接,另一端与电池模组211所在电路的正极直流母线连接,直流充电接口1的负极直流母线的一端与直流充电接口1连接,另一端与电池模组211所在电路的负极直流母线连接。直流充电接口1的正极直流母线和负极直流母线通过高压连接器231连通。直流充电接口1的正极直流母线上可设置正极开关S2,直流充电接口1的负极直流母线上可设置负极开关S1。
电池模组211与直流充电接口2之间通过直流充电接口2的正极直流母线和负极直流母线连接。直流充电接口2的正极直流母线的一端与直流充电接口2连接,另一端与电池模组211所在电路的正极直流母线连接,直流充电接口2的负极直流母线的一端与直流充电接口2连接,另一端与电池模组211所在电路的负极直流母线连接。直流充电接口2的正极直流母线和负极直流母线通过高压连接器232连通。直流充电接口2的正极直流母线上可设置正极开关S4,直流充电接口2的负极直流母线上可设置负极开关S3。
应理解,直流充电接口的正极开关为正极回路开关,闭合时正极回路导通,断开时正极回路关断。负极开关为负极回路开关,闭合时负极回路导通,断开时负极回路关断。
还应理解,图2中示出的电路结构图中,在直流充电接口的正极直流母线和负极直流母线上分别设置有正极开关和负极开关,但这不应对本申请构成限定。在另一些可能的设计中,也可在直流充电接口的正极直流母线或负极直流母线中的任意一项上设置开关。本申请对此不作限定。
可以理解的是,在直流充电接口的正极直流母线和负极直流母线上分别设置正极开关和负极开关,可以在非直流充电(如,将交流充电桩的充电枪插入了直流充电接口)且高压上电的情况下,避免直流充电接口正极带高压电暴露于充电接口上,可避免人员意外触电。
电池包210还包括充电控制装置218,该充电控制装置218与直流充电接口之间分别通过通讯线连接,通讯线为充电控制装置218和与直流充电接口连接的充电桩的通讯通道。如图2,充电控制装置218与直流充电接口1之间通过一条通讯线连接,与直流充电接口2之间通过又一条通讯线连接。充电控制装置218与各个直流充电接口的正负极开关之间也分别通过通讯线连接,充电控制装置218可通过通讯线来控制正负极开关进行闭合或关断。如图2,充电控制装置218与直流充电接口1的正极开关S2之间通过一条通讯线连接,与直流充电接口1的负极开关S1之间通过另一条通讯线连接,充电控制装置218与直流充电接口2的正极开关S4之间通过又一条通讯线连接,与直流充电接口2的负极开关S3之间通过再一条通讯线连接。充电控制装置218还可与电池模组211所在电路上的正极主开关214、预充开关215和负极主开关217分别通过通讯线连接,以控制正极主开关214、预充开关215和负极主开关217的通断状态。
直流充电接口、直流充电接口的正极直流母线、直流充电接口的负极直流母线和高压连接器可构成功率传导回路。在直流充电接口与充电枪连接,充电控制装置控制直流充电接口的正极开关和负极开关闭合,以及控制电池模组所在电路的正极主开关、预充开关和负极主开关闭合时,充电枪输出充电功率,就可通过该功率传导回路将电流输入进电池模组中,从而实现对车辆的充电。
如前所述,在目前的实际充电过程中,用户在充电开始时,可能因车辆的需求功率较高,插入多个充电枪,但随着充电的进行,汽车的需求功率会逐渐降低,此时仍采用多个充电枪同时充电会造成充电资源的浪费,也可能造成其它有充电需求的汽车因同一个充电桩上其它充电枪的输出功率较低无法及时完成充电。因此,目前无法根据实际需求来调整充电所需的充电枪数量,以实现充电资源的合理利用。
鉴于此,本申请提供一种充电控制方法,充电控制装置判断出在多个充电接口中插入了至少两个充电枪时,通过比较车辆的电池模组当前的需求功率与插入的各个充电枪各自所属的充电桩的最大输出功率之间的大小关系,来确定由已插入的充电枪中的哪些充电枪来为车辆充电,从而控制确定出的这些充电枪来为车辆充电,使得当前参与充电的充电枪的数量所输出的总的充电功率与电池模组当前的需求功率契合,也就不会占用过多的充电资源,提高了在同一个充电桩上使用其它充电枪进行充电的其它车辆的充电速度,实现了充电资源的合理利用。
下面将结合附图对本申请实施例提供的充电控制方法做详细说明。图3是本申请实施例提供的充电控制方法的示意性流程图。图3所示的方法300包括步骤310至步骤350。
该方法300可以由充电控制装置执行,也可以由配置在充电控制装置中的部件(如电路、芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分充电控制装置功能的逻辑模块或软件实现。本申请对此不作限定。该充电控制装置例如可以为BMS。
下面详细说明图3所示的方法300中的各个步骤。
在步骤310中,获取电池模组的需求功率。
电池模组的需求功率为该电池模组需要的充电功率。作为该电池模组的管理设备,该充电控制装置可以监控电池模组的状态,获知电池模组当前所需要的充电功率。
在步骤320中,获取M个充电枪各自所属的充电桩的最大输出功率。
其中,M个充电枪包括与该电池模组中的多个充电接口中的任一接口建立连接的充电枪。如前所述,每个充电接口可以与一个充电枪建立连接,每个充电枪可以通过所连接的充电接口为电池模组进行充电。该M个充电枪可以是与电池模组的M个充电接口建立连接的充电枪。M>1且为整数。换言之,电池模组中的多个充电接口与多个充电枪建立了连接。
在车辆有充电需求时,为了加速充电,用户可选择多个充电枪同时为车辆充电。例如,在图2所示的充电系统中,Q个充电接口中的M个充电接口与M个充电枪可以一一建立连接。Q≥M>1,且Q为整数。插入充电接口的充电枪的数量最多不超过该车辆所具有的多个充电接口的总数量。比如,车辆具有4个充电接口,用户可选择2个、3个或4个充电接口来分别插入充电枪。
通常情况下,在充电接口数量足够多、充电桩数量足够多时,用户会根据电池模 组的需求功率插入足够数量的充电枪,以保证插入的充电枪的最大输出功率之和大于或等于电池模组的需求功率。故,该M个充电枪的最大输出功率之和通常大于电池模组的需求功率。
在M个充电接口与M个充电枪建立连接之后,充电控制装置可以通过通讯线与M个充电枪所属的M个充电桩进行握手流程。示例性地,充电控制装置可通过通讯线分别向该M个充电枪所属的M个充电桩发送参数获取请求,该参数获取请求用于请求充电桩的最大输出功率,该M个充电桩就可基于接收到的参数获取请求,分别通过通讯线向充电控制装置反馈自己所能支持的最大输出功率,从而使得充电控制装置获取到该M个充电枪分别所属的充电桩的最大输出功率。需要说明的是,不同的充电桩,其最大输出功率可能相同,也可能不同。
获取各充电桩的最大输出功率的方法并不限于上文所述,例如,各充电枪在被插入充电接口之后,可主动上报各自的最大输出功率,各充电接口可以将接收到的最大输出功率上传至充电控制装置。又例如,用户在将各充电枪插入充电接口后,可手动将各充电枪所属的充电桩的最大输出功率输入至充电控制装置内。由于充电控制装置可通过已有方案获取到充电桩的最大输出功率,为了简洁,此处不再举例说明。
在步骤330中,根据电池模组的需求功率,以及M个充电枪各自所属的充电桩的最大输出功率,从M个充电桩中获取N个目标充电枪。
N个目标充电枪即根据当前电池模组的需求功率所确定的真正用于为电池模组充电的充电枪。N可以为不大于M的正整数。本申请实施例中对该N个目标充电枪的确定可以满足:该N个目标充电枪各自所述的充电桩的最大输出功率之和大于或等于需求功率,且该N个目标充电枪中的任意N-1个充电枪各自所属的充电桩的最大输出功率之和小于需求功率。也就是说,通过从M个充电枪中获取N个目标充电枪,使得该电池模组接收到的充电功率正好大于或等于需求功率,而且即便大于需求功率,也不会超出过多。即,参与为电池模组充电的N个目标充电枪所输出的总的充电功率与电池模组当前的需求功率契合。
在确定目标充电枪时,电池模组的需求功率与M个充电枪各自所属的充电桩的最大输出功率之间的大小关系不同,所确定出的目标充电枪也不同。具体可以分为如下几种情况:
(1)充电控制装置在M个充电枪的最大输出功率之和小于需求功率的情况下,将该M个充电枪确定为目标充电枪。即,需求功率>M个充电枪的最大输出功率之和时,N=M。
比如,车辆具有4个充电接口,用户插入了2个充电枪,分别为充电枪1和充电枪2,该2个充电枪分别属于充电桩1和充电桩2。充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。则,充电枪1的最大输出功率可为100kW,充电枪2的最大输出功率可为200kW。假设车辆的电池模组在当前的需求功率为400kW,充电控制装置此时判断出电池模组的需求功率400kW大于充电枪1、充电枪2的最大输出功率之和300kW,则将充电枪1和充电枪2均作为目标充电枪。
需要说明的是,在插入的M个充电枪的最大输出功率之和小于需求功率的情况下,插入的M个枪均为目标充电枪。由于此情况下不存在资源浪费,而在充电接口数量足 够多、充电桩数量足够多的情况下,用户通常会根据需求功率插入足够数量的充电枪,以保证插入的充电枪的最大输出功率之和大于或等于电池模组的需求功率。本申请实施例主要针对M个充电枪的最大输出功率之和大于或等于需求功率的情况做出说明。
(2)充电控制装置在M个充电枪中的任意M-i个充电枪的最大输出功率之和小于需求功率,但存在M-i+1个充电枪的最大输出功率之和大于或等于需求功率的情况下,将M-i+1个充电枪确定为N个目标充电枪;0<i≤M-1,i为整数。即,M-i个充电枪的最大输出功率之和<需求功率≤M-i+1个充电枪的最大输出功率之和时,N=M-i+1。
其中,i可以从1递增,每取一个值,确定是否满足:M个充电枪中的任意M-i个充电枪的最大输出功率之和小于需求功率,但存在M-i+1个充电枪的最大输出功率之和大于或等于需求功率,直到对i的取值使得上述条件成立,也即可确定该M-i+1个充电枪为目标充电枪。
以插入充电接口的充电枪的数量M=2为例。在i=1时,假设这两个充电枪中的任意一个充电枪的最大输出功率小于需求功率,且需求功率小于或等于这两个充电枪的最大输出功率之和时,将这两个充电枪均作为目标充电枪。
比如,在上例中,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。用户将充电桩1的充电枪1和充电桩2的充电枪2插入充电接口。若车辆的电池模组在当前的需求功率为300kW,充电控制装置判断出电池模组的需求功率300kW等于充电枪1和充电枪2的最大输出功率之和300kW,且需求功率300kW大于充电枪1的最大输出功率100kW,也大于充电枪2的最大输出功率200kW,则将充电枪1和充电枪2作为目标充电枪进行充电。若车辆的电池模组在当前的需求功率为250kW,充电控制装置判断出电池模组的需求功率250kW小于充电枪1和充电枪2的最大输出功率之和300kW,且需求功率250kW大于充电枪1的最大输出功率100kW,也大于充电枪2的最大输出功率200kW,则将充电枪1和充电枪2作为目标充电枪进行充电。
(3)充电控制装置在M个充电枪中的任意一个充电枪的最大输出功率大于或等于需求功率,将M个充电枪中输出功率最大的充电枪确定为目标充电枪。
为了便于在充电过程中减少充电枪切换的次数,在电池模组的需求功率小于或等于M个充电枪中的任意一个充电枪的最大输出功率时,都将M个充电枪中输出功率最大的充电枪作为目标充电枪。比如,在上例中,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。用户将充电桩1的充电枪1和充电桩2的充电枪2插入充电接口。电池模组在当前的需求功率无论是小于或等于充电枪2的最大输出功率,如,需求功率为150kW,还是小于或等于充电枪1的最大输出功率,如需求功率为90kW,均将充电枪2作为目标充电枪。
在步骤340中,控制使用N个目标充电枪为电池模组进行充电。
在充电控制装置确定出目标充电枪之后,便可控制电池模组使用该N个目标充电枪为该电池模组充电。
示例性地,充电控制装置可以向N个目标充电枪中的每个目标充电枪所属的充电桩发送第一充电请求,该第一充电请求中携带请求输出功率,该请求输出功率为请求接收到该第一充电请求的充电桩输出的功率,或者说,接收到该第一充电请求的充电 桩需要输出的功率。
一种可能的实现方式是,该充电控制装置将各目标充电枪所属的充电桩的最大输出功率确定为相应的请求输出功率,发送给各充电桩的第一充电请求中可分别携带各充电桩的最大输出功率,也即,各充电桩按照各自的最大输出功率为该电池模组进行充电即可。
另一种可能的实现方式是,该充电控制装置可进一步根据电池模组的需求功率和各目标充电枪所属的充电桩的最大输出功率确定各充电桩的请求输出功率。由于下文中将结合具体示例来描述这种实现方式,这里暂且不作详述。
对于M个充电枪中除上述N个目标充电枪之外的其他充电枪,为了避免其它充电枪所属的充电桩误输出功率,充电控制装置可以向其他充电枪所属的充电桩发送第二充电请求,该第二充电请求用于指示不输出功率。
这里,其他充电枪可以是指M个充电枪中除上述N个目标充电枪之外的M-N个充电枪。第二充电请求用于指示不输出功率的一种可能的方式是,指示请求输出功率为零。
接收到第一充电请求和第二充电请求的充电桩便可分别根据接收到的请求输出功率来向电池模组充电。
或者,在另一种实现方式中,充电控制装置也可以不向其他充电枪发送充电请求,未接收到充电请求的充电桩便可默认不需要输出功率。
一示例,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。充电桩1的充电枪1和充电桩2的充电枪2与电池模组的两个充电接口建立了连接。若电池模组的需求功率为90kW,充电控制装置确定出目标充电枪为充电枪2,则充电控制装置可以向充电桩2发送第一充电请求,携带大于零的请求输出功率;还可以向充电桩1发送第二充电请求,携带值为零的请求输出功率,或不向充电桩1发送第二充电氢气。
可选地,在步骤340之前,该方法还包括步骤350,充电控制装置根据电池模组的需求功率,以及N个充电桩中各充电桩的最大输出功率,确定相应的请求输出功率。
充电控制装置可以采用如下方式确定出各个目标充电枪所属的各个充电桩应该输出多少功率给电池模组:
(1)充电控制装置在M个充电枪中的任意M-i个充电枪的最大输出功率之和小于需求功率,但存在M-i+1个充电枪的最大输出功率之和大于或等于需求功率的情况下,可采取如下确定方式:
1)充电控制装置在N个充电桩的最大输出功率之和等于需求功率的情况下,确定N个充电桩的请求输出功率为各自的最大输出功率。
比如,在上例中,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。充电桩1的充电枪1和充电桩2的充电枪2与电池模组的两个充电接口建立了连接。电池模组的需求功率为300kW,并且,充电控制装置确定出目标充电枪为充电枪1和充电枪2,则充电控制装置可确定出向充电桩1请求输出的功率为100kW,向充电桩2请求输出的功率为200kW。
与步骤340相对应,充电控制装置向充电桩1发送的第一充电请求中可以指示请 求输出功率100kW,充电控制装置向充电桩2发送的第一充电请求中可以指示请求输出功率200kW。
2)充电控制装置在N个充电桩的最大输出功率之和大于需求功率的情况下,将N个充电桩中的第一充电桩的请求输出功率确定为X-P N-1,该第一充电桩为N个充电桩中的任意一个,X为需求功率,P N-1为N个充电桩中除第一充电桩之外的其他N-1个充电桩的最大输出功率之和,X>P N-1>0;确定N个充电桩中除第一充电桩之外的其他N-1个充电桩的请求输出功率为各自的最大输出功率。
其中,第一充电桩为N个充电桩中最大输出功率最小的充电桩。
比如,在上例中,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。充电桩1的充电枪1和充电桩2的充电枪2与电池模组的两个充电接口建立了连接。电池模组的需求功率为250kW,充电控制装置确定出目标充电枪为充电枪1和充电枪2。充电控制装置可确定出充电桩1和充电桩2中最大输出功率最小的充电桩为充电桩1,将充电桩1作为第一充电桩,将充电桩2作为除充电桩1以外的充电桩。则,充电控制装置向充电桩2请求输出的功率为最大输出功率200kW,向充电桩1请求输出的功率为250-200=50kW。
与步骤340相对应,充电控制装置向充电桩1发送的第一充电请求中可以指示请求输出功率50kW,充电控制装置向充电桩2发送的第一充电请求中可以指示请求输出功率200kW。
(2)充电控制装置在M个充电枪中的任意一个充电枪的最大输出功率大于或等于需求功率,确定M个充电枪中输出功率最小的充电枪的请求输出功率为需求功率。
比如,在上例中,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。充电桩1的充电枪1和充电桩2的充电枪2与电池模组的两个充电接口建立了连接。若电池模组的需求功率为90kW,控制器确定出目标充电枪为充电枪2,则控制器向充电桩2请求输出的功率为90kW。
与步骤340相对应,充电控制装置向充电桩1发送的第二充电请求或不发充电请求,充电控制装置向充电桩2发送的第一充电请求中可以指示请求输出功率90kW。
为了进一步保证目标充电枪的可以将输出功率正常传输到电池模组,也为了防止其它充电枪误输出功率,造成充电资源的浪费,同时出于高压安全的考虑,在充电控制装置发送第一充电请求和第二充电请求后,还可以具有如下控制操作:
充电控制装置控制N个目标充电枪所连接的N个充电接口中每个充电接口的正极开关和负极开关导通;充电控制装置控制M个充电枪中除N个目标充电枪之外的M-N个充电枪所连接的M-N个充电接口中每个充电接口的正极开关和负极开关断开。
对于目标充电枪所对应的充电接口,充电控制装置将这些充电接口的开关关闭,对于已插入充电接口,且不作为目标充电枪的其它充电枪所对应的充电接口,充电控制装置将这些充电接口的开关断开。比如,充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。充电桩1的充电枪1和充电桩2的充电枪2与电池模组的两个充电接口建立了连接。若电池模组的需求功率为90kW,充电控制装置确定出目标充电枪为充电枪2,则充电控制装置将充电接口2的正极开关和负极开关导通,将充电接口1的正极开关和负极开关断开,以保证仅有充电桩2可为电池模组充电。
此外,出于安全考虑,充电控制装置在检测到M个充电接口插入了M个充电枪后,还可进一步确定充电控制装置与该M个充电枪分别所属的充电桩分别通过了绝缘检测,并在充电控制装置和M个充电桩分别所属的充电桩分别通过了绝缘检测之后执行步骤310。
具体地,该M个充电枪分别所属的充电桩可以分别判断本端的绝缘检测是否通过,在判断出绝缘检测通过时,通过通讯线向充电控制装置发送绝缘检测结果为通过;在判断出绝缘检测未通过时,可不向充电控制装置反馈绝缘检测结果或发送绝缘检测结果为未通过。充电控制装置在接收到各个充电桩发送的绝缘检测结果均为通过时,可判断本端的绝缘检测是否通过,在本端的绝缘检测也通过时,可执行确定目标充电枪及后续的步骤;充电控制装置在接收到的绝缘检测结果为未通过时,或未接收到任意充电桩的绝缘检测结果时,可暂停工作,不再执行确定目标充电枪及后续的步骤。
应理解,本申请并不限定充电桩的绝缘检测和充电控制装置的绝缘检测的执行的先后顺序。例如,可以由充电桩先进行绝缘检测,检测通过后充电控制装置再进行绝缘检测;或者,也可以由充电控制装置先进行绝缘检测,检测通过后充电桩再进行绝缘检测;或者,还可以充电控制装置和充电桩同时进行绝缘检测。
基于上述方案,充电控制装置判断出在多个充电接口中插入了至少两个充电枪时,通过比较车辆的电池模组当前的需求功率与插入的各个充电枪各自所属的充电桩的最大输出功率之间的大小关系,来确定由已插入的充电枪中的哪些充电枪来为车辆充电,从而控制确定出的这些充电枪来为车辆充电,使得当前参与充电的充电枪的数量所输出的总的充电功率与电池模组当前的需求功率契合,也就不会占用过多的充电资源,提高了在同一个充电桩上使用其它充电枪进行充电的其它车辆的充电速度,实现了充电资源的合理利用。
需要说明的是,由于随着充电时间的推进,车辆在当前的需求功率是不断变化的,而为了保证充电资源的合理利用,对车辆进行充电的充电枪的数量可以随着需求功率的变化而灵活调整。一种可能的实现方式是,充电控制装置可以以预设时长为周期,周期性地执行上述方法。应理解,预设时长可由本领域技术人员根据实际需求设置,或者也可以在充电控制装置出厂前设定,或者还可以由用户设置,本申请对此不作限定。
下面结合图4和图5给出一个具体的例子。
图4是适用于本申请实施例提供的两个充电桩进行充电的场景示意图。在最开始充电时,充电控制装置判断出电池模组的需求功率大于充电桩1和充电桩2的最大输出功率之和,或者,电池模组的需求功率大于一个充电桩的最大输出功率,且小于或等于两个充电桩的最大输出功率之和的情况下,充电桩1和充电桩2均向电池模组充电。随着充电的进行,充电控制装置判断出电池模组的需求功率不再满足上述两种情况下,则充电桩1不再向电池模组充电,充电桩2继续向电池模组充电,直至电池模组的需求功率变为0kW时,充电桩2也停止向电池模组充电,充电过程结束。
图5进一步示出了图4所示场景下使用了本申请实施例提供的充电控制方法的示意性流程图。应理解,图5所示的流程可以由上文所述的充电控制装置来执行,也可以由配置在充电控制装置中的部件(如电路、芯片、芯片系统等)执行,或者,还可 以由能够实现全部或部分充电控制装置功能的逻辑模块或软件实现。本申请对此不作限定。
在图5中,X表示电池模组的需求功率,Y表示充电桩1的最大输出功率,Z表示充电桩2的最大输出功率。假设充电桩1的最大输出功率为100kW,充电桩2的最大输出功率为200kW。用户将充电桩1的充电枪1和充电桩2的充电枪2插入充电接口时,充电控制装置先判断电池模组的X与Y、Z之间的大小关系。若刚开始充电时,判断出X>(Y+Z),即电池模组的需求功率大于充电桩1和充电桩2的最大输出功率之和时,充电控制装置可确定出充电枪1和充电枪2均为目标充电枪,则充电控制装置向充电桩1和充电桩2均发送第一充电请求,以请求充电桩输出各自的最大输出功率。如,电池模组的需求功率X=400kW时,充电控制装置向充电桩1发送第一充电请求,以请求充电桩1输出100kW的功率,同时向充电桩2发送第一充电请求,以请求充电桩2输出200kW的功率。之后,充电桩1和充电桩2接收到第一充电请求后,就可根据第一充电请求进入充电阶段。在充电的过程中,充电控制装置会以预设时间为周期持续性判断X与Y、Z之间的大小关系。若判断出Y<X≤(Y+Z),即电池模组的需求功率大于一个充电桩的最大输出功率,且小于两个充电桩的最大输出功率之和时,充电控制装置可确定出充电枪1和充电枪2均为目标充电枪,且充电桩1的最大输出功率最小,可作为第一充电桩,则充电控制装置向充电桩2发送第一充电请求,以请求输出最大输出功率ZkW,同时向充电桩1发送第一充电请求,以请求输出(X-Z)kW的功率。如,随着充电的进行,电池模组的需求功率X=250时,充电控制装置向充电桩2发送第一充电请求,以请求充电桩2输出200kW的功率,同时向充电桩1发送第一充电请求,以请求充电桩1输出50kW的功率。同样地,充电桩1和充电桩2接收到第一充电请求后,就可根据第一充电请求进入充电阶段。并且在充电的过程中,充电控制装置仍旧会以预设时间为周期持续性判断X与Y、Z之间的大小关系。若判断出X与Y、Z之间不满足前述两种情况,则说明X小于或等于任意一个充电枪的最大输出功率,则充电控制装置不再向充电桩1发送第一充电请求,可向充电桩1发送第二充电请求,以请求充电桩1不再输出功率,同时继续向充电桩2发送第一充电请求,以请求输出电池模组的需求功率。如,随着充电的进行,电池模组的需求功率X=150kW,则充电控制装置向充电桩1发送第二充电请求,以请求输出0kW的功率,向充电桩2发送第一充电请求,以请求输出150kW的功率。之后,充电桩2接收到第一充电请求后,就可继续为电池模组充电,在此过程中,充电控制装置仍旧会持续判断需求功率的大小,以调整充电桩2的输出功率的大小,直至电池模组的需求功率变为0kW时,停止充电。
以上,结合图3至图5详细描述了本申请实施例提供的充电控制方法。以下,结合图6至图7详细说明本申请实施例提供的充电控制装置。
图6是本申请实施例提供的充电控制装置的示意性框图。如图6所示,该充电控制装置600可以包括:获取单元610和控制单元620。该电池管理系统600中的各单元可用于执行图3所示的方法300中充电控制装置执行的各个步骤,也可以用于执行图5所示的流程中充电控制装置执行的各个步骤。
具体来说,该获取单元610,可用于获取电池模组的需求功率,该电池模组具有 多个充电接口,所述需求功率为所述电池模组需要的充电功率;该获取单元610还可用于获取M个充电枪各自所属充电桩的最大输出功率,该M个充电枪包括与所述多个充电接口中任一充电接口建立连接的充电枪;该获取单元610还可用于根据电池模组的需求功率、M个充电枪各自所属的充电桩的最大输出功率,从M个充电枪中获取N个目标充电枪,N≤M,M>1,且M和N为整数。控制单元620可用于控制使用该N个目标充电枪为电池模组进行充电。
可选地,所述N个目标充电枪各自所述的充电桩的最大输出功率之和大于或等于所述需求功率,且所述N个目标充电枪中的任意N-1个充电枪各自所属的充电桩的最大输出功率之和小于所述需求功率。
可选地,该充电控制装置600还可包括发送单元,可用于向N个目标充电枪中的每个目标充电枪所属的充电桩发送第一充电请求,该第一充电请求包括请求输出功率,所述请求输出功率为接收到所述第一充电请求的充电桩需要输出的功率。
可选地,该发送单元还可用于向M个充电枪中除N个目标充电枪之外的其他充电枪中每个充电枪所属的充电桩发送第二充电请求,该第二充电请求用于指示输出功率。
可选地,该充电控制装置600还可包括确定单元,可用于根据电池模组的需求功率、以及N个目标充电枪各自所属的充电桩的最大输出功率,确定相应的请求输出功率。
可选地,该确定单元可具体用于在N个目标充电枪各自所属的充电桩的最大输出功率之和等于需求功率的情况下,确定该N个目标充电枪各自所属的充电桩的请求输出功率为各自的最大输出功率。
可选地,该确定单元610可具体用于在N个目标充电枪各自所属的充电桩的最大输出功率之和大于需求功率的情况下,将N个充电桩中的第一充电桩的请求输出功率确定为X-P N-1,该第一充电桩为N个充电桩中的一个,X为需求功率,P N-1为N个充电桩中除第一充电桩之外的其他充电桩的最大输出功率之和,X>P N-1>0;确定其他充电桩的请求输出功率为各自的最大输出功率。
可选地,该第一充电桩为N个充电桩中最大输出功率最小的充电桩。
可选地,该多个充电接口中的每个充电接口的正极通过正极开关连接于电池模组,该多个充电接口中的每个充电接口的负极通过负极开关连接于电池模组。该控制单元620还可用于控制N个目标充电枪所连接的N个充电接口中每个充电接口的正极开关和负极开关导通;控制多个充电接口中的其他充电接口中每个充电接口的正极开关和负极开关断开。
可选地,所述多个充电接口为直流充电接口。
可选地,所述充电控制装置为BMS。
应理解,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图7是本申请实施例提供的充电控制装置的另一示意性框图。该电池管理系统700 可用于实现上述方法中充电控制装置的功能。该电池管理系统700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图7所示,该电池管理系统700可以包括至少一个处理器710,用于实现本申请实施例提供的方法中充电控制装置的功能。
示例性地,当该电池管理系统700用于实现本申请实施例提供的方法中充电控制装置的功能时,处理器710可用于:获取电池模组的需求功率,该电池模组具有多个充电接口,所述需求功率为所述电池模组需要的充电功率;获取M个充电枪各自所属充电桩的最大输出功率,该M个充电枪包括与所述多个充电接口中任一充电接口建立连接的充电枪;根据电池模组的需求功率、M个充电枪各自所属的充电桩的最大输出功率,从M个充电枪中获取N个目标充电枪,N≤M,M>1,且M和N为整数;控制使用N个目标充电枪为电池模组进行充电。具体参见方法示例中的详细描述,此处不做赘述。
该电池管理系统700还可以包括至少一个存储器720,用于存储程序指令和/或数据。存储器720和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器720协同操作。处理器710可能执行存储器720中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
该电池管理系统700还可以包括通信接口730,用于通过传输介质和其它设备进行通信,从而用于电池管理系统700可以和其它设备进行通信。示例性地,当该电池管理系统700用于实现本申请实施例提供的方法中充电控制装置的功能时,该其他设备可以是充电桩;该通信接口730例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器710可利用通信接口730收发数据和/或信息,并用于实现图3对应的实施例中的充电控制装置所执行的方法。
本申请实施例中不限定上述处理器710、存储器720以及通信接口730之间的具体连接介质。本申请实施例在图7中以处理器710、存储器720以及通信接口730之间通过总线连接。总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器 中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供一种充电系统,该充电系统包括:电池模组,连接于电池模组的多个直流充电接口,该多个直流充电接口中的每个直流充电接口用于与充电枪连接;充电控制装置,与多个直流充电接口通过通讯线连接,且该充电控制装置用于执行图3或图5所示的实施例中的方法。在一种可能的设计中,该充电控制装置为BMS。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行图3或图5所示实施例中的方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当该计算机程序被运行时,使得计算机执行图3或图5所示实施例中的方法。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多 个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行该计算机程序指令(程序)时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种充电控制方法,其特征在于,包括:
    获取电池模组的需求功率,所述电池模组具有多个充电接口,所述需求功率为所述电池模组需要的充电功率;
    获取M个充电枪各自所属充电桩的最大输出功率,所述M个充电枪包括与所述多个充电接口中任一充电接口建立连接的充电枪;
    根据所述电池模组的需求功率、所述M个充电枪各自所属的充电桩的最大输出功率,从所述M个充电枪中获取N个目标充电枪,N≤M,M>1,且M和N为整数;
    控制使用所述N个目标充电枪为所述电池模组进行充电。
  2. 如权利要求1所述的方法,其特征在于,所述N个目标充电枪各自所属的充电桩的最大输出功率之和大于或等于所述需求功率,且所述N个目标充电枪中的任意N-1个充电枪各自所属的充电桩的最大输出功率之和小于所述需求功率。
  3. 如权利要求1或2所述的方法,其特征在于,在控制使用所述N个目标充电枪为所述电池模组进行充电之前,包括:
    向所述N个目标充电枪中的每个目标充电枪所属的充电桩发送第一充电请求,所述第一充电请求包括请求输出功率,所述请求输出功率为接收到所述第一充电请求的充电桩需要输出的功率。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    向所述M个充电枪中除所述N个目标充电枪之外的其他充电枪中每个充电枪所属的充电桩发送第二充电请求,所述第二充电请求用于指示不输出功率。
  5. 如权利要求3或4所述的方法,其特征在于,所述方法还包括:
    根据所述电池模组的需求功率、以及所述N个目标充电枪各自所属的充电桩的最大输出功率,确定相应的请求输出功率。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述电池模组的需求功率、以及所述N个目标充电枪各自所属的充电桩的最大输出功率,确定相应的请求输出功率,包括:
    在所述N个目标充电枪各自所属的充电桩的最大输出功率之和等于所述需求功率的情况下,确定所述N个目标充电枪各自所属的充电桩的请求输出功率为各自的最大输出功率。
  7. 如权利要求5所述的方法,其特征在于,所述根据所述电池模组的需求功率、以及所述N个目标充电枪各自所属的充电桩的最大输出功率,确定相应的请求输出功率,包括:
    在所述N个充电桩的最大输出功率之和大于所述需求功率的情况下,将所述N个充电桩中的第一充电桩的请求输出功率确定为X-P N-1,所述第一充电桩为所述N个充电桩中的一个,X为所述需求功率,P N-1为所述N个目标充电桩中除所述第一充电桩之外的其他充电桩的最大输出功率之和,X>P N-1>0;
    确定所述其他充电桩的请求输出功率为各自的最大输出功率。
  8. 如权利要求7所述的方法,其特征在于,所述第一充电桩为所述N个充电桩中 最大输出功率最小的充电桩。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述多个充电接口中,每个充电接口的正极通过正极开关连接于所述电池模组,每个充电接口的负极通过负极开关连接于所述电池模组。
  10. 如权利要求9所述的方法,其特征在于,在控制使用所述N个目标充电枪为所述电池模组进行充电之后,所述方法还包括:
    控制与所述N个目标充电枪建立连接的N个充电接口的正极开关和负极开关导通;
    控制所述多个充电接口中的其他充电接口的正极开关和负极开关断开。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述多个充电接口为直流充电接口。
  12. 一种充电控制装置,其特征在于,包括处理器,所述处理器用于调用程序代码以用于实现如权利要求1至11中任一项所述的方法。
  13. 一种充电系统,其特征在于,包括:
    电池模组,
    连接于所述电池模组的多个充电接口,所述多个充电接口中的每个充电接口用于与充电枪连接;
    充电控制装置,与所述多个直流充电接口连接,且所述充电控制装置用于执行如权利要求1至11中任一项所述的方法。
  14. 如权利要求13所述的充电系统,其特征在于,所述充电控制装置为电池管理系统。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,使得计算机执行如权利要求1至11中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2021/121821 2021-09-29 2021-09-29 充电控制方法、装置及充电系统 WO2023050193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/121821 WO2023050193A1 (zh) 2021-09-29 2021-09-29 充电控制方法、装置及充电系统
CN202180102535.8A CN118044089A (zh) 2021-09-29 2021-09-29 充电控制方法、装置及充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121821 WO2023050193A1 (zh) 2021-09-29 2021-09-29 充电控制方法、装置及充电系统

Publications (1)

Publication Number Publication Date
WO2023050193A1 true WO2023050193A1 (zh) 2023-04-06

Family

ID=85781091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121821 WO2023050193A1 (zh) 2021-09-29 2021-09-29 充电控制方法、装置及充电系统

Country Status (2)

Country Link
CN (1) CN118044089A (zh)
WO (1) WO2023050193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118024933A (zh) * 2024-04-11 2024-05-14 宁德时代新能源科技股份有限公司 多桩充电方法、装置、设备、存储介质及程序产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585413A (zh) * 2016-12-23 2017-04-26 长园深瑞继保自动化有限公司 多直流充电桩并联自动充电的方法
CN107895984A (zh) * 2017-12-04 2018-04-10 西安特锐德智能充电科技有限公司 一种直流充电桩功率并联装置及充电方法
CN109435741A (zh) * 2018-10-25 2019-03-08 张家港市华为电子有限公司 自动切换功率的充电桩

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585413A (zh) * 2016-12-23 2017-04-26 长园深瑞继保自动化有限公司 多直流充电桩并联自动充电的方法
CN107895984A (zh) * 2017-12-04 2018-04-10 西安特锐德智能充电科技有限公司 一种直流充电桩功率并联装置及充电方法
CN109435741A (zh) * 2018-10-25 2019-03-08 张家港市华为电子有限公司 自动切换功率的充电桩

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118024933A (zh) * 2024-04-11 2024-05-14 宁德时代新能源科技股份有限公司 多桩充电方法、装置、设备、存储介质及程序产品

Also Published As

Publication number Publication date
CN118044089A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
KR101723915B1 (ko) 충전 방법, 모바일 장치, 충전 장치 및 충전 시스템
US11041889B2 (en) Method for estimating load current of power supply, and USB-type converter
EP3706282B1 (en) Device to be charged and charging control method
CN104393628A (zh) Usb充电器、移动终端和充电控制方法
CN111009703A (zh) 一种电池的加热控制装置及其加热控制方法
WO2023050193A1 (zh) 充电控制方法、装置及充电系统
CN109450051B (zh) 一种电池系统及其控制方法
CN108400623B (zh) 一种终端及其实现多路径供电管理的方法
WO2023193646A1 (zh) 一种电路、供电方法、电子设备及计算机程序产品
US20230045028A1 (en) Charging system, method and device for controlling charging system, and electronic device
CN209748220U (zh) 串并联切换装置及包含串并联切换装置的电池组
US10903676B2 (en) Semiconductor device
WO2024108401A1 (zh) 一种电池包并联方法、电池管理系统、电池包和用电设备
CN221042343U (zh) 充电电路、电路板组件及电子设备
CN104143663A (zh) 具有自我保护功能和可扩展性的大电流锂离子电池组
CN109546701A (zh) 电池电量调节方法及设备、存储介质
CN115800456B (zh) 一种锂离子电池模组充放电防反接智能保护控制系统
CN117375054B (zh) 储能系统高压接入控制方法、储能系统、设备及存储介质
CN113276729B (zh) 燃料电池控制方法、系统和车辆
CN220114486U (zh) 一种扩展充电枪系统
CN114435180B (zh) 能量供应系统、用于操作能量供应系统的方法及车辆
CN216290262U (zh) 一种新能源车动力电池的充放电控制电路
CN220368508U (zh) 一种直流充电堆功率分配电路
WO2022227824A1 (zh) 充电终端、设备、系统、场站、储能包及充电控制方法
CN107579551A (zh) 终端、充电器、充电系统及充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021958782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021958782

Country of ref document: EP

Effective date: 20240328

NENP Non-entry into the national phase

Ref country code: DE