WO2023050188A1 - 一种基于三维建模技术的数字煤场管理方法及系统 - Google Patents

一种基于三维建模技术的数字煤场管理方法及系统 Download PDF

Info

Publication number
WO2023050188A1
WO2023050188A1 PCT/CN2021/121809 CN2021121809W WO2023050188A1 WO 2023050188 A1 WO2023050188 A1 WO 2023050188A1 CN 2021121809 W CN2021121809 W CN 2021121809W WO 2023050188 A1 WO2023050188 A1 WO 2023050188A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
coal
data
dimensional
wheel
Prior art date
Application number
PCT/CN2021/121809
Other languages
English (en)
French (fr)
Inventor
付英强
李培栋
Original Assignee
华能聊城热电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能聊城热电有限公司 filed Critical 华能聊城热电有限公司
Priority to PCT/CN2021/121809 priority Critical patent/WO2023050188A1/zh
Publication of WO2023050188A1 publication Critical patent/WO2023050188A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/02Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads

Definitions

  • the invention relates to the technical field of bucket stacker reclaimer and coal pan control, in particular to a digital coal yard management method and system based on three-dimensional modeling technology.
  • Coal consumption is an important production index of thermal power plants, which accounts for about 70% to 80% of the cost of power generation.
  • the power plant conducts an inventory of the coal storage in the coal yard on time at the end of the month.
  • the operation of the bucket stacker reclaimer and the coal pan in the existing coal yard are all manual operations, which are greatly affected by the level, mood, and on-site operating environment of the operators. It frequently causes a series of problems such as sprinkling coal during operation and large deviation of coal value.
  • the original bucket wheel machine positioning system is based on mechanical transmission to change the voltage of the precision sliding rheostat to quantify the corresponding pitch, slew and travel values.
  • These devices and limit signals are extremely unreliable, let alone meet the bucket The positioning and use of the turbine; while the traditional coal yard pan coal relies on a hand-held coal pan instrument, and the coal pan has a large workload.
  • the present invention provides a digital coal yard management method based on three-dimensional modeling technology, which can
  • the present invention provides the following technical solutions: including, using the positioning unit to obtain the relative position of the bucket wheel bucket in the coal yard; the three-dimensional unit performs a three-dimensional analysis of the attitude of the bucket wheel machine according to the relative position and the three-dimensional data of the bucket wheel bucket. Modeling to obtain the three-dimensional data of the bucket wheel machine; obtaining the surface morphology and three-dimensional data of the coal stack through the laser pan coal instrument; inputting the three-dimensional data of the bucket wheel machine, the surface shape of the coal stack, and the three-dimensional data to the control unit, and controlling the coal stack through the control unit
  • the wheel bucket and boom can rotate at a high speed to perform stacking and reclaiming work.
  • the digital coal yard management method based on three-dimensional modeling technology in the present invention, it also includes: the three-dimensional data of the bucket wheel machine includes rotation, pitch, and stroke data; input the rotation data to the The above-mentioned control unit controls the rotation speed of the boom.
  • the positioning unit includes a signal acquisition module and a processing module
  • the bucket wheel bucket is set as the node to be measured
  • the coal yard is
  • the reference node detects the UWB signal of the node under test through the signal acquisition module, and sends the UWB signal to the processing module; and performs ranging and positioning on the ranging information through the processing module.
  • the distance measurement includes, the measured node performs frequency conversion processing on the distance measurement information sent by the reference node, and then converts the It is sent to the processing module, and the ranging is completed through the processing module.
  • the laser pan coal meter includes a data acquisition module and a calculation module; the laser coal pan instrument is placed above the wheel bucket , and set the scan frequency; the data acquisition module scans the coal pile area under the wheel bucket according to the scan frequency to obtain scan data; the calculation module calculates and integrates the scan data to obtain the coal Stack surface morphology and 3D data.
  • the digital coal yard management method based on three-dimensional modeling technology in the present invention, it also includes: when the wheel bucket reaches the set fixed height, turning the boom to the set height The fixed angle or make the wheel bucket and the boom close to the coal stack, so that the control unit works in reverse; define the horizontal distance between the wheel bucket, the boom and the coal stack to be less than 1m as close.
  • the digital coal yard management method based on three-dimensional modeling technology in the present invention, it also includes: controlling the bucket wheel machine to drive to the corresponding set position through the control unit and placing the wheel bucket At the corresponding position set, when the secondary belt conveyor equipment is ready, the stacking and reclaiming work can be started.
  • the digital coal yard management system based on three-dimensional modeling technology in the present invention, it includes: a positioning unit used to obtain the relative position of the bucket wheel bucket in the coal yard; the three-dimensional unit is connected to the The above positioning unit is used to carry out three-dimensional modeling of the attitude of the bucket wheel machine according to the relative position and the three-dimensional data of the bucket wheel, and obtain the three-dimensional data of the bucket wheel machine; the laser pan coal instrument is used to obtain the surface shape and three-dimensional data of the coal stack; the control unit, They are respectively connected with the three-dimensional unit and the laser pan coal instrument, which are used to control the rotation speed of the wheel bucket and the boom according to the three-dimensional data of the bucket wheel machine, the surface shape of the coal pile and the three-dimensional data, so as to carry out stacking material work.
  • the positioning unit includes a signal acquisition module and a processing module
  • the bucket wheel bucket is set as the node to be measured, and the coal yard is The reference node
  • the signal acquisition module used to detect the UWB signal of the node under test
  • the processing module connected to the signal acquisition module, used for ranging and positioning the ranging information.
  • the laser pan coal meter includes a data acquisition module and a calculation module; the laser coal pan instrument is placed above the wheel bucket , setting the scan frequency; the data acquisition module is used to scan the coal pile area under the wheel bucket according to the scan frequency to obtain scan data; the calculation module is connected to the data acquisition module for The above scanning data is calculated and integrated to obtain the surface morphology and three-dimensional data of the coal stack.
  • the present invention locates the wheel bucket of the bucket wheel machine based on UWB positioning technology, controls the wheel bucket and the boom in combination with the positioning data and three-dimensional data, improves the accuracy of the stacking and reclaiming operation, and realizes the alignment of the bucket wheel machine Unmanned and intelligent control of bulk material transfer.
  • Fig. 1 is a schematic diagram of data scanning of a digital coal yard management method based on three-dimensional modeling technology described in the first embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a digital coal yard management system based on three-dimensional modeling technology according to the third embodiment of the present invention.
  • one embodiment or “an embodiment” referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present invention. "In one embodiment” appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
  • installation, connection, connection should be understood in a broad sense, for example: it can be a fixed connection, a detachable connection or an integrated connection; it can also be a mechanical connection, an electrical connection or a direct connection.
  • a connection can also be an indirect connection through an intermediary, or it can be an internal communication between two elements.
  • This embodiment provides a digital coal yard management method based on three-dimensional modeling technology, including:
  • S1 Use the positioning unit 100 to obtain the relative position of the bucket wheel bucket in the coal yard;
  • the positioning unit 100 includes a signal acquisition module 101 and a processing module 102, and the specific steps for obtaining the relative position of the bucket wheel bucket in the coal yard are as follows:
  • the measured node performs frequency conversion processing on the ranging information sent by the reference node, and then sends it to the processing module 102, and the ranging information is completed through the processing module 102.
  • the three-dimensional unit 200 performs three-dimensional modeling on the attitude of the bucket wheel machine according to the relative position and the three-dimensional data of the bucket wheel machine, and obtains the three-dimensional data of the bucket wheel machine;
  • the three-dimensional data of the bucket wheel machine includes rotation, pitch, and stroke data
  • the three-dimensional unit 200 performs three-dimensional modeling of the attitude of the bucket wheel machine according to the rotation, pitch, and stroke data to obtain the three-dimensional data of the bucket wheel machine.
  • the laser coal-disc instrument 300 Place the laser coal-disc instrument 300 above the wheel bucket, and set the scanning frequency; wherein, the laser coal-disc instrument 300 includes a data collection module 301 and a calculation module 302 .
  • (1) data acquisition module 301 scans the coal pile area under the wheel bucket according to the scan frequency, and obtains scan data;
  • the control software written by visual studio calculates and integrates the data sent from the scene to obtain the coal stack surface Morphology and 3D data.
  • S4 Input the three-dimensional data of the bucket wheel machine, the surface shape of the coal pile and the three-dimensional data to the control unit 400, and control the rotation speed of the wheel bucket and the boom through the control unit 400 to perform stacking and reclaiming work.
  • control unit 400 in this embodiment is a rotary motor controller (PLC).
  • PLC rotary motor controller
  • the horizontal distance between the wheel bucket, the boom and the coal stack is less than 1m as close.
  • this embodiment chooses the traditional technical scheme and adopts this method to conduct a comparative test, and compares the test results by means of scientific demonstration to verify the real effect of this method.
  • this method can accurately position the wheel bucket, and the control error is small, which meets the accuracy requirements of the stacking and reclaiming operation.
  • FIG. 2 it is a third embodiment of the present invention, which is different from the first embodiment, and this embodiment provides a digital coal yard management system based on three-dimensional modeling technology, including,
  • the positioning unit 100 is used to obtain the relative position of the bucket wheel bucket in the coal yard; the positioning unit 100 includes a signal acquisition module 101 and a processing module 102; specifically, the bucket wheel bucket is set as the measured node, and the coal yard is the reference node
  • the signal acquisition module 101 is used to detect the UWB signal of the node under test; the processing module 102 is connected to the signal acquisition module 101, and is used for ranging and positioning the ranging information.
  • the three-dimensional unit 200 is connected with the positioning unit 100, and is used to perform three-dimensional modeling of the attitude of the bucket wheel machine according to the relative position and the three-dimensional data of the wheel bucket, and obtain the three-dimensional data of the bucket wheel machine;
  • the laser coal pan instrument 300 acquires the surface morphology and three-dimensional data of the coal stack; the laser coal pan instrument 300 includes a data acquisition module 301 and a calculation module 302; specifically, the laser coal pan instrument 300 is placed above the wheel bucket, and the scanning frequency is set; The data collection module 301 is used to scan the coal pile area under the wheel bucket according to the scanning frequency to obtain the scanned data; the calculation module 302 is connected to the data collection module 301 and used to calculate and integrate the scanned data to obtain the surface of the coal pile Morphology and 3D data.
  • the control unit 400 is respectively connected with the three-dimensional unit 200 and the laser coal pan instrument 300, which is used to control the rotation speed of the wheel bucket and the boom according to the three-dimensional data of the bucket wheel machine, the surface shape of the coal pile and the three-dimensional data, so as to carry out stacking material work.
  • embodiments of the present invention may be realized or implemented by computer hardware, a combination of hardware and software, or by computer instructions stored in a non-transitory computer readable memory.
  • the methods can be implemented in a computer program using standard programming techniques - including a non-transitory computer-readable storage medium configured with a computer program, where the storage medium so configured causes the computer to operate in a specific and predefined manner - according to the specific Methods and Figures described in the Examples.
  • Each program can be implemented in a high-level procedural or object-oriented programming language to communicate with the computer system.
  • the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.
  • the program can be run on an application specific integrated circuit programmed for this purpose.
  • processes described herein may be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
  • the processes described herein can be performed under the control of one or more computer systems configured with executable instructions, and as code that collectively executes on one or more processors (e.g. , executable instructions, one or more computer programs or one or more applications), hardware or a combination thereof.
  • the computer program comprises a plurality of instructions executable by one or more processors.
  • the method can be implemented in any type of computing platform operably connected to a suitable one, including but not limited to personal computer, minicomputer, main frame, workstation, network or distributed computing environment, stand-alone or integrated computer platform, or communicate with charged particle tools or other imaging devices, etc.
  • Aspects of the invention can be implemented as machine-readable code stored on a non-transitory storage medium or device, whether removable or integrated into a computing platform, such as a hard disk, optically read and/or written storage medium, RAM, ROM, etc., such that they are readable by a programmable computer, when the storage medium or device is read by the computer, can be used to configure and operate the computer to perform the processes described herein.
  • the machine-readable code, or portions thereof, may be transmitted over a wired or wireless network.
  • the invention described herein includes these and other various types of non-transitory computer-readable storage media when such media include instructions or programs that implement the steps described above in conjunction with a microprocessor or other data processor.
  • the invention also includes the computer itself when programmed according to the methods and techniques described herein.
  • Computer programs can be applied to input data to perform the functions described herein, thereby transforming the input data to generate output data stored to non-volatile memory.
  • Output information may also be applied to one or more output devices such as a display.
  • the transformed data represents physical and tangible objects, including specific visual depictions of physical and tangible objects produced on a display.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures thereon.
  • These components can be communicated through, for example, according to having one or more packets of data (e.g., data from a component that interacts with another component in a local system, a distributed system, and/or in the form of network to interact with other systems) to communicate with local and/or remote processes.
  • packets of data e.g., data from a component that interacts with another component in a local system, a distributed system, and/or in the form of network to interact with other systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

本发明公开了一种基于三维建模技术的数字煤场管理方法及系统,其中,一种基于三维建模技术的数字煤场管理方法包括,利用定位单元获取斗轮机轮斗在煤场中的相对位置;三维单元根据相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;通过激光盘煤仪获取煤垛表面形态和三维数据;将斗轮机三维数据、煤垛的表面形态和三维数据输入至控制单元,通过控制单元控制轮斗和大臂回转速度,以进行堆取料工作;本发明基于UWB定位技术对斗轮机轮斗进行定位,结合定位数据和三维数据对轮斗和大臂进行控制,提高了提高堆取料作业的精准度,实现斗轮机对散装物料转运的无人化、智能化控制。

Description

一种基于三维建模技术的数字煤场管理方法及系统 技术领域
本发明涉及斗堆取料机和盘煤控制的技术领域,尤其涉及一种基于三维建模技术的数字煤场管理方法及系统。
背景技术
煤耗是火力发电厂的一项重要生产指标,它约占发电成本的70%~80%。为了准确核算发电成本,发电厂在月末对煤场存煤量按时进行盘点。现有煤场中的斗堆取料机作业和盘煤均为人工操作,受作业人员水平、情绪、现场作业环境影响极大。频繁造成作业过程中撒煤,盘煤数值偏差大等一系列问题。
另外,因煤场环境恶劣,原有的斗轮机定位系统是基于机械传动使精密滑动变阻器电压变化进而量化出相应俯仰、回转及行程值,这些器件以及限位信号极不可靠,更不能满足斗轮机的定位使用;而传统的煤场盘煤是依靠手持式的盘煤仪,盘煤工作量较大。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述现有存在的问题,提出了本发明。
因此,本发明提供了一种基于三维建模技术的数字煤场管理方法,能够
为解决上述技术问题,本发明提供如下技术方案:包括,利用定位单元获取斗轮机轮斗在煤场中的相对位置;三维单元根据所述相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;通过激光盘煤仪获取煤垛表面形态和三维数据;将所述斗轮机三维数据、煤垛的表面形态和三维数据输入至控制单元,通过所述控制单元控制所述轮斗和大臂回转速度,以进行堆取料工作。
作为本发明所述的基于三维建模技术的数字煤场管理方法的一种优选方案,其中:还包括,所述斗轮机三维数据包括回转、俯仰、行程数据;将所述回转数据输入至所述控制单元,进而控制大臂回转速度。
作为本发明所述的基于三维建模技术的数字煤场管理方法的一种优选方 案,其中:所述定位单元包括信号采集模块和处理模块;将斗轮机轮斗设为被测节点,煤场为参考节点,通过所述信号采集模块检测被测节点的UWB信号,并将所述UWB信号发送至所述处理模块;通过所述处理模块对测距信息进行测距和定位。
作为本发明所述的基于三维建模技术的数字煤场管理方法的一种优选方案,其中:所述测距包括,所述被测节点将参考节点发送的测距信息进行变频处理,而后将其发送给所述处理模块,通过所述处理模块完成测距。
作为本发明所述的基于三维建模技术的数字煤场管理方法的一种优选方案,其中:所述激光盘煤仪包括数据采集模块和计算模块;将激光盘煤仪置于轮斗的上方,并设置扫描频率;所述数据采集模块根据所述扫描频率对轮斗下的煤垛区域进行扫描,获取扫描数据;通过所述计算模块对所述扫描数据进行计算和整合,获得所述煤垛表面形态和三维数据。
作为本发明所述的基于三维建模技术的数字煤场管理方法的一种优选方案,其中:还包括,在所述轮斗到达设定的固定高度时,将所述大臂回转至设定的固定角度或使所述轮斗和大臂接近煤垛,令控制单元反向工作;定义轮斗、大臂与煤垛之间的水平距离小于1m为接近。
作为本发明所述的基于三维建模技术的数字煤场管理方法的一种优选方案,其中:还包括,通过所述控制单元控制斗轮机开至设定的相应位置且将所述轮斗放置于设定的相应位置,当后级皮带机设备准备就绪即可开始堆取料工作。
作为本发明所述的基于三维建模技术的数字煤场管理系统的一种优选方案,其中:包括,定位单元,用于获取斗轮机轮斗在煤场中的相对位置;三维单元,与所述定位单元连接,用于根据所述相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;激光盘煤仪,获取煤垛表面形态和三维数据;控制单元,分别与所述三维单元、激光盘煤仪连接,其用于根据对所述斗轮机三维数据、煤垛的表面形态和三维数据对所述轮斗和大臂回转速度进行控制,以进行堆取料工作。
作为本发明所述的基于三维建模技术的数字煤场管理系统的一种优选方案,其中:所述定位单元包括信号采集模块和处理模块;将斗轮机轮斗设为被测节点,煤场为参考节点;所述信号采集模块,用于检测被测节点的UWB信 号;处理模块,与所述信号采集模块连接,用于对测距信息进行测距和定位。
作为本发明所述的基于三维建模技术的数字煤场管理系统的一种优选方案,其中:所述激光盘煤仪包括数据采集模块和计算模块;将激光盘煤仪置于轮斗的上方,设置扫描频率;所述数据采集模块,用于根据所述扫描频率对轮斗下的煤垛区域进行扫描,获取扫描数据;所述计算模块,与所述数据采集模块连接,用于对所述扫描数据进行计算和整合,获得所述煤垛表面形态和三维数据。
本发明的有益效果:本发明基于UWB定位技术对斗轮机轮斗进行定位,结合定位数据和三维数据对轮斗和大臂进行控制,提高了提高堆取料作业的精准度,实现斗轮机对散装物料转运的无人化、智能化控制。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明第一个实施例所述的一种基于三维建模技术的数字煤场管理方法的数据扫描示意图。
图2为本发明第三个实施例所述的一种基于三维建模技术的数字煤场管理系统的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少 一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
同时在本发明的描述中,需要说明的是,术语中的“上、下、内和外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一、第二或第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本发明中除非另有明确的规定和限定,术语“安装、相连、连接”应做广义理解,例如:可以是固定连接、可拆卸连接或一体式连接;同样可以是机械连接、电连接或直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
本实施例提供了一种基于三维建模技术的数字煤场管理方法,包括:
S1:利用定位单元100获取斗轮机轮斗在煤场中的相对位置;
定位单元100包括信号采集模块101和处理模块102,获取斗轮机轮斗在煤场中的相对位置的具体步骤如下:
(1)将斗轮机轮斗设为被测节点,煤场为参考节点,通过信号采集模块101检测被测节点的UWB信号,并将UWB信号发送至处理模块102;
(2)通过处理模块102对测距信息进行测距;
被测节点将参考节点发送的测距信息进行变频处理,而后将其发送给处理模块102,通过处理模块102完成测距。
(3)根据测距结果获得被测节点的空间位置,完成定位。
S2:三维单元200根据相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;
斗轮机三维数据包括回转、俯仰、行程数据,三维单元200根据回转、俯仰、行程数据对斗轮机姿态进行三维建模,获得斗轮机三维数据。
S3:通过激光盘煤仪300获取煤垛表面形态和三维数据;
将激光盘煤仪300置于轮斗的上方,并设置扫描频率;其中,激光盘煤仪300包括数据采集模块301和计算模块302。
参照图1,(1)数据采集模块301根据扫描频率对轮斗下的煤垛区域进行扫描,获取扫描数据;
(2)通过计算模块302对扫描数据进行计算和整合,获得煤垛表面形态和三维数据。
将扫描数据(各煤垛点的三维数据)通过千兆以太网发送到计算模块302,在计算模块302内经过visual studio编写的控制软件对现场发送来的数据进行计算和整合,获得煤垛表面形态和三维数据。
S4:将斗轮机三维数据、煤垛的表面形态和三维数据输入至控制单元400,通过控制单元400控制轮斗和大臂回转速度,以进行堆取料工作。
其中需要说明的是,本实施例的控制单元400为回转电机控制器(PLC)。
将回转数据输入至控制单元400,以控制大臂回转速度;将斗轮机三维数据、煤垛的表面形态和三维数据输入至控制单元400,通过控制单元400控制斗轮机开至设定的相应位置且轮斗放置于设定的相应位置,当后级皮带机设备准备就绪即可开始堆取料工作。
在轮斗到达设定的固定高度时,将大臂回转至设定的固定角度或使轮斗和大臂接近煤垛,令控制单元400反向工作,以防止斗轮机轮斗及大臂碰撞煤垛及煤棚。
定义轮斗、大臂与煤垛之间的水平距离小于1m为接近。
实施例2
为了对本方法中采用的技术效果加以验证说明,本实施例选择传统的技术方案和采用本方法进行对比测试,以科学论证的手段对比试验结果,以验证本方法所具有的真实效果。
为验证本方法相对传统的技术方案具有较高的定位精度和控制精度,本实施例中将采用传统的技术方案和本方法分别对轮斗进行实时定位对比,结果如下表所示。
表1:定位性能比较。
Figure PCTCN2021121809-appb-000001
分别对轮斗和大臂进行控制,结果如下表所示。
表2:控制性能比较。
  控制大臂的平均速度误差 控制轮斗的平均位置误差
传统的技术方案 2.95% 0.198%
本方法 0.001% 0.018%
可见,本方法能够精确地定位轮斗,且控制误差较小,满足堆取料作业的精准度要求。
实施例3
参照图2,为本发明的第三种实施例,该实施例不同于第一种实施例,本实施例提供了一种基于三维建模技术的数字煤场管理系统,包括,
定位单元100,用于获取斗轮机轮斗在煤场中的相对位置;定位单元100包括信号采集模块101和处理模块102;具体的,将斗轮机轮斗设为被测节点,煤场为参考节点;信号采集模块101用于检测被测节点的UWB信号;处理模块102,与信号采集模块101连接,用于对测距信息进行测距和定位。
三维单元200,与定位单元100连接,用于根据相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;
激光盘煤仪300,获取煤垛表面形态和三维数据;激光盘煤仪300包括数据采集模块301和计算模块302;具体的,将激光盘煤仪300置于轮斗的上方,设置扫描频率;数据采集模块301,用于根据扫描频率对轮斗下的煤垛区域进行扫描,获取扫描数据;计算模块302,与数据采集模块301连接,用于对扫描数据进行计算和整合,获得煤垛表面形态和三维数据。
控制单元400,分别与三维单元200、激光盘煤仪300连接,其用于根据对斗轮机三维数据、煤垛的表面形态和三维数据对轮斗和大臂回转速度进行控制,以进行堆取料工作。
应当认识到,本发明的实施例可以由计算机硬件、硬件和软件的组合、或 者通过存储在非暂时性计算机可读存储器中的计算机指令来实现或实施。所述方法可以使用标准编程技术-包括配置有计算机程序的非暂时性计算机可读存储介质在计算机程序中实现,其中如此配置的存储介质使得计算机以特定和预定义的方式操作——根据在具体实施例中描述的方法和附图。每个程序可以以高级过程或面向对象的编程语言来实现以与计算机系统通信。然而,若需要,该程序可以以汇编或机器语言实现。在任何情况下,该语言可以是编译或解释的语言。此外,为此目的该程序能够在编程的专用集成电路上运行。
此外,可按任何合适的顺序来执行本文描述的过程的操作,除非本文另外指示或以其他方式明显地与上下文矛盾。本文描述的过程(或变型和/或其组合)可在配置有可执行指令的一个或多个计算机系统的控制下执行,并且可作为共同地在一个或多个处理器上执行的代码(例如,可执行指令、一个或多个计算机程序或一个或多个应用)、由硬件或其组合来实现。所述计算机程序包括可由一个或多个处理器执行的多个指令。
进一步,所述方法可以在可操作地连接至合适的任何类型的计算平台中实现,包括但不限于个人电脑、迷你计算机、主框架、工作站、网络或分布式计算环境、单独的或集成的计算机平台、或者与带电粒子工具或其它成像装置通信等等。本发明的各方面可以以存储在非暂时性存储介质或设备上的机器可读代码来实现,无论是可移动的还是集成至计算平台,如硬盘、光学读取和/或写入存储介质、RAM、ROM等,使得其可由可编程计算机读取,当存储介质或设备由计算机读取时可用于配置和操作计算机以执行在此所描述的过程。此外,机器可读代码,或其部分可以通过有线或无线网络传输。当此类媒体包括结合微处理器或其他数据处理器实现上文所述步骤的指令或程序时,本文所述的发明包括这些和其他不同类型的非暂时性计算机可读存储介质。当根据本发明所述的方法和技术编程时,本发明还包括计算机本身。计算机程序能够应用于输入数据以执行本文所述的功能,从而转换输入数据以生成存储至非易失性存储器的输出数据。输出信息还可以应用于一个或多个输出设备如显示器。在本发明优选的实施例中,转换的数据表示物理和有形的对象,包括显示器上产生的物理和有形对象的特定视觉描绘。
如在本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件 或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种基于三维建模技术的数字煤场管理方法,其特征在于:包括,
    利用定位单元(100)获取斗轮机轮斗在煤场中的相对位置;
    三维单元(200)根据所述相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;
    通过激光盘煤仪(300)获取煤垛表面形态和三维数据;
    将所述斗轮机三维数据、煤垛的表面形态和三维数据输入至控制单元(400),通过所述控制单元(400)控制所述轮斗和大臂回转速度,以进行堆取料工作。
  2. 如权利要求1所述的基于三维建模技术的数字煤场管理方法,其特征在于:还包括,
    所述斗轮机三维数据包括回转、俯仰、行程数据;
    将所述回转数据输入至所述控制单元(400),进而控制大臂回转速度。
  3. 如权利要求2所述的基于三维建模技术的数字煤场管理方法,其特征在于:所述定位单元(100)包括信号采集模块(101)和处理模块(102);
    将斗轮机轮斗设为被测节点,煤场为参考节点,通过所述信号采集模块(101)检测被测节点的UWB信号,并将所述UWB信号发送至所述处理模块(102);
    通过所述处理模块(102)对测距信息进行测距和定位。
  4. 如权利要求3所述的基于三维建模技术的数字煤场管理方法,其特征在于:所述测距包括,
    所述被测节点将参考节点发送的测距信息进行变频处理,而后将其发送给所述处理模块(102),通过所述处理模块(102)完成测距。
  5. 如权利要求4所述的基于三维建模技术的数字煤场管理方法,其特征在于:所述激光盘煤仪(300)包括数据采集模块(301)和计算模块(302);
    将激光盘煤仪(300)置于轮斗的上方,并设置扫描频率;
    所述数据采集模块(301)根据所述扫描频率对轮斗下的煤垛区域进行扫描,获取扫描数据;
    通过所述计算模块(302)对所述扫描数据进行计算和整合,获得所述煤垛表面形态和三维数据。
  6. 如权利要求5所述的基于三维建模技术的数字煤场管理方法,其特征在于:还包括,
    在所述轮斗到达设定的固定高度时,将所述大臂回转至设定的固定角度或 使所述轮斗和大臂接近煤垛,令控制单元(400)反向工作;
    定义轮斗、大臂与煤垛之间的水平距离小于1m为接近。
  7. 如权利要求1所述的基于三维建模技术的数字煤场管理方法,其特征在于:还包括,
    通过所述控制单元(400)控制斗轮机开至设定的相应位置且将所述轮斗放置于设定的相应位置,当后级皮带机设备准备就绪即可开始堆取料工作。
  8. 一种基于三维建模技术的数字煤场管理系统,其特征在于:包括,
    定位单元(100),用于获取斗轮机轮斗在煤场中的相对位置;
    三维单元(200),与所述定位单元(100)连接,用于根据所述相对位置和轮斗的三维数据对斗轮机姿态进行三维建模,获得斗轮机三维数据;
    激光盘煤仪(300),获取煤垛表面形态和三维数据;
    控制单元(400),分别与所述三维单元(200)、激光盘煤仪(300)连接,其用于根据对所述斗轮机三维数据、煤垛的表面形态和三维数据对所述轮斗和大臂回转速度进行控制,以进行堆取料工作。
  9. 如权利要求8所述的基于三维建模技术的数字煤场管理系统,其特征在于:所述定位单元(100)包括信号采集模块(101)和处理模块(102);
    将斗轮机轮斗设为被测节点,煤场为参考节点;
    所述信号采集模块(101),用于检测被测节点的UWB信号;
    处理模块(102),与所述信号采集模块(101)连接,用于对测距信息进行测距和定位。
  10. 如权利要求8或9所述的基于三维建模技术的数字煤场管理系统,其特征在于:所述激光盘煤仪(300)包括数据采集模块(301)和计算模块(302);
    将激光盘煤仪(300)置于轮斗的上方,设置扫描频率;
    所述数据采集模块(301),用于根据所述扫描频率对轮斗下的煤垛区域进行扫描,获取扫描数据;
    所述计算模块(302),与所述数据采集模块(301)连接,用于对所述扫描数据进行计算和整合,获得所述煤垛表面形态和三维数据。
PCT/CN2021/121809 2021-09-29 2021-09-29 一种基于三维建模技术的数字煤场管理方法及系统 WO2023050188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121809 WO2023050188A1 (zh) 2021-09-29 2021-09-29 一种基于三维建模技术的数字煤场管理方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121809 WO2023050188A1 (zh) 2021-09-29 2021-09-29 一种基于三维建模技术的数字煤场管理方法及系统

Publications (1)

Publication Number Publication Date
WO2023050188A1 true WO2023050188A1 (zh) 2023-04-06

Family

ID=85781096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121809 WO2023050188A1 (zh) 2021-09-29 2021-09-29 一种基于三维建模技术的数字煤场管理方法及系统

Country Status (1)

Country Link
WO (1) WO2023050188A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116499364A (zh) * 2023-06-30 2023-07-28 济南作为科技有限公司 盘煤仪三维激光点云调畸变方法及系统
CN117289640A (zh) * 2023-11-24 2023-12-26 华能吉林发电有限公司长春热电厂 一种门式斗轮机恒流量取煤的数据驱动控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278678A (ja) * 1998-03-25 1999-10-12 Nippon Steel Corp リクレーマ運行制御装置および制御方法
CN110515396A (zh) * 2019-09-25 2019-11-29 杭州集益科技有限公司 一种斗轮机自动寻址控制方法及系统
CN212355740U (zh) * 2020-05-19 2021-01-15 大连华锐重工集团股份有限公司 一种全自动取料的斗轮机系统
CN213690939U (zh) * 2020-11-19 2021-07-13 华能铜川照金煤电有限公司 一种无线智能集成传输设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278678A (ja) * 1998-03-25 1999-10-12 Nippon Steel Corp リクレーマ運行制御装置および制御方法
CN110515396A (zh) * 2019-09-25 2019-11-29 杭州集益科技有限公司 一种斗轮机自动寻址控制方法及系统
CN212355740U (zh) * 2020-05-19 2021-01-15 大连华锐重工集团股份有限公司 一种全自动取料的斗轮机系统
CN213690939U (zh) * 2020-11-19 2021-07-13 华能铜川照金煤电有限公司 一种无线智能集成传输设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116499364A (zh) * 2023-06-30 2023-07-28 济南作为科技有限公司 盘煤仪三维激光点云调畸变方法及系统
CN116499364B (zh) * 2023-06-30 2023-09-12 济南作为科技有限公司 盘煤仪三维激光点云调畸变方法及系统
CN117289640A (zh) * 2023-11-24 2023-12-26 华能吉林发电有限公司长春热电厂 一种门式斗轮机恒流量取煤的数据驱动控制方法及装置

Similar Documents

Publication Publication Date Title
WO2023050188A1 (zh) 一种基于三维建模技术的数字煤场管理方法及系统
CN107564069B (zh) 标定参数的确定方法、装置及计算机可读存储介质
CN204730814U (zh) 一种基于线激光三维测量的零部件质量检验装置
CN101074869A (zh) 基于相位法的三维轮廓测量方法
CN103913116A (zh) 大型堆积物料体积两侧平行测量装置和方法
CN102135418A (zh) 一种大型散堆料的体积测量装置
CN106908052B (zh) 用于智能机器人的路径规划方法及装置
CN109465830B (zh) 机器人单目立体视觉标定系统及方法
CN105674926A (zh) 点云拼接方法及系统
CN105222727A (zh) 线阵ccd相机成像平面与工作台平行度的测量方法和系统
CN107958357A (zh) 一种bim项目的成本管理系统
CN108896026A (zh) 复杂异形结构建筑的幕墙施工的测量方法
CN111830948A (zh) 不同料场之间实时料堆三维成像的数据共享系统和方法
CN103191958B (zh) 一种板料成形回弹的光学检测方法
CN108845663A (zh) 设计施工系统
CN113252015A (zh) 一种基于点云、ai处理的实测实量机器人装置
CN104318610B (zh) 大空间三维实体放线方法
CN117455892A (zh) 塔脚焊缝信息提取方法、装置、设备及存储介质
CN104180791B (zh) 一种飞机水平测量方法
Pu et al. AutoRepo: A general framework for multi-modal LLM-based automated construction reporting
CN206864487U (zh) 一种太阳能电池片高速视觉定位及矫正系统
CN112650095B (zh) 一种高度自动化的工程测量方法
Moon et al. Development of 3D laser range finder system for object recognition
CN204390303U (zh) 一种环物影像三维重建设备实时标定系统
CN1687700A (zh) 立体视觉盘煤方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE