WO2023050157A1 - Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method - Google Patents

Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method Download PDF

Info

Publication number
WO2023050157A1
WO2023050157A1 PCT/CN2021/121726 CN2021121726W WO2023050157A1 WO 2023050157 A1 WO2023050157 A1 WO 2023050157A1 CN 2021121726 W CN2021121726 W CN 2021121726W WO 2023050157 A1 WO2023050157 A1 WO 2023050157A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
input voltage
information
detecting
Prior art date
Application number
PCT/CN2021/121726
Other languages
French (fr)
Inventor
Xuewei Dai
Li Zhou
Yan Li
Changfu XIAO
Original Assignee
Tridonic Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Gmbh & Co Kg filed Critical Tridonic Gmbh & Co Kg
Priority to GB2402725.2A priority Critical patent/GB2624349A/en
Priority to PCT/CN2021/121726 priority patent/WO2023050157A1/en
Publication of WO2023050157A1 publication Critical patent/WO2023050157A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/06Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into an amplitude of current or voltage
    • G01R23/09Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into an amplitude of current or voltage using analogue integrators, e.g. capacitors establishing a mean value by balance of input signals and defined discharge signals or leakage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values

Definitions

  • Embodiments of the present disclosure generally relate to the field of electronics, and more particularly, to a voltage information detecting circuit, a power supply circuit, a driving circuit and a voltage information detecting method.
  • a LED driver which needs to sense and report working information, like AC input frequency, AC input power, LED output voltage, LED output current etc.
  • working information like AC input frequency, AC input power, LED output voltage, LED output current etc.
  • this MCU can either be in a primary side, or a secondary side. The best choice is to put MCU in secondary side, as normally secondary side has more necessary information then primary side.
  • the MCU When the MCU is located in the secondary side, it is needed to sense and transfer the working information from the primary side to the secondary side.
  • Fig. 1 is a schematic diagram of a method to transfer the working information to the secondary side. As shown in Fig. 1, in this method, an auxiliary wiring is used, however, it is difficult to get an accurate input frequency and frequency.
  • Fig. 2 is a schematic diagram of another method to transfer the working information to the secondary side.
  • another MCU is located in the primary side to sense the working information, and a communication port and an optocoupler are used to transfer the working information to the secondary side. This may improve the accuracy of the input frequency and frequency, but as two MCUs are used, the cost is relatively high.
  • Fig. 3 is a schematic diagram of a further method to transfer the working information to the secondary side.
  • a low pass filter 21 is used to filter a signal to 0/1 signal, the 0/1 signal is transferred to the secondary side after being processed by a voltage threshold detector 25, and the signal 5 before filtering, the signal 23 after filtering, and the signal OUT after the voltage threshold detector 25 are also shown in Fig. 3.
  • additional hardware circuit of low pass filter is needed, which increases the cost of the driver, furthermore, this method can only detect whether there is AC/DC input, but not able to get accurate input voltage and frequency.
  • embodiments of the present disclosure provide a voltage information detecting circuit, a power supply circuit, a driving circuit and a voltage information detecting method.
  • a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
  • the determination of values for the mains supply voltage enables the user to determine power consumption of the driving circuit and thereby may be used to provide a key parameter for building automation and monitoring system, e.g. in order to perform power metering and collect power metering data from the individual devices connected to the communication interface.
  • a voltage information detecting circuit comprising:
  • a detecting circuit configured to be connected to an input port which receives an input voltage (Vin) , and output a detecting signal from an output terminal corresponding to the input voltage;
  • a charge storage circuit configured to be connected to the output terminal of the detecting circuit, being charged and discharge according to the detecting signal
  • a controller configured to be connected to a first connecting node (A) between the charge storage circuit and the detecting circuit, and obtain information of the input voltage according to a voltage of the first connecting node (A) .
  • information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage.
  • the charge storage circuit comprises a first resistor (R1) and a first capacitor (C1) ,
  • the first resistor and the first capacitor are in parallel connection between the first connecting node (A) and a ground port.
  • the detecting circuit when the input voltage is higher than a first threshold (e.g. 0.6V) , the detecting circuit out puts the detecting signal which follows the input voltage (Vin) .
  • a first threshold e.g. 0.6V
  • the detecting circuit comprises:
  • the second resistor and the third resistor are in serials connection between the input port and the ground port
  • an anode of the optical coupler is connected to a second connecting node (B) between the second resistor and the third resistor,
  • a cathode of the optical coupler is connected to the ground port
  • an emitter of the optical coupler is connected to the first connecting node (A) ,
  • a collector of the optical coupler is supplied with a preset voltage (Vdd) .
  • the controller calculates the frequency of the input voltage by using a frequency of the detecting signal
  • the controller compares voltage of the first connecting node (A) with a reference voltage, measures a period (T2) when the voltage of the first connecting node (A) is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
  • a power supply circuit comprising:
  • the input port configured to receive the input voltage (Vin) ;
  • an output port configured to output an output voltage (Vout) ;
  • a converter configured to convert the input voltage into the output voltage.
  • a driving circuit comprising the power supply circuit according to the second aspect of the embodiments.
  • the information of the input voltage is transmitted by wireless interface or wire communication interface circuit.
  • the driving circuit further comprises:
  • a DC-DC circuit configured to convert the output voltage (Vout) of the power supply circuit into a second output voltage, so as to drive an electronic equipment.
  • a voltage information detecting method comprising:
  • information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage.
  • the controller calculates the frequency of the input voltage by using a frequency of the detecting signal
  • the controller compares voltage of the detecting signal with a reference voltage, measures a period (T2) when the voltage of the charge storage circuit is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
  • accurate information of the input voltage can be detected with low cost.
  • Fig. 1 is a schematic diagram of a method to transfer the working information to the secondary side
  • Fig. 2 is a schematic diagram of another method to transfer the working information to the secondary side
  • Fig. 3 is a schematic diagram of a further method to transfer the working information to the secondary side
  • Fig. 4 is a schematic diagram of the voltage information detecting circuit of the present disclosure.
  • Fig. 5 shows a flowchart of a voltage information detecting method
  • Fig. 6 is a diagram of the diving circuit
  • Fig. 7 is another diagram of the diving circuit.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • a voltage information detecting circuit is provided in the first aspect of embodiments.
  • Fig. 4 is a schematic diagram of a voltage information detecting circuit of the present disclosure. As shown in Fig. 4, the voltage information detecting circuit 100 includes: a detecting circuit 1, a charge storage circuit 2 and a controller 3.
  • the detecting circuit 1 is configured to be connected to an input port X which receives an input voltage Vin, and output a detecting signal from an output terminal 10 corresponding to the input voltage.
  • the charge storage circuit 2 is configured to be connected to the output terminal 10 of the detecting circuit 1.
  • the charge storage circuit 2 may be charged or discharge according to the detecting signal.
  • the controller 3 is configured to be connected to a first connecting node A between the charge storage circuit 2 and the detecting circuit 1, and obtain information of the input voltage Vin according to a voltage of the first connecting node A.
  • the information of the input voltage Vin includes an amplitude of the input voltage Vin and/or a frequency of the input voltage Vin.
  • the controller 3 may be a micro-controller unit (MCU) .
  • the voltage of the first connecting node A may be supplied to a general purpose input/output (GPIO) terminal of the controller 3.
  • GPIO general purpose input/output
  • a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
  • the charge storage circuit 2 when the detecting signal is higher than a preset value (e.g. 0V) , the charge storage circuit 2 may be charged by the detecting signal of the detecting circuit 1, so that the voltage of the first connecting node A raises. When the detecting signal drops from a maximum value, the charge storage circuit 2 may discharge to follow the detecting signal, and the voltage of the first connecting node A drops as a result.
  • a preset value e.g. 0V
  • the charge storage circuit 2 may include a first resistor (R1) and a first capacitor (C1) .
  • the first resistor R1 and the first capacitor C1 are in parallel connection between the first connecting node A and a ground port.
  • the detecting signal charges the first capacitor C1
  • the voltage of the first connecting node A raises, and the charged up voltage of the first connecting node A equals to Icon*R1, where Icon is a current flows through the first resistor R1.
  • the first capacitor C1 discharges to the ground port via the first resistor R1, and the voltage of the first connecting node A drops.
  • the detecting circuit 1 when the input voltage Vin is higher than a first threshold (e.g. 0.6V) , the detecting circuit 1 outputs the detecting signal which follows the input voltage (Vin) .
  • a first threshold e.g. 0.6V
  • the detecting circuit 1 when the input voltage Vin is higher than the first threshold (e.g. 0.6V) , as the input voltage raises, voltage or current of the detecting signal raises.
  • the detecting circuit 1 stops to output the detecting signal.
  • the detecting circuit 1 includes: a second resistor R2, a third resistor R3 and an optical coupler (OC) 12.
  • the second resistor R2 and the third resistor R3 are in serials connection between the input port X and the ground port.
  • An anode of the optical coupler 12 is connected to a second connecting node B between the second resistor R2 and the third resistor R3.
  • a cathode of the optical coupler 12 is connected to the ground port.
  • An emitter of the optical coupler 12 is connected to the first connecting node A, that is to say, the emitter of the optical coupler 12 is the output terminal 10 of the detecting circuit 1.
  • a collector of the optical coupler 12 is supplied with a preset voltage Vdd, for example, a power source is connected to the collector of the optical coupler 12 via a fourth resistor R4.
  • the input voltage Vin may be AC (alternative current) voltage.
  • the first threshold is forward voltage of an LED in the optical coupler 12
  • the forward voltage may be 0.6V
  • the LED in the optical coupler 12 conducts, and current flows from the power source to the ground port through the collector, the emitter and the first resistor R1.
  • the first capacitor C1 is charged accordingly. The higher the input voltage is, the faster the first capacitor C1 is charged, and faster the voltage of node A raises.
  • the LED in the optical coupler 12 When the input voltage Vin is lower than the first threshold (e.g., 0.6V) , the LED in the optical coupler 12 is turned off, and there is no current flowing from the collector to the emitter, that is to say, the detecting circuit 1 stops to output the detecting signal.
  • the first capacitor C1 is discharged via the first resistor R1, and the voltage of node A drops.
  • Fig. 4 sequence diagram of the voltage of the node A is also shown. As shown in the sequence diagram, abscissa represents time, ordinate represents the voltage of the node A.
  • the first capacitor C1 discharges, and the voltage of node A starts to drop in accordance with falling of the input voltage Vin.
  • the voltage of node A drops to the reference voltage, and then continues to drop, until to a minimum value at time t3, for example, the minimum value is 0V.
  • a period T21 from t2 to t3 corresponds to the discharging time, during which the voltage of node A drops from the reference voltage to the minimum value.
  • the first capacitor C1 begins to be charged again in accordance with raising of the input voltage Vin in a new cycle, and the voltage of node A raises accordingly.
  • the voltage of node A reaches to the reference voltage again.
  • the period T1 equals to a period from t1 to t4.
  • the period T1 also refers to the cycle of the input voltage Vin.
  • a period T22 corresponds to the charging time, during which the voltage of node A raises from the minimum value to the reference voltage.
  • the period T22 may be equal to a period from t3 to t4 or a period from t3’ to t4. That is to say, the period T2 is a period when the voltage of node A is lower than the reference voltage during a cycle of the voltage of node A.
  • a period T2 equals to T21 plus T22.
  • the controller 3 may calculate the frequency of the input voltage Vin by using the frequency f1 of the detecting signal.
  • the controller 3 may also compares voltage of the node A with a reference voltage, measures the period T2 when the voltage of the node A is lower than the reference voltage, and calculates the amplitude of the input voltage Vin according to the period T2.
  • a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
  • the voltage information detecting method corresponds to the voltage information detecting circuit provided in the first aspect of embodiments.
  • the same contents as those in the first aspect of embodiments are omitted.
  • Fig. 5 shows a flowchart of a voltage information detecting method.
  • the method includes:
  • Block 51 outputting a detecting signal corresponding to an input voltage
  • Block 52 a charge storage circuit being charged and discharge according to the detecting signal
  • Block 53 obtaining information of the input voltage according to a voltage of the charge storage circuit.
  • the information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage Vin.
  • the controller 3 calculates the frequency of the input voltage by using a frequency of the detecting signal; and/or, the controller 3 compares voltage of the detecting signal with a reference voltage, measures a period (T2) when the voltage of the charge storage circuit is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
  • a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
  • a power supply circuit is provided in the third aspect of embodiments.
  • the power supply circuit 200 includes: the voltage information detecting circuit 100 provided in the first aspect of embodiments; the input port X, which is configured to receive the input voltage Vin; an pair of output ports PO+/PO-, which are configured to output an output voltage Vout; and, a converter 201, which is configured to convert the input voltage Vin into the output voltage Vout, the input voltage Vin may be AC voltage, the output voltage Vout may be DC (direct current) voltage.
  • the convertor 201 may include a transformer T0.
  • a diode D1 and a second capacitor C2 are also included in the secondary side of the convertor 201.
  • a PFC (power factor correct) circuit including a switch may also be included but not shown in Fig. 4. More details about the power supply circuit 200 may be referred to the related art.
  • a driving circuit is further provided in the third aspect of embodiments.
  • Fig. 6 is a diagram of the diving circuit.
  • the driving circuit 600 includes the power supply circuit 200 in Fig. 5, a DALI ( (Digital Addressable Lighting Interface) interface 601, a forward optical coupler 602 and a backward optical coupler 603.
  • the DALI interface may receive controlling signal, and send the controlling signal to the controller 3 via the forward optical coupler 602.
  • the information about the input voltage Vin will be sent from the controller 3 to the DALI interface 601 via the backward optical coupler 603.
  • the detecting circuit 1 and charge storage circuit 2 and the controller (MCU) 3 form the voltage information detecting circuit 100.
  • the driving circuit 600 further includes a DC-DC circuit 604, which is configured to convert the output voltage Vout of the power supply circuit 200 into a second output voltage, so as to drive an electronic equipment.
  • the electronic equipment may be LED.
  • Fig. 7 is another diagram of the diving circuit.
  • the driving circuit 700 includes the power supply circuit 200 in Fig. 5, and a wireless interface 701.
  • the driving circuit 700 further includes the DC-DC circuit 604.
  • the information about the input voltage Vin can be sent via the wireless interface 701.
  • the wireless interface may be NFC (Near Field Communication) interface, Bluetooth interface etc.
  • the detecting circuit 1 and charge storage circuit 2 and the controller (MCU) 3 form the voltage information detecting circuit 100.
  • the driving circuit 600 /700 includes a wired interface (601) or wireless interface (701) to be connected to an external bus which may be a wireless (Fig. 7) or a wired bus (Fig. 6) .
  • the driving circuit 600 /700 can communicate with other devices via the external bus.
  • the driving circuit 600 /700 may generate communication signals for transmission to the other devices including data such as the mains supply voltage information received from the voltage information detecting circuit 100 via the interface circuit (603, 601 /701) .
  • data such as the mains supply voltage information received from the voltage information detecting circuit 100 may be used to determine power consumption of the driving circuit 600 /700 and thereby to provide a key parameter for building automation and monitoring system, e.g. in order to perform power metering and collect power metering data from the individual devices as e.g. driving circuit 600 /700 connected to the communication interface and external bus.
  • the driving circuit 600 /700 provides the capability to determine presence, absence, or even an actual value of the mains supply voltage using the control circuit arranged on the secondary side of the isolation barrier.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

A voltage information detecting circuit, a power supply circuit, a driving circuit and a voltage information detecting method. The voltage information detecting circuit, includes: a detecting circuit, configured to be connected to an input port which receives an input voltage (Vin), and output a detecting signal from an output terminal corresponding to the input voltage; a charge storage circuit, configured to be connected to the output terminal of the detecting circuit, being charged and discharge according to the detecting signal; and a controller, configured to be connected to a first connecting node (A) between the charge storage circuit and the detecting circuit, and obtain information of the input voltage according to a voltage of the first connecting node (A).

Description

Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method Technical Field
Embodiments of the present disclosure generally relate to the field of electronics, and more particularly, to a voltage information detecting circuit, a power supply circuit, a driving circuit and a voltage information detecting method.
Background
This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the related art or what is not in the related art.
There are some scenarios for a LED driver, which needs to sense and report working information, like AC input frequency, AC input power, LED output voltage, LED output current etc. Normally, there will be a MCU to collect/calculate/report the working information. For a self driver, this MCU can either be in a primary side, or a secondary side. The best choice is to put MCU in secondary side, as normally secondary side has more necessary information then primary side.
Summary
When the MCU is located in the secondary side, it is needed to sense and transfer the working information from the primary side to the secondary side.
Fig. 1 is a schematic diagram of a method to transfer the working information to the secondary side. As shown in Fig. 1, in this method, an auxiliary wiring is used, however, it is difficult to get an accurate input frequency and frequency.
Fig. 2 is a schematic diagram of another method to transfer the working information to the secondary side. As shown in Fig. 2, in this method, another MCU is located in the primary side to sense the working information, and a communication port and an optocoupler are used to transfer the working information to the secondary side. This may improve the accuracy of the input frequency and frequency, but as two MCUs are used, the cost is relatively high.
Fig. 3 is a schematic diagram of a further method to transfer the working information to the secondary side. As shown in Fig. 3, in this method, a low pass filter 21 is used to filter a signal to 0/1 signal, the 0/1 signal is transferred to the secondary side after being processed by a voltage threshold detector 25, and the signal 5 before filtering, the signal 23 after filtering, and the signal OUT after the voltage threshold detector 25 are also shown in Fig. 3. In this method, additional hardware circuit of low pass filter is needed, which increases the cost of the driver, furthermore, this method can only detect whether there is AC/DC input, but not able to get accurate input voltage and frequency.
Inventor of this disclosure found that the above mentioned existing methods cannot get accurate AC input voltage and frequency with low cost.
In general, embodiments of the present disclosure provide a voltage information detecting circuit, a power supply circuit, a driving circuit and a voltage information detecting method. In the voltage information detecting circuit, a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost. In the present disclosure, the determination of values for the mains supply voltage enables the user to determine power consumption of the driving circuit and thereby may be used to provide a key parameter for building automation and monitoring system, e.g. in order to perform power metering and collect power metering data from the individual devices connected to the communication interface.
In a first aspect of the embodiments, there is provided a voltage information detecting circuit, comprising:
a detecting circuit, configured to be connected to an input port which receives an input voltage (Vin) , and output a detecting signal from an output terminal corresponding to the input voltage;
a charge storage circuit, configured to be connected to the output terminal of the detecting circuit, being charged and discharge according to the detecting signal; and
a controller, configured to be connected to a first connecting node (A) between the charge storage circuit and the detecting circuit, and obtain information of the input voltage according to a voltage of the first connecting node (A) .
In at least one embodiment, information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage.
In at least one embodiment, the charge storage circuit comprises a first resistor (R1) and a first capacitor (C1) ,
the first resistor and the first capacitor are in parallel connection between the first connecting node (A) and a ground port.
In at least one embodiment, when the input voltage is higher than a first threshold (e.g. 0.6V) , the detecting circuit out puts the detecting signal which follows the input voltage (Vin) .
In at least one embodiment, the detecting circuit comprises:
a second resistor (R2) , a third resistor (R3) and an optical coupler (OC) ,
the second resistor and the third resistor are in serials connection between the input port and the ground port,
an anode of the optical coupler is connected to a second connecting node (B) between the second resistor and the third resistor,
a cathode of the optical coupler is connected to the ground port,
an emitter of the optical coupler is connected to the first connecting node (A) ,
a collector of the optical coupler is supplied with a preset voltage (Vdd) .
In at least one embodiment, the controller calculates the frequency of the input voltage by using a frequency of the detecting signal; and/or
the controller compares voltage of the first connecting node (A) with a reference voltage, measures a period (T2) when the voltage of the first connecting node (A) is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
In a second aspect of the embodiments, there is provided a power supply circuit, comprising:
the voltage information detecting circuit according to the first aspect of the embodiments;
the input port, configured to receive the input voltage (Vin) ;
an output port, configured to output an output voltage (Vout) ; and
a converter, configured to convert the input voltage into the output voltage.
In a third aspect of the embodiments, there is provided a driving circuit, comprising the power supply circuit according to the second aspect of the embodiments.
In at least one embodiments, the information of the input voltage is transmitted by wireless interface or wire communication interface circuit.
In at least one embodiments, the driving circuit further comprises:
a DC-DC circuit, configured to convert the output voltage (Vout) of the power supply circuit into a second output voltage, so as to drive an electronic equipment.
In a fourth aspect of the embodiments, there is provided a voltage information detecting method, comprising:
outputting a detecting signal corresponding to an input voltage;
a charge storage circuit being charged and discharge according to the detecting signal; and
obtaining information of the input voltage according to a voltage of the charge  storage circuit.
In at least one embodiments, information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage.
In at least one embodiments, the controller calculates the frequency of the input voltage by using a frequency of the detecting signal; and/or
the controller compares voltage of the detecting signal with a reference voltage, measures a period (T2) when the voltage of the charge storage circuit is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
According to at least one of the various embodiments of the present disclosure, accurate information of the input voltage can be detected with low cost.
Brief Description of the Drawings
The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
Fig. 1 is a schematic diagram of a method to transfer the working information to the secondary side;
Fig. 2 is a schematic diagram of another method to transfer the working information to the secondary side;
Fig. 3 is a schematic diagram of a further method to transfer the working information to the secondary side;
Fig. 4 is a schematic diagram of the voltage information detecting circuit of the present disclosure;
Fig. 5 shows a flowchart of a voltage information detecting method;
Fig. 6 is a diagram of the diving circuit;
Fig. 7 is another diagram of the diving circuit.
Detailed Description
The present disclosure will now be discussed with reference to several example embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
First aspect of embodiments
A voltage information detecting circuit is provided in the first aspect of embodiments.
Fig. 4 is a schematic diagram of a voltage information detecting circuit of the present disclosure. As shown in Fig. 4, the voltage information detecting circuit 100 includes: a detecting circuit 1, a charge storage circuit 2 and a controller 3.
The detecting circuit 1 is configured to be connected to an input port X which receives an input voltage Vin, and output a detecting signal from an output terminal 10 corresponding to the input voltage.
The charge storage circuit 2 is configured to be connected to the output terminal 10 of the detecting circuit 1. The charge storage circuit 2 may be charged or discharge according to the detecting signal.
The controller 3 is configured to be connected to a first connecting node A between the charge storage circuit 2 and the detecting circuit 1, and obtain information of the input voltage Vin according to a voltage of the first connecting node A. The information of the input voltage Vin includes an amplitude of the input voltage Vin and/or a frequency of the input voltage Vin.
As shown in FIG. 4, the controller 3 may be a micro-controller unit (MCU) . The voltage of the first connecting node A may be supplied to a general purpose input/output (GPIO) terminal of the controller 3.
According to the first aspect of the embodiments, a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
In at least one embodiments, when the detecting signal is higher than a preset value (e.g. 0V) , the charge storage circuit 2 may be charged by the detecting signal of the detecting circuit 1, so that the voltage of the first connecting node A raises. When the detecting signal drops from a maximum value, the charge storage circuit 2 may discharge to follow the detecting signal, and the voltage of the first connecting node A drops as a result.
As shown in Fig. 4, the charge storage circuit 2 may include a first resistor (R1) and a first capacitor (C1) . The first resistor R1 and the first capacitor C1 are in parallel connection between the first connecting node A and a ground port. When the detecting signal charges the first capacitor C1, the voltage of the first connecting node A raises, and  the charged up voltage of the first connecting node A equals to Icon*R1, where Icon is a current flows through the first resistor R1. When the detecting signal drops, the first capacitor C1 discharges to the ground port via the first resistor R1, and the voltage of the first connecting node A drops.
In at least one embodiments, when the input voltage Vin is higher than a first threshold (e.g. 0.6V) , the detecting circuit 1 outputs the detecting signal which follows the input voltage (Vin) . For example, when the input voltage Vin is higher than the first threshold (e.g. 0.6V) , as the input voltage raises, voltage or current of the detecting signal raises. When the input voltage Vin is equal to or lower than the first threshold (e.g. 0.6V) , the detecting circuit 1 stops to output the detecting signal.
As shown in Fig. 4, the detecting circuit 1 includes: a second resistor R2, a third resistor R3 and an optical coupler (OC) 12. The second resistor R2 and the third resistor R3 are in serials connection between the input port X and the ground port.
An anode of the optical coupler 12 is connected to a second connecting node B between the second resistor R2 and the third resistor R3. A cathode of the optical coupler 12 is connected to the ground port. An emitter of the optical coupler 12 is connected to the first connecting node A, that is to say, the emitter of the optical coupler 12 is the output terminal 10 of the detecting circuit 1. A collector of the optical coupler 12 is supplied with a preset voltage Vdd, for example, a power source is connected to the collector of the optical coupler 12 via a fourth resistor R4.
The input voltage Vin may be AC (alternative current) voltage.
When the input voltage Vin is equal to or higher than the first threshold (e.g., the first threshold is forward voltage of an LED in the optical coupler 12, the forward voltage may be 0.6V) , the LED in the optical coupler 12 conducts, and current flows from the power source to the ground port through the collector, the emitter and the first resistor R1. The first capacitor C1 is charged accordingly. The higher the input voltage is, the faster the first capacitor C1 is charged, and faster the voltage of node A raises.
When the input voltage Vin is lower than the first threshold (e.g., 0.6V) , the  LED in the optical coupler 12 is turned off, and there is no current flowing from the collector to the emitter, that is to say, the detecting circuit 1 stops to output the detecting signal. The first capacitor C1 is discharged via the first resistor R1, and the voltage of node A drops.
In Fig. 4, sequence diagram of the voltage of the node A is also shown. As shown in the sequence diagram, abscissa represents time, ordinate represents the voltage of the node A.
As shown in Fig. 4, form time t0, the first capacitor C1 begins to be charged, and the voltage of node A raises, in accordance with raising of the input voltage Vin.
At time t1, the voltage of node A reaches to reference voltage, and then the voltage continues to raise to a maximum value which corresponds to the saturation status of the optical coupler 12.
At some point after t1, the first capacitor C1 discharges, and the voltage of node A starts to drop in accordance with falling of the input voltage Vin. At time t2, the voltage of node A drops to the reference voltage, and then continues to drop, until to a minimum value at time t3, for example, the minimum value is 0V.
A period T21 from t2 to t3 corresponds to the discharging time, during which the voltage of node A drops from the reference voltage to the minimum value.
At some point (for example t3’ ) after t3 or at t3, the first capacitor C1 begins to be charged again in accordance with raising of the input voltage Vin in a new cycle, and the voltage of node A raises accordingly. At time t4, the voltage of node A reaches to the reference voltage again.
As shown in Fig. 4, the period T1 equals to a period from t1 to t4. The period T1 refers to a cycle of the voltage of node A, and the frequency f1 of the voltage of node A can be calculated as f1=1/T1. The period T1 also refers to the cycle of the input voltage Vin. Thus the frequency f of the input voltage Vin can be calculated as f=f1=1/T1.
A period T22 corresponds to the charging time, during which the voltage of node A raises from the minimum value to the reference voltage. The period T22 may be  equal to a period from t3 to t4 or a period from t3’ to t4. That is to say, the period T2 is a period when the voltage of node A is lower than the reference voltage during a cycle of the voltage of node A.
A period T2 equals to T21 plus T22. When the amplitude of the input voltage Vin is higher, the first capacitor C1 is charged faster, and the period of T22 is shorter. Therefore, the amplitude of the input voltage Vin can be calculated by using the period T2.
According to the description of Fig. 4, in at least one embodiment, the controller 3 may calculate the frequency of the input voltage Vin by using the frequency f1 of the detecting signal.
The controller 3 may also compares voltage of the node A with a reference voltage, measures the period T2 when the voltage of the node A is lower than the reference voltage, and calculates the amplitude of the input voltage Vin according to the period T2.
According to the first aspect of the embodiments, a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
Second aspect of embodiments
A voltage information detecting method. The voltage information detecting method corresponds to the voltage information detecting circuit provided in the first aspect of embodiments. The same contents as those in the first aspect of embodiments are omitted.
Fig. 5 shows a flowchart of a voltage information detecting method.
As shown in Fig. 5, the method includes:
Block 51: outputting a detecting signal corresponding to an input voltage;
Block 52: a charge storage circuit being charged and discharge according to the detecting signal; and
Block 53: obtaining information of the input voltage according to a voltage of the charge storage circuit.
In at least on embodiments, the information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage Vin.
In block 53, the controller 3 calculates the frequency of the input voltage by using a frequency of the detecting signal; and/or, the controller 3 compares voltage of the detecting signal with a reference voltage, measures a period (T2) when the voltage of the charge storage circuit is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
According to the second aspect of embodiments, a charge storage circuit is charged and discharges according to a detecting signal of the input voltage, and information of the input voltage is obtained according to a voltage of the charge storage circuit. Therefore, accurate information of the input voltage can be obtained with low cost.
Third aspect of embodiments
A power supply circuit is provided in the third aspect of embodiments.
As shown in Fig. 4, the power supply circuit 200 includes: the voltage information detecting circuit 100 provided in the first aspect of embodiments; the input port X, which is configured to receive the input voltage Vin; an pair of output ports PO+/PO-, which are configured to output an output voltage Vout; and, a converter 201, which is configured to convert the input voltage Vin into the output voltage Vout, the input voltage Vin may be AC voltage, the output voltage Vout may be DC (direct current) voltage.
As shown in Fig. 4, the convertor 201 may include a transformer T0. A diode D1 and a second capacitor C2 are also included in the secondary side of the convertor 201. A PFC (power factor correct) circuit including a switch may also be included but not shown in Fig. 4. More details about the power supply circuit 200 may be referred to the related art.
A driving circuit is further provided in the third aspect of embodiments.
Fig. 6 is a diagram of the diving circuit. As shown in Fig. 6, the driving circuit 600 includes the power supply circuit 200 in Fig. 5, a DALI ( (Digital Addressable Lighting Interface) interface 601, a forward optical coupler 602 and a backward optical coupler 603. The DALI interface may receive controlling signal, and send the controlling signal to the controller 3 via the forward optical coupler 602. The information about the input voltage Vin will be sent from the controller 3 to the DALI interface 601 via the backward optical coupler 603.
In Fig. 6, the detecting circuit 1 and charge storage circuit 2 and the controller (MCU) 3 form the voltage information detecting circuit 100.
The driving circuit 600 further includes a DC-DC circuit 604, which is configured to convert the output voltage Vout of the power supply circuit 200 into a second output voltage, so as to drive an electronic equipment. The electronic equipment may be LED.
Fig. 7 is another diagram of the diving circuit. As shown in Fig. 7, the driving circuit 700 includes the power supply circuit 200 in Fig. 5, and a wireless interface 701. The driving circuit 700 further includes the DC-DC circuit 604. In Fig. 7, the information about the input voltage Vin can be sent via the wireless interface 701.
The wireless interface may be NFC (Near Field Communication) interface, Bluetooth interface etc.
In Fig. 7, the detecting circuit 1 and charge storage circuit 2 and the controller (MCU) 3 form the voltage information detecting circuit 100.
The driving circuit 600 /700 includes a wired interface (601) or wireless interface (701) to be connected to an external bus which may be a wireless (Fig. 7) or a wired bus (Fig. 6) . The driving circuit 600 /700 can communicate with other devices via the external bus. In particular, the driving circuit 600 /700 may generate communication signals for transmission to the other devices including data such as the mains supply voltage information received from the voltage information detecting circuit 100 via the  interface circuit (603, 601 /701) . Such data such as the mains supply voltage information received from the voltage information detecting circuit 100 may be used to determine power consumption of the driving circuit 600 /700 and thereby to provide a key parameter for building automation and monitoring system, e.g. in order to perform power metering and collect power metering data from the individual devices as e.g. driving circuit 600 /700 connected to the communication interface and external bus.
In the present disclosure, the driving circuit 600 /700provides the capability to determine presence, absence, or even an actual value of the mains supply voltage using the control circuit arranged on the secondary side of the isolation barrier.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (13)

  1. A voltage information detecting circuit, comprising:
    a detecting circuit, configured to be connected to an input port which receives an input voltage (Vin) , and output a detecting signal from an output terminal corresponding to the input voltage;
    a charge storage circuit, configured to be connected to the output terminal of the detecting circuit, being charged and discharge according to the detecting signal; and
    a controller, configured to be connected to a first connecting node (A) between the charge storage circuit and the detecting circuit, and obtain information of the input voltage according to a voltage of the first connecting node (A) .
  2. The voltage information detecting circuit according to claim 1, wherein,
    information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage.
  3. The voltage information detecting circuit according to claim 2, wherein,
    the charge storage circuit comprises a first resistor (R1) and a first capacitor (C1) ,
    the first resistor and the first capacitor are in parallel connection between the first connecting node (A) and a ground port.
  4. The voltage information detecting circuit according to claim 2, wherein,
    when the input voltage is higher than a first threshold (e.g. 0.6V) , the detecting circuit out puts the detecting signal which follows the input voltage (Vin) .
  5. The voltage information detecting circuit according to claim 4, wherein,
    the detecting circuit comprises:
    a second resistor (R2) , a third resistor (R3) and an optical coupler (OC) ,
    the second resistor and the third resistor are in serials connection between the input port and the ground port,
    an anode of the optical coupler is connected to a second connecting node (B) between the second resistor and the third resistor,
    a cathode of the optical coupler is connected to the ground port,
    an emitter of the optical coupler is connected to the first connecting node (A) ,
    a collector of the optical coupler is supplied with a preset voltage (Vdd) .
  6. The voltage information detecting circuit according any one of claims 2 to 4, wherein,
    the controller calculates the frequency of the input voltage by using a frequency of the detecting signal; and/or
    the controller compares voltage of the first connecting node (A) with a reference voltage, measures a period (T2) when the voltage of the first connecting node (A) is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
  7. A power supply circuit, comprising:
    the voltage information detecting circuit according to any one of claims 1 to 6;
    the input port, configured to receive the input voltage (Vin) ;
    an output port, configured to output an output voltage (Vout) ; and
    a converter, configured to convert the input voltage into the output voltage.
  8. A driving circuit, comprising the power supply circuit according to claim 7.
  9. The driving circuit according to claim 8, wherein,
    the information of the input voltage is transmitted by wireless interface or wire communication interface circuit.
  10. The driving circuit according to claim 8, wherein,
    the driving circuit further comprises:
    a DC-DC circuit, configured to convert the output voltage (Vout) of the power supply circuit into a second output voltage, so as to drive an electronic equipment.
  11. A voltage information detecting method, comprising:
    outputting a detecting signal corresponding to an input voltage;
    a charge storage circuit being charged and discharge according to the detecting signal; and
    obtaining information of the input voltage according to a voltage of the charge storage circuit.
  12. The method according to claim 11, wherein,
    information of the input voltage comprises an amplitude of the input voltage and/or a frequency of the input voltage.
  13. The method according to claims 11 to 12, wherein,
    the controller calculates the frequency of the input voltage by using a frequency of the detecting signal; and/or
    the controller compares voltage of the detecting signal with a reference voltage, measures a period (T2) when the voltage of the charge storage circuit is lower than the reference voltage, and calculates the amplitude of the input voltage according to the period.
PCT/CN2021/121726 2021-09-29 2021-09-29 Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method WO2023050157A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2402725.2A GB2624349A (en) 2021-09-29 2021-09-29 Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method
PCT/CN2021/121726 WO2023050157A1 (en) 2021-09-29 2021-09-29 Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121726 WO2023050157A1 (en) 2021-09-29 2021-09-29 Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method

Publications (1)

Publication Number Publication Date
WO2023050157A1 true WO2023050157A1 (en) 2023-04-06

Family

ID=85781045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121726 WO2023050157A1 (en) 2021-09-29 2021-09-29 Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method

Country Status (2)

Country Link
GB (1) GB2624349A (en)
WO (1) WO2023050157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256125A (en) * 2009-04-23 2010-11-11 Hioki Ee Corp Voltage detection apparatus and line voltage detecting apparatus
CN202661534U (en) * 2012-07-26 2013-01-09 南京华士电子科技有限公司 Novel voltage detector
CN102954556A (en) * 2011-08-23 2013-03-06 珠海格力电器股份有限公司 Electric heater control circuit and air conditioner with same
CN209992566U (en) * 2019-05-20 2020-01-24 登钛电子技术(上海)有限公司 Optical coupling isolation input voltage under-voltage detection circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256125A (en) * 2009-04-23 2010-11-11 Hioki Ee Corp Voltage detection apparatus and line voltage detecting apparatus
CN102954556A (en) * 2011-08-23 2013-03-06 珠海格力电器股份有限公司 Electric heater control circuit and air conditioner with same
CN202661534U (en) * 2012-07-26 2013-01-09 南京华士电子科技有限公司 Novel voltage detector
CN209992566U (en) * 2019-05-20 2020-01-24 登钛电子技术(上海)有限公司 Optical coupling isolation input voltage under-voltage detection circuit

Also Published As

Publication number Publication date
GB202402725D0 (en) 2024-04-10
GB2624349A (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US10425002B2 (en) Error amplification apparatus and driving circuit including the same
US9473032B2 (en) Power converter system with synchronous rectifier output stage and reduced no-load power consumption
CN100421341C (en) Switching regulator and image forming apparatus and its control method
CN103580486B (en) Switching power converter dynamic load detection
KR101849258B1 (en) Power supply device
CN100367643C (en) Switching power supply apparatus and electric appliance therewith
US7679343B2 (en) Power supply system and method for controlling output voltage
CN105703429A (en) Charging method, mobile terminal, charging device and system
KR20120090330A (en) Led emitting device and driving method thereof
CN110446309B (en) LED dimming driving circuit and switching power supply
US20200244098A1 (en) Power supply apparatus and power supply method
US8427114B2 (en) Apparatus for controlling LED indicator of charging status at the primary control side of an AC-DC power charger
KR102143254B1 (en) Pwm controlling apparatus for flyback converter
CN113534689B (en) Delayed start control method and device
CN115037173A (en) High efficiency AC-DC power supply controller circuit
TW201500881A (en) Programmable power adapter and apparatus for selecting the output of programmable power adapter
CN104950161B (en) The method for detecting output voltage and circuit and its Switching Power Supply of a kind of Switching Power Supply
WO2023050157A1 (en) Voltage information detecting circuit, power supply circuit, driving circuit and voltage information detecting method
CN111830424B (en) Load state detection device
CN108964464A (en) The circuit and its method of Switching Power Supply outlet side non-destructive testing load current
US20050088146A1 (en) Battery charge indicator
CN114884350B (en) Load state detection circuit and power supply chip
CN217036816U (en) Output synchronous following circuit of simulation battery
CN217085219U (en) Power output circuit of analog battery
CN112491274A (en) Power supply control device and method and switching power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202402725

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210929

NENP Non-entry into the national phase

Ref country code: DE