WO2023048552A1 - Allogenic implants for the treatment of cartilage injuries - Google Patents

Allogenic implants for the treatment of cartilage injuries Download PDF

Info

Publication number
WO2023048552A1
WO2023048552A1 PCT/MX2022/050017 MX2022050017W WO2023048552A1 WO 2023048552 A1 WO2023048552 A1 WO 2023048552A1 MX 2022050017 W MX2022050017 W MX 2022050017W WO 2023048552 A1 WO2023048552 A1 WO 2023048552A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartilage
chondrocytes
treatment
construct
implant
Prior art date
Application number
PCT/MX2022/050017
Other languages
Spanish (es)
French (fr)
Inventor
Anell Olivos Meza
Original Assignee
Anell Olivos Meza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anell Olivos Meza filed Critical Anell Olivos Meza
Publication of WO2023048552A1 publication Critical patent/WO2023048552A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix

Definitions

  • the present invention is located in the field of medicine, particularly in cell therapy and tissue engineering, it refers to treatment methods for articular cartilage injuries, particularly knee cartilage injuries. Likewise, it refers to the development of an implant or construct of allogeneic chondrocytes for the treatment of said cartilage lesions.
  • Cartilage injuries in weight-bearing joints such as the knee, ankle and hip are difficult to heal without surgical treatment.
  • the incidence of this type of injury is high in young patients (30-35 years), especially in the knee joint, found in up to 65% of arthroscopies performed on this joint to treat other pathologies (ligament injuries and /or menisci).
  • ligament injuries and /or menisci pathologies
  • the consequences of not adequately and promptly treating these injuries are pain, gradual loss of function, disability, and early osteoarthritis.
  • this type of injury is a major health problem with significant epidemiological repercussions and a great impact on health and quality of life, generating significant costs for individuals, institutions, and the health system in general.
  • the ACI technique is a procedure that comprises two surgical stages.
  • cartilage biopsies are taken in a "non-load" area of the knee of the same patient (autologous).
  • the cartilage biopsy is sent to the laboratory, where the cells that produce cartilage (chondrocytes) are extracted and cultured in vitro for a period of 6 to 8 weeks with the purpose of increasing the number of cells available, which will be used in the next surgical procedure.
  • a second arthroscopy is performed to place the chondrocytes, previously cultured on a commercially available polymer of hyaluronic acid, in the lesion to promote the formation of a tissue very similar to cartilage with the aim of passage of time, repairing the defect, alleviating the symptoms of the injury; this allows the patient to resume activities of daily living, and even, in the long term, to perform sports activities.
  • the ACI technique has undergone multiple modifications, which are usually referred to as "generations", currently 3 generations are recognized, with the aim of counteracting complications and improving long-term results.
  • generations currently 3 generations are recognized, with the aim of counteracting complications and improving long-term results.
  • an important modification is that the autologous chondrocytes are seeded in a collagen matrix to later be placed in the defect or lesion site, this reduces the leakage and loss of chondral cells outside the matrix as it used to happen. in the 1 ⁇ and 2- generation.
  • the third generation is also known as MACI (Matrix Associated Chondrocyte Implantation), and has shown better results than previous generations, so it has been observed that culturing the cells on the matrix is more effective than injecting them into the defect and then covering it.
  • the high economic cost of this treatment is due to the fact that two surgical procedures are required, in addition to the long time required for cell culture, including laboratory material, infrastructure, and human resources; which amounts to €17,000 in 6 European countries and approximately $250,000 in Mexico.
  • STACI Single treatment Autologous Chondrocyte Implantation
  • the method comprises administering a composition of fragmented or particulate cartilage (0.25 to 5 mm), derived from a cadaveric human donor, wherein said cartilage particles possess viable chondrocytes and also contains a biocompatible vehicle, comprising a solution of cryopreservation (DMSO+serum) or a culture medium (DMEM+5%SFB; high glucose DMEM).
  • a composition of fragmented or particulate cartilage (0.25 to 5 mm), derived from a cadaveric human donor, wherein said cartilage particles possess viable chondrocytes and also contains a biocompatible vehicle, comprising a solution of cryopreservation (DMSO+serum) or a culture medium (DMEM+5%SFB; high glucose DMEM).
  • DMSO+serum a solution of cryopreservation
  • DMEM+5%SFB high glucose DMEM
  • Patent document EP2338441 refers to a product also composed of fragments or particles of cartilage derived from a cadaveric donor, but in this case from young donors (under 15 years of age), which enhances a greater capacity to form a hyaline cartilage matrix compared to the that can occur with chondrocytes from adult donors.
  • the product is presented as a kit in a sterile container for the treatment of cartilage lesions composed of fragmented cartilage particles from a cadaveric donor containing viable chondrocytes and a storage solution.
  • cadaveric donor-derived cartilage retains the extracellular matrix, although it functions as a three-dimensional scaffold, like a chondroreactor for fragmented cartilage particles, it is also true that such matrix also poses a higher risk. of immunological response and rejection reactions by the recipient, since the cartilage contains donor proteins that can be identified by the recipient and produced from a simple rejection mechanism, which prevents the formation of the desired tissue and its integration, up to a greater immunological reaction both local and systemic.
  • tissue is derived from rib cartilage, nasal cartilage, tracheal cartilage, sternal cartilage and other unspecified sources of cartilage, the nature of which, composition and structure is very different from that of the cartilage of the joints (knee, ankle, hip, shoulder), for which it is desirable that chondrocytes are derived from hyaline cartilage, mainly knee (as in the case of the present invention) to form articular cartilage.
  • the patent document WO 2019/1 13558 A1 discloses the treatment of chondral and osteochondral lesions, using a composition of allogeneic cells, chopreserved in a cell bank, cultured in a resorbable membrane of porcine collagen (type I and/or II), at a density of 250,000 cells per cm 2 .
  • chondrocytes can be obtained from "various tissues", which implies the possibility that the cells obtained are not chondrocytes specific for hyaline cartilage.
  • chondrocytes before cryopreserving the chondrocytes, they are expanded and cultured for at least two passages (in one section they describe less than 5), which conditions a dedifferentiation of the primary chondrocytes and, therefore, there is a elevated risk of fibrocartilage formation instead of hyaline cartilage.
  • another event that can condition the formation of fibrocartilage instead of hyaline cartilage is the low density of cells seeded in the collagen membrane, another factor that favors cell dedifferentiation and the formation of fibrous tissue.
  • chondrocyte cultures are supplemented with fetal bovine serum, a serum of animal origin that can clearly trigger immunogenic reactions in a human recipient.
  • the present invention refers to an orthopedic implant made up of cadaveric allogeneic chondrocytes on a hyaluronic acid support or membrane, sealed with a fibrin adhesive, for the treatment of a cartilage lesion, with tissue formation that has greater durability, at a lower cost. cost and with fewer risks than currently available treatments for the management of such injuries.
  • Another object of the present invention refers to a kit for the treatment of cartilage that comprises an orthopedic implant, made up of allogeneic chondrocytes, derived from cadaveric donor, seeded on a hyaluronic acid membrane and covered with a biocompatible adhesive, where said chondrocytes are adhered to the membrane and present the formation of extracellular matrix; wherein said container also comprises a culture medium, supplemented with autologous serum and antibiotics-antimycotics.
  • Another object of the present invention refers to a procedure for the treatment of articular cartilage lesions, through the implantation of an orthopedic construct made up of cadaveric allogeneic chondrocytes on a hyaluronic acid support or membrane, sealed with a fibrin adhesive, where said chondrocytes They are adhered to the membrane and present the formation of extracellular matrix.
  • Figure 1 Flowchart of the method for obtaining the implant or construct with allogeneic chondrocytes of the present invention, where a) is the biopsy; b) cell culture; c) cell expansion; and d) implant formation.
  • FIGS 2A-2F Photographic sequence of the procedure for obtaining cartilage biopsies from cadaveric donors.
  • cartilage samples are taken from the femoral condyles and patella (Fig. 2A and 2B), with the help of a scalpel, with #20 blades.
  • the tissue is taken from the most superficial part (Fig. 2C and 2D), with the purpose of not deepening the cut to the subchondral bone, to avoid the exit of bone marrow stem cells and contact with intramedullary fluids or tissue contamination. with cells of other origin.
  • the donor's data is documented to standardize characteristics that may influence the viability and chondrogenic capacity of the cells (age, gender, associated pathologies, and cause of death). Likewise, the associated variables such as time of death and time between death and taking the cartilage are verified.
  • Figures 3A-3E Photographic sequence of the isolation method and viability determination of chondrocytes derived from cadaveric donor cartilage.
  • tissue is washed several times with PBS and 10% antibiotic-antifungal, until fluids and donor debris are completely removed (A).
  • mechanical digestion is performed with a scalpel to obtain tissue fragments smaller than 1 mm (B), followed by enzymatic digestion using type 2 collagenase (0.1 to 0.3% w/v), for at least For 1 hour at 37°C, with continuous agitation, the supernatant containing the cells released by the digestions previously described (C) is recovered, and the undigested fragments are subjected to a second digestion stage with a fresh enzyme solution, for at least minus another hour at 37°C.
  • the number of cells and their viability are determined by counting in the Neubauer chamber and trypan blue (D).
  • the isolated chondrocytes are cryopreserved (E) without expanding, with the purpose of conserving and maintaining both their viability, their morphology and functionality; various methodologies are known in the state of the art for this purpose.
  • the freezing medium comprises culture medium, commercial human serum or autologous serum, and a cryoprotective substance.
  • the obtained chondrocytes were deposited in freezing medium [DMEM/F12 (80%), autologous serum (10%) and DMSO (10%)], at a density of a maximum of 500,000 cells per cell. ml of medium, and cryopreserved in liquid nitrogen or at -192°C.
  • FIGS 4A-4D Photographs of a Grafting Kit or three-dimensional construct.
  • the figure shows a kit for the treatment of cartilage that includes an orthopedic implant, made up of allogeneic chondrocytes, derived from cadaveric donors, seeded on a hyaluronic acid membrane and covered with a biocompatible adhesive, where said chondrocytes are adhered to the membrane and present the formation of extracellular matrix; wherein said container also comprises a culture medium, supplemented with autologous serum and antibiotics-antimycotics.
  • FIGS 5A-5D Presence of proteoglycans in the formed cartilage.
  • Figures 6A-6D Quantitative evaluation of the quality of the cartilage formed.
  • FIG. 6A Diagram of the implant or construct placement procedure in the area of the lesion.
  • Figures 8A-8F Preparation and measurement of the size of the lesion by arthroscopy.
  • the figures show an image of the lesion to be treated (8A), and the debridement of the edges of the lesion (8B, 8C), to obtain a square or rectangular area (8F) and the measurement at the top and bottom. width by using an arthroscopic hook palpator (8D and 8E).
  • FIGS 9A-9D Implantation and fixation of the construct at the lesion site.
  • the image shows how the implant or construct is inserted into the area of the lesion (9A), as well as its extension on the surface of the lesion (9B), ensuring contact of the graft with all the edges of the adjacent native cartilage (9C ) and coating with fibrin glue (9D).
  • FIGS 10A-10B Process of evaluation of the integration of the construct by NMR.
  • a Nuclear Magnetic Resonance study of a knee treated with the implant of the present invention is shown, showing the tissue generated at 12 months with adequate contact with the native cartilage.
  • Figures 1 1 A-11 F. Cartilage lesion repair at 12 months: ACI vs ALCI.
  • FIGs 12A-12D Fibrocartilage formation in the donor area in the ICA Arthroscopic evaluation of the osteochondral biopsy in autologous chondrocyte implantation (Fig. 12A and 12B). Subsequently, by means of a second arthroscopic view 12 months after autologous chondrocyte implantation, filling of the donor area with abundant presence of fibrous, irregular and fibrillar tissue is clearly observed (Fig . 12C and 12D).
  • FIGS 13A-13F Hip construct placement.
  • Images 13A and 13B the cartilage lesion is identified in the anterior-superior region of the acetabulum (25 x 10 mm), while in images 13C and 13D, a lesion of the same size is indicated, but in the posterior area. - superior. Both lesions involve 40% of the total articular surface. Images 13E and 13F show the placement of the allogeneic chondrocyte implant and its fixation with fibrin glue.
  • Figures 14A-14B Quality of repaired cartilage in the hip.
  • FIGS 15A-15F Knee construct placement.
  • the figure shows the placement of the graft with cadaveric chondrocytes in the patella.
  • 15A Resection of a bony prominence (osteophyte) to prevent erosion of the trochlear cartilage.
  • 15B Osteophyte at the base of the anterior cruciate ligament (ACL).
  • 15C ACL reconstructed with synthetic graft.
  • 15D Cartilage lesion on the lateral facet of the patella (30 x 30 mm).
  • 15E Placement of the graft or hyaluronic acid construct seeded with allogeneic chondrocytes in the area of the lesion.
  • 15F Application of fibrin glue to promote adherence of the implant in the lesion and in the adjacent cartilage.
  • FIGS 16A-16B Quality of cartilage repaired in the knee.
  • the figure shows the evaluation of the quality of the repair tissue by measuring the relaxation time of the water 3 months after the knee implant.
  • the red arrow indicates the control cartilage value (ROI-1) versus the repair tissue measurement (ROI-2) (47.7 ms vs 56.9 ms).
  • the repair tissue value still reflects the presence of immature cartilage at 3 months.
  • FIGS 17A-17B Hip functional assessment scales before and after surgery.
  • the functional evaluation of the hip was carried out using widely recognized scales, for example, the Harris hip scale is the most widely used instrument to evaluate the results obtained after hip arthroplasty.
  • the evaluation was carried out before and after surgery to assess the movements of the transverse, anteroposterior and longitudinal axes or mobility arcs.
  • FIGS 18A-18E Functional evaluation scales of the knee before and after surgery.
  • the functional evaluation of the knee was carried out using widely recognized scales, for example, the TEGNER, LYSHOLM, International Knee Documentation Committee (IKDC) and KUJALA scales.
  • the evaluation was carried out before and after surgery to assess the range of motion, pain and function of the knee.
  • the present invention relates to an implant or construct for the treatment of cartilage lesions in an individual's joints, wherein said implant is made up of allogeneic chondrocytes, derived from a cadaveric donor, cultured on a hyaluronic acid scaffold, sealed with a biocompatible glue.
  • said implant refers to a kit for the treatment of cartilage that comprises primary culture of allogeneic chondrocytes, derived from cadaveric donor, seeded on a hyaluronic acid membrane, and covered with a biocompatible glue, arranged in an appropriate container or container for such purpose, wherein said container also comprises a culture medium, supplemented with autologous serum and antibiotics-antimycotics.
  • the invention of the present application clearly contributes to solving at least one of the many latent drawbacks in the technical area.
  • One of the great advantages of the present invention is that it favors the formation of a better quality of hyaline cartilage, which favors the integration of the implant to the adjacent native tissue and we have also observed in all treated patients that the risk of immunogenic reactions is reduced, every time we have observed that all patients subjected to this technique have not presented local or systemic rejection data, such as: increase in joint volume, increase in local temperature, absence of rejection or detachment of the implant when evaluated by magnetic resonance.
  • Another of the great advantages of the present invention lies in the fact that enough material is obtained from the donor tissue to treat large lesions, that is, there is no limitation in the number of cells to carry out the medical treatment.
  • chondrocytes isolated from articular cartilage (knee and/or patella) from young donors ( ⁇ 20 years old) are used, seeded on a three-dimensional membrane, composed of one of the main chondrogenesis-promoting substances (hyaluronic acid), in high densities (1x10 6 ) with autologous serum and sealed with a fibrin adhesive.
  • cartilage substitute with the ability to functionally and structurally repair, regenerate or replace cartilage in a patient who has lost the function of said tissue, or when said tissue has suffered some mechanical or physiological damage.
  • cadaveric donor refers that the cartilage tissue is derived from a deceased donor, where said donor is approximately 20 years old or less, preferably less than 20 years old at the time of donation.
  • chondrocytes derived from a young individual have a greater capacity to synthesize/organize the extracellular matrix of hyaline cartilage compared to those derived from an adult individual.
  • allogeneic chondrocytes takes the conventional meaning in the technical area, which refers to chondrocytes from different individuals of the same species.
  • membrane for the present invention, the terms or expressions "membrane”, “scaffold” or “support” are used interchangeably, with the same meaning and scope of protection.
  • a support structure made up of one or more materials of a different nature, preferably biocompatible, resorbable and resistant materials.
  • This membrane provides a mechanical support on which the chondrocytes are deposited, which facilitates their placement at the site of the defect to be treated, and also allows said cells to remain at the site of the defect.
  • the membrane is composed by a layer of a synthetic biopolymer of hyaluronic acid or its derivatives, particularly esterified derivatives, also does not contain animal or human by-products, which prevents allergic reactions from other products.
  • the membrane is composed of a layer of a synthetic biopolymer of hyaluronic acid esterified with benzyl alcohol and some of its characteristics are: it is biodegradable, mechanical resistance, biocompatible, non-cytotoxic (does not destroy cells), non-antigenic (does not causes an immune response), promotes cell proliferation and differentiation, is flexible and elastic, and allows the passage of nutrients and metabolic waste, and its metabolization mechanism is known and safe.
  • This membrane degrades through hydrolysis (decomposition by action of water) of the ester, which generates the release of HA and benzyl alcohol.
  • the term or expression "fibrin tissue adhesive” or “fibrin glue” refers to cell adhesive compositions based on human fibrinogen and thrombin, which allows the generation of a fibrin clot for hemostasis, sealing and healing of tissues and for improve tissue adhesion.
  • said adhesive may contain only components of animal or synthetic origin, in order to avoid adverse reactions thereto by the receiving organism.
  • the adhesive may contain other components than those previously mentioned to strengthen its adhesive property.
  • the fibrin glue can be obtained from autologous serum during surgery, or one of synthetic origin and for commercial use. Some of the fibrin-based adhesive products that are marketed are, for example: Beriplast® Behering, Tisseel® from Baxter, Evicel ® from J&J, etc.
  • the term or expression "culture medium” or “medium” refers to compositions suitable for the culture of chondrocytes, as long as they support or favor the maintenance and/or growth of cells in in vitro culture. In some preferred embodiments, it also refers to the culture medium supplemented with one or more additional components. In some embodiments, additional components can include, for example, serum, antibiotics, antifungals, growth factors, buffers, pH indicators, and the like. In other embodiments, the medium can be used in the process of isolating cells (eg, chondrocytes and/or chondrocyte precursors) from a tissue sample (eg, a cartilage sample). In some embodiments, the tissue is mechanically digested and then subjected to enzymatic digestion, combined with the medium which may comprise enzymes (eg, collagenase or protease) to digest tissue and release cells.
  • additional components can include, for example, serum, antibiotics, antifungals, growth factors, buffers, pH indicators, and the like.
  • cadaveric allogeneic chondrocytes or “cadaveric chondrocytes” refers to chondrocytes that are isolated from cartilage derived from young cadaveric donors, up to 20 years of age.
  • the isolated cells can be used immediately, or they can be cryopreserved, without expanding (P0), until use.
  • Example 1 Obtaining cadaveric chondrocytes.
  • biopsies or tissue samples are obtained from healthy young donors.
  • the donors are selected from the male gender, to avoid variables of a hormonal nature in the biology of the chondrocytes obtained.
  • Young donors are selected from an age of up to 20 years, in one modality they are selected with an age between 14 and 20 years.
  • the cartilage samples are obtained from the knees of the donors (see figure 2), taking as an important factor that they are macroscopically healthy joints (without the evident presence of traumatic cartilage lesions, crystal deposits, degenerative chondral lesions, previous or active infection). and/or rheumatic diseases). Therefore, the staff that procures the tissue corroborates that the tissue is smooth and whitish.
  • the biopsies or tissue samples that were used in some of the examples of the present invention were provided by the Biograft Skin and Musculoskeletal Tissue Bank of Mexico.
  • a cadaveric donor is selected and the biopsy or tissue sample is taken, this tissue is submitted to a panel of studies to rule out the presence of infectious diseases that could be transmitted through the donated tissue.
  • the panel includes the study of antibodies against hepatitis B (Core and Surface), hepatitis C, HTLV, syphilis, HIV and detection of nucleic acids (NAT test) against hepatitis B, C and HIV.
  • NAT test nucleic acids
  • biopsies or tissue samples used in the present invention were sent to the Viromed/Labcorp laboratory, in Minnesota, USA, who performed said panel studies.
  • tissue procurement staff plus an expert orthopedist in cartilage collection go to the hospital where the death occurred, under aseptic, sterile conditions, the procedure is performed. arthrotomy of both knees and to take cartilage fragments (see figure 2), which are placed in sterile containers (figure 2E-2F), containing culture medium (DMEM-F12) supplemented with 10% antibiotics-antimycotics , later they are transferred to -4°C to the laboratory of the Tissue Bank (Biograft) to be processed.
  • DMEM-F12 culture medium supplemented with 10% antibiotics-antimycotics
  • cartilage samples are taken from the femoral condyles and patella (Fig. 2A and 2B), with the help of a scalpel, with #20 blades.
  • the tissue is taken from the most superficial part (Fig. 2C and 2D), with the purpose of Do not deepen the cut as far as the subchondral bone, to avoid leakage of bone marrow stem cells and contact with intramedullary fluids or contamination of the tissue with cells of other origin.
  • the donor's data is documented to standardize characteristics that may influence the viability and chondrogenic capacity of the cells (age, gender, associated pathologies, and cause of death). Likewise, the associated variables such as time of death and time between death and taking the cartilage are verified.
  • Chondrocyte isolation (see figure 3) is carried out in appropriate facilities for this purpose, for example, in a tissue culture laboratory, under sterile conditions and in a level II laminar flow hood.
  • the tissue is washed, with PBS + 10% antibiotic-antimycotic, at least a couple of times or more to remove donor fluids and debris, in one embodiment 3 or more washes are preferred.
  • the cartilage obtained is weighed and with this the ratio of the number of chondrocytes obtained per milligram of tissue is obtained.
  • cartilage fragments smaller than 1 mm see figure 3B
  • mechanical digestion is performed to obtain cartilage fragments smaller than 1 mm (see figure 3B)
  • enzymatic digestion with type 2 collagenase (0.1 to 0.3% w/v), for at least 1 hour at 37 °C, in continuous stirring: in one modality the digestion is carried out for at least 2 hrs., in another equally preferred modality the digestion is carried out for at least 3 hrs., in another equally preferred modality the digestion is carried out out for at least 4 hrs.
  • the efficiency of the enzymatic treatment can be obtained with the variation of different parameters, for example, the efficiency increases when there is a greater surface area of the exposed tissue, when the amount or activity of the enzyme increases, and with the time of treatment. digestion.
  • the enzymatic digestion could be carried out continuously or, alternatively, it could be carried out in two or more digestion steps; for example, the digestion is carried out for 60 to 120 minutes, the supernatant containing the cells released by the digestion is recovered, and the undigested fragments are subjected to a second digestion step with a fresh enzyme solution, for at least another 60 to 120 minutes (Figure 3C).
  • the number of cells and their viability are determined by counting in the Neubauer chamber and trypan blue (Figure 3D).
  • the chondrocytes obtained are cryopreserved (figure 3E) without expanding, with the purpose of conserving and maintaining both their viability, their morphology and functionality; various methodologies are known in the state of the art for this purpose.
  • the cryopreservation medium comprises culture medium, serum or combinations thereof, and a cryoprotective substance.
  • the cryopreservation or freezing medium may be comprised of 10% commercial human serum or 10% autologous serum, although autologous serum is preferred, plus 80% DMEM/F1 2 culture medium and 10% DIVISO.
  • DMSO is a cryoprotective substance that prevents chondrocytes from swelling and bursting on freezing.
  • the obtained chondrocytes were deposited in the aforementioned freezing medium in a vial in which 1 ml of said substance was deposited for a maximum of 500,000 cells and stored in a liquid nitrogen chamber at - 192°C.
  • Example 2 Formation of the implant or construct ⁇ .
  • a peripheral blood sample (200-250 ml) from the patient to be treated is processed by centrifugation to remove the red fraction and obtain the autologous serum. This is inactivated, filtered and aliquoted into 10 ml tubes and stored under conditions sterile at -4°C, until required for use.
  • the orthopedic surgeon who requests the graft, provides the tissue culture laboratory or tissue bank with the data of the patient to be treated, who is contacted to come and donate a peripheral blood sample (200-250 mi), to obtain autologous serum, preferably 5 to 7 days prior to surgery.
  • Implant preparation To prepare an implant or construct, chondrocytes are thawed, through a gradual process to minimize the percentage of cell death, and once thawed, counting and determination of cell viability is performed again. Next, the chondrocytes are seeded on the hyaluronic acid membrane or scaffold, at a density of 1 x 10 6 cells per cm 2 . The construct is sealed over its entire surface with fibrin glue to promote adherence of chondrocytes to the membrane and decrease the risk of cell loss.
  • the chondrocytes seeded on the membrane are cultured at 37°C, 5% CO2 and 5% humidity, with DMEM-F12 culture medium + 10% autologous serum + 1% antibiotic-antimycotic. Every second or third day a change of culture medium is made, for a period of 5 to 7 days ( Figure 4), to allow cell adherence and the formation of extracellular matrix.
  • the autologous serum is obtained from the patient in whom the construct is to be implanted, thus avoiding the use of fetal bovine serum, which can lead to secondary reactions in the patient.
  • chondrocytes obtained from cadaveric donors were subjected to comparative studies with chondrocytes obtained from a living donor without expansion and without cryopreservation (P0) and chondrocytes obtained from a living donor expanded, during 2 passages, without cryopreservation (P2), in both cases the donors presented similar demographic conditions.
  • chondrocytes were seeded on a collagen membrane, then this implant or construct was implanted in the back of athymic (Nunu) mice, which were monitored for 3 months.
  • the tissue formed in each of the study groups was evaluated by staining and immunofluorescence for cartilage compared with native hyaline cartilage.
  • the tissue formed in the different groups was analyzed by staining with alcian blue (blue stain) and Safranin-0 (red-brown stain).
  • Alcian blue staining reveals cartilage and is especially useful for differentiating articular hyaline cartilage vs. bone, since the cartilaginous extracellular matrix stains with alcian blue ( Figure 5).
  • safranin O binds to glycosaminoglycans (GAGs), which are terminal structures of proteoglycans such as aggrecan, which is an essential component of articular cartilage and is abundant in the extracellular matrix of articular cartilage, likewise it is considered that the intensity of safranin-0 staining is directly proportional to the content of PG in cartilage (figure 6).
  • GAGs glycosaminoglycans
  • the source of obtaining the chondrocytes becomes significantly important when considering that when the chondrocytes are obtained from a cadaveric donor, the requirement to perform a first surgery on the patient to be treated is eliminated, thereby avoiding the risks of morbidity in the donor area and significantly reducing the costs and times of treatment and recovery.
  • tissue is obtained from the cadaveric donor source and with it a greater quantity of cells for the implants or constructs, which eliminates the need for prolonged cultures that carry the risk of generate fibrocartilage instead of hyaline cartilage, this also allows treating lesions of any size, this also impacts treatment costs and one of the most important aspects is that it allows the generation of a tissue more similar to hyaline cartilage compared to the one that is formed with living donor chondrocytes, which are not cultured or cryopreserved.
  • Allogenic Chondrocyte Implantation is a technique that, like Autologous Chondrocyte Implantation, repairs a joint lesion with tissue very similar to native cartilage, reducing treatment times, costs, number of surgeries, involvement of the autologous cartilage donor site, greater availability of the number of cells required to treat a sizeable lesion, elimination of the need to culture and expand chondrocytes in the laboratory, selection of chondrocytes from young cadaveric donors to improve the quality of the formed tissue.
  • This invention allows high availability of cadaveric chondrocytes, which allows them to be used at any time and in the place that is required (any hospital in any state of the Mexican Republic and even to be marketed internationally).
  • the quality of the repair tissue formed in a cartilage lesion depends on many factors that are covered with this innovation, such as the seeding of cells in a three-dimensional hyaluronic acid membrane (it forms better tissue than without a scaffold), the number of cells that are implanted in the lesion (the more chondrocytes, the better tissue; a characteristic that is not available when it comes to autologous chondrocytes), age of the donor (the younger, the better quality and greater durability of the tissue formed).
  • ACI traditional technique
  • ALCI proposed innovation
  • Example 5 implantation of the implant ⁇ construct ⁇ of allegamous conduits.
  • the product of the present invention is useful for the treatment of cartilage lesions of any joint, in a preferred embodiment it is used for the treatment of knee cartilage lesions.
  • the product is provided as a kit comprising a sterile culture box, which in turn contains the implant or construct with culture medium, antibiotic-antimycotic autologous serum; where the implant is made up of a hyaluronic acid membrane, with dimensions ranging from 10 x 10 mm to 50 x 50 mm, where cadaveric allogeneic chondrocytes are attached, at a density of 1 x10 6 cells per cm 2 , covered with a layer of a fibrin cell adhesive.
  • the tissue engineer from the Tissue Bank (Biograft) laboratory attended the Hospital to deliver the graft or construct and remained in the surgical procedure until the implant was placed.
  • the kit containing the graft of the present invention has been used by an orthopedic surgeon through surgery open or minimally invasive surgery (arthroscopy) in an operating room, under sterile conditions. In this regard, it is recommended that prior to the use of the implant the treating physician should evaluate the lesion during surgery, identifying the location (femoral condyle, patella or trochlea) and size.
  • the measurement can be made with a surgical ruler; If the procedure is arthroscopic, the palpator hook or a flexible ruler is used to determine the exact size of the lesion in the proximal-distal and mediolateral plane (figure 8D and 8E). Likewise, it is highly recommended that the lesion be given a square or rectangular shape (figure 8F), to facilitate measurement and adaptation of the size and shape of the product. Equally important is not to damage the subchondral bone.
  • the graft or construct with an excess of at least 2 mm on each edge, preferably at least 5 mm more than the estimated measurement. It is preferable to have a larger construct, which can be compressed and adapt to the lesion, than to leave a tight or smaller construct, with the consequent risk that one or more of its ends will not be able to integrate with the edges of the healthy cartilage.
  • the product can be fixed by any means appropriate for this purpose, for example, by means of biodegradable anchors or with fibrin glue.
  • fibrin glue in a preferred modality, he recommends the use of fibrin glue, as it is less invasive, less expensive, and much easier to place.
  • fixation with anchors the bone exposed in the lesion must be drilled and an anchor placed for every 10 mm of lesion, the sutures are recovered and the construct is slipped through them until the lesion is already debrided, finally knots are made to ensure the fixation.
  • the water inlet into the arthroscopy was closed to prevent loss of chondrocytes.
  • a cannula was placed in the portal with the best access to the lesion, and through this the construct was introduced into the joint (Fig. 9A), placed and extended over the entire surface (Fig. 9B) until the lesion was covered. in its entirety and ensuring contact of the graft with all edges of the adjacent native cartilage (Fig. 9C). Finally, fibrin glue was applied to the edges and surface of the construct to ensure fixation of the implant to the lesion, (Fig. 9D). The knee must remain in extension for at least a couple of days to allow adherence of the product to the subchondral bone and adjacent cartilage edges.
  • Figure 10 shows the images obtained by NMR at 3 and 6 months post-op, respectively (Fig. 10A & Fig. 10B), in which it is clearly observed that from 3 months post-op there is good integration. of the graft and at 6 months changes in the intensity of the construct are observed, which reflects the presence of extracellular matrix formation by the seeded chondrocytes, as well as integration into the subchondral bone and adjacent cartilage.
  • Example 7 Cartilage lesion repair at 12 months: ACI vs ALCI
  • Figure 11 shows the arthroscopic evaluation, 12 months after treatment of cartilage lesion in the lateral trochlea of both knees in the same patient.
  • the right knee (Fig. 1 A, B and C), with a 20x15 mm lesion, was treated with autologous chondrocyte implantation (ACI);
  • ACI autologous chondrocyte implantation
  • Example 8 Formation of fibrocartilage in the donor site in the ICA
  • Figure 12 shows the arthroscopic evaluation of the osteochondral biopsy in autologous chondrocyte implantation (Fig. 12A and B). Subsequently, by means of a second arthroscopic view 12 months after autologous chondrocyte implantation, filling of the donor area with abundant presence of fibrous, irregular and fibrillar tissue is clearly observed (Fig. 12C and D); process that is avoided in cadaveric chondrocyte implantation.
  • Example 9 follow-up of some patients treated with the graft of the present invention.
  • Table 2 Demographic report of patients implanted with the present invention.
  • Figures 13 and 15 show the intervention with the implant or construct of the present invention for hip and knee, respectively.
  • VAS Visual Analog Scale
  • the success of a treatment is also determined through the joint function of the patients, evaluated by means of internationally validated clinical scales, where parameters such as pain level, inability to perform activities of daily living, activities sports and quality of life.
  • the scales are different for hip and knee and provide a numerical score that was evaluated before and after surgery.
  • Figure 17 shows the evaluation of hip joint function before and after (6 months) the intervention with the implant of the present invention.
  • Figure 18 shows the evaluation of knee joint function before and after the intervention (3 months), in all of them the improvement of various functional parameters is clearly appreciated.
  • T2-mapping This is one of the world-renowned techniques for the study of cartilage, with which the values of physical parameters are mapped, which show the relaxation time of the water observed in the structure of interest.
  • Figure 14 shows the corresponding T2 mapping for the hip
  • Figure 16 shows the corresponding T2 mapping for the knee.
  • ROI-1 normal values of healthy cartilage
  • ROI-2 normal values of healthy cartilage
  • the same behavior has been observed in the previously reported Autologous Chondrocyte Implantation techniques, since the repair tissue begins to mature and transform into cartilage at around 12 months. It is expected that in subsequent evaluations (6 and 12 months) these values will decrease, approaching the values of healthy cartilage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention provides a graft or construct formed by isolated cartilage chondrocytes from young donors (<20 years old), seeded on a three-dimensional membrane, composed of one of the main chondrogenesis-promoting substances (hyaluronic acid), in high densities (1x106) with autologous serum, and sealed with a fibrin adhesive for treating a cartilage injury, with tissue formation that has greater durability, a lower cost and fewer risks than treatments currently available for said injuries. Furthermore, a method for the treatment of articular cartilage injuries is provided, by means of implanting an allogenic chondrocyte graft that has the capability to satisfactorily generate or repair the cartilage of the injury.

Description

IMPLANTES PARA EL TRATAMIENTO DE LESIONES DE
Figure imgf000003_0001
IMPLANTS FOR THE TREATMENT OF INJURIES OF
Figure imgf000003_0001
CARTILAGO CARTILAGE
CAMPO TÉCNICO TECHNICAL FIELD
La presente invención se ubica en el campo de la medicina, particularmente en terapia celular e ingeniería de tejidos, refiere métodos de tratamiento de lesiones de cartílago articular, en particular de lesiones de cartílago de rodilla. Así mismo, refiere el desarrollo de un implante o constructo de condrocitos alogénicos para el tratamiento de dichas lesiones de cartílago. The present invention is located in the field of medicine, particularly in cell therapy and tissue engineering, it refers to treatment methods for articular cartilage injuries, particularly knee cartilage injuries. Likewise, it refers to the development of an implant or construct of allogeneic chondrocytes for the treatment of said cartilage lesions.
ANTECEDENTES BACKGROUND
Las lesiones de cartílago en articulaciones de carga como rodilla, tobillo y cadera son difíciles de sanar sin tratamiento quirúrgico. La incidencia de este tipo de lesiones es elevada en pacientes jóvenes (30-35 años), sobre todo en la articulación de la rodilla, encontrándose hasta en un 65% de las artroscopias realizadas en esta articulación para tratar otras patologías (lesiones de ligamentos y/o meniscos).1-4 Las consecuencias de no tratar adecuada y oportunamente estas lesiones son dolor, pérdida gradual de la función, discapacidad y osteoartritis temprana.3 4 Evidentemente este tipo de lesiones son un gran problema de salud con una importante repercusión epidemiológica y un gran impacto a nivel de salud y calidad de vida que genera importantes costos para las personas, instituciones y el sistema de salud en general. Cartilage injuries in weight-bearing joints such as the knee, ankle and hip are difficult to heal without surgical treatment. The incidence of this type of injury is high in young patients (30-35 years), especially in the knee joint, found in up to 65% of arthroscopies performed on this joint to treat other pathologies (ligament injuries and /or menisci). 1-4 The consequences of not adequately and promptly treating these injuries are pain, gradual loss of function, disability, and early osteoarthritis. 3 4 Obviously, this type of injury is a major health problem with significant epidemiological repercussions and a great impact on health and quality of life, generating significant costs for individuals, institutions, and the health system in general.
En la actualidad existen diversas técnicas quirúrgicas para tratar las lesiones de cartílago con resultados variables. Sin embargo, a pesar de dicha diversidad de técnicas, éstas presentan inconvenientes que requieren superarse por el bien del paciente, de su calidad de vida, de tiempos de tratamiento y recuperación y, por supuesto, de costos económicos. Se ha documentado que el tratamiento que mejores resultados ha otorgado a largo plazo, en cuanto a alivio del dolor, mejora en la función y retraso en el desarrollo de osteoartritis temprana, es el Implante de Condrocitos Autólogos (ACI, por sus siglas en inglés; Autologous Chondrocyte Implantation)45. En la actualidad el ACI es la única terapia celular para reparar cartílago en Reino Unido. Esta técnica fue realizada y publicada por dos Ortopédistas suecos en 1987, hasta el 2010 se habían realizado 35,000 casos a nivel mundial, reportándose que hasta en un 87% de los pacientes sometidos a éste procedimiento presentan resultados clínicos que se catalogan de buenos a excelentes, en comparación con otras técnicas (microfracturas, traslado osteocondral autólogo, microfracturas aumentadas) que muestran resultados menos alentadores. Currently there are various surgical techniques to treat cartilage injuries with variable results. However, despite this diversity of techniques, they present drawbacks that need to be overcome for the good of the patient, their quality of life, treatment and recovery times and, of course, economic costs. It has been documented that the treatment that has given the best results in the long term, in terms of pain relief, improvement in function and delay in the development of early osteoarthritis, is Autologous Chondrocyte Implantation (ACI, for its acronym in English; Autologous Chondrocyte Implantation) 45 . ACI is currently the only cell therapy for cartilage repair in the UK. This technique was carried out and published by two Swedish orthopedics in 1987. Until 2010, 35,000 cases had been carried out worldwide, reporting that up to 87% of patients undergoing this procedure present clinical results that are classified as good to excellent. compared with other techniques (microfractures, autologous osteochondral transfer, augmented microfractures) that show less encouraging results.
La técnica de ACI es un procedimiento que comprende dos etapas quirúrgicas, en el primer procedimiento quirúrgico se toman biopsias de cartílago en una zona de “no carga” de la rodilla del mismo paciente (autólogo). La biopsia de cartílago se envía a laboratorio, en donde se extraen las células que producen cartílago (condrocitos) y se cultivan in vitro durante un periodo de entre 6 a 8 semanas con el propósito de incrementar el número de células disponibles, que se utilizaran en el siguiente procedimiento quirúrgico. Una vez que se cuenta con la cantidad de células apropiadas, se realiza una segunda artroscopia para colocar en la lesión los condrocitos, cultivados previamente sobre un polímero de origen comercial de ácido hialurónico, para promover la formación de un tejido muy parecido al cartílago con el paso del tiempo, reparando el defecto, aliviando los síntomas de la lesión; esto permite que el paciente retome las actividades de la vida diaria, e inclusive, a largo plazo, que realice actividades deportivas. The ACI technique is a procedure that comprises two surgical stages. In the first surgical procedure, cartilage biopsies are taken in a "non-load" area of the knee of the same patient (autologous). The cartilage biopsy is sent to the laboratory, where the cells that produce cartilage (chondrocytes) are extracted and cultured in vitro for a period of 6 to 8 weeks with the purpose of increasing the number of cells available, which will be used in the next surgical procedure. Once the appropriate number of cells is available, a second arthroscopy is performed to place the chondrocytes, previously cultured on a commercially available polymer of hyaluronic acid, in the lesion to promote the formation of a tissue very similar to cartilage with the aim of passage of time, repairing the defect, alleviating the symptoms of the injury; this allows the patient to resume activities of daily living, and even, in the long term, to perform sports activities.
Con el paso del tiempo, la técnica de ACI ha sufrido múltiples modificaciones, a las cuales normalmente se refieren como “generaciones”, actualmente se reconocen 3 generaciones, con el objetivo de contrarrestar las complicaciones y mejorar los resultados a largo plazo. En la 3a generación, una modificación importante es que los condrocitos autólogos se siembran en una matriz de colágena para posteriormente ser colocadas en el defecto o lugar de la lesión, esto reduce el escurrimiento y la perdida de las células condrales fuera de la matriz como sucedía en la 1 § y 2- generación. La tercera generación es conocida también como MACI (Matrix Associated Chondrocyte Implantation), y ha mostrado mejores resultados que las generaciones previas, por lo que se ha observado que el cultivar las células sobre la matriz es más efectivo que inyectarlas dentro del defecto y cubrirlo después con una membrana suturada al cartílago adyacente. Aunque los resultados con esta técnica MACI son mejores que los que se obtienen con las generaciones previas, esta técnica aún presenta diversos inconvenientes, entre los cuales están los altos costos de la misma y aún más limitante resulta la incapacidad de que cual cualquier hospital o Instituto de Salud pueda llevarla a la práctica por la infraestructura requerida y el personal capacitado para realizar los trabajos de ingeniería de tejidos. Over time, the ACI technique has undergone multiple modifications, which are usually referred to as "generations", currently 3 generations are recognized, with the aim of counteracting complications and improving long-term results. In the 3rd generation, an important modification is that the autologous chondrocytes are seeded in a collagen matrix to later be placed in the defect or lesion site, this reduces the leakage and loss of chondral cells outside the matrix as it used to happen. in the 1 § and 2- generation. The third generation is also known as MACI (Matrix Associated Chondrocyte Implantation), and has shown better results than previous generations, so it has been observed that culturing the cells on the matrix is more effective than injecting them into the defect and then covering it. with a membrane sutured to the adjacent cartilage. Although the results with this technique MACI are better than those obtained with previous generations, this technique still has various drawbacks, among which are its high costs and even more limiting is the inability for any hospital or Health Institute to carry it out. practice due to the required infrastructure and trained personnel to carry out tissue engineering work.
El elevado costo económico de este tratamiento es debido a que se requieren dos procedimientos quirúrgicos, además del gran tiempo que se requiere para el cultivo de las células, incluyendo material de laboratorio, infraestructura y recursos humanos; lo que asciende a 17,000 € en países Europeos6 y aproximadamente $250,000 en México. The high economic cost of this treatment is due to the fact that two surgical procedures are required, in addition to the long time required for cell culture, including laboratory material, infrastructure, and human resources; which amounts to €17,000 in 6 European countries and approximately $250,000 in Mexico.
Otra gran limitante también se presenta en la fuente del cartílago autólogo, ya que esto requiere tomar cartílago sano de una rodilla del mismo paciente, lo cual implica 2 escenarios problemáticos para el paciente, por una parte, se tiene la limitación de la cantidad de cartílago sano que se puede tomar del paciente y, por otra parte, se genera un gran riesgo para desarrollar desgaste articular prematuro en el área donadora (osteoartritis temprana). Another great limitation also occurs in the source of autologous cartilage, since this requires taking healthy cartilage from a knee of the same patient, which implies 2 problematic scenarios for the patient, on the one hand, there is the limitation of the amount of cartilage healthy that can be taken from the patient and, on the other hand, there is a great risk of developing premature joint wear in the donor area (early osteoarthritis).
Con el objetivo de reducir costos y el procedimiento de dos pasos, se ha descrito una técnica de un paso denominada STACI (Single treatment Autologous Chondrocyte Implantation) en la que el laboratorio se lleva a quirófano y durante la cirugía de toma de biopsia de cartílago, los condrocitos se aíslan con un procedimiento enzimático, son estimulados con factores de crecimiento en una hora y mezclados con células mononucleares de médula ósea, obtenida del mismo paciente. Esta mezcla de células se siembra sobre una matriz de colágeno o ácido hialurónico, para ser colocadas en la lesión durante el mismo procedimiento. Los resultados del STACI (una cirugía) a dos años son similares a los reportados en el ACI (dos cirugías), sin embargo, la reducción de los costos hace que esta técnica sea una opción atractiva para la regeneración de cartílago.7 With the aim of reducing costs and the two-step procedure, a one-step technique called STACI (Single treatment Autologous Chondrocyte Implantation) has been described in which the laboratory is taken to the operating room and during the cartilage biopsy surgery, the chondrocytes are isolated with an enzymatic procedure, they are stimulated with growth factors in one hour and mixed with bone marrow mononuclear cells, obtained from the same patient. This mixture of cells is seeded on a matrix of collagen or hyaluronic acid, to be placed in the lesion during the same procedure. The results of STACI (one surgery) at two years are similar to those reported in ACI (two surgeries), however, the reduction in costs makes this technique an attractive option for cartilage regeneration. 7
El implante de condrocitos alogénicos ha sido explorado en la actualidad para resolver las limitaciones y la técnica multipasos que requiere el implante de condrocitos autólogos, sin embargo, lo reportado en la literatura aún es limitado.8 En la literatura de patentes se encontró el documento EP2919794, en el cual se refieren composiciones para su uso en métodos de tratamiento de un defecto en el cartílago, hueso, ligamento, tendón, menisco, las articulaciones o muscular en un sujeto. En una modalidad, el método comprende administrar una composición de cartílago fragmentado o en partículas (0.25 a 5 mm), derivado de donador humano cadavérico, en donde dichas partículas de cartílago poseen condrocitos viables y además contiene un vehículo biocompatible, que comprende una solución de criopreservación (DMSO+suero) o un medio de cultivo (DMEM+5%SFB; DMEM alto en glucosa). Allogeneic chondrocyte implantation has currently been explored to resolve the limitations and the multi-step technique that autologous chondrocyte implantation requires, however, what is reported in the literature is still limited. 8 Document EP2919794 was found in the patent literature, which refers to compositions for use in methods of treatment of a defect in cartilage, bone, ligament, tendon, meniscus, joints or muscle in a subject. In one modality, the method comprises administering a composition of fragmented or particulate cartilage (0.25 to 5 mm), derived from a cadaveric human donor, wherein said cartilage particles possess viable chondrocytes and also contains a biocompatible vehicle, comprising a solution of cryopreservation (DMSO+serum) or a culture medium (DMEM+5%SFB; high glucose DMEM).
El documento de patente EP2338441 refiere un producto compuesto también por fragmentos o partículas de cartílago derivado de donador cadavérico, pero en este caso de donadores jóvenes (menores de 15 años), lo que potencia una mayor capacidad de formar matriz de cartílago hialino comparado con la que puede producirse con condrocitos de donadores adultos. El producto se presenta como un kit en un contenedor estéril para el tratamiento de las lesiones de cartílago compuesto por partículas de cartílago fragmentado provenientes de donador cadavérico que contiene condrocitos viables y una solución de almacenaje. Patent document EP2338441 refers to a product also composed of fragments or particles of cartilage derived from a cadaveric donor, but in this case from young donors (under 15 years of age), which enhances a greater capacity to form a hyaline cartilage matrix compared to the that can occur with chondrocytes from adult donors. The product is presented as a kit in a sterile container for the treatment of cartilage lesions composed of fragmented cartilage particles from a cadaveric donor containing viable chondrocytes and a storage solution.
Una gran desventaja de las patentes descritas previamente es que el cartílago derivado de donador cadavérico conserva la matriz extracelular, si bien funciona como un andamio tridimensional, como un condroreactor para las partículas de cartílago fragmentado, también es cierto que dicha matriz también representa un riesgo mayor de respuesta inmunológica y de reacciones de rechazo por parte del receptor, ya que el cartílago contiene proteínas del donador que pueden ser identificadas por el receptor y producir desde un mecanismo de rechazo simple, que impida la formación del tejido deseado y la integración del mismo, hasta una reacción inmunológica mayor tanto local como sistémica. A major drawback of the previously described patents is that cadaveric donor-derived cartilage retains the extracellular matrix, although it functions as a three-dimensional scaffold, like a chondroreactor for fragmented cartilage particles, it is also true that such matrix also poses a higher risk. of immunological response and rejection reactions by the recipient, since the cartilage contains donor proteins that can be identified by the recipient and produced from a simple rejection mechanism, which prevents the formation of the desired tissue and its integration, up to a greater immunological reaction both local and systemic.
Otra desventaja más de la tecnología descrita en dicha patentes, se desprende del hecho de que el tejido se deriva de cartílago de las costillas, cartílago nasal, cartílago de la tráquea, del esternón y otras fuentes de cartílago que no se especifican, cuya naturaleza, composición y estructura es muy distinta a la del cartílago de las articulaciones (rodilla, tobillo, cadera, hombro), por lo cual es deseable que los condrocitos se deriven de cartílago hialino, principalmente de rodilla (como en el caso de la presente invención) para formar cartílago articular. Yet another drawback of the technology described in said patents results from the fact that the tissue is derived from rib cartilage, nasal cartilage, tracheal cartilage, sternal cartilage and other unspecified sources of cartilage, the nature of which, composition and structure is very different from that of the cartilage of the joints (knee, ankle, hip, shoulder), for which it is desirable that chondrocytes are derived from hyaline cartilage, mainly knee (as in the case of the present invention) to form articular cartilage.
El documento de patente WO 2019/1 13558 A1 divulga el tratamiento de lesiones condrales y osteocondrales, mediante una composición de células alogénicas, chopreservadas en un banco de células, cultivadas en una membrana reabsorbible de colágeno porcino (tipo I y/o II), a una densidad de 250,000 células por cm2. En este documento se indica que los condrocitos se pueden obtener de “diversos tejidos”, lo que implica la posibilidad de que las células obtenidas no sean condrocitos específicos para cartílago hialino. Por otro lado, antes de criopreservar los condrocitos, éstos son expandidos y cultivados por lo menos durante dos pases (en un apartado describen que menos de 5), lo que condiciona una desdiferenciación de los condrocitos primarios y, por lo tanto, se tiene un riesgo elevado de formación de fibrocartílago en lugar de cartílago hialino. Además, otro evento que puede condicionar la formación de fibrocartílago en lugar de cartílago hialino es la baja densidad de células que se siembran en la membrana de colágeno, otro factor que favorece la desdiferenciación celular y la formación de tejido fibroso. The patent document WO 2019/1 13558 A1 discloses the treatment of chondral and osteochondral lesions, using a composition of allogeneic cells, chopreserved in a cell bank, cultured in a resorbable membrane of porcine collagen (type I and/or II), at a density of 250,000 cells per cm 2 . In this document it is indicated that chondrocytes can be obtained from "various tissues", which implies the possibility that the cells obtained are not chondrocytes specific for hyaline cartilage. On the other hand, before cryopreserving the chondrocytes, they are expanded and cultured for at least two passages (in one section they describe less than 5), which conditions a dedifferentiation of the primary chondrocytes and, therefore, there is a elevated risk of fibrocartilage formation instead of hyaline cartilage. In addition, another event that can condition the formation of fibrocartilage instead of hyaline cartilage is the low density of cells seeded in the collagen membrane, another factor that favors cell dedifferentiation and the formation of fibrous tissue.
Por otra parte, también se tiene el inconveniente de que los cultivos de condrocitos se suplementan con suero fetal bovino, un suero de origen animal que claramente puede desencadenar reacciones inmunogénicas en un receptor humano. On the other hand, there is also the drawback that the chondrocyte cultures are supplemented with fetal bovine serum, a serum of animal origin that can clearly trigger immunogenic reactions in a human recipient.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención refiere un implante ortopédico conformado por condrocitos alogénicos cadavéricos sobre un soporte o membrana de ácido hialurónico, sellados con un adhesivo de fibrina, para el tratamiento de una lesión de cartílago, con formación de tejido que tenga una mayor durabilidad, a un menor costo y con menos riesgos que los tratamientos disponibles en la actualidad para el manejo de dichas lesiones. The present invention refers to an orthopedic implant made up of cadaveric allogeneic chondrocytes on a hyaluronic acid support or membrane, sealed with a fibrin adhesive, for the treatment of a cartilage lesion, with tissue formation that has greater durability, at a lower cost. cost and with fewer risks than currently available treatments for the management of such injuries.
Otro objeto de la presente invención refiere un kit para el tratamiento de cartílago que comprende un implante ortopédico, conformado por condrocitos alogénicos, derivados de donador cadavérico, sembrados sobre una membrana de ácido hialurónico y cubiertos son un adhesivo biocompatible, en donde dichos condrocitos se encuentran adheridos a la membrana y presentan la formación de matriz extracelular; en donde dicho contenedor además comprende un medio de cultivo, suplementado con suero autólogo y antibióticos-antimicóticos. Another object of the present invention refers to a kit for the treatment of cartilage that comprises an orthopedic implant, made up of allogeneic chondrocytes, derived from cadaveric donor, seeded on a hyaluronic acid membrane and covered with a biocompatible adhesive, where said chondrocytes are adhered to the membrane and present the formation of extracellular matrix; wherein said container also comprises a culture medium, supplemented with autologous serum and antibiotics-antimycotics.
Otro objeto de la presente invención refiere un procedimiento para el tratamiento de lesiones de cartílago articular, mediante la implantación de un constructo ortopédico conformado por condrocitos alogénicos cadavéricos sobre un soporte o membrana de ácido hialurónico, sellados con un adhesivo de fibrina, en donde dichos condrocitos se encuentran adheridos a la membrana y presentan la formación de matriz extracelular. Another object of the present invention refers to a procedure for the treatment of articular cartilage lesions, through the implantation of an orthopedic construct made up of cadaveric allogeneic chondrocytes on a hyaluronic acid support or membrane, sealed with a fibrin adhesive, where said chondrocytes They are adhered to the membrane and present the formation of extracellular matrix.
BREVE DESCRIPCION DE LAS FUGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 . Diagrama de flujo del método de obtención del implante o constructo con condrocitos alogénicos de la presente invención, en donde a) es la toma de biopsia; b) cultivo celular; c) expansión celular; y d) formación de implante. Figure 1 . Flowchart of the method for obtaining the implant or construct with allogeneic chondrocytes of the present invention, where a) is the biopsy; b) cell culture; c) cell expansion; and d) implant formation.
Figuras 2A-2F. Secuencia fotográfica del procedimiento de obtención de biopsias de cartílago de donador cadavérico. Figures 2A-2F. Photographic sequence of the procedure for obtaining cartilage biopsies from cadaveric donors.
Una vez que se identifica a un donador de tejidos, se procede a realizar la artrotomía de ambas rodillas y a realizar la toma de fragmentos de cartílago (ver figura 2A a 2D), los cuales se colocan en contendores estériles (figura 2E a 2F), que contienen solución fisiológica o medio de cultivo (DMEM-F12) suplementado con 10% antibióticos-antimicóticos. Once a tissue donor is identified, arthrotomy of both knees is performed and cartilage fragments are taken (see figure 2A to 2D), which are placed in sterile containers (figure 2E to 2F). containing physiological solution or culture medium (DMEM-F12) supplemented with 10% antibiotic-antifungal.
En una realización de la presente invención se toman las muestras de cartílago de cóndilos femorales y patela (Fig. 2A y 2B), con ayuda de un bisturí, con hojas del #20. El tejido se toma de la parte más superficial (Fig. 2C y 2D), con el propósito de no profundizar el corte hasta el hueso subcondral, para evitar la salida de células troncales de médula ósea y contacto con fluidos intramedulares o la contaminación del tejido con células de otro origen. En el sitio de procuración de la biopsia se documentan los datos del donador para estandarizar características que puedan influir en la viabilidad y capacidad condrogénica de las células (edad, género, patologías asociadas y causa de fallecimiento). Así mismo, se verifican las variables asociadas como hora de fallecimiento y tiempo entre el fallecimiento y la toma del cartílago. In one embodiment of the present invention, cartilage samples are taken from the femoral condyles and patella (Fig. 2A and 2B), with the help of a scalpel, with #20 blades. The tissue is taken from the most superficial part (Fig. 2C and 2D), with the purpose of not deepening the cut to the subchondral bone, to avoid the exit of bone marrow stem cells and contact with intramedullary fluids or tissue contamination. with cells of other origin. At the biopsy procurement site, the donor's data is documented to standardize characteristics that may influence the viability and chondrogenic capacity of the cells (age, gender, associated pathologies, and cause of death). Likewise, the associated variables such as time of death and time between death and taking the cartilage are verified.
Figuras 3A-3E. Secuencia fotográfica del método de aislamiento y determinación de viabilidad de los condrocitos derivados de cartílago de donador cadavérico. Figures 3A-3E. Photographic sequence of the isolation method and viability determination of chondrocytes derived from cadaveric donor cartilage.
Brevemente, el tejido se lava varias veces con PBS y 10% antibiótico- antimicótico, hasta retirar por completo fluidos y restos del donador (A). Posteriormente, se realiza una digestión mecánica con bisturí, para obtenerse fragmentos de tejido menores a 1 mm (B), seguida de una digestión enzimática en la que se utiliza colagenasa-tipo 2 (0.1 al 0.3% p/v), durante al menos 1 hora a 37°C, en agitación continua, se recupera el sobrenadante que contiene las células liberadas por las digestiones previamente descritas (C), y los fragmentos no digeridos se someten a una segunda etapa de digestión con una solución enzimática fresca, por al menos otra hora a 37°C. Briefly, the tissue is washed several times with PBS and 10% antibiotic-antifungal, until fluids and donor debris are completely removed (A). Subsequently, mechanical digestion is performed with a scalpel to obtain tissue fragments smaller than 1 mm (B), followed by enzymatic digestion using type 2 collagenase (0.1 to 0.3% w/v), for at least For 1 hour at 37°C, with continuous agitation, the supernatant containing the cells released by the digestions previously described (C) is recovered, and the undigested fragments are subjected to a second digestion stage with a fresh enzyme solution, for at least minus another hour at 37°C.
El número de células y la viabilidad de las mismas se determinan mediante conteo en la cámara de Neubauer y azul tripano (D). Los condrocitos aislados se criopreservan (E) sin expandirse, con el propósito de conservar y mantener tanto la viabilidad, como la morfología y la funcionalidad de los mismos, diversas metodologías se conocen en el estado de la técnica para tal fin. El medio de congelamiento comprende medio de cultivo, suero humano comercial o suero autólogo y una sustancia crioprotectora. En una realización de la presente invención, los condrocitos obtenidos se depositaron en medio de congelación [DMEM/F12 (80%), suero autólogo (10%) y DMSO (10%)], a una densidad de un máximo de 500,000 células por mi de medio, y se criopreservaron en nitrógeno líquido o a -192°C. The number of cells and their viability are determined by counting in the Neubauer chamber and trypan blue (D). The isolated chondrocytes are cryopreserved (E) without expanding, with the purpose of conserving and maintaining both their viability, their morphology and functionality; various methodologies are known in the state of the art for this purpose. The freezing medium comprises culture medium, commercial human serum or autologous serum, and a cryoprotective substance. In one embodiment of the present invention, the obtained chondrocytes were deposited in freezing medium [DMEM/F12 (80%), autologous serum (10%) and DMSO (10%)], at a density of a maximum of 500,000 cells per cell. ml of medium, and cryopreserved in liquid nitrogen or at -192°C.
Figuras 4A-4D. Fotografías de un Kit de Injerto o constructo tridimensional. En la figura se muestra un kit para el tratamiento de cartílago que comprende un implante ortopédico, conformado por condrocitos alogénicos, derivados de donador cadavérico, sembrados sobre una membrana de ácido hialurónico y cubiertos con un adhesivo biocompatible, en donde dichos condrocitos se encuentran adheridos a la membrana y presentan la formación de matriz extracelular; en donde dicho contenedor además comprende un medio de cultivo, suplementado con suero autólogo y antibióticos-antimicóticos. Figures 4A-4D. Photographs of a Grafting Kit or three-dimensional construct. The figure shows a kit for the treatment of cartilage that includes an orthopedic implant, made up of allogeneic chondrocytes, derived from cadaveric donors, seeded on a hyaluronic acid membrane and covered with a biocompatible adhesive, where said chondrocytes are adhered to the membrane and present the formation of extracellular matrix; wherein said container also comprises a culture medium, supplemented with autologous serum and antibiotics-antimycotics.
Figuras 5A-5D. Presencia de proteoglicanos en el cartílago formado. Figures 5A-5D. Presence of proteoglycans in the formed cartilage.
Se muestran cortes histológicos de tejido formado a partir de condrocitos cadavéricos alogénicos de la presente invención (5B), condrocitos derivados de donador vivo (P0), sin expandirse ni criopreservarse (5C), condrocitos derivados de donador vivo (P2) expandidos durante 2 pases, sin criopreservarse (5D) y tejido control de cartílago hialino (5A), teñidos con azul alciano que permite identificar la matriz extracelular característica de cartílago hialino. Shown are histological sections of tissue formed from allogeneic cadaveric chondrocytes of the present invention (5B), chondrocytes derived from living donor (P0), neither expanded nor cryopreserved (5C), chondrocytes derived from living donor (P2) expanded for 2 passages , without cryopreservation (5D) and hyaline cartilage control tissue (5A), stained with alcian blue that allows identification of the characteristic extracellular matrix of hyaline cartilage.
Figuras 6A-6D. Evaluación cuantitativa de la calidad del cartílago formado. Figures 6A-6D. Quantitative evaluation of the quality of the cartilage formed.
El análisis cuantitativo de las tinciones histológicas, se llevó a cabo mediante tres observadores independientes y cegados, usando la escala histológica modificada de O'Driscoll. En esta se evalúa la cantidad del cartílago formado, que se videncia por la tinción roja, dándole la siguiente puntuación de 80-100% (8 puntos), 60-80% (6 puntos), 40-60% (4 puntos), 20-40% (2 puntos) y de 0-20% (0 puntos); integridad de la estructura del tejido formado, asignándole la siguiente puntuación: Normal (2), ligera disrupción (1 ) y severa carencia de integración (0); Celularidad, que evalúa que tan parecida es la forma de las células al cartílago normal y que tantas células hay, asignándoles la siguiente puntuación: celularidad normal (3), hipocelularidad <25% (2), Hipocelularidad moderada >25% (1 ), hipocelularidad severa (0). Quantitative analysis of histological staining was carried out by three independent and blinded observers, using the modified O'Driscoll histological scale. In this, the amount of cartilage formed is evaluated, which is evidenced by red staining, giving it the following score of 80-100% (8 points), 60-80% (6 points), 40-60% (4 points), 20-40% (2 points) and 0-20% (0 points); integrity of the structure of the tissue formed, assigning the following score: Normal (2), slight disruption (1) and severe lack of integration (0); Cellularity, which evaluates how similar the shape of the cells is to normal cartilage and how many cells there are, assigning them the following score: normal cellularity (3), hypocellularity <25% (2), moderate hypocellularity >25% (1), severe hypocellularity (0).
Se evaluaron al menos tres campos de cada corte histológico. Se otorgó una puntuación máxima de 14 al cartílago nativo (figura 6A); entre más cercana es la puntuación a 14, que se asigna a las muestras histológicas, significa que el tejido formado presenta una mayor calidad y que es más parecido al cartílago sano. Figura 7. Esquematización del procedimiento de colocación del implante o constructo en la zona de la lesión. At least three fields of each histological section were evaluated. A maximum score of 14 was given to native cartilage (Figure 6A); the closer the score is to 14, which is assigned to histological samples, it means that the tissue formed presents a higher quality and that it is more similar to healthy cartilage. Figure 7. Diagram of the implant or construct placement procedure in the area of the lesion.
Figuras 8A-8F. Preparación y medición del tamaño de la lesión mediante artroscopia. Figures 8A-8F. Preparation and measurement of the size of the lesion by arthroscopy.
En las figuras se muestra una imagen de la lesión a tratar (8A), y el desbridamiento de los bordes de la lesión (8B, 8C), para obtener un área de forma cuadrada o rectangular (8F) y la medición a lo alto y a lo ancho mediante el uso de un gancho palpador artroscópico (8D y 8E). The figures show an image of the lesion to be treated (8A), and the debridement of the edges of the lesion (8B, 8C), to obtain a square or rectangular area (8F) and the measurement at the top and bottom. width by using an arthroscopic hook palpator (8D and 8E).
Figuras 9A-9D. Implante y fijación del constructo en el sitio de lesión. Figures 9A-9D. Implantation and fixation of the construct at the lesion site.
En la imagen se muestra como se introduce el implante o constructo al área de la lesión (9A), asi como su extensión en la superficie de la lesión (9B), asegurando el contacto del injerto con todos los bordes del cartílago nativo adyacente (9C) y el recubrimiento con el adhesivo de fibrina (9D). The image shows how the implant or construct is inserted into the area of the lesion (9A), as well as its extension on the surface of the lesion (9B), ensuring contact of the graft with all the edges of the adjacent native cartilage (9C ) and coating with fibrin glue (9D).
Figuras 10A-10B. Proceso de evaluación de la integración del constructo por RMN. Figures 10A-10B. Process of evaluation of the integration of the construct by NMR.
Se muestra un estudio de Resonancia Magnética Nuclear de una rodilla tratada con el implante de la presente invención que muestra el tejido generado a los 12 meses con adecuado contacto al cartílago nativo. A Nuclear Magnetic Resonance study of a knee treated with the implant of the present invention is shown, showing the tissue generated at 12 months with adequate contact with the native cartilage.
Figuras 1 1 A-11 F. Reparación de lesión de cartílago a 12 meses: ACI vs ALCI. Figures 1 1 A-11 F. Cartilage lesion repair at 12 months: ACI vs ALCI.
Evaluación artroscópica, a los 12 meses de tratamiento de lesión de cartílago en tróclea lateral de ambas rodillas en la misma paciente. En las figuras de los incisos A hasta C, se muestra las imágenes de la rodilla derecha, con lesión de 20x15 mm, se trató con implante de condrocitos autólogos (ACI); Por otra parte, la rodilla izquierda ( Fig . 1 1 D, 1 1 E y 1 1 F), con lesión de 18x15 mm, se trató con el implante de condrocitos alogénicos de la presente invención (ALCI). Arthroscopic evaluation, 12 months after treatment of cartilage lesion in the lateral trochlea of both knees in the same patient. In the figures of sections A to C, the images of the right knee are shown, with a 20x15 mm lesion, treated with autologous chondrocyte implantation (ACI); On the other hand, the left knee ( Fig . 1 1 D, 1 1 E and 1 1 F), with a lesion of 18x15 mm, was treated with the allogeneic chondrocyte implant of the present invention (ALCI).
Figuras 12A-12D. Formación de fibrocartílago en la zona donadora en el ACI Evaluación artroscópica de la toma de biopsia osteocondral en el implante de condrocitos autólogos (Fig. 12A y 12B). Posteriormente, mediante una segunda vista artroscópica a los 12 meses del implante de condrocitos autólogos, claramente se observa relleno de la zona donadora con abundante presencia de tejido fibroso, irregular y f i bri lar (Fig . 12C y 12D). Figures 12A-12D. Fibrocartilage formation in the donor area in the ICA Arthroscopic evaluation of the osteochondral biopsy in autologous chondrocyte implantation (Fig. 12A and 12B). Subsequently, by means of a second arthroscopic view 12 months after autologous chondrocyte implantation, filling of the donor area with abundant presence of fibrous, irregular and fibrillar tissue is clearly observed (Fig . 12C and 12D).
Figuras 13A-13F. Colocación de constructo en cadera. Figures 13A-13F. Hip construct placement.
Artroscopia de cadera izquierda. En la imagen 13A y 13B, se identifica la lesión de cartílago en la región antera-superior del acetábulo (25 x 10 mm), mientras que en la imagen 13C y 13D, se señala una lesión del mismo tamaño, pero en la zona postero- supeñor. Ambas lesiones involucran un 40% del total de la superficie articular. La imagen 13E y 13F, muestran la colocación del implante de condrocitos alogénicos y su fijación con el pegamento de fibrina. Left hip arthroscopy. In images 13A and 13B, the cartilage lesion is identified in the anterior-superior region of the acetabulum (25 x 10 mm), while in images 13C and 13D, a lesion of the same size is indicated, but in the posterior area. - superior. Both lesions involve 40% of the total articular surface. Images 13E and 13F show the placement of the allogeneic chondrocyte implant and its fixation with fibrin glue.
Figuras 14A-14B. Calidad del cartílago reparado en cadera. Figures 14A-14B. Quality of repaired cartilage in the hip.
Evaluación de la calidad del tejido de reparación mediante la medición del tiempo de relajación del agua a los 3 meses del implante en cadera. La flecha roja indica el valor del cartílago control (ROI-1 ) versus la medición del tejido de reparación (ROI-2) (47.5 ms vs 50.5 ms), los valores son muy semejantes. Evaluation of the quality of the repair tissue by measuring the relaxation time of the water 3 months after the hip implant. The red arrow indicates the value of the control cartilage (ROI-1) versus the measurement of the repair tissue (ROI-2) (47.5 ms vs 50.5 ms), the values are very similar.
Figuras 15A-15F. Colocación de constructo en rodilla. Figures 15A-15F. Knee construct placement.
En la figura se muestra la colocación del injerto con condrocitos cadavéricos en patela. 15A) Resección de prominencia ósea (osteofito) para evitar la erosión del cartílago de la tróclea. 15B) Osteofito en la base del ligamento cruzado anterior (LCA). 15C) LCA reconstruido con injerto sintético. 15D) Lesión de cartílago en la faceta lateral de la rótula (30 x 30 mm). 15E) Colocación del injerto o constructo de ácido hialurónico sembrado con condrocitos alogénicos en la zona de la lesión. 15F) Aplicación de pegamento de fibrina para promover la adherencia del implante en la lesión y en el cartílago adyacente. The figure shows the placement of the graft with cadaveric chondrocytes in the patella. 15A) Resection of a bony prominence (osteophyte) to prevent erosion of the trochlear cartilage. 15B) Osteophyte at the base of the anterior cruciate ligament (ACL). 15C) ACL reconstructed with synthetic graft. 15D) Cartilage lesion on the lateral facet of the patella (30 x 30 mm). 15E) Placement of the graft or hyaluronic acid construct seeded with allogeneic chondrocytes in the area of the lesion. 15F) Application of fibrin glue to promote adherence of the implant in the lesion and in the adjacent cartilage.
Figuras 16A-16B. Calidad del cartílago reparado en rodilla. En a figura se muestra la evaluación de la calidad del tejido de reparación mediante la medición del tiempo de relajación del agua a los 3 meses del implante en rodilla. La flecha roja indica el valor del cartílago control (ROI-1 ) versus la medición del tejido de reparación (ROI-2) (47.7 ms vs 56.9 ms). El valor del tejido de reparación refleja aún la presencia de cartílago inmaduro a los 3 meses. Figures 16A-16B. Quality of cartilage repaired in the knee. The figure shows the evaluation of the quality of the repair tissue by measuring the relaxation time of the water 3 months after the knee implant. The red arrow indicates the control cartilage value (ROI-1) versus the repair tissue measurement (ROI-2) (47.7 ms vs 56.9 ms). The repair tissue value still reflects the presence of immature cartilage at 3 months.
Figuras 17A-17B. Escalas de evaluación funcional de cadera antes y después de la cirugía. Figures 17A-17B. Hip functional assessment scales before and after surgery.
La evaluación funcional de cadera se realizó mediante escalas ampliamente reconocidas, por ejemplo, la escala de cadera de Harris es el instrumento más utilizado para evaluar los resultados obtenidos tras artroplastia de cadera. La evaluación se realizó pre y post cirugía para valorar los movimientos de los ejes transverso, anteroposterior y longitudinal o arcos de movilidad. The functional evaluation of the hip was carried out using widely recognized scales, for example, the Harris hip scale is the most widely used instrument to evaluate the results obtained after hip arthroplasty. The evaluation was carried out before and after surgery to assess the movements of the transverse, anteroposterior and longitudinal axes or mobility arcs.
Figuras 18A-18E. Escalas de evaluación funcional de rodilla antes y después de la cirugía. Figures 18A-18E. Functional evaluation scales of the knee before and after surgery.
La evaluación funcional de rodilla se realizó mediante escalas ampliamente reconocidas, por ejemplo, la escala de TEGNER, LYSHOLM, Comité Internacional de Documentación sobre la rodilla “IKDC” (International Knee Documentation Committee) y KUJALA. La evaluación se realizó pre y post cirugía para valor los arcos de movilidad, dolor y función de la rodilla. The functional evaluation of the knee was carried out using widely recognized scales, for example, the TEGNER, LYSHOLM, International Knee Documentation Committee (IKDC) and KUJALA scales. The evaluation was carried out before and after surgery to assess the range of motion, pain and function of the knee.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención refiere un implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un individuo, en donde dicho implante se compone de condrocitos alogénicos, derivados de donador cadavérico, cultivados sobre un andamio de ácido hialurónico, sellados con un pegamento biocompatible. Así mismo, refiere un kit para el tratamiento de cartílago que comprende cultivo primario de condrocitos alogénicos, derivados de donador cadavérico, sembrados sobre una membrana de ácido hialurónico, y cubiertos son un pegamento biocompatible, dispuestos en un contenedor o recipiente apropiado para tal propósito, en donde dicho contenedor además comprende un medio de cultivo, suplementados con suero autólogo y antibióticos-antimicóticos. The present invention relates to an implant or construct for the treatment of cartilage lesions in an individual's joints, wherein said implant is made up of allogeneic chondrocytes, derived from a cadaveric donor, cultured on a hyaluronic acid scaffold, sealed with a biocompatible glue. Likewise, it refers to a kit for the treatment of cartilage that comprises primary culture of allogeneic chondrocytes, derived from cadaveric donor, seeded on a hyaluronic acid membrane, and covered with a biocompatible glue, arranged in an appropriate container or container for such purpose, wherein said container also comprises a culture medium, supplemented with autologous serum and antibiotics-antimycotics.
La invención de la presente solicitud, claramente contribuye a solucionar al menos uno de los múltiples inconvenientes latentes en el área técnica, una de las grandes ventajas de la presente invención es que se favorece la formación de una mejor calidad de cartílago hialino lo que favorece la integración del implante al tejido nativo adyacente y también hemos observado en todos los pacientes tratados que se disminuye el riesgo de reacciones inmunogénicas, toda vez hemos observado que todos los pacientes sometidos a ésta técnica no han presentado datos locales o sistémicos de rechazo, tales como: aumento de volumen articular, aumento de la temperatura local, ausencia de rechazo o desprendimiento del implante al evaluarse por resonancia magnética. Otra de las grandes ventajas de la presente invención radica en que a partir del tejido donador se obtienen suficiente material para tratar lesiones de gran tamaño, es decir, no se tienen una limitante en el número de células para llevar el tratamiento médico. Otra gran ventaja más de la presente invención es que el procedimiento para la obtención del injerto o constructo requiere de tiempos cortos (aproximadamente 1 semana) en comparación con las distintas metodologías (aproximadamente 8 semanas) descritas en el estado de la técnica. En la presente invención se utilizan condrocitos aislados de cartílago articular (rodilla y/o patela) provenientes de donadores jóvenes (<20 años), sembrados sobre una membrana tridimensional, compuesta por una de las principales sustancias promotoras de condrogénesis (ácido hialurónico), en altas densidades (1x106) con suero autólogo y sellados con un adhesivo de fibrina. The invention of the present application clearly contributes to solving at least one of the many latent drawbacks in the technical area. One of the great advantages of the present invention is that it favors the formation of a better quality of hyaline cartilage, which favors the integration of the implant to the adjacent native tissue and we have also observed in all treated patients that the risk of immunogenic reactions is reduced, every time we have observed that all patients subjected to this technique have not presented local or systemic rejection data, such as: increase in joint volume, increase in local temperature, absence of rejection or detachment of the implant when evaluated by magnetic resonance. Another of the great advantages of the present invention lies in the fact that enough material is obtained from the donor tissue to treat large lesions, that is, there is no limitation in the number of cells to carry out the medical treatment. Another great advantage of the present invention is that the procedure for obtaining the graft or construct requires short times (approximately 1 week) compared to the different methodologies (approximately 8 weeks) described in the state of the art. In the present invention, chondrocytes isolated from articular cartilage (knee and/or patella) from young donors (<20 years old) are used, seeded on a three-dimensional membrane, composed of one of the main chondrogenesis-promoting substances (hyaluronic acid), in high densities (1x10 6 ) with autologous serum and sealed with a fibrin adhesive.
En la presente invención hemos observado que en el desarrollo del implante descrito se ha observado que la siembra de los condrocitos sobre la membrana o andamio ha permitido mantener un ambiente tridimensional, que a su vez es necesario para mantener en condiciones apropiadas las células condrales y, de esta manera, evitar que se desdiferencien a “fibrocondrocitos”. Es altamente deseable evitar la obtención de fibrocondrocitos, toda vez que el cartílago de reparación que se forma a partir de estas células es de pobre calidad y durabilidad, ya que dichas células producen componentes estructurales muy diferentes a los del cartílago hialino nativo. Por otro parte, hemos observado que la naturaleza estructural de la membrana de ácido hialurónico nos permitió obtener un implante con la flexibilidad y resistencia deseable para ser manipulado durante la artroscopia. Así mismo, durante el desarrollo de la presente invención y con los métodos descritos, encontramos que más del 80% de los condrocitos obtenidos de cartílago, proveniente de rodillas de donadores cadavéricos, hasta 48 horas después del fallecimiento, mantienen su viabilidad y preservan la capacidad de formar cartílago en cultivos in-vitro (figuras 4 y 5). In the present invention we have observed that in the development of the described implant it has been observed that the seeding of the chondrocytes on the membrane or scaffold has made it possible to maintain a three-dimensional environment, which in turn is necessary to maintain the chondral cells in appropriate conditions and, in this way, prevent them from dedifferentiating into “fibrochondrocytes”. It is highly desirable to avoid obtaining fibrochondrocytes, since the repair cartilage formed from these cells is of poor quality and durability, since these cells produce very different structural components from native hyaline cartilage. On the other hand, we have observed that the structural nature of the membrane of hyaluronic acid allowed us to obtain an implant with the flexibility and desirable resistance to be manipulated during arthroscopy. Likewise, during the development of the present invention and with the methods described, we found that more than 80% of the chondrocytes obtained from cartilage, coming from the knees of cadaveric donors, up to 48 hours after death, maintain their viability and preserve the capacity. to form cartilage in in-vitro cultures (figures 4 and 5).
Para la presente invención se utiliza de manera indistinta, con el mismo significado y alcance de protección, los términos o expresiones “constructo”, “injerto”, “injerto de condrocitos”, “implante”, “implante de condrocitos” o “implante ortopédico”. En estos nos referimos a un sustituto de cartílago con la capacidad de reparar, regenerar o sustituir funcional y estructuralmente cartílago en un paciente que ha perdido la función de dicho tejido, o bien cuando dicho tejido ha sufrido algún daño mecánico o fisiológico. For the present invention, the terms or expressions "construct", "graft", "chondrocyte graft", "implant", "chondrocyte implant" or "orthopedic implant" are used interchangeably, with the same meaning and scope of protection. ”. In these we refer to a cartilage substitute with the ability to functionally and structurally repair, regenerate or replace cartilage in a patient who has lost the function of said tissue, or when said tissue has suffered some mechanical or physiological damage.
Para la presente invención la expresión “Donador cadavérico” refiere que el tejido de cartílago es derivado de un donador fallecido, en donde dicho donador tiene aproximadamente 20 años o menos, preferentemente menos de 20 años de edad en el momento de la donación. Normalmente, los condrocitos derivados de un individuo joven presentan una mayor capacidad de sintetizar/organizar la matriz extracelular de cartílago hialino vs aquellos condrocitos derivados de un individuo adulto. For the present invention, the expression "cadaveric donor" refers that the cartilage tissue is derived from a deceased donor, where said donor is approximately 20 years old or less, preferably less than 20 years old at the time of donation. Normally, chondrocytes derived from a young individual have a greater capacity to synthesize/organize the extracellular matrix of hyaline cartilage compared to those derived from an adult individual.
Para la presente invención la expresión “condrocitos alogénicos” toma el significado convencional en el área técnica, el cual refiere a condrocitos de diferentes individuos de la misma especie. For the present invention, the expression "allogeneic chondrocytes" takes the conventional meaning in the technical area, which refers to chondrocytes from different individuals of the same species.
Para la presente invención se utiliza de manera indistinta, con el mismo significado y alcance de protección, los términos o expresiones “membrana”, “andamio” o “soporte”. En estos nos referimos a una estructura de soporte, conformada por uno o más materiales de distinta naturaleza, preferentemente por materiales biocompatibles, reabsorbióles y resistentes. Esta membrana brinda un soporte mecánico sobre el cual se depositan los condrocitos, lo cual facilita su colocación en el sitio del defecto a tratar, además también permite que dichas células permanezcan en el sitio del defecto. En una modalidad la membrana está compuesta por una capa de un biopoiímero sintético de ácido hiaiurónico o de sus derivados, en particular de los derivados esterificados, además no contiene subproductos animales o humanos, lo que evita la reacción alérgica de otros productos. En otra modalidad, la membrana está compuesta por una capa de un biopoiímero sintético de ácido hiaiurónico esterificado con alcohol bencílico y algunas de sus características son: es biodegradable, resistencia mecánica, biocompatible, no citotóxico (no destruye las células), no antigénico (no causa respuesta inmunitaria), promueve la proliferación y diferenciación celular, es flexible y elástico, y permite el paso de nutrientes y desechos metabólicos y su mecanismo de metabolización es conocido y seguro. Esta membrana se degrada a través de la hidrólisis (descomposición por acción del agua) del éster, lo que genera la liberación del AH y del alcohol bencílico. For the present invention, the terms or expressions "membrane", "scaffold" or "support" are used interchangeably, with the same meaning and scope of protection. In these we refer to a support structure, made up of one or more materials of a different nature, preferably biocompatible, resorbable and resistant materials. This membrane provides a mechanical support on which the chondrocytes are deposited, which facilitates their placement at the site of the defect to be treated, and also allows said cells to remain at the site of the defect. In one embodiment the membrane is composed by a layer of a synthetic biopolymer of hyaluronic acid or its derivatives, particularly esterified derivatives, also does not contain animal or human by-products, which prevents allergic reactions from other products. In another modality, the membrane is composed of a layer of a synthetic biopolymer of hyaluronic acid esterified with benzyl alcohol and some of its characteristics are: it is biodegradable, mechanical resistance, biocompatible, non-cytotoxic (does not destroy cells), non-antigenic (does not causes an immune response), promotes cell proliferation and differentiation, is flexible and elastic, and allows the passage of nutrients and metabolic waste, and its metabolization mechanism is known and safe. This membrane degrades through hydrolysis (decomposition by action of water) of the ester, which generates the release of HA and benzyl alcohol.
Para la presente invención el término o expresión “adhesivo tisular de fibrina” o “pegamento de fibrina” refiere a composiciones adhesivas celulares a base de fibrinógeno humano y trombina, que permite generar un coágulo de fibrina para hemostasia, sellante y cicatrizante de tejidos y para mejorar la adhesión tisular. En una modalidad, es deseable que dicho adhesivo contenga únicamente componentes de origen animal o sintético, con el propósito de evitar reacciones adversas al mismo por parte del organismo receptor. En otra modalidad, el adhesivo puede contener otros componentes, a los mencionados previamente, para fortalecer su propiedad adhesiva. En otra modalidad, el adhesivo de fibrina puede obtenerse del suero autólogo durante la cirugía, o bien uno de origen sintético y de uso comercial. Algunos de los productos adhesivos a base de fibrina que se comercializan son, por ejemplo: Beriplast® Behering, Tisseel® de Baxter, Evicel ® de J&J, etc. For the present invention, the term or expression "fibrin tissue adhesive" or "fibrin glue" refers to cell adhesive compositions based on human fibrinogen and thrombin, which allows the generation of a fibrin clot for hemostasis, sealing and healing of tissues and for improve tissue adhesion. In one embodiment, it is desirable that said adhesive contain only components of animal or synthetic origin, in order to avoid adverse reactions thereto by the receiving organism. In another embodiment, the adhesive may contain other components than those previously mentioned to strengthen its adhesive property. In another modality, the fibrin glue can be obtained from autologous serum during surgery, or one of synthetic origin and for commercial use. Some of the fibrin-based adhesive products that are marketed are, for example: Beriplast® Behering, Tisseel® from Baxter, Evicel ® from J&J, etc.
Para la presente invención el término o expresión “medio de cultivo” o “medio” refiere a composiciones apropiadas para el cultivo de condrocitos, toda vez que apoyan o favorecen el mantenimiento y/o crecimiento de las células en cultivo in vitro. En algunas modalidades preferidas, también refiere al medio de cultivo suplementado con uno o más componentes adicionales. En algunas realizaciones, los componentes adicionales pueden incluir, por ejemplo, suero, antibióticos, antimicóticos, factores de crecimiento, lampones, indicadores de pH y similares. En otras realizaciones, el medio puede usarse en el proceso de aislamiento de células (por ejemplo, condrocitos y / o precursores de condrocitos) a partir de una muestra de tejido (por ejemplo, una muestra de cartílago). En algunas realizaciones, el tejido se digiere mecánicamente y luego se somete a una digestión enzimática, se combina con el medio que puede comprender enzimas (por ejemplo, colagenasa o proteasa) para digerir tejido y liberar células. For the present invention, the term or expression "culture medium" or "medium" refers to compositions suitable for the culture of chondrocytes, as long as they support or favor the maintenance and/or growth of cells in in vitro culture. In some preferred embodiments, it also refers to the culture medium supplemented with one or more additional components. In some embodiments, additional components can include, for example, serum, antibiotics, antifungals, growth factors, buffers, pH indicators, and the like. In other embodiments, the medium can be used in the process of isolating cells (eg, chondrocytes and/or chondrocyte precursors) from a tissue sample (eg, a cartilage sample). In some embodiments, the tissue is mechanically digested and then subjected to enzymatic digestion, combined with the medium which may comprise enzymes (eg, collagenase or protease) to digest tissue and release cells.
Para la presente invención el término o expresión “condrocitos alogénicos cadavéricos” o “condrocitos cadavéricos” refiere a condrocitos que se aíslan de cartílago derivado de donadores cadavéricos jóvenes, de hasta 20 años de edad. En algunas realizaciones, las células aisladas se pueden utilizar de manera inmediata, o bien se pueden criopresevar, sin expandirse (P0), hasta su uso. For the present invention the term or expression "cadaveric allogeneic chondrocytes" or "cadaveric chondrocytes" refers to chondrocytes that are isolated from cartilage derived from young cadaveric donors, up to 20 years of age. In some embodiments, the isolated cells can be used immediately, or they can be cryopreserved, without expanding (P0), until use.
EJEMPLOS EXAMPLES
Los presentes ejemplos son de carácter ilustrativo y no limitativo, ya que un técnico en la materia entenderá que hay variantes que caen dentro del alcance de protección de la presente invención. These examples are illustrative and not limiting in nature, since a person skilled in the art will understand that there are variants that fall within the scope of protection of the present invention.
Ejemplo 1 : Obtención de condrocitos cadavéricos. Example 1: Obtaining cadaveric chondrocytes.
Selección de los donadores cadavéricos Selection of cadaveric donors
Para la presente invención las biopsias o muestra de tejido se obtiene de donadores jóvenes sanos. En una modalidad, los donadores se seleccionan del género masculino, para evitar variables de índole hormonal en la biología de los condrocitos obtenidos. Los donadores jóvenes se seleccionan de una edad de hasta 20 años, en una modalidad se selecciona con una edad de entre los 14 y 20 años. Las muestras de cartílago se obtienen de las rodillas de los donadores (ver figura 2), tomándose como un factor importante que sean articulaciones macroscópicamente sanas (sin presencia evidente de lesiones traumáticas del cartílago, depósitos de cristales, lesiones condrales degenerativas, infección previa o activa y/o enfermedades reumatológicas). Por lo que el personal que procura el tejido corrobora que el tejido es liso y blanquecino. En una modalidad, las biopsias o muestras de tejido que se utilizaron en algunos de los ejemplos de la presente invención fueron proporcionadas por el Banco de tejidos musculoesquelético y piel de Biograft de México. For the present invention, biopsies or tissue samples are obtained from healthy young donors. In one modality, the donors are selected from the male gender, to avoid variables of a hormonal nature in the biology of the chondrocytes obtained. Young donors are selected from an age of up to 20 years, in one modality they are selected with an age between 14 and 20 years. The cartilage samples are obtained from the knees of the donors (see figure 2), taking as an important factor that they are macroscopically healthy joints (without the evident presence of traumatic cartilage lesions, crystal deposits, degenerative chondral lesions, previous or active infection). and/or rheumatic diseases). Therefore, the staff that procures the tissue corroborates that the tissue is smooth and whitish. In one embodiment, the biopsies or tissue samples that were used in some of the examples of the present invention were provided by the Biograft Skin and Musculoskeletal Tissue Bank of Mexico.
Panel serológico del donador Donor serological panel
Una vez que se selecciona a un donador cadavérico y se toma la biopsia o muestra de tejido, este tejido se somete a un panel de estudios para descartar la presencia de enfermedades infecciosas que puedan ser transmitidas a través del tejido donado. El panel incluye el estudio de anticuerpos contra hepatitis B (Core y Superficie), hepatitis C, HTLV, sífilis, VIH y detección de ácidos nucleicos (prueba NAT) contra hepatitis B, C y VIH. Una vez que las biopsias o muestras de tejido presentan reporte de serologías negativas se consideran apropiadas para utilizarse en la formación del implante o constructo de la presente invención. Once a cadaveric donor is selected and the biopsy or tissue sample is taken, this tissue is submitted to a panel of studies to rule out the presence of infectious diseases that could be transmitted through the donated tissue. The panel includes the study of antibodies against hepatitis B (Core and Surface), hepatitis C, HTLV, syphilis, HIV and detection of nucleic acids (NAT test) against hepatitis B, C and HIV. Once the biopsies or tissue samples present negative serology reports, they are considered appropriate for use in the formation of the implant or construct of the present invention.
En una modalidad de la presente invención, algunas de las biopsias o muestras de tejido utilizadas en la presente invención se enviaron al laboratorio Viromed/Labcorp, en Minnesota, Estados Unidos, quien realizó dicho panel de estudios. In one embodiment of the present invention, some of the biopsies or tissue samples used in the present invention were sent to the Viromed/Labcorp laboratory, in Minnesota, USA, who performed said panel studies.
Obtención de la biopsia Obtaining the biopsy
Una vez que se identifica a un donador de tejidos con los criterios de inclusión descritos, el personal de procuración de tejidos más un ortopedista experto en la toma de cartílago acuden al hospital en donde ocurrió el fallecimiento, en condiciones asépticas, estériles se procede a realizar la artrotomía de ambas rodillas y a realizar la toma de fragmentos de cartílago (ver figura 2), los cuales se colocan en contendores estériles (figura 2E-2F), que contienen medio de cultivo (DMEM-F12) suplementado con 10% antibióticos-antimicóticos, posteriormente se trasladan a -4°C al laboratorio del Banco de tejidos (Biograft) para ser procesadas. Once a tissue donor is identified with the inclusion criteria described, the tissue procurement staff plus an expert orthopedist in cartilage collection go to the hospital where the death occurred, under aseptic, sterile conditions, the procedure is performed. arthrotomy of both knees and to take cartilage fragments (see figure 2), which are placed in sterile containers (figure 2E-2F), containing culture medium (DMEM-F12) supplemented with 10% antibiotics-antimycotics , later they are transferred to -4°C to the laboratory of the Tissue Bank (Biograft) to be processed.
En una realización de la presente invención se toman las muestras de cartílago de cóndilos femorales y patela (Fig. 2A y 2B), con ayuda de un bisturí, con hojas del #20. El tejido se toma de la parte más superficial (Fig. 2C y 2D), con el propósito de no profundizar el corte hasta el hueso subcondral, para evitar la salida de células troncales de médula ósea y contacto con fluidos intramedulares o la contaminación del tejido con células de otro origen. In one embodiment of the present invention, cartilage samples are taken from the femoral condyles and patella (Fig. 2A and 2B), with the help of a scalpel, with #20 blades. The tissue is taken from the most superficial part (Fig. 2C and 2D), with the purpose of Do not deepen the cut as far as the subchondral bone, to avoid leakage of bone marrow stem cells and contact with intramedullary fluids or contamination of the tissue with cells of other origin.
En el sitio de procuración de la biopsia se documentan los datos del donador para estandarizar características que puedan influir en la viabilidad y capacidad condrogénica de las células (edad, género, patologías asociadas y causa de fallecimiento). Así mismo, se verifican las variables asociadas como hora de fallecimiento y tiempo entre el fallecimiento y la toma del cartílago. At the biopsy procurement site, the donor's data is documented to standardize characteristics that may influence the viability and chondrogenic capacity of the cells (age, gender, associated pathologies, and cause of death). Likewise, the associated variables such as time of death and time between death and taking the cartilage are verified.
Aislamiento de condrocitos chondrocyte isolation
El aislamiento de condrocitos (ver figura 3) se lleva a cabo en instalaciones apropiadas para tal fin, por ejemplo, en un el laboratorio de cultivo de tejidos, bajo condiciones estériles y en una campana de flujo laminar de nivel II. El tejido se lava, con PBS + 10% antibiótico-antimicótico, al menos un par de veces o más para retirar fluidos y restos del donador, en una modalidad se prefieren 3 o más lavados. El cartílago obtenido se pesa y con ello se obtiene la relación del número de condrocitos obtenidos por miligramo de tejido. Posteriormente, se realiza una digestión mecánica, para obtenerse fragmentos de cartílago menores a 1 mm (ver figura 3B), seguida de una digestión enzimática con colagenasa-tipo 2 (0.1 al 0.3% p/v), durante al menos 1 hora a 37°C, en agitación continua: en una modalidad la digestión se lleva a cabo por al menos 2 hrs., en otra modalidad igualmente preferida la digestión se lleva a cabo por al menos 3 hrs., en otra modalidad igualmente preferida la digestión se lleva a cabo por al menos 4 hrs. Como resulta evidente, la eficiencia del tratamiento enzimático puede obtenerse con la variación de diferentes parámetros, por ejemplo, la eficiencia se incrementa cuando se presenta una mayor superficie del tejido expuesto, cuando se incrementa la cantidad o actividad de la enzima y con el tiempo de digestión. La digestión enzimática se podría llevar a cabo de manera continua o, bien, llevarse a cabo en dos o más etapas de digestión; por ejemplo, la digestión se lleva cabo durante 60 a 120 minutos, se recupera el sobrenadante que contiene las células liberadas por la digestión, y los fragmentos no digeridos se someten a una segunda etapa de digestión con una solución enzimática fresca, por al menos otros 60 a 120 minutos (figura 3C). El número de células y la viabilidad de las mismas se determinan mediante conteo en la cámara de Neubauer y azul tripano (figura 3D). Los condrocitos obtenidos se criopreservan (figura 3E) sin expandirse, con el propósito de conservar y mantener tanto la viabilidad, como la morfología y la funcionalidad de los mismos, diversa metodologías se conocen en el estado de la técnica para tal fin. El medio de criopreservación comprende medio de cultivo, suero o combinaciones de los mismos y una sustancia crioprotectora. En una realización, el medio de criopreservación o congelamiento puede estar compuesto por 10% suero humano comercial o 10% de suero autólogo, aunque se prefiere suero autólogo, más 80% de medio de cultivo DMEM/F1 2 y 10% de DIVISO. El DMSO es una sustancia crioprotectora que evita que los condrocitos se hinchen y estallen con el congelamiento. En una realización de la presente invención, los condrocitos obtenidos se depositaron en el medio de congelación antes mencionado en un vial en el que se depositó 1 mi de dicha sustancia para un máximo de 500,000 células y se almacenaron en una cámara de nitrógeno líquido a -192°C. Chondrocyte isolation (see figure 3) is carried out in appropriate facilities for this purpose, for example, in a tissue culture laboratory, under sterile conditions and in a level II laminar flow hood. The tissue is washed, with PBS + 10% antibiotic-antimycotic, at least a couple of times or more to remove donor fluids and debris, in one embodiment 3 or more washes are preferred. The cartilage obtained is weighed and with this the ratio of the number of chondrocytes obtained per milligram of tissue is obtained. Subsequently, mechanical digestion is performed to obtain cartilage fragments smaller than 1 mm (see figure 3B), followed by enzymatic digestion with type 2 collagenase (0.1 to 0.3% w/v), for at least 1 hour at 37 °C, in continuous stirring: in one modality the digestion is carried out for at least 2 hrs., in another equally preferred modality the digestion is carried out for at least 3 hrs., in another equally preferred modality the digestion is carried out out for at least 4 hrs. As is evident, the efficiency of the enzymatic treatment can be obtained with the variation of different parameters, for example, the efficiency increases when there is a greater surface area of the exposed tissue, when the amount or activity of the enzyme increases, and with the time of treatment. digestion. The enzymatic digestion could be carried out continuously or, alternatively, it could be carried out in two or more digestion steps; for example, the digestion is carried out for 60 to 120 minutes, the supernatant containing the cells released by the digestion is recovered, and the undigested fragments are subjected to a second digestion step with a fresh enzyme solution, for at least another 60 to 120 minutes (Figure 3C). The number of cells and their viability are determined by counting in the Neubauer chamber and trypan blue (Figure 3D). The chondrocytes obtained are cryopreserved (figure 3E) without expanding, with the purpose of conserving and maintaining both their viability, their morphology and functionality; various methodologies are known in the state of the art for this purpose. The cryopreservation medium comprises culture medium, serum or combinations thereof, and a cryoprotective substance. In one embodiment, the cryopreservation or freezing medium may be comprised of 10% commercial human serum or 10% autologous serum, although autologous serum is preferred, plus 80% DMEM/F1 2 culture medium and 10% DIVISO. DMSO is a cryoprotective substance that prevents chondrocytes from swelling and bursting on freezing. In an embodiment of the present invention, the obtained chondrocytes were deposited in the aforementioned freezing medium in a vial in which 1 ml of said substance was deposited for a maximum of 500,000 cells and stored in a liquid nitrogen chamber at - 192°C.
Ejemplo 2: Formación del implante o construct©. Example 2: Formation of the implant or construct©.
Suero autólogo autologous serum
Una muestra de sangre periférica (200-250 ml) del paciente a tratar, es procesada por centrifugación para retirar la fracción roja y obtener el suero autólogo, éste se inactiva, se filtra y se alícuota en tubos de 10 mi y se almacena en condiciones estériles a -4°C, hasta que se requiera su uso. A peripheral blood sample (200-250 ml) from the patient to be treated is processed by centrifugation to remove the red fraction and obtain the autologous serum. This is inactivated, filtered and aliquoted into 10 ml tubes and stored under conditions sterile at -4°C, until required for use.
En una modalidad el cirujano ortopedista, que solicita el injerto, le facilita al laboratorio de cultivo de tejidos o Banco de tejidos los datos del paciente a tratar, al cual se le contacta para que acuda donar de una muestra de sangre periférica (200- 250 mi), para la obtención del suero autólogo, preferiblemente 5 a 7 días previos a la cirugía. In one modality, the orthopedic surgeon, who requests the graft, provides the tissue culture laboratory or tissue bank with the data of the patient to be treated, who is contacted to come and donate a peripheral blood sample (200-250 mi), to obtain autologous serum, preferably 5 to 7 days prior to surgery.
Preparación del implante Para preparar un implante o constructo, se descongelan los condrocitos, mediante un proceso gradual para reducir al mínimo el porcentaje de muerte celular y, una vez descongeladas, se realiza nuevamente el conteo y la determinación de la viabilidad celular. A continuación, se realiza la siembra de los condrocitos sobre la membrana o andamio de ácido hialurónico, a una densidad de 1 x106 células por cada cm2. El constructo es sellado en toda su superficie con pegamento de fibrina para promover la adherencia de los condrocitos a la membrana y disminuir el riesgo de pérdida celular. El tamaño de la membrana o andamio de ácido hialurónico, en una modalidad el ácido hialurónico es de origen sintético, está en función de los requerimientos del cirujano ortopedista que lo implantará, y puede presentar un tamaño que va desde 10 x 10 mm hasta 50 x 50 mm. Los condrocitos sembrados en la membrana se cultivan a 37°C, 5% de CO2 y 5% humedad, con medio de cultivo DMEM-F12 + 10% suero autólogo + 1 % antibiótico-antimicótico. Cada segundo o tercer día se realiza un cambio de medio de cultivo, durante un periodo de 5 a 7 días (figura 4), para permitir la adherencia celular y la formación de matriz extracelular. El suero autólogo se obtiene del paciente al cual se le va a implantar el constructo, de esta manera se evita el uso de suero bovino fetal que puede condicionar a reacciones secundarias en el paciente. Implant preparation To prepare an implant or construct, chondrocytes are thawed, through a gradual process to minimize the percentage of cell death, and once thawed, counting and determination of cell viability is performed again. Next, the chondrocytes are seeded on the hyaluronic acid membrane or scaffold, at a density of 1 x 10 6 cells per cm 2 . The construct is sealed over its entire surface with fibrin glue to promote adherence of chondrocytes to the membrane and decrease the risk of cell loss. The size of the hyaluronic acid membrane or scaffold, in one modality the hyaluronic acid is of synthetic origin, depends on the requirements of the orthopedic surgeon who will implant it, and can have a size ranging from 10 x 10 mm to 50 x 50mm. The chondrocytes seeded on the membrane are cultured at 37°C, 5% CO2 and 5% humidity, with DMEM-F12 culture medium + 10% autologous serum + 1% antibiotic-antimycotic. Every second or third day a change of culture medium is made, for a period of 5 to 7 days (Figure 4), to allow cell adherence and the formation of extracellular matrix. The autologous serum is obtained from the patient in whom the construct is to be implanted, thus avoiding the use of fetal bovine serum, which can lead to secondary reactions in the patient.
Ejemplo 3: Evaluación de la presencia de proteoglicanos en el cartílago formado Example 3: Evaluation of the presence of proteoglycans in the formed cartilage
Durante el desarrollo de la invención se realizaron pruebas de viabilidad de los condrocitos obtenidos de donador cadavérico (P0), así como de su capacidad para formar cartílago hialino. Estos se sometieron a estudios comparativos con condrocitos obtenidos de donador vivo sin expandirse y sin criopreservación (P0) y condrocitos obtenidos de donador vivo expandidos, durante 2 pases, sin criopreservación (P2), en ambos casos los donadores presentaron condiciones demográficas similares. Para todos los grupos, los condrocitos se sembraron en una membrana de colágeno, posteriormente este implante o constructo se implantó en el dorso de ratones atímicos (Nunu), que fueron monitoreados durante 3 meses. A los tres meses se evalúo, mediante tinciones e inmunofluorescencias para cartílago, el tejido formado en cada uno de los grupos de estudio se comparó con cartílago hialino nativo. El tejido formado en los distintos grupos se analizó mediante tinciones con los colorantes azul alciano (coloración azul) y Safranina-0 (coloración rojo-café). La tinción con azul alciano pone de manifiesto el cartílago y es especialmente útil para diferenciar cartílago hialino articular vs hueso, puesto que la matriz extracelular cartilaginosa se tiñe con el azul alciano (figura 5). Por su parte, la tinción con el colorante Safranina-0 se ha convertido en una guía básica en la identificación de cartílago articular, debido a que la safranina O se une a los glicosaminoglicanos (GAGs), los cuales son estructuras terminales de los proteoglicanos como el agrecano, que es un componente esencial del cartílago articular y abundan en la matriz extracelular del cartílago articular, así mismo se considera que la intensidad de la tinción de la safranina-0 es directamente proporcional al contenido de PG en cartílago (figura 6). During the development of the invention, viability tests were carried out on the chondrocytes obtained from cadaveric donors (P0), as well as their ability to form hyaline cartilage. These were subjected to comparative studies with chondrocytes obtained from a living donor without expansion and without cryopreservation (P0) and chondrocytes obtained from a living donor expanded, during 2 passages, without cryopreservation (P2), in both cases the donors presented similar demographic conditions. For all groups, chondrocytes were seeded on a collagen membrane, then this implant or construct was implanted in the back of athymic (Nunu) mice, which were monitored for 3 months. After three months, the tissue formed in each of the study groups was evaluated by staining and immunofluorescence for cartilage compared with native hyaline cartilage. The tissue formed in the different groups was analyzed by staining with alcian blue (blue stain) and Safranin-0 (red-brown stain). Alcian blue staining reveals cartilage and is especially useful for differentiating articular hyaline cartilage vs. bone, since the cartilaginous extracellular matrix stains with alcian blue (Figure 5). For its part, staining with the Safranin-0 dye has become a basic guide in the identification of articular cartilage, because safranin O binds to glycosaminoglycans (GAGs), which are terminal structures of proteoglycans such as aggrecan, which is an essential component of articular cartilage and is abundant in the extracellular matrix of articular cartilage, likewise it is considered that the intensity of safranin-0 staining is directly proportional to the content of PG in cartilage (figure 6).
Los resultados se muestran en la figura 5, en esta se observan cortes histológicos teñidos con azul alciano. En (5A) se muestra el tejido control, cartílago hialino nativo; en (5B) se observa el tejido generado a partir de los condrocitos cadavéricos (P0) de la presente invención, mientras que en (5C) y (5D) se observa el tejido generado a partir de los condrocitos derivados de donador vivo (P0 y P2, respectivamente). Las imágenes muestran claramente que los tejidos generados por los condrocitos de donador vivo (5C y 5D) presentan una tinción moderada a muy baja, respectivamente, mientras que el tejido generado a partir de los condrocitos cadavéricos (P0) de la presentan invención presentan una muy marcada tinción azul (figura 5B). Esta tinción azul permite identificar una matriz extracelular, de aspecto homogéneo, característica de cartílago hialino, la matriz extracelular es secretada por los condrocitos generados a partir del implante o constructo de la presente invención. Además, en la figura 5B se aprecian claramente los condrocitos que se suelen asociar por parejas o tétradas, formando así los llamados grupos isogénicos. The results are shown in figure 5, in which histological sections stained with alcian blue are observed. In (5A) the control tissue is shown, native hyaline cartilage; in (5B) the tissue generated from the cadaveric chondrocytes (P0) of the present invention is observed, while in (5C) and (5D) the tissue generated from the chondrocytes derived from living donors (P0 and P2, respectively). The images clearly show that the tissues generated from living donor chondrocytes (5C and 5D) show moderate to very low staining, respectively, while the tissue generated from cadaveric chondrocytes (P0) of the present invention show very low staining. marked blue staining (Figure 5B). This blue staining makes it possible to identify an extracellular matrix, with a homogeneous appearance, characteristic of hyaline cartilage. The extracellular matrix is secreted by the chondrocytes generated from the implant or construct of the present invention. In addition, in Figure 5B the chondrocytes that usually associate in pairs or tetrads can be clearly seen, thus forming the so-called isogenic groups.
Así mismo, de dicho resultado se desprende que los condrocitos de donador vivo (P2), que fueron cultivados durante 2 pases (figura 5D) prácticamente pierden la capacidad de generar cartílago hialino articular vs el tejido control del corte histológico (figura 5A). Aún más importante es el resultado que se deriva de la comparación de las figuras (B) vs (C), en la cual se observa el tejido formado a partir de los condrocitos cadavéricos de la presente invención (P0) vs los condrocitos de donador sano (P0), en las mismas condiciones; resulta evidente que cuando se utiliza el implante o constructo de la presente invención se induce la formación de cartílago hialino, lo cual se evidencia con la marcada tinción de azul alciano que evidencia la formación de matriz extracelular. Likewise, from this result it can be deduced that living donor chondrocytes (P2), which were cultured for 2 passages (figure 5D) practically lose the ability to generate articular hyaline cartilage vs. the control tissue of the histological section (figure 5A). Even more important is the result derived from the comparison of figures (B) vs. (C), in which the tissue formed from the cadaveric chondrocytes of the present invention (P0) is observed vs. the healthy donor chondrocytes. (P0), Under the same conditions; It is evident that when the implant or construct of the present invention is used, the formation of hyaline cartilage is induced, which is evidenced by the marked alcian blue staining that shows the formation of extracellular matrix.
Ejemplo 4: Evaluación cuantitativa de la calidad del cartílago formado Example 4: Quantitative evaluation of the quality of the cartilage formed
Se llevó a cabo un análisis cuantitativo de las tinciones histológicas, para ello se recurrió a tres observadores independientes y cegados, usando la escala histológica modificada de O'Dhscoll, mediante la cual se evalúa el porcentaje de formación de cartílago, la cantidad y calidad de las células formadas y estructura del tejido. En esta evaluación se otorga una puntuación máxima de 14 puntos al cartílago nativo (figura 6); entre más cercana es la puntuación a 14, que se asigna a las muestras histológicas, significa que el tejido formado presenta una mayor calidad y que es más parecido al cartílago sano. Cuantitativamente, el tejido formado por los condrocitos cadavéricos (P0) que se chopreservaron sin expandirse, de la presente invención, obtuvo una media de 9.57 (SD+1.27). Por su parte, el cartílago formado por los condrocitos de donador vivo (P0) que no se expandieron y tampoco se chopreservaron, obtuvo un puntaje de 8.71 (SD+3.98), sin haber diferencia significativa con el tejido de los condrocitos cadavéricos (p<0.05). A quantitative analysis of the histological stains was carried out, for which three independent and blinded observers were used, using the modified O'Dhscoll histological scale, through which the percentage of cartilage formation, the quantity and quality of cartilage are evaluated. cells formed and tissue structure. In this evaluation, a maximum score of 14 points is awarded to native cartilage (Figure 6); the closer the score is to 14, which is assigned to histological samples, it means that the tissue formed presents a higher quality and that it is more similar to healthy cartilage. Quantitatively, the tissue formed by the cadaveric chondrocytes (P0) that were chopreserved without expanding, of the present invention, obtained a mean of 9.57 (SD+1.27). On the other hand, the cartilage formed by living donor chondrocytes (P0) that did not expand and were not chopreserved either, obtained a score of 8.71 (SD+3.98), with no significant difference with the tissue of cadaveric chondrocytes (p< 0.05).
Sin embargo, con la presente invención la fuente de obtención de los condrocitos se vuelve significativamente importante al considerar que cuando se obtienen los condrocitos de un donador cadavérico se elimina el requerimiento de realizar una primera cirugía al paciente a tratar, evitando con ellos los riesgos de morbilidad en la zona donadora y disminuyendo significativamente los costos y tiempos de tratamiento y recuperación. Así mismo, otra gran ventaja es que a partir de la fuente donadora cadavérica se obtiene una mayor cantidad de tejido y con ello una mayor cantidad de células para los implantes o constructos, lo cual elimina la necesidad de realizar cultivos prolongados que conllevan el riesgo de generar fibrocartílago en lugar de cartílago hialino, esto además permite tratar lesiones de cualquier tamaño, esto también impacta en los costos del tratamiento y uno de los aspectos más importante es permite la generación de un tejido más parecido al cartílago hialino comparado con el que se forma con los condrocitos de donador vivo, que no se cultivan ni se criopreservaron. Los implantes o constructos de condrocitos de donador vivo, que se cultivaron durante 2 pases (P2) formaron un tejido con poco parecido al cartílago, por el contrario, presentaban una apariencia mucho más fibrosa vs el cartílago hialino, probablemente esto sea debido a la desdiferenciación que sufren los condrocitos al ser expandidos en varias ocasiones en cultivos monocapa. El puntaje medio de este grupo en la escala de O'Driscoll fue de 4.37 (SD+4.7), lo que claramente indica que el tejido formado presenta características muy alejadas del cartílago hialino. However, with the present invention, the source of obtaining the chondrocytes becomes significantly important when considering that when the chondrocytes are obtained from a cadaveric donor, the requirement to perform a first surgery on the patient to be treated is eliminated, thereby avoiding the risks of morbidity in the donor area and significantly reducing the costs and times of treatment and recovery. Likewise, another great advantage is that a greater quantity of tissue is obtained from the cadaveric donor source and with it a greater quantity of cells for the implants or constructs, which eliminates the need for prolonged cultures that carry the risk of generate fibrocartilage instead of hyaline cartilage, this also allows treating lesions of any size, this also impacts treatment costs and one of the most important aspects is that it allows the generation of a tissue more similar to hyaline cartilage compared to the one that is formed with living donor chondrocytes, which are not cultured or cryopreserved. Living donor chondrocyte implants or constructs, which were cultured for 2 passages (P2) formed a tissue with little resemblance to cartilage, on the contrary, they presented a much more fibrous appearance vs. hyaline cartilage, probably due to dedifferentiation that chondrocytes undergo when being expanded several times in monolayer cultures. The mean score of this group on the O'Driscoll scale was 4.37 (SD+4.7), which clearly indicates that the tissue formed presents characteristics far removed from hyaline cartilage.
En el implante de condrocitos autólogos (ACI), la fuente de cartílago es muy limitada ya que provienen del mismo individuo, por esta razón resulta obligado cultivar las células, por lo menos durante dos pases (8 semanas), para expandirlas con el propósito de incrementar el número de células, para poseer suficiente cantidad de células para la reparación de una lesión de cartílago. Con los resultados obtenidos (figura 5 y 6) presentados previamente, se demuestra que existe un riesgo muy alto, prácticamente inaceptable, de que los pacientes tratados con esta técnica generen fibrocartílago, con el consecuente riego de falla prematura, lo conveniente es que se forme un tejido lo más parecido a cartílago hialino, como se demostró en la presente invención. In autologous chondrocyte implantation (ACI), the source of cartilage is very limited since they come from the same individual, for this reason it is mandatory to culture the cells, for at least two passages (8 weeks), to expand them with the purpose of increase the number of cells, to have a sufficient number of cells for the repair of a cartilage lesion. With the results obtained (figures 5 and 6) previously presented, it is shown that there is a very high risk, practically unacceptable, that the patients treated with this technique generate fibrocartilage, with the consequent risk of premature failure. a tissue as close as possible to hyaline cartilage, as demonstrated in the present invention.
El implante de condrocitos alogénicos (ALCI, por sus siglas en inglés; Allogenic Chondrocyte Implantation) es una técnica que, al igual que el Implante de Condrocitos Autólogos repara una lesión articular con tejido muy similar al cartílago nativo, disminuyendo tiempos de tratamiento, costos, número de cirugías, afectación en el sitio donador del cartílago autólogo, mayor disponibilidad de la cantidad de células requeridas para tratar una lesión de tamaño considerable, eliminación de la necesidad de cultivar y expandir los condrocitos en laboratorio, selección de condrocitos provenientes de donadores cadavéricos jóvenes para mejorar la calidad del tejido formado. Esta invención permite una alta disponibilidad de los condrocitos cadavéricos, lo cual permite que se utilicen en cualquier momento y en el lugar que se requiera (cualquier hospital de cualquier estado de la República Mexicana e incluso ser comercializados internacionalmente). Esta disponibilidad como implante o constructo elaborado en el banco de tejidos elimina la necesidad de que el centro hospitalario, en donde se va a tratar al paciente, cuente con un laboratorio y/o equipo sofisticado para procesar la muestra, de tal manera que el médico tratante únicamente tiene que solicitarlo al Banco de tejidos. Allogenic Chondrocyte Implantation (ALCI, for its acronym in English; Allogenic Chondrocyte Implantation) is a technique that, like Autologous Chondrocyte Implantation, repairs a joint lesion with tissue very similar to native cartilage, reducing treatment times, costs, number of surgeries, involvement of the autologous cartilage donor site, greater availability of the number of cells required to treat a sizeable lesion, elimination of the need to culture and expand chondrocytes in the laboratory, selection of chondrocytes from young cadaveric donors to improve the quality of the formed tissue. This invention allows high availability of cadaveric chondrocytes, which allows them to be used at any time and in the place that is required (any hospital in any state of the Mexican Republic and even to be marketed internationally). This availability as an implant or construct made in the tissue bank eliminates the need for the hospital center, where the patient is to be treated, to have a laboratory and/or equipment sophisticated to process the sample, in such a way that the attending physician only has to request it from the Tissue Bank.
La calidad del tejido de reparación formado en una lesión de cartílago depende de muchos factores que son cubiertos con esta innovación como la siembra de células en una membrana tridimensional de ácido hialurónico (forma mejor tejido que sin andamio), el número de células que se implanten en la lesión (entre más condrocitos, mejor tejido; característica que no se tiene disponible cuando se trata de condrocitos autólogos), edad del donador (entre más joven, mejor calidad y mayor durabilidad del tejido formado). En la técnica tradicional de ACI, es difícil cubrir los dos últimos aspectos. En la tabla 1 se contrastan las diferencias entre la técnica tradicional (ACI) versus la innovación propuesta (ALCI). The quality of the repair tissue formed in a cartilage lesion depends on many factors that are covered with this innovation, such as the seeding of cells in a three-dimensional hyaluronic acid membrane (it forms better tissue than without a scaffold), the number of cells that are implanted in the lesion (the more chondrocytes, the better tissue; a characteristic that is not available when it comes to autologous chondrocytes), age of the donor (the younger, the better quality and greater durability of the tissue formed). In the traditional ACI technique, it is difficult to cover the last two aspects. Table 1 contrasts the differences between the traditional technique (ACI) versus the proposed innovation (ALCI).
Tabla.1 : Ventajas técnicas de la invención vs técnica tradicional
Figure imgf000025_0001
Figure imgf000026_0001
Table.1: Technical advantages of the invention vs. traditional technique
Figure imgf000025_0001
Figure imgf000026_0001
Ejemplo 5: implantación del implante © construct© de conduchos alegámeos. Example 5: implantation of the implant © construct © of allegamous conduits.
El producto de la presente invención es útil para el tratamiento de lesiones de cartílago de cualquier articulación, en una modalidad preferida se utiliza para el tratamiento de lesiones de cartílago de rodilla. The product of the present invention is useful for the treatment of cartilage lesions of any joint, in a preferred embodiment it is used for the treatment of knee cartilage lesions.
El producto se proporciona como un kit que comprende una caja de cultivo estéril, la cual a su vez contiene el implante o constructo con medio de cultivo, suero autólogo antibiótico-antimicótico; en donde el implante se conforma por una membrana de ácido hialurónico, con dimensiones que van de entre 10 x 10 mm hasta 50 x 50 mm, en donde van adheridos los condrocitos alogénicos cadavéricos, a una densidad de 1 x106 células por cm2, cubiertos con una capa de un adhesivo celular de fibrina. Una vez que el injerto o constructo tiene 7 días de cultivo in-vitro, éste se transporta, en condiciones estériles, al hospital donde se realizará la cirugía. The product is provided as a kit comprising a sterile culture box, which in turn contains the implant or construct with culture medium, antibiotic-antimycotic autologous serum; where the implant is made up of a hyaluronic acid membrane, with dimensions ranging from 10 x 10 mm to 50 x 50 mm, where cadaveric allogeneic chondrocytes are attached, at a density of 1 x10 6 cells per cm 2 , covered with a layer of a fibrin cell adhesive. Once the graft or construct has 7 days of in-vitro culture, it is transported, under sterile conditions, to the hospital where the surgery will be performed.
En una realización de la presente invención, el ingeniero en tejidos del laboratorio del Banco de tejidos (Biograft), asistió al Hospital para entregar el injerto o constructo y permaneció en el procedimiento quirúrgico hasta que se colocó el implante. En otra realización o modalidad, también se cuenta con asistencia de un cirujano ortopedista especialista en artroscopia y lesiones deportivas, experto en reparación de cartílago, para apoyo y asesoría durante el procedimiento quirúrgico de los ortopedistas que no estén familiarizados con la técnica. El kit que contiene el injerto de la presente invención, ha sido utilizado por un cirujano ortopedista mediante cirugía abierta o cirugía mínima invasiva (artroscopia) en un quirófano, bajo condiciones estériles. Al respecto, se recomienda que previo al uso del implante el médico tratante, debe evaluar la lesión durante la cirugía, identificando la ubicación (cóndilo femoral, patela o tróclea) y el tamaño. In one embodiment of the present invention, the tissue engineer from the Tissue Bank (Biograft) laboratory, attended the Hospital to deliver the graft or construct and remained in the surgical procedure until the implant was placed. In another embodiment or modality, there is also assistance from an orthopedic surgeon specialized in arthroscopy and sports injuries, an expert in cartilage repair, for support and advice during the surgical procedure for orthopedists who are not familiar with the technique. The kit containing the graft of the present invention has been used by an orthopedic surgeon through surgery open or minimally invasive surgery (arthroscopy) in an operating room, under sterile conditions. In this regard, it is recommended that prior to the use of the implant the treating physician should evaluate the lesion during surgery, identifying the location (femoral condyle, patella or trochlea) and size.
Para tener una buena integración del injerto o constructo de la presente invención, se recomienda, que antes de la colocación del producto, se realice un adecuado desbridamiento de la lesión (Fig. 8A y Fig. 8B) retirando todo el tejido dañado y dejando bordes estables de cartílago sano (Fig. 8C). Es importante que después del desbñdamiento la lesión se mida nuevamente, ya que es muy seguro que el tamaño de la lesión ahora sea mayor al que se tenía inicialmente, es decir, antes de retirar los bordes lesionados e inestables. Si la cirugía es abierta, la medición se puede realizar con una regla quirúrgica; si el procedimiento es artroscópico se utiliza el gancho palpador, o una regla flexible, para determinar el tamaño exacto de la lesión en el plano próximo-distal y medio-lateral (figura 8D y 8E). Así mismo, es ampliamente recomendable que se le de forma cuadrada o rectangular a la lesión (figura 8F), para facilitar la medición y la adecuación del tamaño y forma del producto. Igualmente, de importante es no dañar el hueso subcondral. In order to have a good integration of the graft or construct of the present invention, it is recommended that before the placement of the product, an adequate debridement of the lesion is carried out (Fig. 8A and Fig. 8B) removing all the damaged tissue and leaving borders. stable from healthy cartilage (Fig. 8C). It is important that the lesion be measured again after debundation, since it is very certain that the size of the lesion is now larger than it was initially, that is, before removing the injured and unstable edges. If the surgery is open, the measurement can be made with a surgical ruler; If the procedure is arthroscopic, the palpator hook or a flexible ruler is used to determine the exact size of the lesion in the proximal-distal and mediolateral plane (figure 8D and 8E). Likewise, it is highly recommended that the lesion be given a square or rectangular shape (figure 8F), to facilitate measurement and adaptation of the size and shape of the product. Equally important is not to damage the subchondral bone.
Una vez que se obtienen las medidas finales de la lesión, después del desbñdamiento de la lesión, se recomienda realizar el recorte del injerto o constructo con un exceso de al menos 2 mm en cada borde, preferiblemente al menos 5 mm más a la medida estimada. Es preferible tener un constructo de mayor tamaño, que se puede comprimir y adaptarse a la lesión, que dejar un constructo justo o más pequeño, con el consecuente riesgo de que uno o más de sus extremos no logrará integrarse a los bordes del cartílago sano. Once the final measurements of the lesion are obtained, after the excision of the lesion, it is recommended to trim the graft or construct with an excess of at least 2 mm on each edge, preferably at least 5 mm more than the estimated measurement. . It is preferable to have a larger construct, which can be compressed and adapt to the lesion, than to leave a tight or smaller construct, with the consequent risk that one or more of its ends will not be able to integrate with the edges of the healthy cartilage.
El producto se puede fijar mediante cualquier medio apropiado para tal fin, por ejemplo, mediante anclas biodegradables o con pegamento de fibrina. En una modalidad preferida recomienda el uso de pegamento de fibrina, ya que es menos invasivo, menos costoso y mucho más sencillo de colocar. Para la fijación con anclas se debe perforar el hueso expuesto en la lesión y colocar un ancla por cada 10 mm de lesión, se recuperan las suturas y a través de éstas se desliza el constructo hasta la lesión ya desbridada, finalmente se realizan nudos para asegurar la fijación. En el momento que se colocó el constructo en la lesión, se cerró la entrada de agua en la artroscopia para evitar la pérdida de condrocitos. Se colocó una cánula, en el portal de mejor acceso a la lesión, y a través de ésta se introdujo el constructo a la articulación (Fig. 9A), se colocó y se extendió sobre toda la superficie (Fig. 9B) hasta cubrir la lesión en su totalidad y asegurando el contacto del injerto con todos los bordes del cartílago nativo adyacente (Fig. 9C). Finalmente, se aplicó pegamento de fibrina en los bordes y en la superficie del constructo para asegurar la fijación del implante a la lesión, (Fig. 9D). La rodilla debe permanecer en extensión por lo menos un par de días para permitir la adherencia del producto al hueso subcondral y a los bordes de cartílago adyacente. The product can be fixed by any means appropriate for this purpose, for example, by means of biodegradable anchors or with fibrin glue. In a preferred modality, he recommends the use of fibrin glue, as it is less invasive, less expensive, and much easier to place. For fixation with anchors, the bone exposed in the lesion must be drilled and an anchor placed for every 10 mm of lesion, the sutures are recovered and the construct is slipped through them until the lesion is already debrided, finally knots are made to ensure the fixation. At the time the construct was placed in the lesion, the water inlet into the arthroscopy was closed to prevent loss of chondrocytes. A cannula was placed in the portal with the best access to the lesion, and through this the construct was introduced into the joint (Fig. 9A), placed and extended over the entire surface (Fig. 9B) until the lesion was covered. in its entirety and ensuring contact of the graft with all edges of the adjacent native cartilage (Fig. 9C). Finally, fibrin glue was applied to the edges and surface of the construct to ensure fixation of the implant to the lesion, (Fig. 9D). The knee must remain in extension for at least a couple of days to allow adherence of the product to the subchondral bone and adjacent cartilage edges.
Ejemplo 6: Evaluación de la integración del constructo mediante RMN Example 6: Evaluation of the integration of the construct by means of NMR
En la presente invención se utilizó el estudio de resonancia magnética nuclear, técnica de imagen que es ampliamente utilizada para evaluar la integración del constructo en la zona del defecto, en el seguimiento de un paciente, tratado con el implante de la presente invención. En la figura 10 se muestran las imágenes obtenidas por RMN a los 3 y 6 meses post operación, respectivamente (Fig. 10A & Fig. 10B), en estas se observa claramente que a partir de los 3 meses post operación se tiene una buena integración del injerto y a los 6 meses se observan cambios en la intensidad del constructo lo que refleja presencia de formación de matriz extracelular por los condrocitos sembrados, así como integración al hueso subcondral y al cartílago adyacente In the present invention, the study of nuclear magnetic resonance was used, an imaging technique that is widely used to evaluate the integration of the construct in the area of the defect, in the follow-up of a patient, treated with the implant of the present invention. Figure 10 shows the images obtained by NMR at 3 and 6 months post-op, respectively (Fig. 10A & Fig. 10B), in which it is clearly observed that from 3 months post-op there is good integration. of the graft and at 6 months changes in the intensity of the construct are observed, which reflects the presence of extracellular matrix formation by the seeded chondrocytes, as well as integration into the subchondral bone and adjacent cartilage.
Ejemplo 7: Reparación de lesión de cartílago a 12 meses: ACI vs ALCI Example 7: Cartilage lesion repair at 12 months: ACI vs ALCI
En la figura 11 se muestra la evaluación artroscópica, a los 12 meses de tratamiento de lesión de cartílago en tróclea lateral de ambas rodillas en la misma paciente. En dicha paciente, la rodilla derecha (Fig. 1 1 A, B y C), con lesión de 20x15 mm, se trató con implante de condrocitos autólogos (ACI); en esta se observa tejido de reparación con llenado de espesor parcial en un 80% (Fig. 11 A), con superficie irregular, predominante presencia de fibrocartílago (Fig. 1 1 B) y zonas de fibrilación (Fig. 1 1 C). En contraste, la rodilla izquierda (Fig. 1 1 D, E y F), con lesión de 18x15 mm, se trató con el implante de condrocitos alogénicos de la presente invención (ALCI), en esta se observa tejido de reparación con llenado de espesor parcial en un 95% (Fig. 1 1 D), integración al cartílago adyacente (Fig. 11 E), superficie lisa con mínima fibñlación. Figure 11 shows the arthroscopic evaluation, 12 months after treatment of cartilage lesion in the lateral trochlea of both knees in the same patient. In this patient, the right knee (Fig. 1 A, B and C), with a 20x15 mm lesion, was treated with autologous chondrocyte implantation (ACI); This shows repair tissue with 80% partial thickness filling (Fig. 11 A), with an irregular surface, predominant presence of fibrocartilage (Fig. 1 1 B) and areas of fibrillation (Fig. 1 1 C). In contrast, the left knee (Fig. 1 1 D, E and F), with a 18x15 mm lesion, was treated with the allogeneic chondrocyte implant of the present invention (ALCI), in which repair tissue with 95% partial thickness filling is observed (Fig. 1 1 D), integration with the adjacent cartilage (Fig. 11 E) , smooth surface with minimal fibñlation.
Ejemplo 8: Formación de fibrocartílago en la zona donadora en el ACI Example 8: Formation of fibrocartilage in the donor site in the ICA
En la figura 12 se muestra la evaluación artroscópica de la toma de biopsia osteocondral en el implante de condrocitos autólogos (Fig. 12A y B). Posteriormente, mediante una segunda vista artroscópica a los 12 meses del implante de condrocitos autólogos, claramente se observa relleno de la zona donadora con abundante presencia de tejido fibroso, irregular y fibrilar (Fig. 12C y D); proceso que se evita en el implante de condrocitos cadavéricos. Figure 12 shows the arthroscopic evaluation of the osteochondral biopsy in autologous chondrocyte implantation (Fig. 12A and B). Subsequently, by means of a second arthroscopic view 12 months after autologous chondrocyte implantation, filling of the donor area with abundant presence of fibrous, irregular and fibrillar tissue is clearly observed (Fig. 12C and D); process that is avoided in cadaveric chondrocyte implantation.
Ejemplo 9: Seguimiento de algunos pacientes tratados con el injerto de la presente invención. Example 9: Follow-up of some patients treated with the graft of the present invention.
A continuación, se presentan de forma resumida los datos de 4 pacientes tratados con el injerto o constructo de la presente invención y la evaluación de distintas lesiones, parámetros y tiempos de evolución. Below is a summary of the data from 4 patients treated with the graft or construct of the present invention and the evaluation of different lesions, parameters and evolution times.
Tabla 2: Reporte demográfico de los pacientes implantados con la presente invención.
Figure imgf000029_0001
Table 2: Demographic report of patients implanted with the present invention.
Figure imgf000029_0001
De la información contenida en la tabla se desprende claramente que se trataron pacientes de diversas edades, desde jóvenes (15 años) hasta pacientes adultos (43 años) con lesiones en distintas articulaciones como tobillo, rodilla y cadera; con lesiones que presentan un tamaño promedio de 37 mm (25-60 mm). En las figuras 13 y 15 se muestra la intervención con el implante o constructo de la presente invención para cadera y rodilla, respectivamente. From the information contained in the table it is clear that patients of various ages were treated, from young people (15 years) to patients adults (43 years old) with injuries to different joints such as ankle, knee and hip; with lesions averaging 37 mm (25-60 mm) in size. Figures 13 and 15 show the intervention with the implant or construct of the present invention for hip and knee, respectively.
Durante el seguimiento a dichos pacientes se evaluó la intensidad y frecuencia del dolor, antes y después del tratamiento. Se realizó la evaluación de la intensidad del dolor con la Escala Visual Análoga (EVA), que permite medir la intensidad del dolor que describe el paciente con la máxima reproducibilidad, la cual consta de 10 puntos; entre mayor sea el valor numérico mayor es la intensidad del dolor. Así mismo se identificó la frecuencia del dolor en 5 categorías: nunca, raramente, algunas veces, a menudo o siempre. Esta medición se realizó antes de la cirugía y a los 3 meses posteriores a la misma. En los primeros dos pacientes el dolor disminuyó de forma considerable de un máximo de 9 puntos a un valor de 2 puntos. During the follow-up of these patients, the intensity and frequency of pain was evaluated, before and after treatment. Pain intensity was evaluated with the Visual Analog Scale (VAS), which allows measuring the intensity of pain described by the patient with maximum reproducibility, which consists of 10 points; the higher the numerical value, the greater the pain intensity. Likewise, the frequency of pain was identified in 5 categories: never, rarely, sometimes, often or always. This measurement was made before surgery and 3 months after it. In the first two patients the pain decreased considerably from a maximum of 9 points to a value of 2 points.
Tabla 3 Evaluación de la intensidad y frecuencia del dolor, antes y después del tratamiento.
Figure imgf000030_0001
Table 3 Evaluation of pain intensity and frequency, before and after treatment.
Figure imgf000030_0001
EVA=Escala Visual analógica VAS=Visual Analogue Scale
Los resultados de la tabla muestran que, a tan solo 3 meses de la intervención, con el injerto de la presente invención, se presenta una disminución significativa tanto de la intensidad como de la frecuencia del dolor en los pacientes adultos con intervención en cadera y rodilla, respectivamente. El dolor disminuyó en promedio 6.5 puntos (antes versus a los 3 y 6 meses de seguimiento) de un valor máximo de 9. The results in the table show that, just 3 months after the intervention, with the graft of the present invention, there is a significant decrease in both intensity and frequency of pain in adult patients with hip and knee intervention. , respectively. Pain decreased on average 6.5 points (before versus at 3 and 6 months of follow-up) from a maximum value of 9.
Así mismo, en el seguimiento de dichos pacientes, también se evaluaron los arcos de movilidad antes y después del tratamiento, mediante técnicas convencionales, evitando la movilidad asociada a la columna lumbar, en las posiciones decúbito supino y decúbito prono o lateral. Tabla 4: Mejoría de los arcos de movilidad en cadera después de 3 y 6 meses del implante.
Figure imgf000031_0001
Likewise, in the follow-up of these patients, the mobility arcs were also evaluated before and after treatment, using conventional techniques, avoiding mobility associated with the lumbar spine, in the supine and prone or lateral decubitus positions. Table 4: Improvement of the range of motion in the hip after 3 and 6 months of the implant.
Figure imgf000031_0001
Comparación de los rangos de movilidad de la cadera operada versus la sana antes de la cirugía, a los 3 y 6 meses de haber sido colocado el implante en los que se observa una mejoría significativa en todos los arcos de movilidad. De los resultados se desprende una clara mejoría en todos los valores para los distintos tipos de movimiento de cadera. Comparison of the range of motion of the operated hip versus the healthy hip before surgery, 3 and 6 months after the implant was placed, in which a significant improvement was observed in all ranges of motion. The results show a clear improvement in all the values for the different types of hip movement.
Adicionalmente, el éxito de un tratamiento también se determina a través la función articular de los pacientes, evaluada por medio de escalas clínicas validadas a nivel internacional, en donde se reportan parámetros como nivel de dolor, incapacidad para realizar actividades de la vida diaria, actividades deportivas y la calidad de vida. Las escalas son diferentes para cadera y rodilla y aportan un puntaje numérico que se evaluó antes y después de la cirugía. Additionally, the success of a treatment is also determined through the joint function of the patients, evaluated by means of internationally validated clinical scales, where parameters such as pain level, inability to perform activities of daily living, activities sports and quality of life. The scales are different for hip and knee and provide a numerical score that was evaluated before and after surgery.
En la figura 17 se muestra la evaluación de la función articular en cadera antes y después (6 meses) de la intervención con el implante de la presente invención. Figure 17 shows the evaluation of hip joint function before and after (6 months) the intervention with the implant of the present invention.
De la misma manera, se evaluaron los arcos de movilidad antes y después del tratamiento en rodilla: Tabla 5: Mejoría de los arcos de movilidad en rodilla después de 3 meses del implante.
Figure imgf000032_0001
In the same way, the mobility arcs were evaluated before and after knee treatment: Table 5: Improvement of the range of motion in the knee after 3 months of the implant.
Figure imgf000032_0001
Comparación de los rangos de movilidad de la rodilla operada versus la sana antes de la cirugía y a los 3 meses de haber sido colocado el implante de la presente invención, en los que se observa una mejoría significativa en la flexión, solamente se observa un déficit de tan solo 5S (130°) con respecto a la rodilla sana (135°), a los 3 meses de seguimiento. Comparison of the range of motion of the operated knee versus the healthy one before surgery and 3 months after the implant of the present invention was placed, in which a significant improvement in flexion is observed, only a deficit of only 5 S (130°) with respect to the healthy knee (135°), at 3-month follow-up.
De manera similar, en la figura 18 se muestra la evaluación de la función articular en rodilla antes y después de la intervención (3 meses), en todas ellas se aprecia claramente la mejoría de diversos parámetros funcionales. Similarly, Figure 18 shows the evaluation of knee joint function before and after the intervention (3 months), in all of them the improvement of various functional parameters is clearly appreciated.
Además, en estos pacientes se evaluó de la calidad del tejido de reparación vs cartílago sano a los 3 meses, los resultados se muestran en la siguiente tabla 6. Uno de los principales métodos no invasivos para evaluar la calidad del tejido de reparación en el tratamiento de las lesiones de cartílago es el mapeo-T2. Esta es una de las técnicas mundialmente reconocida para el estudio del cartílago, con este se mapean los valores de parámetros físicos los cuales muestran el tiempo de relajación del agua observado en la estructura de interés. Este valor se encuentra establecido para cartílago, va de los 20 a 50 milisegundos en el cartílago normal; los valores dentro del rango normal indican que el tejido de reparación tiene una calidad muy similar a la del cartílago nativo (cartílago hialino) y su durabilidad es mejor, por el contrario, los valores fuera de este rango indican que el tejido es de mala calidad (muy fibroso o con tendencia a formar hueso), con una alta susceptibilidad de deteriorarse con el tiempo. In addition, in these patients the quality of repair tissue vs. healthy cartilage was evaluated at 3 months, the results are shown in the following table 6. One of the main non-invasive methods to assess the quality of repair tissue in treatment of cartilage lesions is T2-mapping. This is one of the world-renowned techniques for the study of cartilage, with which the values of physical parameters are mapped, which show the relaxation time of the water observed in the structure of interest. This value is established for cartilage, ranging from 20 to 50 milliseconds in normal cartilage; values within the normal range indicate that the repair tissue has a quality very similar to that of native cartilage (hyaline cartilage) and its durability is better, on the contrary, values outside this range indicate that the tissue is of poor quality (very fibrous or with a tendency to form bone), with a high susceptibility to deteriorate over time.
Tabla 6: Valores del cartílago reparado vs cartílago nativo
Figure imgf000033_0001
Table 6: Values of repaired cartilage vs. native cartilage
Figure imgf000033_0001
En la figura 14 se muestra el mapeo T2 correspondiente para cadera, mientras que en la figura 16 se muestra el mapeo T2 correspondiente para rodilla. Los valores del tiempo de relajación del agua, a los 3 meses post-operación en los dos primeros pacientes, se encontraron elevados con respecto a los valores normales del cartílago sano (ROI-1 vs ROI-2), lo cual es un comportamiento esperado, se ha observado el mismo comportamiento en las técnicas ya reportadas de Implante de Condrocitos Autólogos, ya que el tejido de reparación comienza a madurar y a transformarse en cartílago alrededor de los 12 meses. Se espera que en las evaluaciones subsecuentes (6 y 12 meses) éstos valores disminuyan acercándose a los valores del cartílago sano. Figure 14 shows the corresponding T2 mapping for the hip, while Figure 16 shows the corresponding T2 mapping for the knee. The values of the relaxation time of the water, at 3 months post-operation in the first two patients, were found to be elevated with respect to the normal values of healthy cartilage (ROI-1 vs ROI-2), which is an expected behavior. , the same behavior has been observed in the previously reported Autologous Chondrocyte Implantation techniques, since the repair tissue begins to mature and transform into cartilage at around 12 months. It is expected that in subsequent evaluations (6 and 12 months) these values will decrease, approaching the values of healthy cartilage.
Si bien se han mostrado y descrito aquí algunas de las realizaciones preferidas de la presente invención, será obvio para los expertos en la técnica que dichas realizaciones se proporcionan solo de manera ilustrativa. A los expertos en la materia se les ocurrirán numerosas variaciones, cambios y sustituciones sin apartarse del espíritu de la invención, por lo cual deberán considerarse en el ámbito de protección de la presente invención. Debe entenderse que vahas alternativas a las realizaciones de la invención descritas en este documento se pueden emplear en la práctica de la invención. Se pretende que las siguientes reivindicaciones definan el alcance de la invención y que los métodos y estructuras dentro del alcance de estas reivindicaciones y sus equivalentes se cubran de este modo. REFERENCIAS BIBLIOGRÁFICAS While some of the preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of illustration only. Numerous variations, changes, and substitutions will occur to those skilled in the art without departing from the spirit of the invention, and should therefore be considered within the scope of protection of the present invention. It is to be understood that various alternatives to the embodiments of the invention described herein may be employed in the practice of the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents are thus covered. BIBLIOGRAPHIC REFERENCES
1. Olivos-Meza A, Cortés-González S, Ferniza-Garza JJ, Pérez-Jiménez FJ, Villalobos-Córdova, Ibarra JC. Arthroscopic Treatment of Patellar and Trochlear Cartilage Lesions with Matrix Encapsulated Chondrocyte Implantation versus Microfracture: Quantitative Assessment with MRI T2-Mapping and MOCART at 4- Year Follow-up. Cartilage 2019:1 -3. 1. Olivos-Meza A, Cortés-González S, Ferniza-Garza JJ, Pérez-Jiménez FJ, Villalobos-Córdova, Ibarra JC. Arthroscopic Treatment of Patellar and Trochlear Cartilage Lesions with Matrix Encapsulated Chondrocyte Implantation versus Microfracture: Quantitative Assessment with MRI T2-Mapping and MOCART at 4-Year Follow-up. Cartilage 2019:1-3.
2. Arredondo R, Olivos-Meza A, Villalobos E, Cortés S, Pérez-Jiménez FJ, et. al. Una nueva técnica artroscópica de implante de condrocitos autólogos en matriz encapsulada (ICAME) en patela: evaluación clínica y por mapeo T2 a 4 años de seguimiento. Revista Española de Artroscopia y Cirugía Articular 2018; 25(61 ):30- 41. 2. Arredondo R, Olivos-Meza A, Villalobos E, Cortés S, Pérez-Jiménez FJ, et. to the. A new arthroscopic technique of encapsulated matrix autologous chondrocyte implantation (ICAME) in patella: clinical evaluation and T2 mapping at 4-year follow-up. Spanish Journal of Arthroscopy and Joint Surgery 2018; 25(61):30-41.
3. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surgery, Sports Traumatology, Arthroscopy 2019:1 -8. 3. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surgery, Sports Traumatology, Arthroscopy 2019:1-8.
4. Holt K, Sorhaindo M, Coady C, Ho-Bun Wong I. Arthroscopic Treatment of Medial Femoral Knee Osteochondral Defect Using Subchondroplasty and Chitosan- Based Scaffold. Arthrosc Tech. 2019 Apr; 8(4): e413-e418. 4. Holt K, Sorhaindo M, Coady C, Ho-Bun Wong I. Arthroscopic Treatment of Medial Femoral Knee Osteochondral Defect Using Subchondroplasty and Chitosan-Based Scaffold. Arthrosc Tech. 2019 Apr; 8(4): e413-e418.
5. Martin AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded Ted knee’ populations. Regenerative Medicine 2019;12:1 -10. 5. Martin AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration currently excluded Ted knee' populations. Regenerative Medicine 2019;12:1-10.
6. Mistry H, Connock M, Pink J, Shyangdan D, Ciar C, Royle P, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess 2017;21 (6). 6. Mistry H, Connock M, Pink J, Shyangdan D, Ciar C, Royle P, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assessment 2017;21 (6).
7. Taylor A, Lee P. Single Treatment Autologous Chondrocyte Implantation: The Next Generation of ACI. Can J Biomed Res & Tech 2019;2(2): 1 -4. 7. Taylor A, Lee P. Single Treatment Autologous Chondrocyte Implantation: The Next Generation of ACI. Can J Biomed Res & Tech 2019;2(2): 1-4.
8. Davies RL, Kuiper N. Regenerative Medicine: A Review of the Evolution of Autologous Chondrocyte Implantation (ACI) Therapy. Bioengineering 2019;6(22): 2-16. 8. Davies RL, Kuiper N. Regenerative Medicine: A Review of the Evolution of Autologous Chondrocyte Implantation (ACI) Therapy. Bioengineering 2019;6(22): 2-16.
9. Olivos-Meza A, Velasquillo-Martínez C, Olivos-Diaz B, Landa-Solis C, Brittberg M, et. al. Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study. Cell Tissue Bank 2017;14(3):1 -12. 9. Olivos-Meza A, Velasquillo-Martínez C, Olivos-Diaz B, Landa-Solis C, Brittberg M, et. to the. Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in vivo animal study. Cell Tissue Bank 2017;14(3):1-12.

Claims

REMNDICACÍONES Un implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano caracterizado porque comprende condrocitos derivados de donador cadavérico (P0) sembrados sobre un andamio de ácido hialurónico y sellados con un adhesivo de fibrina. El implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano de conformidad con la reivindicación previa caracterizado además porque los condrocitos se siembran en una densidad de 1 x106 células por cm2. El implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano de conformidad con la reivindicación previa caracterizado además porque los condrocitos derivados de donador cadavérico se criopreservan sin expandirse (P0). El implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano de conformidad con la reivindicación 1 caracterizado además porque induce la formación de matriz extracelular con alto contenido en moléculas específicas del cartílago articular, específicamente agrecano y colágeno II. El implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano de conformidad con la reivindicación 1 caracterizado además porque los condrocitos sembrados sobre un andamio de ácido hialurónico que se cultivan durante un periodo de entre 5 a 7 días, en medio de cultivo DMEM-F12, suplementado con suero autólogo (10%) y 10% de antibiótico-antimicótico, en una incubadora a 37°C, 5% de CO2 y 5% de humedad. El uso de condrocitos de un donador cadavérico para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano. Un proceso para elaborar un Implante o constructo para el tratamiento de lesiones de cartílago en articulaciones de un sujeto animal humano, caracterizado porque comprende los siguientes pasos: a) Obtener condrocitos a partir de una muestra de tejido de cartílago de un donador cadavérico; opcionalmente los condrocitos se pueden utilizar de inmediato o criopreservarse; b) Sembrar los condrocitos a una densidad de 1x106 células por cada 10mm de andamio, cada andamio será individualizado en tamaño, dependiendo del tamaño de la lesión a tratar del paciente, en un medio de cultivo DMEM-F12, suero autólogo (10%) y antibióticos-antimicóticos (10%); e c) Incubar el constructo durante un periodo de entre 5 a 7 días, para promover adherencia la adherencia celular al andamio y la formación de la matriz extracelular, bajo condiciones de cultivo de 37°C, 5% CO? y 5% humedad, realizando un cambio de medio cada 2 o tres días. CLAIMS An implant or construct for the treatment of cartilage lesions in joints of a human animal subject characterized in that it comprises cadaveric donor-derived chondrocytes (P0) seeded on a hyaluronic acid scaffold and sealed with a fibrin adhesive. The implant or construct for the treatment of cartilage lesions in joints of a human animal subject in accordance with the previous claim, further characterized in that the chondrocytes are seeded at a density of 1 x 10 6 cells per cm 2 . The implant or construct for the treatment of cartilage lesions in joints of a human animal subject in accordance with the previous claim, further characterized in that the cadaveric donor-derived chondrocytes are cryopreserved without expanding (P0). The implant or construct for the treatment of cartilage lesions in joints of a human animal subject in accordance with claim 1, further characterized in that it induces the formation of an extracellular matrix with a high content of specific molecules of articular cartilage, specifically aggrecan and collagen II. The implant or construct for the treatment of cartilage lesions in joints of a human animal subject in accordance with claim 1, further characterized in that the chondrocytes seeded on a hyaluronic acid scaffold are cultured for a period of between 5 to 7 days, in DMEM-F12 culture medium, supplemented with autologous serum (10%) and 10% antibiotic-antimycotic, in an incubator at 37°C, 5% CO2 and 5% humidity. The use of chondrocytes from a cadaveric donor for the treatment of cartilage lesions in joints of a human animal subject. A process for making an Implant or construct for the treatment of cartilage lesions in joints of a human animal subject, characterized in that it comprises the following steps: a) Obtaining chondrocytes from a sample of cartilage tissue from a cadaveric donor; optionally the chondrocytes can be used immediately or cryopreserved; b) Seed the chondrocytes at a density of 1x10 6 cells per 10mm of scaffold, each scaffold will be individualized in size, depending on the size of the patient's lesion to be treated, in a DMEM-F12 culture medium, autologous serum (10% ) and antibiotics-antifungals (10%); ec) Incubate the construct for a period of between 5 and 7 days, to promote cell adherence to the scaffold and the formation of the extracellular matrix, under culture conditions of 37°C, 5% CO? and 5% humidity, making a medium change every 2 or three days.
PCT/MX2022/050017 2021-09-24 2022-03-11 Allogenic implants for the treatment of cartilage injuries WO2023048552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2021/011695 2021-09-24
MX2021011695A MX2021011695A (en) 2021-09-24 2021-09-24 Allogenic implants for treating cartilage injuries.

Publications (1)

Publication Number Publication Date
WO2023048552A1 true WO2023048552A1 (en) 2023-03-30

Family

ID=85720971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2022/050017 WO2023048552A1 (en) 2021-09-24 2022-03-11 Allogenic implants for the treatment of cartilage injuries

Country Status (2)

Country Link
MX (1) MX2021011695A (en)
WO (1) WO2023048552A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2367694T3 (en) * 2003-12-11 2011-11-07 Isto Technologies Inc. PARTICULATED CARTRIDGE SYSTEM.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2367694T3 (en) * 2003-12-11 2011-11-07 Isto Technologies Inc. PARTICULATED CARTRIDGE SYSTEM.

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM DONG YOUNG, PYUN JUNGHEE, CHOI JAE WON, KIM JANG-HEE, LEE JIN SEOK, SHIN HYANG AE, KIM HYUN-JUN, LEE HA-NEUL, MIN BYOUNG-HYUN,: "Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation : Allograft Tracheal Cartilage", THE LARYNGOSCOPE, WILEY-BLACKWELL, UNITED STATES, vol. 120, no. 1, 1 January 2010 (2010-01-01), United States , pages 30 - 38, XP093056727, ISSN: 0023-852X, DOI: 10.1002/lary.20652 *
NEHRER S., CHIARI C., DOMAYER S., BARKAY H., YAYON A.: "Results of Chondrocyte Implantation with a Fibrin-Hyaluronan Matrix: A Preliminary Study", CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, SPRINGER NEW YORK LLC, US, vol. 466, no. 8, 1 August 2008 (2008-08-01), US , pages 1849 - 1855, XP093056732, ISSN: 0009-921X, DOI: 10.1007/s11999-008-0322-4 *
PERRIER-GROULT EMELINE, PÉRÈS ELÉONORE, PASDELOUP MARIELLE, GAZZOLO LOUIS, DUC DODON MADELEINE, MALLEIN-GERIN FRÉDÉRIC: "Evaluation of the biocompatibility and stability of allogeneic tissue-engineered cartilage in humanized mice", PLOS ONE, vol. 14, no. 5, 20 May 2019 (2019-05-20), pages e0217183, XP093056730, DOI: 10.1371/journal.pone.0217183 *
SANG-HYUG PARK ET AL.: "Potential of Fortified Fibrin/Hyaluronic Acid Composite Gel as a Cell Delivery Vehicle for Chondrocytes", ARTIFICIAL ORGANS, vol. 33, no. 6, 27 May 2009 (2009-05-27), Boston, Us, pages 439 - 447, XP055044181, ISSN: 0160-564X, DOI: 10.1111/j. 1525- 1594.2009.00744.x *
WON H -R ET AL.: "The Application of Fibrin/Hyaluronic Acid-Poly(1-Lactic-co- Glycolic Acid) Construct in Augmentation Rhinoplasty", TISSUE ENGINEERING AND REGENERATIVE MEDICINE, vol. 15, no. 2, 1 April 2018 (2018-04-01), pages 223 - 230, XP036460872, ISSN: 1738-2696, DOI: 10.1007/s13770-017-0095-5 *

Also Published As

Publication number Publication date
MX2021011695A (en) 2022-03-03

Similar Documents

Publication Publication Date Title
Akgun et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study
Liu et al. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report
US9198763B2 (en) Surgical technique using a contoured allograft cartilage as a spacer of the carpo-metacarpal joint of the thumb or tarso-metatarsal joint of the toe
Ogden The evaluation and treatment of partial physeal arrest.
Ottolenghi Massive osteoarticular bone grafts: transplant of the whole femur
Tohyama et al. Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan
Verdonk Alternative treatments for meniscal injuries
Boehm et al. Autologous chondrocyte implantation for treatment of focal articular cartilage defects of the humeral head
Schachar et al. Metabolic and biochemical status of articular cartilage following cryopreservation and transplantation: a rabbit model
Leung et al. Reconstruction of proximal femoral defects with a vascular-pedicled graft
RU2301677C1 (en) Biotransplant for treatment of degenerative and traumatic disease of cartilage tissue and method for its preparing
Landa et al. Evaluation of long-term stability in second metatarsal reconstruction of the temporomandibular joint
CN108096633A (en) A kind of cartilage defect repair material and preparation method thereof
Ferracini et al. Assessment of vascularized fibular graft one year after reconstruction of the wrist after excision of a giant-cell tumour
Koskinen et al. Allogeneic Transplantation in Low-Grade Malignant Bone Tumours: A New Operative Technique to Avoid Amputation
Hachisuka et al. A vascularized medial femoral condyle cortico-periosteal graft for total lunate reconstruction
WO2023048552A1 (en) Allogenic implants for the treatment of cartilage injuries
US20220313869A1 (en) Allogeneic implants for the treatment of cartilage injuries
McKenzie et al. Sulphated glycosaminoglycan synthesis in normal and osteoarthrotic hip cartilage.
WO2023022941A1 (en) Methods for repairing cartilage defects
RU2637103C2 (en) Method for substitution of cartilaginous tissue defects
Elias et al. Cell transplantation techniques for cartilage restoration
KOSKINEN Wide resection of primary tumors of bone and replacement with massive bone grafts
Álvarez-Lozano et al. Two-stage bone and meniscus allograft and autologous chondrocytes implant for unicompartmental osteoarthritis: midterm results
Adams Jr et al. Particulated juvenile cartilage allograft transplantation for the treatment of osteochondral lesions of the talus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873254

Country of ref document: EP

Kind code of ref document: A1