WO2023048415A1 - 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치 - Google Patents

충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치 Download PDF

Info

Publication number
WO2023048415A1
WO2023048415A1 PCT/KR2022/012800 KR2022012800W WO2023048415A1 WO 2023048415 A1 WO2023048415 A1 WO 2023048415A1 KR 2022012800 W KR2022012800 W KR 2022012800W WO 2023048415 A1 WO2023048415 A1 WO 2023048415A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical battery
battery
measuring device
unit
circumference
Prior art date
Application number
PCT/KR2022/012800
Other languages
English (en)
French (fr)
Inventor
김경식
김재현
김광섭
이학주
이재화
Original Assignee
재단법인 파동에너지극한제어연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 파동에너지극한제어연구단 filed Critical 재단법인 파동에너지극한제어연구단
Publication of WO2023048415A1 publication Critical patent/WO2023048415A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a device for measuring the amount of deformation of a cylindrical battery that occurs in a charge-discharge test, and more specifically, the present invention relates to a device for measuring the amount of deformation of a battery that occurs in a charge-discharge test of a cylindrical battery unit. It relates to a device for measuring the amount of deformation of a cylindrical battery.
  • Batteries used in electric vehicles mainly use secondary batteries that can be repeatedly charged and discharged. Battery explosion may result.
  • a battery test is generally performed to measure the voltage drop of the battery according to the number of charging and discharging by repeatedly overdischarging and charging the battery.
  • it is key to measure the lifespan of the battery and at the same time measure the amount of deformation of the battery volume caused by charging and discharging.
  • cylindrical battery units in the form of cylinders have been mass-produced in addition to flat pouch-type battery units, and it is difficult to measure the amount of deformation of such cylindrical battery units with conventional pouch-type battery measuring devices.
  • a load measuring unit that can be deformed along an arc shape is required.
  • the structure of a load measuring unit that can be deformed along such an arc shape is The measuring device used cannot respond.
  • An object of the present invention is to provide a cylindrical battery deformation amount measuring device that can measure the external deformation amount of a battery that occurs in a charge/discharge test of a cylindrical battery unit.
  • An apparatus for measuring deformation amount of a battery includes a seating part, a measuring instrument, a driving part, and a sensor part.
  • the mounting portion is fixed by standing upright in the axial direction of the cylindrical battery.
  • the measurement part wraps around the cylindrical battery.
  • the drive unit applies tension to one end of the measuring unit to generate a tensile load on the measuring unit.
  • the sensor unit fixes the other end of the measurement unit to measure a change in tensile load according to a change in the circumference of the cylindrical battery.
  • the measuring unit may be composed of a wire.
  • the wire is wound around the cylindrical battery in a circumferential direction, and one end may be connected to the driving unit and the other end may be connected to the sensor unit.
  • the sensor unit may include a load cell connected to the other end of the wire.
  • a lubricating film may be formed on a surface where the wire and the circumference of the cylindrical battery come into contact.
  • a plurality of the wires may be provided to be spaced apart from each other in the longitudinal direction of the cylindrical battery.
  • the wire may be spirally wound along the outer circumferential surface of the cylindrical battery.
  • the driving unit may provide a preset tension to maintain a constant tensile load generated in the measuring unit.
  • An apparatus for measuring a deformation amount of a battery includes a seating part, a measuring part, and a driving part.
  • the mounting portion is fixed by standing upright in the axial direction of the cylindrical battery.
  • the measurement part wraps around the cylindrical battery.
  • the drive unit applies tension to one end of the measuring unit to generate a tensile load on the measuring unit.
  • the measuring unit measures a change in tensile load according to a change in the circumference of the cylindrical battery.
  • the measuring unit may be composed of a flexible printed circuit board.
  • a metal pattern is formed on the flexible printed circuit board, and resistance of the metal pattern may vary as the circumference of the cylindrical battery changes.
  • the flexible printed circuit board may be wound in a spiral shape along the circumference of the cylindrical battery.
  • a plurality of flexible printed circuit boards may be spaced apart from each other and wound in a longitudinal direction of the cylindrical battery.
  • a lubricating film may be formed on a surface where the flexible printed circuit board and the circumference of the cylindrical battery come into contact.
  • An apparatus for measuring a deformation amount of a battery includes a seating unit, a measuring device, and a sensor unit.
  • the mounting portion is fixed by standing upright in the axial direction of the cylindrical battery.
  • the meter wraps around the cylindrical battery.
  • the sensor unit is provided in the meter to measure a change in the circumference of the cylindrical battery.
  • the meter is provided at both ends of the meter, and may include a fixing part for fixing the meter to the cylindrical battery.
  • the sensor unit may be configured as a strain gauge.
  • the sensor unit may be formed in the center of the measuring device.
  • a lubricating film may be formed on a surface where the measuring device and the circumference of the cylindrical battery come into contact.
  • the device for measuring deformation of a cylindrical battery generated in a charge/discharge test accurately evaluates the charge/discharge life and performance degradation of a cylindrical battery by measuring the volume expansion generated in the battery during a charge/discharge test of the cylindrical battery. Through this, the reliability of the battery is improved and the risk of explosion is prevented.
  • FIG. 1 is a schematic side view of a cylindrical battery strain measurement device generated in a charge/discharge test according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the cylindrical battery deformation amount measuring device of FIG. 1 .
  • FIG. 3 is a schematic perspective view of the cylindrical battery deformation measurement device of FIG. 1 .
  • FIG. 4 is a schematic side view of a cylindrical battery deformation measurement device generated in a charge/discharge test according to a second embodiment of the present invention.
  • 5A and 5B are schematic plan views of the cylindrical battery deformation amount measuring device of FIG. 4 .
  • FIG. 6 is a detailed view of a measuring unit in the device for measuring deformation amount of a cylindrical battery of FIG. 4 .
  • FIG. 7 is a schematic side view of a cylindrical battery deformation measurement device generated in a charge/discharge test according to a third embodiment of the present invention.
  • FIG. 8 is a schematic plan view of the cylindrical battery deformation amount measuring device of FIG. 7 .
  • FIG. 1 is a schematic side view of a cylindrical battery strain measurement device generated in a charge/discharge test according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the cylindrical battery deformation amount measuring device of FIG. 1 .
  • FIG. 3 is a schematic perspective view of the cylindrical battery deformation measurement device of FIG. 1 .
  • a cylindrical battery strain measuring device (hereinafter referred to as a strain measuring device) 1 generated in the charge/discharge test according to the present embodiment is a cylindrical (cylinder type) rather than a general pouch type battery. It is a measuring device for a battery or a battery in the form of a pouch close to a cylinder.
  • a battery may be accompanied by a change in volume due to repetition of overdischarge and charging, and a cylindrical battery may be deformed on a side portion forming a curvature.
  • the deformation amount measuring device 1 is a measuring device for measuring a change in a side surface forming a circular or near-circular curvature.
  • the battery may be a battery generally used for a secondary battery, but is not limited thereto.
  • the deformation amount measuring device 1 includes a seating portion 20 for standing and fixing the cylindrical battery 10 in the axial direction (vertical direction in the drawing), A measuring unit 30 that surrounds the circumference, a driving unit 40 that generates a tensile load in the measuring unit 30 by pulling one end of the measuring unit 30, and fixing the other end of the measuring unit 30 to the cylindrical shape.
  • a sensor unit 50 for measuring a change in tensile load according to a change in the circumference of the battery 10 is included.
  • the cylindrical battery 10 is erected and fixed to the seating part 20 in the axial direction.
  • the seating portion 20 is located on the floor or a table, and the cylindrical battery 10 is fixed to the seating portion 20 .
  • the floor or table on which the seating part 20 is located may extend in a horizontal direction perpendicular to the axial direction in which the cylindrical battery 10 extends, and eventually the cylindrical battery 10 is connected to the floor or table. It is erected and positioned in a direction perpendicular to the same horizontal plane.
  • the cylindrical battery 10 Since the measurement target measured by the deformation measurement device 1 is formed as a curved surface in the cylindrical battery 10 and forms a curvature, the cylindrical battery 10 has a seating portion so that the longitudinal direction is perpendicular to the bottom surface ( 20) standing up and positioned.
  • the measuring unit 30 wraps around the cylindrical battery 10 forming a circular circumference.
  • the measurement unit 30 is formed to be wrapped around the cylindrical battery 10, such that the cylindrical battery 10 (10) can measure the change in circumference.
  • the measurement unit 30 is completely wrapped around the entire circumference of the cylindrical battery 10 so as to cover the entire circumference of the cylindrical battery 10 . Both ends of the measuring unit 30 wound around the cylindrical battery 10 are fixed to the driving unit 40 and the sensor unit 50, respectively. To this end, the driving unit 40 and the sensor unit 50 may be positioned to face each other on opposite sides with the cylindrical battery 10 therebetween.
  • the measurement unit 30 has one end connected to the driving unit 40 and the other end connected to the sensor unit 50 .
  • the measurement unit 30 may be a wire, and tension is generated as an external force is applied.
  • the measuring unit 30 may be configured as a pair and connected to upper and lower sides of the driving unit 40, respectively.
  • the number of measuring units 30 connected to the driving unit may vary. That is, if three measurement units 30 are connected, the three measurement units may be connected to the upper, middle, and lower portions of the driving unit 40 at regular intervals.
  • the drive unit 40 pulls one end of the measurement unit 30 to generate a tensile load on the measurement unit 30 wound around the cylindrical battery 10 . That is, tension is applied to the measurement unit 30 by the driving unit 40, and a tensile load is generated in the measurement unit 30 by the tension thus applied.
  • the driving unit 40 applies a constant tension to the measurement unit 30 while the cylindrical battery 10 is being charged and discharged, and through this, a constant tensile load is continuously applied to the cylindrical battery 10.
  • the sensor unit 50 provides a supporting force for the tension applied to the measurement unit 30 by the driving unit 40 by fixing the other end of the measurement unit 30 . At the same time, the sensor unit 50 measures a change in the circumference of the cylindrical battery 10 according to the charge/discharge test of the cylindrical battery 10 .
  • the sensor unit 50 may measure the amount of deformation of the circumference of the cylindrical battery 10 by measuring a change in tensile load according to a change in the circumference of the cylindrical battery 10 .
  • the measurement unit 30 In order to measure the change in volume of the cylindrical battery 10, the measurement unit 30 should be wound around the cylindrical battery 10, as described above.
  • the measuring unit 30 may be composed of a wire 31, and the wire 31 is wound along the circumferential direction around the cylindrical battery 10, and one end is It is connected to the driving part 40 and the other end is connected to the sensor part 50.
  • the wire 31 is wound around the cylindrical battery 10 once and has one end connected to the copper part 40 and the other end connected to the sensor unit 50 can be connected to Depending on the connection state of the wires 31 , the wires 31 may overlap and wind each other in a predetermined area A on the outer circumferential surface of the cylindrical battery 10 .
  • the wires 31 contact and overlap each other on the outer circumferential surface of the cylindrical battery 10 in this way, measurement errors may occur, so as shown, the area where the wires 31 overlap each other ( In A), the wires 31 should be spaced apart from each other and extended.
  • the wire 31 may extend in a spiral shape on the outer circumferential surface of the cylindrical battery 10 .
  • the drive unit 40 is composed of a motor 41 and may apply a tensile load to the measurement unit 30 by winding the measurement unit 30 through rotation of the motor 41 .
  • the drive unit 40 may include a motor 41 at a lower portion and a reel 42 connected to the motor at an upper portion.
  • the position of the motor 41 may be variously varied.
  • the wire 31 may generate a tensile load around the cylindrical battery 10 while being wound around the reel 42 by the rotation of the motor 41 .
  • the sensor unit 50 may include a load cell 51 that detects force and a support 52 that can fix and install the load cell 51 .
  • the load cell 51 is installed on the support 52 and can measure the load applied to the wire 31 according to the change in the circumference of the cylindrical battery 10 .
  • the wires 31 may be configured as a pair as described above, a pair of the load cells 51 may also be fixed to each wire 31 as the number of the wires 31. .
  • the number of these wires 31 is variable, it is obvious that the number of load cells 51 is also variable and connected to each wire.
  • a lubricating film is formed on a surface where the wire 31 and the circumference of the cylindrical battery 10 come into contact. This is to increase the accuracy of measurement by reducing the friction of the contact surface between the wire 31 and the cylindrical battery 10 .
  • a lubricating film may be formed on the wire 31 . That is, a wire having a lubricating film formed thereon to minimize frictional force may be wound along the outer circumferential surface of the cylindrical battery 10 . Furthermore, a lubricating film may be formed on both the wire 31 and the cylindrical battery 10 .
  • one pair or more of the wires 31 may be wound along the outer circumferential surface of the cylindrical battery 10, and two or more measuring units 30 such as the wires 31 are formed.
  • the degree of volume expansion in each part of the cylindrical battery 10 can be individually measured. Accordingly, it may be possible to determine which part of the cylindrical battery 10 is the most vulnerable position during charging and discharging.
  • FIG. 4 is a schematic side view of a cylindrical battery deformation measurement device generated in a charge/discharge test according to a second embodiment of the present invention.
  • 5A and 5B are schematic plan views of the cylindrical battery deformation amount measuring device of FIG. 4 .
  • 6 is a detailed view of a measuring unit in the device for measuring deformation amount of a cylindrical battery of FIG. 4 .
  • the deformation amount measuring device 2 is substantially the same as the deformation amount measuring device 1 described with reference to FIGS. Since they are the same, the same reference numerals are used for the same components, and overlapping descriptions are omitted.
  • the deformation amount measuring device 2 measures a seating portion 20 for erecting and fixing a cylindrical battery 10 in the axial direction and a circumference of the cylindrical battery 10. It includes a measurement unit 30 that surrounds, and a drive unit 40 that generates a tensile load in the measurement unit 30 by pulling one end of the measurement unit 30 to which the other end is fixed, and the measurement unit 30 A change in tensile load according to a change in the circumference of the cylindrical battery 10 is measured.
  • the measurement unit 30 is composed of a flexible printed circuit board (32, flexible printed circuit board, FPCB).
  • the flexible printed circuit board 32 includes a flexible material, and its shape can be changed.
  • the measurement unit 30 is formed by using the flexible printed circuit board 32 made of a flexible material to be wound around the outer circumferential surface of the cylindrical battery 10 having a curved side surface.
  • a sensing device capable of measuring a load is included in the flexible printed circuit board 32.
  • a load cell 51 is included in the flexible printed circuit board 32.
  • a metal wire such as copper is installed on the surface of the flexible printed circuit board 32 to measure the changing load.
  • the flexible printed circuit board 32 is wound around the cylindrical battery 10 in a circumferential direction and in a spiral direction. That is, as described above, the flexible printed circuit board 32 should be connected to the driving unit 40 and the measuring unit 30 at both ends while being wound once along the circumference of the cylindrical battery 10. Accordingly, some Areas may overlap each other. Thus, in order to prevent overlapping of the flexible circuit boards 32, the flexible circuit board 32 may be extended while winding in a spiral direction along the outer circumferential surface of the cylindrical battery 10.
  • a plurality of flexible printed circuit boards 32 may be wound on the outer circumferential surface of the cylindrical battery 10, and when the plurality of flexible printed circuit boards 32 are wound in this way, the flexible printed circuit boards 32 ) may be spaced apart from each other and extended at predetermined intervals along the extension direction of the cylindrical battery 10, that is, in the vertical direction.
  • the flexible printed circuit board 32 may form a rectangular shape longer in the longitudinal direction than in the width direction. This is to easily sense deformation such as a volume change of the cylindrical battery 10 by being wound around the cylindrical battery 10 .
  • the flexible printed circuit board 32 forming a predetermined width is wound in a spiral direction along the outer circumferential surface of the cylindrical battery 10 . That is, the flexible printed circuit board 32 extends from the common joint 36 formed on one side of FIG. 4, branches and extends into a plurality of bands, and winds the outer circumferential surface of the cylindrical battery 10. As described above, when the flexible circuit board 32 forms a plurality of strips, if the outer circumferential surface of the cylindrical battery 10 is not wound in a spiral direction, they interfere with each other, making it difficult to wind the entire circumference of the cylindrical battery 10.
  • the plurality of strip-shaped flexible printed circuit boards 32 branched and extended from the common junction 36 on one side winds the outer circumferential surface of the cylindrical battery 10 and then the space between the adjacent flexible printed circuit boards 32. It extends to and can be connected to the fixing table 60 on the other side.
  • a plurality of flexible circuit boards 32 are spaced apart at predetermined intervals and wound along the outer circumferential surface of the cylindrical battery 10 to measure the deformation of the cylindrical battery 10 throughout the circumference of the cylindrical battery 10. can That is, deformation of the cylindrical battery 10 may be measured at various positions along the vertical direction in which the cylindrical battery 10 extends.
  • a metal conductor thin film serving as a strain gauge may be formed on the flexible printed circuit board 32 . That is, in order to minimize the error due to the bending deformation of the flexible circuit board 32 and to measure only the tensile load of the flexible circuit board 32, a metal conductor thin film is formed on both sides of the flexible circuit board 32 and the two metal conductor thin films are formed. Deformation of the cylindrical battery 10 may be measured using a method of averaging the strains measured in .
  • a metal conductor thin film is formed on only one side of the flexible circuit board 32 so that deformation of the cylindrical battery 10 can be measured. there is.
  • the flexible circuit board 32 is wound around the cylindrical battery 10 with the other end fixed to the holder 60 and tightened by the drive unit 40 connected to one end.
  • the drive unit 40 may use a motor 41, and the motor 41 may apply a predetermined tensile load to the outer circumferential surface of the cylindrical battery 10 by applying a predetermined tension to the flexible printed circuit board 32.
  • a metal pattern 34 may be formed on the flexible printed circuit board 32, and a metal wire 35 may be formed to be electrically connected to the metal pattern 34. there is.
  • the metal wire 35 may be formed of a lead wire.
  • the metal pattern 34 may be formed on the flexible printed circuit board 34 in, for example, three types.
  • the first metal pattern 34(1) is formed as one unit pattern, and in this case, the unit pattern may have a form in which 'S'-shaped wires are continuously formed.
  • the second metal pattern 34(2) may be formed of one unit pattern, and the unit pattern may have a relatively elongated shape along the extension direction of the flexible printed circuit board 34.
  • the third metal pattern 34(3) may be formed such that a plurality of the first metal patterns 34(1) are spaced apart from each other on the flexible printed circuit board 34.
  • first to third metal patterns may be formed on each of a plurality of flexible printed circuit boards extending to be spaced apart from each other.
  • only one of the first to third metal patterns may be equally formed on each of the plurality of flexible printed circuit boards extending to be spaced apart from each other. That is, any one metal pattern among the first to third metal patterns may be formed on each of the plurality of flexible printed circuit boards extending and spaced apart from each other.
  • the type of the metal pattern to be formed may be varied in addition to the first to third metal patterns illustrated in FIG. 6 .
  • the metal pattern 34 may be formed on both the front and rear surfaces of the flexible printed circuit board 32. When formed on both the front and rear surfaces, the patterns may be identical to each other. Of course, it is as described above that it can be formed on only one side of the front side and the back side.
  • the average value of the resistance change of the front pattern and the resistance change of the rear pattern is measured as described above.
  • the position where the metal pattern 34 is formed can be freely formed according to the configuration of the device.
  • the metal pattern 34 may be formed on only one side of the flexible printed circuit board 32.
  • the metal wiring 35 is formed on only one side.
  • the metal patterns 34 are formed on both sides of the flexible printed circuit board 32, and in this case, the metal wires 35 must also be electrically connected to both sides.
  • FIG. 7 is a schematic side view of a cylindrical battery deformation measurement device generated in a charge/discharge test according to a third embodiment of the present invention.
  • 8 is a schematic plan view of the cylindrical battery deformation amount measuring device of FIG. 7 .
  • the deformation amount measuring device 3 is substantially the same as the deformation amount measuring device 1 described with reference to FIGS. 1 to 3 except for the configuration of the measuring unit 35, the same configuration For each, the same reference number is used, and overlapping descriptions are omitted.
  • the deformation amount measuring device 3 includes a seating portion 20 for erecting and fixing the cylindrical battery 10 in the axial direction, and It includes a measuring device 35 surrounding the circumference, and a sensor unit 50 provided on the measuring device 35 to measure a change in the circumference of the cylindrical battery 10 .
  • the meter 35 includes fixing parts 33 that can be fixed to the cylindrical battery 10 at both ends.
  • the sensor unit 50 is composed of a strain gauge 53.
  • the measuring device 35 is mounted along the outer circumferential surface of the cylindrical battery 10 and measures deformation such as swelling of the cylindrical battery 10 .
  • the meter 35 needs to be fixed around the cylindrical battery 10, and for this purpose, fixing parts 33 such as rings are formed at both ends of the meter 35.
  • the meter 35 is fixed along the outer circumferential surface of the cylindrical battery 10, and fixing parts 33 are formed at both ends, and the fixing parts 33 have a predetermined It may be formed in a ring shape having an elastic shape.
  • the meter 35 is formed in an arc shape having the same curvature as the outer circumferential surface of the cylindrical battery 10 as a whole, and extends in contact with the outer circumferential surface of the cylindrical battery 10 .
  • the fixing part 33 has an 'S' shaped ring shape, and the fixing part 33 fixes the meter 35 to the cylindrical battery 10. That is, the fixing part 33 is fixed to the outer circumferential surface of the cylindrical battery 10 in a ring shape, thereby fixing the meter 35 on the outer circumferential surface of the cylindrical battery 10 .
  • the sensor unit 50 is provided in the measuring instrument 35 and may be configured as a strain gauge 53. In this case, the sensor unit 50 may be provided in the center of the measuring device 35 as shown, but its position may be variable.
  • a lubricating film may be formed on a surface where the measuring instrument 35 and the cylindrical battery 10 come into contact, which reduces friction between the wire 31 and the cylindrical battery 10 to improve measurement accuracy. is to raise
  • the deformation amount measuring device 3 according to this embodiment can be mainly applied to a battery close to a pouch type rather than a cylindrical shape.
  • the cylindrical battery deformation measurement device generated in the charge and discharge test measures the volume expansion generated in the battery during the charge and discharge test of the cylindrical battery to predict the charge and discharge life and performance degradation of the cylindrical battery, The risk of battery explosion can be prevented.
  • a cylindrical battery forming a circular curvature can be efficiently measured by measuring deformation such as swelling of the battery due to continuous charging and discharging.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치는 안착부, 측정기, 구동부 및 센서부를 포함한다. 상기 안착부는 원통형 배터리가 축방향으로 기립되어 고정된다. 상기 측정부는 상기 원통형 배터리의 둘레를 감싼다. 상기 구동부는 상기 측정부의 일단에 장력을 인가하여, 상기 측정부에 인장하중을 발생시킨다. 상기 센서부는 상기 측정부의 타단을 고정하여 상기 원통형 배터리 둘레의 변화에 따른 인장하중의 변동을 측정한다.

Description

충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치
본 발명은 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치에 관한 것으로, 보다 구체적으로 본 발명은 원통형 배터리 유닛의 충방전 시험에서 발생하는 배터리의 외형적 변형량을 측정할 수 있는 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치에 관한 것이다.
최근 전기자동차의 수요가 크게 증가하면서 전기자동차의 에너지원인 배터리에 대한 연구개발이 활발하다.
전기자동차에 사용하는 배터리는 반복적인 충방전이 가능한 이차전지를 주로 사용하는데, 이러한 충방전이 가능한 이차전지는 충방전 시에 부피 변화를 동반하며, 이에 따라 배터리의 변형을 유발하며 경우에 따라 이차전지의 폭발이 야기될 수 있다.
이러한 배터리의 반복된 충방전에 의한 이차전지의 폭발을 예방하기 위해, 배터리는 일반적으로 배터리의 과방전과 충전을 반복하여 충방전 횟수에 따른 배터리의 전압 저하를 측정하는 시험을 수행한다. 또한, 이러한 시험에서는 배터리의 수명을 측정함과 동시에 충방전에 의해 발생하는 배터리 부피의 변형량을 측정하는 것이 핵심이다.
종래의 경우, 배터리는 파우치 형태의 납작한 모양의 배터리 유닛을 많이 사용하였다. 이러한 파우치 형태의 배터리 유닛은 납작한 모양이기 때문에 시험은 일정 면적을 지닌 접촉부를 설계하여 접촉시키고, 배터리 충방전 시에 파우치 형 배터리 유닛에 발생하는 하중을 측정함으로써 변형량을 평가하였다.
그러나, 최근에는 납작한 파우치형 배터리 유닛 외에 원기둥 형태의 원통형 배터리 유닛이 대량생산되고 있으며, 이러한 원통형 배터리 유닛은 기존의 파우치형 배터리 측정 장치로는 그 변형량을 측정하는 것이 어렵다.
즉, 충방전 시에 원통형 배터리에서 발생하는 변형량을 측정하기 위해서는 원호 형상을 따라 변형될 수 있는 하중측정부가 요구되는데, 이러한 원호 형상을 따라 변형될 수 있는 하중 측정부의 구조는 기존의 배터리 평가 시에 사용되는 측정장치로는 대응할 수 없다.
따라서 원통형 배터리의 측정에 사용할 수 있는 측정장치의 개발이 필요한 실정이다.
관련 선행기술 문헌으로는 대한민국 등록특허 제10-2192676호가 있다.
본 발명의 목적은 원통형 배터리 유닛의 충방전 시험에서 발생하는 배터리의 외형적 변형량을 측정할 수 있는 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치를 제공하는 것이다.
본 발명의 일 실시예에 의한 배터리 변형량 측정 장치는 안착부, 측정기, 구동부 및 센서부를 포함한다. 상기 안착부는 원통형 배터리가 축방향으로 기립되어 고정된다. 상기 측정부는 상기 원통형 배터리의 둘레를 감싼다. 상기 구동부는 상기 측정부의 일단에 장력을 인가하여, 상기 측정부에 인장하중을 발생시킨다. 상기 센서부는 상기 측정부의 타단을 고정하여 상기 원통형 배터리 둘레의 변화에 따른 인장하중의 변동을 측정한다.
일 실시예에서, 상기 측정부는, 와이어로 구성될 수 있다.
일 실시예에서, 상기 와이어는, 상기 원통형 배터리의 둘레를 원주방향으로 감되, 일단은 상기 구동부에 연결되고 타단은 상기 센서부에 연결될 수 있다.
일 실시예에서, 상기 센서부는, 상기 와이어의 타단에 연결되는 로드셀을 포함할 수 있다.
일 실시예에서, 상기 와이어와 상기 원통형 배터리의 둘레가 접하는 면에는 윤활막이 형성될 수 있다.
일 실시예에서, 상기 와이어는, 복수개가 상기 원통형 배터리의 길이방향으로 서로 이격되도록 구비될 수 있다.
일 실시예에서, 상기 와이어는, 상기 원통형 배터리의 외주면을 따라 나선형으로 감길 수 있다.
일 실시예에서, 상기 구동부는, 기 설정된 장력을 제공하여, 상기 측정부에 발생되는 인장하중을 일정하게 유지할 수 있다.
본 발명의 다른 실시예에 의한 배터리 변형량 측정 장치는, 안착부, 측정부 및 구동부를 포함한다. 상기 안착부는 원통형 배터리가 축방향으로 기립되어 고정된다. 상기 측정부는 상기 원통형 배터리의 둘레를 감싼다. 상기 구동부는 상기 측정부의 일단에 장력을 인가하여, 상기 측정부에 인장하중을 발생시킨다. 상기 측정부는 원통형 배터리 둘레의 변화에 따른 인장하중의 변동을 측정한다.
일 실시예에서, 상기 측정부는, 연성회로기판으로 구성될 수 있다.
일 실시예에서, 상기 연성회로기판에는 금속패턴이 형성되며, 상기 원통형 배터리의 둘레가 변화함에 따라 상기 금속패턴의 저항이 가변될 수 있다.
일 실시예에서, 상기 연성회로기판은, 상기 원통형 배터리의 둘레를 따라 나선형 형상으로 감길 수 있다.
일 실시예에서, 상기 연성회로기판은, 복수 개가 상기 원통형 배터리의 길이방향으로 서로 이격되어 감길 수 있다.
일 실시예에서, 상기 연성회로기판과 상기 원통형 배터리의 둘레가 접하는 면에는 윤활막이 형성될 수 있다.
본 발명의 또 다른 실시예에 의한 배터리 변형량 측정 장치는, 안착부, 측정기 및 센서부를 포함한다. 상기 안착부는 원통형 배터리가 축방향으로 기립되어 고정된다. 상기 측정기는 상기 원통형 배터리의 둘레를 감싼다. 상기 센서부는 상기 측정기에 구비되어 상기 원통형 배터리 둘레의 변화를 측정한다.
일 실시예에서, 상기 측정기는, 상기 측정기의 양 끝단에 구비되며, 상기 측정기를 상기 원통형 배터리에 고정시키는 고정부를 포함할 수 있다.
일 실시예에서, 상기 센서부는, 스트레인게이지로 구성될 수 있다.
일 실시예에서, 상기 센서부는 상기 측정기의 중앙에 형성될 수 있다.
일 실시예에서, 상기 측정기와 상기 원통형 배터리의 둘레가 접하는 면에는 윤활막이 형성될 수 있다.
본 발명의 실시예들에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치는, 원통형 배터리의 충방전 시험 시 배터리에서 발생하는 부피 팽창을 측정함으로써, 원통형 배터리의 충방전 수명 및 성능 저하를 정확하게 평가하고 이를 통하여 배터리의 신뢰성을 개선하며 폭발 위험을 예방하는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치의 측면 모식도이다.
도 2는 도 1의 원통형 배터리 변형량 측정 장치의 평면 모식도이다.
도 3은 도 1의 원통형 배터리 변형량 측정 장치의 사시 모식도이다.
도 4는 본 발명의 제2 실시예에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치의 측면 모식도이다.
도 5a 및 도 5b는 도 4의 원통형 배터리 변형량 측정 장치의 평면 모식도들이다.
도 6은 도 4의 원통형 배터리 변형량 측정 장치에서 측정부의 상세도이다.
도 7은 본 발명의 제3 실시예에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치의 측면 모식도이다.
도 8은 도 7의 원통형 배터리 변형량 측정 장치의 평면 모식도이다.
<부호의 설명>
1, 2, 3 : 원통형 배터리 변형량 측정장치
10 : 원통형 배터리 20 : 안착부
30 : 측정부 31 : 와이어
32 : 연성회로기판 33 : 고정부
34 : 금속패턴 35: 측정기
40 : 구동부 41 : 모터
42 : 릴 50 : 센서부
51 : 로드셀 52 : 지지대
53 : 스트레인게이지 60 : 고정대
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부되는 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다.
본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현할 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.
이하에서 본 발명의 실시예들을 첨부된 도면을 참고로 설명한다.
도 1은 본 발명의 제1 실시예에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치의 측면 모식도이다. 도 2는 도 1의 원통형 배터리 변형량 측정 장치의 평면 모식도이다. 도 3은 도 1의 원통형 배터리 변형량 측정 장치의 사시 모식도이다.
도 1 내지 도 3을 참조하면, 본 실시예에 의한 상기 충방전 시험에서 발생하는 원통형 배터리 변형량 측정장치(이하, 변형량 측정장치라 함)(1)는 일반적인 파우치형 배터리가 아닌 원통형(실린더형) 배터리나 원통형에 가까운 파우치 형태의 배터리를 위한 측정 장치이다.
일반적으로 배터리는 과방전과 충전의 반복에 따라 부피변화를 동반할 수 있으며, 원통형 배터리는 곡률을 형성하는 측면부에 변형이 생길 수 있다. 이에, 본 실시예에 의한 상기 변형량 측정장치(1)는 원형이나 원형에 가까운 곡률을 형성하는 측면의 변화를 측정하기 위한 측정장치이다. 이 경우, 상기 배터리는 일반적으로 이차전지에 사용되는 배터리일 수 있으나, 이에 제한되지는 않는다.
보다 구체적으로, 본 실시예에 의한 상기 변형량 측정 장치(1)는, 원통형 배터리(10)를 축방향(도면에서 상하방향)으로 기립시키며 고정하는 안착부(20), 상기 원통형 배터리(10)의 둘레를 감싸는 측정부(30), 상기 측정부(30)의 일단을 당겨 상기 측정부(30)에 인장하중을 발생시키는 구동부(40), 및 상기 측정부(30)의 타단을 고정하여 상기 원통형 배터리(10) 둘레의 변화에 따른 인장하중의 변동을 측정하는 센서부(50)를 포함한다.
원통형 배터리(10)는 안착부(20)에 축방향으로 기립하며 고정된다. 안착부(20)는 바닥이나 테이블 등에 위치하는 것으로 원통형 배터리(10)는 안착부(20)에 고정된다. 이 경우, 상기 안착부(20)가 위치하는 바닥이나 테이블은 상기 원통형 배터리(10)가 연장되는 축방향에 수직인 수평방향으로 연장될 수 있으며, 결국 상기 원통형 배터리(10)는 바닥이나 테이블과 같은 수평면에 수직인 방향으로 기립되며 위치하게 된다.
상기 변형량 측정 장치(1)를 통해 측정되는 측정대상은, 원통형 배터리(10)에서 곡면으로 형성되어 곡률을 형성하는 측면이므로, 원통형 배터리(10)는 길이방향이 바닥면과 수직을 이루도록 안착부(20)에 기립하며 위치한다.
측정부(30)는 원형의 둘레를 형성하는 원통형 배터리(10)의 둘레를 감싼다. 상기 원통형 배터리(10)가 반복적으로 충방전되는 경우, 원통형 배터리(10)의 둘레가 가변될 수 있으므로, 상기 측정부(30)는 원통형 배터리(10)의 둘레에 감기도록 형성되어, 이러한 원통형 배터리(10)의 둘레의 변화를 측정할 수 있다.
측정부(30)는 원통형 배터리(10)의 둘레를 모두 커버하도록 원통형 배터리(10)의 둘레 전체에 완전히 감긴다. 원통형 배터리(10)의 둘레를 감은 측정부(30)는 양단이 구동부(40)와 센서부(50)에 각각 고정된다. 이를 위해 구동부(40)와 센서부(50)는 원통형 배터리(10)를 사이에 두고 서로 반대편에 서로 마주하도록 위치할 수 있다.
즉, 측정부(30)는 일단은 구동부(40)에 연결되고, 타단은 센서부(50)에 연결된다. 이 경우, 상기 측정부(30)는 도시된 바와 같이, 와이어(wire)일 수 있으며, 외력이 인가됨에 따라 장력을 발생하게 된다.
또한, 도시된 바와 같이, 상기 측정부(30)는 한 쌍의 구성되어 상기 구동부(40)의 상측 및 하측에 각각 연결될 수 있다. 물론, 이 경우, 상기 측정부(30)가 상기 구동부에 연결되는 개수는 다양하게 가변될 수 있다. 즉, 상기 측정부(30)가 3개가 연결된다면, 3개의 측정부들은 상기 구동부(40) 상에 서로 일정한 간격을 가지면서 상부, 중앙 및 하부에 각각 연결될 수 있다.
구동부(40)는 측정부(30)의 일단을 당겨 원통형 배터리(10)의 둘레에 감긴 측정부(30)에 인장하중을 발생시킨다. 즉, 상기 구동부(40)에 의해 상기 측정부(30)에 장력이 인가되며 이렇게 인가되는 장력에 의해 상기 측정부(30)에는 인장하중이 발생된다. 구동부(40)는 원통형 배터리(10)의 충방전 시험을 진행하는 동안 상기 측정부(30)로 일정한 장력을 인가하게 되며 이를 통해 상기 원통형 배터리(10)에는 일정한 인장하중이 지속적으로 인가된다.
센서부(50)는 측정부(30)의 타단을 고정함으로써 구동부(40)가 상기 측정부(30)에 인가하는 장력에 대한 지지력을 제공한다. 동시에 센서부(50)는 원통형 배터리(10)의 충방전 시험에 따른 원통형 배터리(10)의 둘레 변화를 측정한다.
즉, 센서부(50)는 원통형 배터리(10)의 둘레 변화에 따른 인장하중의 변동을 측정함으로써 원통형 배터리(10) 둘레의 변형량을 측정할 수 있다.
이러한 원통형 배터리(10)의 부피변화를 측정하기 위해 측정부(30)는 원통형 배터리(10)에 감겨야하며, 이는 앞서 설명한 바와 같다.
또한, 상기 측정부(30)가 와이어(31)로 구성될 수 있음은 앞서 설명한 바와 같으며, 상기 와이어(31)는, 상기 원통형 배터리(10)의 둘레에 원주방향을 따라 감기되, 일단은 상기 구동부(40)에 연결되고 타단은 상기 센서부(50)에 연결된다.
즉, 도 2 및 도 3에 도시된 바와 같이, 상기 와이어(31)는 상기 원통형 배터리(10)의 둘레를 따라 1회 감기면서 일단은 동부(40)에 연결되고, 타단은 센서부(50)에 연결될 수 있다. 이러한 상기 와이어(31)의 연결상태에 따라, 와이어(31)는 상기 원통형 배터리(10)의 외주면 상에서 일정 영역(A)에서 서로 중첩되며 감길 수 있다.
그러나, 이와 같이 상기 와이어(31)가 상기 원통형 배터리(10)의 외주면 상에서 서로 접촉하며 중첩되는 경우 측정의 오류가 야기될 수 있으므로, 도시된 바와 같이, 상기 와이어(31)가 서로 중첩되는 영역(A)에서는 상기 와이어(31)는 서로 소정 간격으로 이격되어 연장되어야 한다.
이를 위해, 상기 와이어(31)는 상기 원통형 배터리(10)의 외주면 상에서 나선형 형상을 따라 연장될 수 있다.
이때, 구동부(40)는 모터(41)로 구성되어 모터(41)의 회전을 통해 측정부(30)를 감아 측정부(30)에 인장하중을 가해줄 수 있다.
구동부(40)는 하부는 모터(41)를 구비하고, 상부는 모터에 연결된 릴(42)을 구비할 수 있다. 다만, 상기 모터(41)의 위치는 다양하게 가변될 수 있다.
와이어(31)는 모터(41)의 회전에 의해 릴(42)에 감기면서 원통형 배터리(10)의 둘레에 인장하중을 발생시킬 수 있다.
센서부(50)는 힘을 감지하는 로드셀(51)과 로드셀(51)을 고정하여 설치할 수 있는 지지대(52)로 구성될 수 있다. 로드셀(51)은 지지대(52)에 설치되어 원통형 배터리(10)의 둘레의 변화에 따라 와이어(31)에 가해지는 하중을 측정할 수 있다.
이 경우, 상기 와이어(31)는 앞서 설명한 바와 같이, 한 쌍으로 구성될 수 있으므로, 상기 로드셀(51) 역시 상기 와이어(31)의 개수와 같이 한 쌍이 각각의 와이어(31)에 고정될 수 있다. 물론, 이러한 와이어(31)의 개수가 가변된다면, 상기 로드셀(51)의 개수 역시 가변되어 각각의 와이어마다 연결되어야 함은 자명하다.
상기 와이어(31)와 상기 원통형 배터리(10)의 둘레가 접하는 면에는 윤활막이 형성된다. 이는 와이어(31)와 원통형 배터리(10)가 접하는 면의 마찰을 줄여 측정의 정확도를 높이기 위함이다.
이와 달리, 상기 와이어(31) 상에 윤활막이 형성될 수도 있다. 즉, 윤활막이 형성되어 마찰력을 최소화한 와이어가 상기 원통형 배터리(10)의 외주면을 따라 감길 수도 있다. 나아가, 와이어(31)와 원통형 배터리(10) 모두에 윤활막이 형성될 수도 있다.
한편, 앞서 설명한 바와 같이, 상기 와이어(31)는 한 쌍 또는 그 이상으로 상기 원통형 배터리(10)의 외주면을 따라 감길 수 있는데, 이와 같이 와이어(31)와 같은 측정부(30)를 2개 이상으로 구성함에 따라, 원통형 배터리(10)의 각 부위에서의 부피팽창의 정도를 개별적으로 측정할 수 있다. 따라서, 원통형 배터리(10)의 어느 부위가 충방전시 가장 취약한 위치인지 확인할 수 있을 것이다.
이는 후술되는 실시예들을 통해 설명되는 연성회로기판(32)을 포함하는 측정부(30)를 2개 이상 구성하는 경우에도 동일하게 적용될 수 있다.
도 4는 본 발명의 제2 실시예에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치의 측면 모식도이다. 도 5a 및 도 5b는 도 4의 원통형 배터리 변형량 측정 장치의 평면 모식도들이다. 도 6은 도 4의 원통형 배터리 변형량 측정 장치에서 측정부의 상세도이다.
본 실시예에 의한 상기 변형량 측정장치(2)는 측정부(30)가 연성회로기판(32)으로 구성되는 것을 제외하고는 도 1 내지 도 3을 참조하여 설명한 상기 변형량 측정장치(1)와 실질적으로 동일하므로, 동일한 구성요소에 대하여는 동일한 참조번호를 사용하고 중복되는 설명은 이를 생략한다.
도 4 내지 도 6을 참조하면, 본 실시예에 의한 상기 변형량 측정 장치(2)는, 원통형 배터리(10)를 축방향으로 세워 고정하는 안착부(20), 상기 원통형 배터리(10)의 둘레를 감싸는 측정부(30),및 타단이 고정된 상기 측정부(30)의 일단을 당겨 상기 측정부(30)에 인장하중을 발생시키는 구동부(40),를 포함하고, 상기 측정부(30)는 원통형 배터리(10) 둘레의 변화에 따른 인장하중의 변동을 측정한다.
본 실시예에서는 상기 측정부(30)는, 연성회로기판(32, flexible printed circuit board, FPCB)으로 구성된다. 이 경우, 상기 연성회로기판(32)은 유연성(flexible) 소재를 포함하는 것으로 그 형상이 가변될 수 있다.
즉, 측면이 곡면인 원통형 배터리(10)의 외주면에 감기 위해 유연한 소재의 연성회로기판(32)을 사용하여 측정부(30)를 구성한다.
연성회로기판(32)에는 로드셀(51)과 같이 하중을 측정할 수 있는 센싱장치가 함께 구성된다. 이 경우, 상세히 도시하지는 않았으나, 연성회로기판(32)의 표면에는 구리와 같은 금속 배선이 설치되어 변화하는 하중을 측정할 수 있다.
상기 연성회로기판(32)은, 상기 원통형 배터리(10)의 둘레를 원주방향으로 감되, 나선형 방향으로 감긴다. 즉, 앞서 설명한 바와 같이, 상기 연성회로기판(32)은 상기 원통형 배터리(10)의 둘레를 따라 1회 감기면서 양 끝단의 구동부(40) 및 측정부(30)와 연결되어야 하는데, 이에 따라 일부 영역에서 서로 중첩될 수 있다. 그리하여, 이러한 연성회로기판(32)의 중첩을 방지하기 위해, 상기 연성회로기판(32)은 상기 원통형 배터리(10)의 외주면을 따라 나선형 방향으로 감기면서 연장될 수 있다.
이때, 상기 연성회로기판(32)은, 복수 개가 상기 원통형 배터리(10)의 외주면 상에 감길 수 있으며, 이와 같이 복수의 연성회로기판들(32)이 감기는 경우, 상기 연성회로기판들(32)은 상기 원통형 배터리(10)의 연장방향, 즉 상하방향을 따라 소정 간격으로 서로 이격되며 연장될 수 있다.
한편, 연성회로기판(32)은 폭방향보다 길이방향이 긴 직사각형 형태를 형성할 수 있다. 이는 원통형 배터리(10)의 둘레에 감겨 원통형 배터리(10)의 부피변화와 같은 변형을 용이하게 감지하기 위함이다.
도 4에 도시된 바와 같이, 소정의 폭을 형성하는 연성회로기판(32)은 원통형 배터리(10)의 외주면을 따라 나선형 방향으로 감긴다. 즉, 상기 연성회로기판(32)은 도 4의 일 측에 형성되는 공통접합부(36)로부터 연장되어, 복수 개의 띠로 분기되어 연장되며 원통형 배터리(10)의 외주면을 감는다. 연성회로기판(32)이 복수 개의 띠 모양을 형성하는 경우 나선형 방향으로 원통형 배터리(10)의 외주면을 감지 않으면 서로 간섭이 되어서 원통형 배터리(10)의 둘레 전체를 휘감기 어렵게 됨은 앞서 설명한 바와 같다.
즉, 일 측의 공통 접합부(36)에서 분기되어 연장되는 복수 개의 띠 모양의 연성회로기판(32)은 원통형 배터리(10)의 외주면을 감은 후에 서로 인접하는 연성회로기판들(32) 사이의 공간으로 연장되며 나와 타 측의 고정대(60)에 연결될 수 있다.
이상과 같이, 연성회로기판(32)이 복수 개가 소정의 간격으로 이격되며 원통형 배터리(10)의 외주면을 따라 감김으로써 원통형 배터리(10) 둘레의 전반에 걸쳐 원통형 배터리(10)의 변형을 측정할 수 있다. 즉, 상기 원통형 배터리(10)가 연장되는 상하방향을 따라 다양한 위치에서의 상기 원통형 배터리(10)의 변형을 측정할 수 있다.
이 경우, 도시하지는 않았으나, 연성회로기판(32)에는 스트레인게이지(strain gauge) 역할을 할 수 있는 금속 전도체 박막이 형성될 수 있다. 즉, 연성회로기판(32)의 굽힘 변형에 의한 오차를 최소화하고, 연성회로기판(32)의 인장하중만을 측정하기 위해서 연성회로기판(32)의 양면에 금속 전도체 박막을 형성하여 두 금속 전도체 박막에서 측정되는 변형률을 평균하는 방식을 사용하여, 상기 원통형 배터리(10)의 변형을 측정할 수 있다.
이와 달리, 상대적으로 두께가 얇은 연성회로기판(32)을 사용하는 경우에는 상기 연상회로기판(32)의 어느 한 면에만 금속 전도체 박막을 형성하여, 상기 원통형 배터리(10)의 변형을 측정할 수 있다.
한편, 연성회로기판(32)은 타단은 고정대(60)에 고정된 상태로 원통형 배터리(10)에 감기며 일단에 연결된 구동부(40)에 의해 조여진다.
구동부(40)는 모터(41)를 사용할 수 있으며, 모터(41)는 연성회로기판(32)에 소정의 장력을 인가함으로써, 기 설정된 일정한 인장하중을 상기 원통형 배터리(10)의 외주면으로 인가할 수 있다.
도 5a, 도 5b 및 도 6을 참조하면, 연성회로기판(32) 상에는 금속패턴(34)이 형성될 수 있고, 금속배선(35)은 상기 금속패턴(34)에 전기적으로 연결되도록 형성될 수 있다. 그리하여, 상기 금속배선(35)을 통해, 상기 원통형 배터리(10)의 원주 방향으로의 변형률에 따라, 즉 둘레가 가변됨에 따라, 상기 금속패턴(34)의 저항이 가변되는 것을 측정할 수 있다. 이 경우, 상기 금속배선(35)은 리드선으로 형성할 수 있다.
구체적으로, 상기 금속패턴(34)은 도 6에 도시된 바와 같이, 연성회로기판(34) 상에 예를 들어, 3가지 형태로 형성될 수 있다.
즉, 제1 금속패턴(34(1))은 하나의 단위패턴으로 형성되며, 이 경우, 상기 단위패턴은 ‘S’자 형상의 배선이 연속적으로 형성되는 형태일 수 있다.
이와 달리, 제2 금속패턴(34(2))은 상기 단위패턴이 한 개로 형성되되, 상기 단위패턴이 상기 연성회로기판(34)의 연장방향을 따라 상대적으로 길게 늘어진 형태를 가질 수 있다.
나아가, 제3 금속패턴(34(3))은 상기 제1 금속패턴(34(1))이 복수개가 상기 연성회로기판(34) 상에 서로 이격되도록 형성될 있다.
또한, 이러한 상기 제1 내지 제3 금속패턴들은, 서로 이격되도록 연장되는 복수의 연성회로기판들 각각에 형성될 수 있다. 이와 달리, 상기 제1 내지 제3 금속패턴들 중 어느 하나만 서로 이격되도록 연장되는 복수의 연성회로기판들 각각에 동일하게 형성될 수도 있다. 즉, 서로 이격되며 연장되는 복수의 연성회로기판들 각각에는 상기 제1 내지 제3 금속패턴들 중 어느 하나의 금속패턴이 형성될 수 있다. 나아가, 상기 형성되는 금속패턴의 종류는 도 6을 통해 예시한 제1 내지 제3 금속패턴들 외에도 다양하게 가변될 수 있다.
또한, 금속패턴(34)은 연성회로기판(32)의 앞면과 뒷면에 모두 형성될 수 있는데, 앞면과 뒷면에 모두 형성되는 경우 패턴은 서로 동일할 수 있다. 물론, 앞면과 뒷면 중 어느 한 면에만 형성될 수 있음은 앞서 설명한 바와 같다.
다만, 금속패턴(34)이 앞면과 뒷면에 모두 형성한 경우, 앞면 패턴의 저항변화와 뒷면 패턴의 저항변화의 평균값을 측정함은 앞서 설명한 바와 같다.
이때, 연성회로기판(32)에 발생하는 장력은 위치에 따라 크게 변화가 없기 때문에(마찰이 작은 경우) 금속패턴(34)이 형성되는 위치는 장치의 구성에 따라 자유롭게 형성할 수 있다.
즉, 도 5a에서와 같이 연성회로기판(32)의 한 면에만 금속패턴(34)이 형성될 수 있으며, 이 경우, 연성회로기판(32)의 인장에 따른 금속패턴(34)의 전기저항변화를 측정하기 위하여 금속배선(35)을 한 면에만 형성한 것이다. 이와 달리, 도 5b에서와 같이, 연성회로기판(32)의 양면에 금속패턴(34)이 형성된 것으로, 이 경우 금속배선(35) 역시 양면에 전기적으로 연결되어야 한다.
상기 연성회로기판(32)과 상기 원통형 배터리(10)의 둘레가 접하는 면에는 윤활막이 형성됨은 앞서 설명한 바와 같고, 이는 연성회로기판(32)과 원통형 배터리(10)가 접하는 면의 마찰을 줄여 측정의 정확도를 높이기 위함이다.
도 7은 본 발명의 제3 실시예에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치의 측면 모식도이다. 도 8은 도 7의 원통형 배터리 변형량 측정 장치의 평면 모식도이다.
본 실시예에 의한 상기 변형량 측정장치(3)는 측정부(35)의 구성을 제외하고는, 도 1 내지 도 3을 참조하여 설명한 상기 변형량 측정장치(1)와 실질적으로 동일하므로, 동일한 구성에 대하여는 동일한 참조번호를 사용하고 중복되는 설명은 이를 생략한다.
즉, 도 7 및 도 8을 참조하면, 본 실시예에 의한 상기 변형량 측정 장치(3)는, 원통형 배터리(10)를 축방향으로 세워 고정하는 안착부(20), 상기 원통형 배터리(10)의 둘레를 감싸는 측정기(35), 및 상기 측정기(35)에 구비되어 상기 원통형 배터리(10) 둘레의 변화를 측정하는 센서부(50)를 포함한다.
상기 측정기(35)는, 양 끝단에 상기 원통형 배터리(10)에 고정할 수 있는 고정부(33)를 포함한다.
상기 센서부(50)는, 스트레인게이지(53)로 구성된다.
측정기(35)는 원통형 배터리(10)의 외주면을 따라 장착되며, 원통형 배터리(10)의 부풀어 오름과 같은 변형을 측정한다.
측정기(35)는 원통형 배터리(10)의 둘레에 고정될 필요가 있으며, 이를 위해서 측정기(35)의 양 끝단에는 고리와 같은 고정부(33)가 형성된다.
즉, 도 8에 도시된 바와 같이, 상기 측정기(35)는 상기 원통형 배터리(10)의 외주면을 따라 고정되며, 양 끝단에는 고정부(33)가 형성되고, 상기 고정부(33)는 소정의 탄성형상을 가지는 고리 형상으로 형성될 수 있다.
즉, 상기 측정기(35)는 전체적으로 상기 원통형 배터리(10)의 외주면과 같은 곡률을 가지는 원호 형상으로 형성되어 상기 원통형 배터리(10)의 외주면을 따라 접촉되며 연장된다. 또한, 상기 고정부(33)는 ‘S’자 형상의 고리 형상을 가지는 것으로, 상기 고정부(33)가 상기 원통형 배터리(10)에 상기 측정기(35)를 고정시킨다. 즉, 상기 고정부(33)는 고리 형상으로 상기 원통형 배터리(10)의 외주면에 고정됨으로써, 상기 측정기(35)를 상기 원통형 배터리(10)의 외주면 상에 고정시킨다.
센서부(50)는 측정기(35)에 구비되며 스트레인게이지(53)로 구성할 수 있다. 이 경우, 상기 센서부(50)는 도시된 바와 같이 상기 측정기(35)의 중앙부에 구비될 수 있으나, 그 위치는 가변될 수 있다.
이 경우, 상기 측정기(35)와 상기 원통형 배터리(10)의 둘레가 접하는 면에는 윤활막이 형성될 수 있으며, 이는 와이어(31)와 원통형 배터리(10)가 접하는 면의 마찰을 줄여 측정의 정확도를 높이기 위함이다.
이러한 본 실시예에 의한 상기 변형량 측정장치(3)는 원통형보다는 파우치형에 가까운 배터리에 주로 적용할 수 있다.
이렇듯 본 발명의 실시예들에 따른 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치는 원통형 배터리의 충방전 시험 시 배터리에서 발생하는 부피 팽창을 측정하여 원통형 배터리의 충방전 수명 및 성능 저하를 예측하고, 배터리의 폭발 위험을 예방할 수 있다.
또한, 지속적인 충방전으로 인해 배터리의 부풀어 오름과 같은 변형을 측정하는 것으로 원형의 곡률을 형성하는 원통형 배터리를 효율적으로 측정할 수 있다.
이상에서 설명된 본 발명의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해하여야 한다.

Claims (19)

  1. 원통형 배터리가 축방향으로 기립되어 고정되는 안착부;
    상기 원통형 배터리의 둘레를 감싸는 측정부;
    상기 측정부의 일단에 장력을 인가하여, 상기 측정부에 인장하중을 발생시키는 구동부; 및
    상기 측정부의 타단을 고정하여 상기 원통형 배터리 둘레의 변화에 따른 인장하중의 변동을 측정하는 센서부를 포함하는 배터리 변형량 측정 장치.
  2. 제1항에 있어서,
    상기 측정부는, 와이어로 구성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  3. 제2항에 있어서,
    상기 와이어는, 상기 원통형 배터리의 둘레를 원주방향으로 감되, 일단은 상기 구동부에 연결되고 타단은 상기 센서부에 연결되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  4. 제3항에 있어서,
    상기 센서부는, 상기 와이어의 타단에 연결되는 로드셀을 포함하는 것을 특징으로 하는 배터리 변형량 측정 장치.
  5. 제3항에 있어서,
    상기 와이어와 상기 원통형 배터리의 둘레가 접하는 면에는 윤활막이 형성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  6. 제3항에 있어서,
    상기 와이어는, 복수개가 상기 원통형 배터리의 길이방향으로 서로 이격되도록 구비되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  7. 제3항에 있어서,
    상기 와이어는, 상기 원통형 배터리의 외주면을 따라 나선형으로 감기는 것을 특징으로 하는 배터리 변형량 측정장치.
  8. 제1항에 있어서, 상기 구동부는,
    기 설정된 장력을 제공하여, 상기 측정부에 발생되는 인장하중을 일정하게 유지하는 것을 특징으로 하는 배터리 변형량 측정장치.
  9. 원통형 배터리가 축방향으로 기립되어 고정되는 안착부;
    상기 원통형 배터리의 둘레를 감싸는 측정부; 및
    상기 측정부의 일단에 장력을 인가하여, 상기 측정부에 인장하중을 발생시키는 구동부를 포함하고,
    상기 측정부는 원통형 배터리 둘레의 변화에 따른 인장하중의 변동을 측정하는 것을 특징으로 하는 배터리 변형량 측정 장치.
  10. 제9항에 있어서,
    상기 측정부는, 연성회로기판으로 구성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  11. 제10항에 있어서,
    상기 연성회로기판에는 금속패턴이 형성되며,
    상기 원통형 배터리의 둘레가 변화함에 따라 상기 금속패턴의 저항이 가변되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  12. 제10항에 있어서,
    상기 연성회로기판은, 상기 원통형 배터리의 둘레를 따라 나선형 형상으로 감기는 것을 특징으로 하는 배터리 변형량 측정 장치.
  13. 제10항에 있어서,
    상기 연성회로기판은, 복수 개가 상기 원통형 배터리의 길이방향으로 서로 이격되어 감기는 것을 특징으로 하는 배터리 변형량 측정 장치.
  14. 제10항에 있어서,
    상기 연성회로기판과 상기 원통형 배터리의 둘레가 접하는 면에는 윤활막이 형성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  15. 원통형 배터리가 축방향으로 기립되어 고정되는 안착부;
    상기 원통형 배터리의 둘레를 감싸는 측정기; 및
    상기 측정기에 구비되어 상기 원통형 배터리 둘레의 변화를 측정하는 센서부를 포함하는 배터리 변형량 측정 장치.
  16. 제15항에 있어서,
    상기 측정기는, 상기 측정기의 양 끝단에 구비되며, 상기 측정기를 상기 원통형 배터리에 고정시키는 고정부를 포함하는 것을 특징으로 하는 배터리 변형량 측정 장치.
  17. 제15항에 있어서,
    상기 센서부는, 스트레인게이지로 구성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  18. 제17항에 있어서,
    상기 센서부는 상기 측정기의 중앙에 형성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
  19. 제15항에 있어서,
    상기 측정기와 상기 원통형 배터리의 둘레가 접하는 면에는 윤활막이 형성되는 것을 특징으로 하는 배터리 변형량 측정 장치.
PCT/KR2022/012800 2021-09-27 2022-08-26 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치 WO2023048415A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210126988A KR102683147B1 (ko) 2021-09-27 2021-09-27 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치
KR10-2021-0126988 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023048415A1 true WO2023048415A1 (ko) 2023-03-30

Family

ID=85720905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012800 WO2023048415A1 (ko) 2021-09-27 2022-08-26 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치

Country Status (2)

Country Link
KR (1) KR102683147B1 (ko)
WO (1) WO2023048415A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116643173B (zh) * 2023-05-06 2024-08-16 三一红象电池有限公司 电芯寿命预测方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250545A (ja) * 2006-03-13 2007-09-27 Lg Chem Ltd 簡単な構造の安全手段を備えた電池モジュール
JP2010080225A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 電池パック
KR101369869B1 (ko) * 2013-01-25 2014-03-06 한국과학기술원 Pgb 스트레인 센서를 이용한 피탐지체의 3차원 위치추정방법
KR101982632B1 (ko) * 2017-12-29 2019-05-27 경희대학교 산학협력단 산사태 감지 시스템
KR102152572B1 (ko) * 2019-03-22 2020-09-07 영남대학교 산학협력단 이차 전지의 팽창 센싱 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192676B1 (ko) 2017-01-24 2020-12-17 주식회사 엘지화학 배터리 모듈 변형 예측 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250545A (ja) * 2006-03-13 2007-09-27 Lg Chem Ltd 簡単な構造の安全手段を備えた電池モジュール
JP2010080225A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 電池パック
KR101369869B1 (ko) * 2013-01-25 2014-03-06 한국과학기술원 Pgb 스트레인 센서를 이용한 피탐지체의 3차원 위치추정방법
KR101982632B1 (ko) * 2017-12-29 2019-05-27 경희대학교 산학협력단 산사태 감지 시스템
KR102152572B1 (ko) * 2019-03-22 2020-09-07 영남대학교 산학협력단 이차 전지의 팽창 센싱 시스템

Also Published As

Publication number Publication date
KR102683147B1 (ko) 2024-07-09
KR20230044637A (ko) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2018139833A1 (ko) 이차 전지 평가 장치
WO2023048415A1 (ko) 충방전 시험에서 발생하는 원통형 배터리 변형량 측정 장치
WO2020171426A1 (ko) 배터리 셀 연결용 버스 바, 배터리 팩 및 이의 제조 방법
WO2017095066A1 (ko) 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법
WO2020197015A1 (ko) 이차 전지의 팽창 센싱 시스템
WO2020085722A1 (ko) 중대형 셀 모듈의 폭발 압력 예측 시스템 및 이를 이용한 중대형 셀 모듈의 폭발 압력 예측 방법
WO2019004567A1 (ko) 이차전지 품질검사용 지그장치
WO2020013548A1 (ko) 케이블 전지를 구비한 데이터 케이블 장치
WO2019240443A1 (ko) 다수의 이차전지 셀파우치 동시 검사 장치
WO2022014954A1 (ko) 전극리드의 절곡 및 용접 장치 및 이를 이용한 전극리드의 용접 방법
WO2023043107A1 (ko) 전지셀의 임피던스 측정 충방전지그
EP4238171A1 (en) Battery pack
WO2018043783A1 (ko) 밴드 조립체
WO2019160334A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩
WO2022220437A1 (ko) 전지 셀 트레이
WO2021141323A1 (ko) 배터리 팩 케이스 손상 감지 장치 및 방법
WO2015046635A1 (ko) 배터리 모듈 및 이를 포함하는 중대형 배터리 모듈
WO2023163550A1 (ko) 연성 인쇄회로기판 및 이를 포함하는 이차전지 모듈
WO2023113179A1 (ko) 접촉 장치 및 이를 포함하는 특성 측정기
WO2023210924A1 (ko) 이차전지의 불량 검사 장치 및 불량 검사 방법
WO2023085502A1 (ko) 배터리의 충방전을 위한 프로브 용 팽창부재 및 이를 포함하는 프로브
WO2024196097A1 (ko) 전지 모듈
WO2024080588A1 (ko) 임피던스 스펙트럼 측정 장치의 초기값 보정을 위한 보정 장치 및 보정 방법
WO2022108160A1 (ko) 전지 셀의 충방전 장치 및 이를 이용한 전지 셀의 충방전 방법
WO2021145592A1 (ko) 폴딩 구조를 적용한 파우치형 배터리 팩 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22873120

Country of ref document: EP

Kind code of ref document: A1