WO2023048249A1 - Electronic component - Google Patents

Electronic component Download PDF

Info

Publication number
WO2023048249A1
WO2023048249A1 PCT/JP2022/035435 JP2022035435W WO2023048249A1 WO 2023048249 A1 WO2023048249 A1 WO 2023048249A1 JP 2022035435 W JP2022035435 W JP 2022035435W WO 2023048249 A1 WO2023048249 A1 WO 2023048249A1
Authority
WO
WIPO (PCT)
Prior art keywords
interlayer connection
electronic component
connection conductor
thickness direction
insulating layer
Prior art date
Application number
PCT/JP2022/035435
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 大家
清弘 樫内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023048249A1 publication Critical patent/WO2023048249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations

Definitions

  • the present invention relates to an electronic component having an interlayer connection conductor that constitutes at least part of an inductor.
  • Patent Literature 1 discloses an electronic component having laminated ceramic layers and internal conductor layers, and through holes provided in the ceramic layers. A stress relaxation material made of resin, metal, or the like is interposed at the interface between the ceramic layer and the internal conductor layer. The internal conductor layers are electrically connected to each other through through holes and formed in a coil shape. That is, the electronic component includes an inductor formed by an internal conductor layer and through holes.
  • an object of the present invention is to solve the above problems and to provide an electronic component in which the dielectric loss of the inductor is reduced.
  • the electronic component according to the present invention comprises: at least one insulating layer made of an insulator; an inductor provided in the insulating layer; a capacitor provided in the insulating layer and electrically connected to the inductor; an interlayer connection conductor that penetrates at least one of the insulating layers and constitutes at least part of the inductor; with The interlayer connection conductor has a side surface facing a direction intersecting the thickness direction of the insulating layer, A space is formed between at least a portion of a side surface of at least one interlayer connection conductor and the insulator.
  • FIG. 2 is a bottom view of the electronic component according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II of the electronic component in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line III-III of the electronic component in FIG. 2
  • FIG. 3 is an enlarged view of the Z1 region of the electronic component in FIG. 2
  • Graph showing the insertion loss of the inductor corresponding to each diameter of the space The bottom view of the electronic component which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a cross-sectional view taken along line VII-VII of the electronic component in FIG. 6
  • 8 is a cross-sectional view taken along line VIII-VIII of the electronic component in FIG.
  • FIG. 7 is a cross-sectional view corresponding to line IX-IX in FIG. 6 of the electronic component according to the third embodiment of the present invention
  • FIG. 10 is a cross-sectional view taken along line XX of the electronic component in FIG. 9
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2;
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2;
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2;
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2;
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2;
  • An electronic component comprises at least one insulating layer made of an insulator; an inductor provided in the insulating layer; a capacitor provided in the insulating layer and electrically connected to the inductor; an interlayer connection conductor that penetrates at least one of the insulating layers and constitutes at least part of the inductor; with The interlayer connection conductor has a side surface facing a direction intersecting the thickness direction of the insulating layer, A space is formed between at least a portion of a side surface of at least one interlayer connection conductor and the insulator.
  • a space is formed between at least part of the side surface of the interlayer connection conductor that forms at least part of the inductor and the insulator that forms the insulating layer.
  • the dielectric constant of air present in the space is lower than the dielectric constant of the insulator. Therefore, the dielectric constant around the interlayer connection conductor is lower than in a configuration in which the entire side surface of the interlayer connection conductor is in contact with the insulator. Therefore, the dielectric loss of the inductor can be reduced.
  • At least part of the interlayer connection conductor may be surrounded by the space when viewed from the thickness direction.
  • the dielectric constant around the interlayer connection conductor is lower than in a configuration in which only a portion of the side surface of the interlayer connection conductor in the circumferential direction faces the space. Therefore, the dielectric loss of the inductor can be reduced.
  • each of the interlayer connection conductor and the space may have a rotationally symmetrical shape or a substantially rotationally symmetrical shape when viewed from the thickness direction.
  • the center of the interlayer connection conductor may be located at a position different from the center of the space when viewed from the thickness direction.
  • the center of the interlayer connection conductor when viewed from the thickness direction, the center of the interlayer connection conductor is located at a position different from the center of the space. Therefore, by locating the center of the interlayer connection conductor between the edge of the electronic component and the center of the space, the interlayer connection conductor can be placed near the edge of the electronic component. This makes it possible to increase the size of the inductor provided in the electronic component. Therefore, the inductance of the inductor can be increased.
  • each of the interlayer connection conductor and the space may be circular or substantially circular when viewed from the thickness direction.
  • the diameter of the space may be 1.1 times or more the diameter of the interlayer connection conductor.
  • the insertion loss of the inductor can be reduced compared to a configuration in which the diameter of the space is less than 1.1 times the diameter of the interlayer connection conductor when viewed in the thickness direction.
  • the side surface of the interlayer connection conductor may have a contact area that contacts the insulator and a separation area that is separated from the insulator via the space.
  • the interlayer connection conductor may have a contact portion which is a part of the interlayer connection conductor in the thickness direction and whose side surface is formed by the contact area.
  • the strength of the electronic component may decrease.
  • the insulators forming the insulating layers and the interlayer connection conductors around the space are more likely to be damaged by external shocks, thermal shocks, or the like.
  • the contact portion is provided on the interlayer connection conductor.
  • the strength of the electronic component can be increased compared to a structure in which the interlayer connection conductor does not have a contact portion.
  • a space is formed between the side surface and the insulator forming the insulating layer except for the contact portion of the interlayer connection conductor. Therefore, the dielectric constant around the portion other than the contact portion of the interlayer connection conductor is lowered. Therefore, it is possible to realize an electronic component in which the dielectric loss of the inductor is reduced and the damage is suppressed.
  • the contact portion may be provided at an end portion of the interlayer connection conductor in the thickness direction.
  • interlayer connection conductors are often connected to conductors placed on the surface or inside the electronic component.
  • the ends of such interlayer connection conductors are easily damaged by external shocks, thermal shocks, and the like.
  • the contact portion is provided at the end portion of the interlayer connection conductor. This improves the strength of the interlayer connection conductor at the end. Therefore, compared to a configuration in which a space is formed between the side surface of the end portion and the insulator forming the insulating layer, it is possible to reduce the possibility of damage to the interlayer connection conductor.
  • the electronic component may further include a terminal electrode arranged on the surface of the insulating layer and exposed to the outside.
  • the contact portion provided at the end portion in the thickness direction of the interlayer connection conductor may be connected to the terminal electrode.
  • the terminal electrodes connected to the ends of the interlayer connection conductors and exposed to the outside are connected to the electrodes arranged on the board, for example, when the electronic component is mounted on the board.
  • the contact portion is provided at the end of the interlayer connection conductor connected to the terminal electrode. This improves the strength of the interlayer connection conductor at the end. Therefore, compared to a configuration in which a space is formed between the side surface of the end connected to the terminal electrode and the insulator forming the insulating layer, the interlayer connection conductor is less likely to be damaged.
  • the arithmetic mean roughness of the separation region may be smaller than the arithmetic mean roughness of the contact region.
  • a high-frequency current flowing through a conductor concentrates on the surface of the conductor due to the skin effect.
  • the arithmetic mean roughness of the isolated region is smaller than the arithmetic mean roughness of the contact region.
  • the resistance to the high frequency current flowing through the interlayer connection conductor can be reduced. Therefore, the insertion loss of the inductor can be reduced.
  • the electronic component may have a rotationally symmetrical shape when viewed from the thickness direction.
  • the interlayer connection conductor includes a first interlayer connection conductor in which at least a part of the side surface of the interlayer connection conductor forms the space, and a second interlayer connection conductor in which the entire side surface of the interlayer connection conductor is in contact with the insulator. may have When viewed from the thickness direction, the distance between the second interlayer connection conductor and the edge of the electronic component may be shorter than the distance between the second interlayer connection conductor and the center of the electronic component. .
  • Insulators forming insulating layers and interlayer connection conductors are easily damaged by external shocks or thermal shocks near the edges of electronic components when viewed from the thickness direction.
  • the second interlayer connection conductor arranged near the edge of the electronic component is in contact with the insulator through the entire side surface. This improves the strength of the second interlayer connection conductor and the insulator surrounding the second interlayer connection conductor. Therefore, it is possible to suppress breakage of the insulator forming the insulating layer and the interlayer connection conductor.
  • FIG. 1 is a bottom view of the electronic component according to the first embodiment of the invention.
  • FIG. 2 is a cross-sectional view of the electronic component of FIG. 1 taken along the line II-II.
  • 3 is a cross-sectional view of the electronic component of FIG. 2, taken along line III--III.
  • 4 is an enlarged view of the Z1 region of the electronic component of FIG. 2.
  • the electronic component 1 includes at least one insulating layer 20, terminal electrodes 3 arranged on a bottom surface 1a (described later) of the electronic component 1, and an insulating layer It has internal conductors 41 to 43 formed on the boundary surfaces of the insulating layers 20 and interlayer connection conductors 51 and 52 penetrating at least one layer of the insulating layers 20 .
  • the insulating layer 20 has nine stacked insulating layers 21-29.
  • the insulating layer 21 constitutes the bottom layer among the laminated insulating layers 21 to 29 .
  • the surface of insulating layer 21 opposite to the surface in contact with insulating layer 22 constitutes bottom surface 1 a of electronic component 1 .
  • the insulating layer 20 is composed of an insulator.
  • the insulator is, for example, ceramic. Note that the number of insulating layers 20 is not limited to nine, and may be one or more.
  • the thickness of the insulating layer 20 is, for example, 5 to 100 ⁇ m. In the example shown in FIG. 2, the insulating layers 21-29 have the same thickness, but they may differ from each other.
  • terminal electrodes 3 are arranged on the bottom surface 1 a of the electronic component 1 .
  • the terminal electrodes 3 are connected to electrodes arranged on the substrate through solder.
  • the terminal electrode 3 is made of a conductive material such as copper, silver, aluminum, or a compound of these metals.
  • the terminal electrodes 3 may be plated.
  • the plating may be, for example, nickel/gold plating.
  • four terminal electrodes 3 including terminal electrodes 31 and 32 are provided.
  • internal conductors 41 to 43 are formed on the interface between the insulating layers 20 .
  • the internal conductor 41 is positioned between the insulating layers 27 and 28 .
  • the internal conductor 42 is located between the insulating layers 22 and 23 .
  • the internal conductor 43 is positioned between the insulating layers 21 and 22 .
  • the internal conductors 41-43 are made of a conductive material such as copper, silver, aluminum, or compounds of these metals.
  • the internal conductor 42 and the internal conductor 43 face each other in the thickness direction of the insulating layer 20 (hereinafter simply referred to as "thickness direction"). As a result, the internal conductor 42 and the internal conductor 43 function as the capacitor 6 .
  • the electronic component 1 has interlayer connection conductors 51-53.
  • the interlayer connection conductors 51 to 53 are via conductors, for example.
  • the interlayer connection conductors 51 to 53 pass through at least one insulating layer 20 in the thickness direction. That is, the interlayer connection conductors 51-53 extend in the thickness direction.
  • the interlayer connection conductor 51 penetrates the seven insulating layers 21-27.
  • a first end portion 51 a of the interlayer connection conductor 51 is connected to the terminal electrode 31 .
  • a second end portion 51 b of the interlayer connection conductor 51 opposite to the first end portion 51 a is connected to the internal conductor 41 .
  • the interlayer connection conductor 52 penetrates the five insulating layers 23-27.
  • a first end 52 a of the interlayer connection conductor 52 is connected to the internal conductor 42 .
  • a second end portion 52 b of the interlayer connection conductor 52 opposite to the first end portion 52 a is connected to the internal conductor 41 .
  • the interlayer connection conductor 53 penetrates one insulating layer 21 .
  • the interlayer connection conductor 53 is connected to the terminal electrode 32 and the internal conductor 43 at both ends.
  • the interlayer connection conductors 51 and 52 are rotationally symmetrical or approximately rotationally symmetrical when viewed from the thickness direction.
  • rotationally symmetrical shape refers to a shape whose shape after rotation matches the shape before rotation when the shape is rotated around a virtual center point.
  • the interlayer connection conductors 51 and 52 are cylindrical with a diameter of 75 ⁇ m. That is, the interlayer connection conductors 51 and 52 are circular or substantially circular when viewed from the thickness direction. In this case, when the interlayer connection conductors 51 and 52 are rotated around the virtual center points C51 and C52 (see FIG. 3), the shapes of the interlayer connection conductors 51 and 52 after rotation are the same as those before rotation. It matches the shape of the interlayer connection conductors 51 and 52 . Therefore, each of the interlayer connection conductors 51 and 52 has a rotationally symmetrical shape when viewed from the thickness direction. Each virtual center point C51, C52 is an example of "the center of the interlayer connection conductor" in the present invention.
  • the length in the thickness direction of the interlayer connection conductors 51 and 52 is determined, for example, by the number of insulating layers 20 that penetrate through and the thickness of each insulating layer 20 that penetrates.
  • the interlayer connection conductor 53 (not shown in FIG. 3) is also cylindrical with a diameter of 75 ⁇ m.
  • the interlayer connection conductors 51 and 52 together with the internal conductor 41 form the inductor 7 in the insulating layers 21-27.
  • the inductor 7 is electrically connected to the capacitor 6 because the interlayer connection conductor 52 is connected to the internal conductor 42 .
  • the inductor 7 is U-shaped when viewed in a direction orthogonal to the thickness direction (hereinafter simply referred to as "perpendicular direction").
  • the inductor 7 may have, for example, a spiral shape, a meandering shape, or the like when viewed from the orthogonal direction.
  • the number of turns of the inductor 7 may be one turn or multiple turns.
  • the interlayer connection conductor 53 does not constitute a part of the inductor 7 and functions as a wiring that connects the internal conductor 43 and the terminal electrode 32 .
  • the interlayer connection conductors 51, 52 have side surfaces 51c, 52c facing in a direction intersecting the thickness direction.
  • a space 81 is formed between the side surface 51c of the interlayer connection conductor 51 and the insulators forming the five insulating layers 22-26.
  • a space 82 is formed between the side surface 52c of the interlayer connection conductor 52 and the insulators forming the three insulating layers 24-26.
  • the spaces 81 and 82 are filled with gas such as air, for example.
  • the side surfaces 51c and 52c of the interlayer connection conductors 51 and 52 are composed of contact regions 51c1 and 52c1 in contact with the insulator forming the insulating layer 20, separated regions 51c2 separated from the insulator via corresponding spaces 81 and 82, 52c2.
  • the contact regions 51c1 and 52c1 form interfaces between the interlayer connection conductors 51 and 52 and the insulator.
  • the outer shapes of the spaces 81 and 82 when viewed from the thickness direction are rotationally symmetrical or substantially rotationally symmetrical.
  • the outer shape of the spaces 81 and 82 when viewed in the thickness direction is circular or substantially circular.
  • the virtual center points C81 and C82 shown in FIG. 3 are the centers of the contours of the corresponding spaces 81 and 82, respectively.
  • Each virtual center point C81, C82 is an example of the "center of space" in the present invention.
  • the interlayer connection conductors 51 and 52 are surrounded by spaces 81 and 82 when viewed from the thickness direction.
  • the outer diameter of spaces 81 and 82 is preferably 1.1 times or more the diameter of corresponding interlayer connection conductors 51 and 52 .
  • the side surfaces 51c and 52c of the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52 are in contact with the insulator forming the insulating layer 20. are doing.
  • the interlayer connection conductors 51 and 52 have contact portions 51d and 52d formed by contact regions 51c1 and 52c1 on the side surfaces 51c and 52c, and a separation portion 51e formed by separation regions 51c2 and 52c2 on at least a part of the side surfaces 51c and 52c. , 52e. In other words, the contact portions 51d and 52d do not have the separation regions 51c2 and 52c2 on the side surfaces 51c and 52c.
  • the contact portions 51d, 52d and the separation portions 51e, 52e are separated in the thickness direction. Dotted lines shown in FIG. 2 indicate boundaries between the contact portions 51d and 52d and the separation portions 51e and 52e. In the example shown in FIG.
  • the contact portions 51d and 52d are provided at the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52, respectively.
  • the contact portion 51d is a portion of the interlayer connection conductor 51 located on the insulating layers 21 and 27, and the contact portion 52d is a portion of the interlayer connection conductor 52 located on the insulating layers 23 and 27. .
  • the arithmetic mean roughness of the separation region 52c2 is smaller than the arithmetic mean roughness of the contact region 52c1. That is, the arithmetic mean roughness of the separation region 52 c 2 is smaller than the arithmetic mean roughness of the interface between the interlayer connection conductor 52 and the insulator forming the insulating layer 20 . Also, on the side surface 51c of the interlayer connection conductor 51, the arithmetic mean roughness of the separation region 51c2 is smaller than the arithmetic mean roughness of the contact region 52c1.
  • "Arithmetic mean roughness" in this specification is calculated according to, for example, JIS B 0601:2013.
  • the electronic component 1 between at least part of the side surfaces 51 c and 52 c of the interlayer connection conductors 51 and 52 that form at least part of the inductor 7 and the insulator that forms the insulating layer 20 . , spaces 81 and 82 are formed.
  • the dielectric constant of the air present in the spaces 81 and 82 is lower than that of the insulator. Therefore, the dielectric constant around the interlayer connection conductors 51 and 52 is lower than in the case where the entire side surfaces 51c and 52c of the interlayer connection conductors 51 and 52 are in contact with the insulator. Therefore, the dielectric loss of inductor 7 can be reduced.
  • the dielectric constant around the interlayer connection conductors 51 and 52 is lower than in the configuration in which only the circumferential portions of the side surfaces 51c and 52c of the interlayer connection conductors 51 and 52 face the spaces 81 and 82.
  • FIG. Therefore, the dielectric loss of inductor 7 can be reduced.
  • the diameter of the spaces 81 and 82 when viewed from the thickness direction, is less than 1.1 times the diameter of the interlayer connection conductors 51 and 52.
  • the insertion loss of inductor 7 can be reduced.
  • the strength of the electronic component 1 may become low.
  • the insulator and the interlayer connection conductors 51 and 52 forming the insulating layer 20 are more likely to be damaged by external impact, thermal shock, or the like.
  • the interlayer connection conductors 51 and 52 are provided with the contact portions 51d and 52d. As a result, the strength of the electronic component 1 can be increased compared to a configuration in which the interlayer connection conductors 51 and 52 do not have the contact portions 51d and 52d.
  • spaces 81 and 82 are formed between the side surfaces 51c and 52c and the insulator forming the insulating layer 20 in the separated portions 51e and 52e of the interlayer connection conductors 51 and 52, respectively. Therefore, the dielectric constant around the separation portions 51e and 52e of the interlayer connection conductors 51 and 52 is lowered. Therefore, it is possible to realize the electronic component 1 in which the dielectric loss of the inductor 7 is reduced and the breakage is suppressed.
  • the ends 51a, 51b, 52a, 52b of the interlayer connection conductors 51 and 52 refer to the first end 51a and the second end 51b of the interlayer connection conductor 51, and the first end 51a and the second end 51b of the interlayer connection conductor 52. It refers to the end 52a and the second end 52b.
  • the ends 51a, 51b, 52a, 52b of the interlayer connection conductors 51, 52 are connected to the terminal electrodes 31, 32 or the internal conductors 41, 42 in many cases.
  • the end portions 51a, 51b, 52a, 52b of such interlayer connection conductors 51, 52 are easily damaged by external impact, thermal shock, or the like.
  • the contact portions 51d and 52d are provided at the end portions 51a, 51b, 52a and 52b of the interlayer connection conductors 51 and 52, respectively.
  • This improves the strength of the interlayer connection conductors 51 and 52 at the ends 51a, 51b, 52a and 52b. Therefore, compared to the configuration in which the end portions 51a, 51b, 52a, 52b are the separation portions 51e, 52e of the interlayer connection conductors 51, 52, the possibility of damage to the interlayer connection conductors 51, 52 can be reduced.
  • the terminal electrode 31 connected to the first end portion 51a of the interlayer connection conductor 51 and exposed to the outside may be connected to an electrode arranged on the substrate (not shown). Connected. In this case, if the substrate is deformed, stress is concentrated on the first end portion 51a connected to the terminal electrode 31, and the interlayer connection conductor 51 may be damaged.
  • the contact portion 51d is provided at the first end portion 51a of the interlayer connection conductor 51 connected to the terminal electrode 31 . This improves the strength of the interlayer connection conductor 51 at the first end portion 51a. Therefore, compared with the configuration in which the first end portion 51a connected to the terminal electrode 31 is the separation portion 51e, the possibility of the interlayer connection conductor 51 being damaged can be reduced.
  • a high-frequency current flowing through a conductor concentrates on the surface of the conductor due to the skin effect.
  • the arithmetic mean roughness of the separation regions 51c2 and 52c2 is smaller than the arithmetic mean roughness of the contact regions 51c1 and 52c1.
  • Example> Next, the relationship between the diameter of the space, which is circular when viewed in the thickness direction, and the insertion loss of the inductor partially configured by the interlayer connection conductor facing the space will be described.
  • the inventor performed a simulation assuming an electronic component having five inductors and seven capacitors, and estimated the insertion loss when the diameter of the space was changed.
  • a comparative example with no space a first example with a space diameter of 77.5 ⁇ m, a second example with a space diameter of 87.5 ⁇ m, and a third example with a space diameter of 150 ⁇ m.
  • Example and a fourth example in which the diameter of the space is 200 ⁇ m was assumed.
  • the diameter of the interlayer connection conductor was set to 75 ⁇ m in all of the comparative example and the first to fourth examples.
  • Fig. 5 is a graph showing the insertion loss of the inductor corresponding to each diameter of the space.
  • the horizontal axis of the graph indicates the frequency of the signal transmitted through the inductor.
  • the vertical axis of the graph indicates the insertion loss of the inductor.
  • the insertion loss increases downward in the figure. As shown in FIG. 5, the inductor insertion loss decreases as the diameter of the space increases.
  • FIG. 6 is a bottom view of the electronic component according to the second embodiment of the invention.
  • 7 is a cross-sectional view of the electronic component of FIG. 6 taken along line VII-VII.
  • 8 is a cross-sectional view of the electronic component of FIG. 7 taken along line VIII-VIII.
  • the electronic component 1A according to the second embodiment differs from the electronic component 1 according to the first embodiment in that the entire side surface 52c of the interlayer connection conductor 52 that constitutes a part of the inductor 7 is an insulator that constitutes the insulating layer 20. It is the point that is in contact with In addition, when viewed from the thickness direction, the distance between the interlayer connection conductor 52 and the edge 1b (described later) of the electronic component 1A is the distance between the interlayer connection conductor 52 and the virtual center point C1 (described later) of the electronic component 1A. shorter than distance.
  • the electronic component 1A has a rotationally symmetrical shape or a substantially rotationally symmetrical shape when viewed from the thickness direction.
  • the electronic component 1A has a substantially rectangular shape when viewed from the thickness direction.
  • the shape of the electronic component 1A after rotation matches the shape of the electronic component 1A before rotation.
  • the virtual center point C1 is an example of "the center of the electronic component" in the present invention.
  • the electronic component 1A has an edge portion 1b when viewed from the thickness direction.
  • terminal electrodes 3 including terminal electrodes 31 and 32 are provided.
  • the terminal electrode 31 is arranged in the central portion in the longitudinal direction of the substantially rectangular edge portion 1b.
  • the interlayer connection conductors 51 and 52 together with the internal conductor 41 form the inductor 7 in the insulating layers 21-27.
  • the interlayer connection conductor 51 is an example of the "first interlayer connection conductor” in the present invention.
  • the interlayer connection conductor 52 is an example of the "second interlayer connection conductor” in the present invention.
  • a side surface 51c of the interlayer connection conductor 51 has both a contact region 51c1 and a separation region 51c2. That is, a part of the side surface 51c forms a space 81.
  • the entire side surface 52c is in contact with the insulator forming the insulating layers 23-27.
  • the side surface 52c is formed by the contact area 52c1 and does not have a separation area. That is, the space 82 (see FIG. 2) in the electronic component 1 is not formed in the electronic component 1A according to the second embodiment.
  • the distance between the interlayer connection conductor 52 and the edge 1b of the electronic component 1A is the distance between the interlayer connection conductor 52 and the virtual center point C1 of the electronic component 1A. shorter than For example, the shortest distance D1 between the virtual center point C52 of the interlayer connection conductor 52 and the edge 1b of the electronic component 1A is the distance between the virtual center point C52 of the interlayer connection conductor 52 and the virtual center point C1 of the electronic component 1A. shorter than the shortest distance D2.
  • the shortest distance D3 between the side surface 52c of the interlayer connection conductor 52 and the edge 1b of the electronic component 1A is the shortest distance between the side surface 52c of the interlayer connection conductor 52 and the virtual center point C1 of the electronic component 1A. Shorter than D4.
  • the distance between the interlayer connection conductor 51 and the edge 1b of the electronic component 1A when viewed in the thickness direction is the distance between the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A.
  • the shortest distance D5 between the virtual center point C51 of the interlayer connection conductor 51 and the edge 1b of the electronic component 1A is the distance between the virtual center point C51 of the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A. Longer than the shortest distance D6.
  • the shortest distance D7 between the side surface 51c of the interlayer connection conductor 51 and the edge 1b of the electronic component 1A is the shortest distance between the side surface 51c of the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A. Longer than D8.
  • each distance between the interlayer connection conductors 51 and 52 and the edge portion 1b of the electronic component 1A or the virtual center point C1 is, for example, , is measured at the cross-section where the distance is the shortest.
  • the “cross section” includes the surface when the interlayer connection conductors 51 and 52 reach the surface of the electronic component 1A (for example, the bottom surface 1a shown in FIG. 7). In this embodiment, as shown in FIG. 7, the interlayer connection conductors 51 and 52 extend straight in the thickness direction.
  • the insulators and interlayer connection conductors 52 forming the insulating layer 20 are likely to be damaged by external impact, thermal shock, or the like.
  • the interlayer connection conductor 52 arranged near the edge 1b of the electronic component 1A is in contact with the insulator via the entire side surface 52c. This improves the strength of the interlayer connection conductor 52 and the insulator around the interlayer connection conductor 52 . Therefore, breakage of the insulator and the interlayer connection conductor 52 forming the insulating layer 20 can be suppressed.
  • FIG. 9 is a cross-sectional view corresponding to the IX-IX line in FIG. 6 of the electronic component according to the third embodiment of the present invention.
  • 10 is a cross-sectional view of the electronic component of FIG. 9, taken along the line XX.
  • the electronic component 1B according to the third embodiment differs from the electronic component 1 according to the first embodiment in that virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are located between the spaces 81 and 82 when viewed from the thickness direction. This point is located at a different position from the virtual center points C81 and C82.
  • the electronic component 1B shown in FIG. 9 further includes an internal conductor 44 on the interface between the insulating layer 21 and the insulating layer 22 .
  • the internal conductor 44 is connected to the terminal electrode 31 by, for example, an interlayer connection conductor (not shown).
  • the interlayer connection conductor 51 penetrates the six insulating layers 22-27.
  • a first end 51 a of the interlayer connection conductor 51 is connected to the internal conductor 44 .
  • the interlayer connection conductor 51 forms the inductor 7 in the insulating layers 22 to 27 together with the internal conductor 41 and the interlayer connection conductor 52 .
  • the internal conductor 42 faces the internal conductor 43 in the thickness direction (see FIG. 7). As a result, the internal conductor 42 and the internal conductor 43 function as the capacitor 6 .
  • a space 81 is formed between the side surface 51c of the interlayer connection conductor 51 and the insulators forming the four insulating layers 23-26.
  • a space 82 is formed between the side surface 52c of the interlayer connection conductor 52 and the insulators forming the three insulating layers 24-26.
  • each of the interlayer connection conductors 51, 52 and the spaces 81, 82 extends straight in the thickness direction.
  • each of the interlayer connection conductors 51, 52 and the spaces 81, 82 has a circular or substantially circular shape when viewed from the thickness direction.
  • the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are different from the virtual center points C81 and C82 of the corresponding spaces 81 and 82, respectively.
  • the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are positioned between the virtual center points C81 and C82 of the corresponding spaces 81 and 82 and the edge 1b of the electronic component 1B.
  • the distances D9 and D10 between the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 and the virtual center point C1 of the electronic component 1B correspond to the virtual center points of the corresponding spaces 81 and 82.
  • the distance D13 between the virtual center point C51 of the interlayer connection conductor 51 and the virtual center point C52 of the interlayer connection conductor 52 is the same as the virtual center point C81 of the space 81 and the virtual center point C82 of the space 82. longer than the distance D14 between
  • the interlayer connection conductor 52 is in line contact with the insulators forming the insulating layers 24-26. Therefore, as shown in FIG. 10, the interlayer connection conductor 52 is in point contact with the insulator forming the insulating layer 25 when viewed in the thickness direction.
  • the interlayer connection conductors 51 and 52 constitute at least part of the inductor 7
  • the distance between the interlayer connection conductors 51 and 52 and the edge 1b of the electronic component 1B is short when viewed from the thickness direction.
  • the size of the inductor 7 is increased, so that the inductance of the inductor 7 can be improved.
  • the spaces 81 and 82 are arranged in the following directions when viewed from the thickness direction: It needs to be formed with a distance from the edge 1b of the electronic component 1B.
  • the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 when viewed from the thickness direction, are different from the virtual center points C81 and C82 of the spaces 81 and 82. . Therefore, by positioning the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 between the edge portion 1b of the electronic component 1B and the virtual center points C81 and C82 of the spaces 81 and 82, the interlayer connection conductors 51 and 52 and the virtual center points C81 and C82 of the spaces 81 and 82 are located at the same positions, the interlayer connection conductors 51 and 52 are arranged near the edge 1b of the electronic component 1B. be able to. As a result, the size of the inductor 7 provided in the electronic component 1B can be increased. Therefore, the inductance of inductor 7 can be increased.
  • FIGS. 11 to 17 are cross-sectional views showing an example of a method of manufacturing the electronic component shown in FIG.
  • the electronic component 1 is manufactured by singulating a laminate into a plurality of laminated pieces 17 (see FIG. 17).
  • the laminated body is formed by integrating a plurality of laminated pieces 17 arranged in the orthogonal direction.
  • One laminated piece 17 corresponds to one electronic component 1 . 11 to 16 show only a portion of the laminate corresponding to one laminate piece 17 for convenience of explanation.
  • the insulating layer sheet 120 has insulating layer sheets 121-129. Each insulating layer sheet 121-129 corresponds to each insulating layer 21-29.
  • the slurry contains a main agent, a plasticizer, a binder, and the like.
  • the main agent is, for example, a sinterable ceramic powder or the like, and has grains. Phthalic acid esters, di-n-butyl phthalate, and the like are used as plasticizers. Acrylic resin, polyvinyl butyral, or the like is used for the binder, for example.
  • the slurry is formed into a sheet on the carrier film 11 using, for example, a lip coater or doctor blade (see, for example, FIG. 11).
  • the insulating layer sheet 120 is formed.
  • a PET (polyethylene terephthalate) film or the like is used for the carrier film 11, for example.
  • Step of forming insulating layer in which space is formed the insulating layer sheet 126 is used as an example to describe the process of forming an insulating layer in which a space is formed.
  • space forming holes 13 are formed through the insulating layer sheet 126 and the carrier film 11 .
  • Space forming holes 13 are formed in portions corresponding to spaces 81 and 82 .
  • the space forming member 14 contains, for example, a resin as a main agent.
  • conductor forming holes 15 are formed in the space forming material 14 filled in the space forming holes 13 .
  • Conductor formation holes 15 are formed in portions corresponding to interlayer connection conductors 51-53.
  • a mechanical punch, an ultraviolet (UV) laser, a CO 2 laser, or the like is used to form the space forming holes 13 and the conductor forming holes 15, for example.
  • the conductive paste 16 is filled into the conductor forming holes 15 .
  • the conductive paste 16 is sintered in the firing process to become interlayer connection conductors 51-53.
  • the conductive paste 16 is produced, for example, by mixing raw materials including conductive powder, a plasticizer, and a binder.
  • Step of forming insulating layer in which no space is formed In the step of forming an insulating layer in which no space is formed, as illustrated in FIG. 13, the space forming hole 13 is not formed. In this case, the conductor forming hole 15 is formed so as to penetrate the insulating layer sheet 120 and the carrier film 11 . The conductive paste 16 filled in the conductor forming holes 15 is in contact with the insulating layer sheet 120 .
  • the conductive paste 16 is applied to the surface of the insulating layer sheet 120 opposite to the surface in contact with the carrier film 11 .
  • the application of the conductive paste 16 is performed by, for example, screen printing, inkjet printing, gravure printing, or the like.
  • the conductive paste 16 is applied to the surface of the insulating layer sheet 121 on which the space forming holes 13 are not formed, but the present invention is not limited to this.
  • the conductive paste 16 may be applied to the insulating layer sheet 120 in which the space forming holes 13 are formed.
  • the conductive paste 16 may be applied to the surface of the insulating layer sheet 120 where the conductor forming holes 15 are not formed.
  • each insulating layer sheet 120 may be laminated.
  • the thickness direction of each insulating layer sheet 120 may be the same or different.
  • the insulating layer sheets 125 to 129 are laminated so that the surfaces in contact with the carrier film 11 face downward in the figure.
  • the insulating layer sheets 121 to 124 are laminated so that the surface in contact with the carrier film 11 faces upward in the figure.
  • the conductive paste 16 corresponding to the internal conductors 41 is applied to the surface (upper surface in FIG. 15) of the insulating layer sheet 127 .
  • the conductive paste 16 corresponding to the internal conductors 42 is applied to the surface (lower surface in FIG. 15) of the insulating layer sheet 123 .
  • a conductive paste 16 corresponding to the internal conductors 43 is applied to the surface (lower surface in FIG. 15) of the insulating layer sheet 122 .
  • the conductive paste 16 corresponding to each of the internal conductors 41 to 43 is applied to the surfaces of the insulating layer sheets 120 facing the same direction in the lamination process. state.
  • each conductive paste 16 penetrates into the insulating layer sheet 120 by the pressure bonding.
  • the conductive paste 16 applied to the surface of the insulating layer sheet 121 (see FIG. 15) and corresponding to the terminal electrodes 31 and 32 penetrates into the insulating layer sheet 121 .
  • the conductive paste 16 corresponding to each of the internal conductors 41 to 43 may enter only one of the two insulating layer sheets 120 sandwiching the conductive paste 16, or may enter both.
  • the conductive paste 16 corresponding to the internal conductor 41 enters only the insulating layer sheet 127 in FIG. .
  • the laminate is then cut into individual laminate pieces 17, as shown in FIG.
  • the corners and edges of the laminated piece 17 may be polished, for example, by barreling or the like.
  • the insulating layer sheet 120 shrinks during sintering so as to compress the conductive paste 16 corresponding to the interlayer connection conductors 51 and 52 . At this time, grains of ceramic or the like contained in the insulating layer sheet 120 are pressed against regions of the surface of the conductive paste 16 that correspond to the contact regions 51c1 and 52c1 of the interlayer connection conductors 51 and 52 . As a result, unevenness is formed in the region on the surface of the conductive paste 16 . On the other hand, since the insulating layer sheet 120 does not come into contact with the area of the surface of the conductive paste 16 that is in contact with the space forming member 14, unevenness due to grains of ceramic or the like is not formed.
  • the present invention is not limited to the above-described embodiments, and can be implemented in various other aspects.
  • two interlayer connection conductors 51 and 52 that constitute at least part of the inductor 7 are provided, but the present invention is not limited to this.
  • the total number of interlayer connection conductors 51 and 52 forming at least part of inductor 7 may be one or three or more.
  • one interlayer connection conductor 51 corresponding to the first interlayer connection conductor and one interlayer connection conductor 52 corresponding to the second interlayer connection conductor were provided, but the present invention is not limited to this.
  • the number of interlayer connection conductors 51 may be two or more.
  • the number of interlayer connection conductors 52 may be two or more.
  • the number of interlayer connection conductors 51 and the number of interlayer connection conductors 52 may be the same or different.
  • interlayer connection conductors 51 and 52 are assumed to pass through the plurality of insulating layers 20 in the above description, the present invention is not limited to this.
  • the interlayer connection conductors 51 and 52 may pass through only one layer of the insulating layers 20 .
  • the contact portions 51d and 52d are provided at the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52. , but not limited to.
  • the contact portions 51d and 52d may be provided at positions other than the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52, respectively.
  • the contact portions 51d and 52d may be provided at the central portions of the interlayer connection conductors 51 and 52 in the thickness direction.
  • the interlayer connection conductors 51 and 52 are long in the thickness direction, the spaces 81 and 82 are long in the thickness direction, and the strength of the interlayer connection conductors 51 and 52 may decrease.
  • the contact portions 51d and 52d may be provided only at either the first end portions 51a and 52a or the second end portions 51b and 52b. Alternatively, the contact portions 51 d and 52 d may not be provided on the interlayer connection conductors 51 and 52 .
  • the inductor 7 is formed over six or seven insulating layers 20 in the above description, it is not limited to this.
  • the inductor 7 may be formed over one to five insulating layers or eight or more insulating layers 20 .
  • a space may be formed between the interlayer connection conductor 53 that does not form part of the inductor 7 and the insulator that forms the insulating layer 20 .
  • the distance between the interlayer connection conductor 51 and the edge 1b of the electronic component 1A may be less than or equal to the distance between the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A.
  • film and “sheet” are not intended to limit the thickness of parts to a specific range.
  • the electronic component according to the present invention is useful for various electronic components because the dielectric loss of the inductor included in the electronic component is reduced.

Abstract

Provided is an electronic component wherein the dielectric loss of the inductor is reduced. The electronic component comprises: at least one insulating layer formed of an insulating body; an inductor provided on the insulating layers; a capacitor provided on the insulating layers and electrically connected to the inductor; and an inter-layer connection conductor that penetrates at least one of the insulating layers and constitutes at least a part of the inductor. The inter-layer connection conductor has a side surface oriented in a direction that intersects the thickness direction of the insulating layers. A space is formed between the insulating body and at least a part of the side surface of at least one inter-layer connection conductor.

Description

電子部品electronic components
 本発明は、インダクタの少なくとも一部を構成する層間接続導体を備えた電子部品に関する。 The present invention relates to an electronic component having an interlayer connection conductor that constitutes at least part of an inductor.
 従来、この種の電子部品として、例えば特許文献1に記載のものが知られている。特許文献1には、積層されたセラミック層及び内部導体層と、セラミック層に設けられたスルーホールとを有する電子部品が開示されている。セラミック層と内部導体層との界面には、樹脂や金属等で構成された応力緩和材が介在している。内部導体層は、スルーホールを介して互いに電気的に接続され、コイル状に形成されている。つまり、当該電子部品は、内部導体層とスルーホールとによって形成されたインダクタを備えている。 Conventionally, as this type of electronic component, for example, the one described in Patent Document 1 is known. Patent Literature 1 discloses an electronic component having laminated ceramic layers and internal conductor layers, and through holes provided in the ceramic layers. A stress relaxation material made of resin, metal, or the like is interposed at the interface between the ceramic layer and the internal conductor layer. The internal conductor layers are electrically connected to each other through through holes and formed in a coil shape. That is, the electronic component includes an inductor formed by an internal conductor layer and through holes.
特開平8-83715号公報JP-A-8-83715
 特許文献1に記載の電子部品では、インダクタを形成する内部導体層及びスルーホールがセラミック層及び応力緩和材によって囲まれているので、インダクタの誘電体損失が大きい。この観点において、電子部品の構成には未だ改善の余地がある。 In the electronic component described in Patent Document 1, the internal conductor layers and through holes forming the inductor are surrounded by the ceramic layers and the stress relaxation material, so the dielectric loss of the inductor is large. From this point of view, there is still room for improvement in the configuration of electronic components.
 したがって、本発明の目的は、前記課題を解決することにあって、インダクタの誘電体損失が低減された電子部品を提供することにある。 Accordingly, an object of the present invention is to solve the above problems and to provide an electronic component in which the dielectric loss of the inductor is reduced.
 前記目的を達成するために、本発明に係る電子部品は、
 絶縁体で形成された少なくとも1層の絶縁層と、
 前記絶縁層に設けられたインダクタと、
 前記絶縁層に設けられ、前記インダクタに電気的に接続されたコンデンサと、
 前記絶縁層のうち少なくとも1層を貫通し、前記インダクタの少なくとも一部を構成する層間接続導体と、
 を備え、
 前記層間接続導体は、前記絶縁層の厚み方向に交差する方向を向く側面を有し、
 少なくとも1つの前記層間接続導体の側面の少なくとも一部と前記絶縁体との間に、空間が形成されている。
In order to achieve the above object, the electronic component according to the present invention comprises:
at least one insulating layer made of an insulator;
an inductor provided in the insulating layer;
a capacitor provided in the insulating layer and electrically connected to the inductor;
an interlayer connection conductor that penetrates at least one of the insulating layers and constitutes at least part of the inductor;
with
The interlayer connection conductor has a side surface facing a direction intersecting the thickness direction of the insulating layer,
A space is formed between at least a portion of a side surface of at least one interlayer connection conductor and the insulator.
 本発明によれば、インダクタの誘電体損失が低減された電子部品を提供することができる。 According to the present invention, it is possible to provide an electronic component in which the dielectric loss of the inductor is reduced.
本発明の第1実施形態に係る電子部品の底面図。FIG. 2 is a bottom view of the electronic component according to the first embodiment of the present invention; 図1の電子部品のII-II線断面図。FIG. 2 is a cross-sectional view taken along the line II-II of the electronic component in FIG. 1; 図2の電子部品のIII-III線断面図。FIG. 3 is a cross-sectional view taken along line III-III of the electronic component in FIG. 2; 図2の電子部品のZ1領域の拡大図。FIG. 3 is an enlarged view of the Z1 region of the electronic component in FIG. 2; 空間の各直径に対応するインダクタの挿入損失を示すグラフ。Graph showing the insertion loss of the inductor corresponding to each diameter of the space. 本発明の第2実施形態に係る電子部品の底面図。The bottom view of the electronic component which concerns on 2nd Embodiment of this invention. 図6の電子部品のVII-VII線断面図。FIG. 7 is a cross-sectional view taken along line VII-VII of the electronic component in FIG. 6; 図7の電子部品のVIII-VIII線断面図。8 is a cross-sectional view taken along line VIII-VIII of the electronic component in FIG. 7; 本発明の第3実施形態に係る電子部品の図6におけるIX-IX線に対応する断面図。FIG. 7 is a cross-sectional view corresponding to line IX-IX in FIG. 6 of the electronic component according to the third embodiment of the present invention; 図9の電子部品のX-X線断面図。FIG. 10 is a cross-sectional view taken along line XX of the electronic component in FIG. 9; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2; 図2の電子部品の製造方法の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the electronic component of FIG. 2;
 本発明の一態様に係る電子部品は、
 絶縁体で形成された少なくとも1層の絶縁層と、
 前記絶縁層に設けられたインダクタと、
 前記絶縁層に設けられ、前記インダクタに電気的に接続されたコンデンサと、
 前記絶縁層のうち少なくとも1層を貫通し、前記インダクタの少なくとも一部を構成する層間接続導体と、
 を備え、
 前記層間接続導体は、前記絶縁層の厚み方向に交差する方向を向く側面を有し、
 少なくとも1つの前記層間接続導体の側面の少なくとも一部と前記絶縁体との間に、空間が形成されている。
An electronic component according to one aspect of the present invention comprises
at least one insulating layer made of an insulator;
an inductor provided in the insulating layer;
a capacitor provided in the insulating layer and electrically connected to the inductor;
an interlayer connection conductor that penetrates at least one of the insulating layers and constitutes at least part of the inductor;
with
The interlayer connection conductor has a side surface facing a direction intersecting the thickness direction of the insulating layer,
A space is formed between at least a portion of a side surface of at least one interlayer connection conductor and the insulator.
 この構成によれば、インダクタの少なくとも一部を構成する層間接続導体の側面の少なくとも一部と絶縁層を形成する絶縁体との間に、空間が形成されている。当該空間に存在する空気の誘電率は、当該絶縁体の誘電率よりも低い。そのため、層間接続導体の側面の全面が当該絶縁体に接触する構成と比較して、層間接続導体の周囲における誘電率が低くなる。したがって、インダクタの誘電体損失を低減することができる。 According to this configuration, a space is formed between at least part of the side surface of the interlayer connection conductor that forms at least part of the inductor and the insulator that forms the insulating layer. The dielectric constant of air present in the space is lower than the dielectric constant of the insulator. Therefore, the dielectric constant around the interlayer connection conductor is lower than in a configuration in which the entire side surface of the interlayer connection conductor is in contact with the insulator. Therefore, the dielectric loss of the inductor can be reduced.
 前記電子部品において、前記層間接続導体の少なくとも一部は、前記厚み方向から見て前記空間に囲まれてもよい。 In the electronic component, at least part of the interlayer connection conductor may be surrounded by the space when viewed from the thickness direction.
 この構成によれば、層間接続導体の少なくとも一部は、厚み方向から見て空間に囲まれている。そのため、層間接続導体の側面の周方向の一部のみが空間に面する構成と比較して、層間接続導体の周囲における誘電率が低くなる。したがって、インダクタの誘電体損失を低減することができる。 According to this configuration, at least part of the interlayer connection conductor is surrounded by a space when viewed from the thickness direction. Therefore, the dielectric constant around the interlayer connection conductor is lower than in a configuration in which only a portion of the side surface of the interlayer connection conductor in the circumferential direction faces the space. Therefore, the dielectric loss of the inductor can be reduced.
 前記電子部品において、前記層間接続導体及び前記空間のそれぞれは、前記厚み方向から見て回転対称形状又は略回転対称形状であってもよい。前記厚み方向から見て、前記層間接続導体の中心は、前記空間の中心と異なる位置にあってもよい。 In the electronic component, each of the interlayer connection conductor and the space may have a rotationally symmetrical shape or a substantially rotationally symmetrical shape when viewed from the thickness direction. The center of the interlayer connection conductor may be located at a position different from the center of the space when viewed from the thickness direction.
 この構成によれば、厚み方向から見て、層間接続導体の中心は、空間の中心と異なる位置にある。そのため、層間接続導体の中心を電子部品の縁部と空間の中心との間に位置させることによって、層間接続導体の中心と空間の中心とが同じ位置にある構成と比較して、層間接続導体を電子部品の縁部の近くに配置することができる。このことにより、電子部品に設けられるインダクタを大きくすることができる。したがって、当該インダクタのインダクタンスを大きくすることができる。 According to this configuration, when viewed from the thickness direction, the center of the interlayer connection conductor is located at a position different from the center of the space. Therefore, by locating the center of the interlayer connection conductor between the edge of the electronic component and the center of the space, the interlayer connection conductor can be placed near the edge of the electronic component. This makes it possible to increase the size of the inductor provided in the electronic component. Therefore, the inductance of the inductor can be increased.
 前記電子部品において、前記層間接続導体及び前記空間のそれぞれは、前記厚み方向から見て円形又は略円形であってもよい。前記厚み方向から見て、前記空間の直径は、前記層間接続導体の直径の1.1倍以上であってもよい。 In the electronic component, each of the interlayer connection conductor and the space may be circular or substantially circular when viewed from the thickness direction. When viewed from the thickness direction, the diameter of the space may be 1.1 times or more the diameter of the interlayer connection conductor.
 この構成によれば、厚み方向から見て、空間の直径が層間接続導体の直径の1.1倍未満である構成と比較して、インダクタの挿入損失を低減することができる。 According to this configuration, the insertion loss of the inductor can be reduced compared to a configuration in which the diameter of the space is less than 1.1 times the diameter of the interlayer connection conductor when viewed in the thickness direction.
 前記電子部品において、前記層間接続導体の側面は、前記絶縁体に接触する接触領域と、前記空間を介して前記絶縁体から離れた離隔領域とを有してもよい。前記層間接続導体は、前記層間接続導体の前記厚み方向の一部であって前記側面が前記接触領域で構成された接触部を有してもよい。 In the electronic component, the side surface of the interlayer connection conductor may have a contact area that contacts the insulator and a separation area that is separated from the insulator via the space. The interlayer connection conductor may have a contact portion which is a part of the interlayer connection conductor in the thickness direction and whose side surface is formed by the contact area.
 電子部品の体積に対する空間の体積の割合が大きい場合、電子部品の強度が低くなることがある。この場合、空間の周囲では、絶縁層を形成する絶縁体及び層間接続導体が外部からの衝撃や熱衝撃等によって破損する可能性が高まる。この構成によれば、層間接続導体に接触部が設けられる。このことにより、層間接続導体が接触部を有しない構成と比較して、電子部品の強度を高めることができる。一方で、層間接続導体の接触部以外では、側面と絶縁層を形成する絶縁体との間に空間が形成されている。そのため、層間接続導体の接触部以外の部分の周囲における誘電率が低くなる。したがって、インダクタの誘電体損失が低減され、かつ、前記の破損が抑制された電子部品を実現することができる。 If the ratio of the volume of the space to the volume of the electronic component is large, the strength of the electronic component may decrease. In this case, the insulators forming the insulating layers and the interlayer connection conductors around the space are more likely to be damaged by external shocks, thermal shocks, or the like. According to this configuration, the contact portion is provided on the interlayer connection conductor. As a result, the strength of the electronic component can be increased compared to a structure in which the interlayer connection conductor does not have a contact portion. On the other hand, a space is formed between the side surface and the insulator forming the insulating layer except for the contact portion of the interlayer connection conductor. Therefore, the dielectric constant around the portion other than the contact portion of the interlayer connection conductor is lowered. Therefore, it is possible to realize an electronic component in which the dielectric loss of the inductor is reduced and the damage is suppressed.
 前記電子部品において、前記接触部は、前記層間接続導体の前記厚み方向の端部に設けられてもよい。 In the electronic component, the contact portion may be provided at an end portion of the interlayer connection conductor in the thickness direction.
 層間接続導体の端部は、多くの場合、電子部品の表面又は内部に配置された導体に接続される。このような層間接続導体の端部は、外部からの衝撃や熱衝撃等によって破損しやすい。一方、この構成によれば、層間接続導体の端部に、接触部が設けられる。このことにより、当該端部において層間接続導体の強度が向上する。そのため、当該端部の側面と絶縁層を形成する絶縁体との間に空間が形成された構成と比較して、層間接続導体が破損する可能性を低くすることができる。 The ends of interlayer connection conductors are often connected to conductors placed on the surface or inside the electronic component. The ends of such interlayer connection conductors are easily damaged by external shocks, thermal shocks, and the like. On the other hand, according to this configuration, the contact portion is provided at the end portion of the interlayer connection conductor. This improves the strength of the interlayer connection conductor at the end. Therefore, compared to a configuration in which a space is formed between the side surface of the end portion and the insulator forming the insulating layer, it is possible to reduce the possibility of damage to the interlayer connection conductor.
 前記電子部品は、前記絶縁層の表面に配置されて外部に露出した端子電極を更に備えてもよい。前記層間接続導体の前記厚み方向の端部に設けられた前記接触部は、前記端子電極に接続されてもよい。 The electronic component may further include a terminal electrode arranged on the surface of the insulating layer and exposed to the outside. The contact portion provided at the end portion in the thickness direction of the interlayer connection conductor may be connected to the terminal electrode.
 層間接続導体の端部に接続されて外部に露出した端子電極は、例えば、電子部品が基板に実装されるときに、当該基板に配置された電極に接続される。この場合、当該基板が変形すると、端子電極に接続された端部に応力が集中し、層間接続導体が破損するおそれがある。一方、この構成によれば、層間接続導体の端子電極に接続された端部に、接触部が設けられる。このことにより、当該端部において層間接続導体の強度が向上する。そのため、端子電極に接続された端部の側面と絶縁層を形成する絶縁体との間に空間が形成された構成と比較して、層間接続導体が破損する可能性を低くすることができる。 The terminal electrodes connected to the ends of the interlayer connection conductors and exposed to the outside are connected to the electrodes arranged on the board, for example, when the electronic component is mounted on the board. In this case, if the substrate is deformed, stress is concentrated on the end connected to the terminal electrode, and the interlayer connection conductor may be damaged. On the other hand, according to this configuration, the contact portion is provided at the end of the interlayer connection conductor connected to the terminal electrode. This improves the strength of the interlayer connection conductor at the end. Therefore, compared to a configuration in which a space is formed between the side surface of the end connected to the terminal electrode and the insulator forming the insulating layer, the interlayer connection conductor is less likely to be damaged.
 前記電子部品において、前記離隔領域の算術平均粗さは、前記接触領域の算術平均粗さよりも小さくてもよい。 In the electronic component, the arithmetic mean roughness of the separation region may be smaller than the arithmetic mean roughness of the contact region.
 導体を流れる高周波電流は、表皮効果により当該導体の表面に集中して流れる。この構成によれば、離隔領域の算術平均粗さは、接触領域の算術平均粗さよりも小さい。このことにより、層間接続導体を流れる高周波電流に対する抵抗を小さくすることができる。したがって、インダクタの挿入損失を低減することができる。 A high-frequency current flowing through a conductor concentrates on the surface of the conductor due to the skin effect. According to this configuration, the arithmetic mean roughness of the isolated region is smaller than the arithmetic mean roughness of the contact region. As a result, the resistance to the high frequency current flowing through the interlayer connection conductor can be reduced. Therefore, the insertion loss of the inductor can be reduced.
 前記電子部品は、前記厚み方向から見て回転対称形状であってもよい。前記層間接続導体は、前記層間接続導体の側面の少なくとも一部が前記空間を形成する第1層間接続導体と、前記層間接続導体の側面の全面が前記絶縁体に接触する第2層間接続導体とを有してもよい。前記厚み方向から見て、前記第2層間接続導体と前記電子部品の縁部との間の距離は、前記第2層間接続導体と前記電子部品の中心との間の距離よりも短くてもよい。 The electronic component may have a rotationally symmetrical shape when viewed from the thickness direction. The interlayer connection conductor includes a first interlayer connection conductor in which at least a part of the side surface of the interlayer connection conductor forms the space, and a second interlayer connection conductor in which the entire side surface of the interlayer connection conductor is in contact with the insulator. may have When viewed from the thickness direction, the distance between the second interlayer connection conductor and the edge of the electronic component may be shorter than the distance between the second interlayer connection conductor and the center of the electronic component. .
 厚み方向から見た電子部品の縁部の近くでは、絶縁層を形成する絶縁体及び層間接続導体が外部からの衝撃や熱衝撃等によって破損しやすい。この構成によれば、電子部品の縁部の近くに配置された第2層間接続導体は、側面の全面を介して当該絶縁体に接触している。このことにより、第2層間接続導体及び当該第2層間接続導体の周囲にある当該絶縁体の強度が向上する。そのため、絶縁層を形成する絶縁体及び層間接続導体の破損を抑制することができる。  Insulators forming insulating layers and interlayer connection conductors are easily damaged by external shocks or thermal shocks near the edges of electronic components when viewed from the thickness direction. According to this configuration, the second interlayer connection conductor arranged near the edge of the electronic component is in contact with the insulator through the entire side surface. This improves the strength of the second interlayer connection conductor and the insulator surrounding the second interlayer connection conductor. Therefore, it is possible to suppress breakage of the insulator forming the insulating layer and the interlayer connection conductor.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、これらの実施形態は、本発明を限定するものではない。また、図面において実質的に同一の部材については、同一の符号を付すことにより説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that these embodiments do not limit the present invention. Also, in the drawings, substantially the same members are denoted by the same reference numerals, and descriptions thereof are omitted.
 以下では、説明の便宜上、「底面」、「側面」等の方向を示す用語を用いるが、これらの用語は、本発明に係る電子部品の使用状態等を限定するものではない。 In the following, for convenience of explanation, terms such as "bottom" and "side" are used to indicate directions, but these terms do not limit the usage conditions of the electronic component according to the present invention.
<第1実施形態>
 図1~図4を参照しながら、本発明の第1実施形態に係る電子部品について説明する。
図1は、本発明の第1実施形態に係る電子部品の底面図である。図2は、図1の電子部品のII-II線断面図である。図3は、図2の電子部品のIII-III線断面図である。図4は、図2の電子部品のZ1領域の拡大図である。
<First embodiment>
An electronic component according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG.
FIG. 1 is a bottom view of the electronic component according to the first embodiment of the invention. FIG. 2 is a cross-sectional view of the electronic component of FIG. 1 taken along the line II-II. 3 is a cross-sectional view of the electronic component of FIG. 2, taken along line III--III. 4 is an enlarged view of the Z1 region of the electronic component of FIG. 2. FIG.
 図1及び図2に示すように、第1実施形態に係る電子部品1は、少なくとも1層の絶縁層20と、電子部品1の底面1a(後述)に配置された端子電極3と、絶縁層20同士の境界面に形成された内部導体41~43と、絶縁層20のうち少なくとも1層を貫通する層間接続導体51,52とを備えている。 As shown in FIGS. 1 and 2, the electronic component 1 according to the first embodiment includes at least one insulating layer 20, terminal electrodes 3 arranged on a bottom surface 1a (described later) of the electronic component 1, and an insulating layer It has internal conductors 41 to 43 formed on the boundary surfaces of the insulating layers 20 and interlayer connection conductors 51 and 52 penetrating at least one layer of the insulating layers 20 .
 図2に示す例では、絶縁層20は、積層された9層の絶縁層21~29を有する。絶縁層21は、積層された絶縁層21~29のうち最底層を構成する。絶縁層21の絶縁層22に接触する面と反対側の面は、電子部品1の底面1aを構成する。絶縁層20は、絶縁体で構成されている。当該絶縁体は、例えば、セラミックである。なお、絶縁層20の数は、9層に限らず、1層以上であればよい。絶縁層20の厚みは、例えば、5~100μmである。図2に示す例では、絶縁層21~29の厚みは、同じであるが、互いに異なってもよい。 In the example shown in FIG. 2, the insulating layer 20 has nine stacked insulating layers 21-29. The insulating layer 21 constitutes the bottom layer among the laminated insulating layers 21 to 29 . The surface of insulating layer 21 opposite to the surface in contact with insulating layer 22 constitutes bottom surface 1 a of electronic component 1 . The insulating layer 20 is composed of an insulator. The insulator is, for example, ceramic. Note that the number of insulating layers 20 is not limited to nine, and may be one or more. The thickness of the insulating layer 20 is, for example, 5 to 100 μm. In the example shown in FIG. 2, the insulating layers 21-29 have the same thickness, but they may differ from each other.
 図1に示すように、電子部品1の底面1aには、端子電極3が配置されている。例えば、電子部品1が基板(図示せず)に実装されるとき、端子電極3は、半田を介して、当該基板に配置された電極に接続される。このことにより、電子部品1と当該基板とは、電気的に接続される。端子電極3は、例えば、銅、銀、アルミニウム、又はこれらの金属の化合物等の導電材料で構成される。端子電極3には、めっきが施されてもよい。当該めっきは、例えば、ニッケル/金めっき等であってもよい。図1に示す例では、端子電極31,32を含む4つの端子電極3が設けられている。 As shown in FIG. 1 , terminal electrodes 3 are arranged on the bottom surface 1 a of the electronic component 1 . For example, when the electronic component 1 is mounted on a substrate (not shown), the terminal electrodes 3 are connected to electrodes arranged on the substrate through solder. As a result, the electronic component 1 and the board are electrically connected. The terminal electrode 3 is made of a conductive material such as copper, silver, aluminum, or a compound of these metals. The terminal electrodes 3 may be plated. The plating may be, for example, nickel/gold plating. In the example shown in FIG. 1, four terminal electrodes 3 including terminal electrodes 31 and 32 are provided.
 図2に示すように、絶縁層20同士の境界面には、内部導体41~43が形成されている。図2に示す例では、内部導体41は、絶縁層27と絶縁層28との間に位置している。内部導体42は、絶縁層22と絶縁層23との間に位置している。内部導体43は、絶縁層21と絶縁層22との間に位置している。内部導体41~43は、例えば、銅、銀、アルミニウム、又はこれらの金属の化合物等の導電材料で構成される。 As shown in FIG. 2, internal conductors 41 to 43 are formed on the interface between the insulating layers 20 . In the example shown in FIG. 2, the internal conductor 41 is positioned between the insulating layers 27 and 28 . The internal conductor 42 is located between the insulating layers 22 and 23 . The internal conductor 43 is positioned between the insulating layers 21 and 22 . The internal conductors 41-43 are made of a conductive material such as copper, silver, aluminum, or compounds of these metals.
 内部導体42と内部導体43とは、絶縁層20の厚み方向(以下、単に「厚み方向」という。)において互いに対向している。このことにより、内部導体42と内部導体43とは、コンデンサ6として機能する。 The internal conductor 42 and the internal conductor 43 face each other in the thickness direction of the insulating layer 20 (hereinafter simply referred to as "thickness direction"). As a result, the internal conductor 42 and the internal conductor 43 function as the capacitor 6 .
 図2に示す例では、電子部品1は、層間接続導体51~53を有する。層間接続導体51~53は、例えば、ビア導体である。層間接続導体51~53は、少なくとも1層の絶縁層20を厚み方向に貫通している。すなわち、層間接続導体51~53は、厚み方向に延びている。 In the example shown in FIG. 2, the electronic component 1 has interlayer connection conductors 51-53. The interlayer connection conductors 51 to 53 are via conductors, for example. The interlayer connection conductors 51 to 53 pass through at least one insulating layer 20 in the thickness direction. That is, the interlayer connection conductors 51-53 extend in the thickness direction.
 層間接続導体51は、7層の絶縁層21~27を貫通している。層間接続導体51の第1端部51aは、端子電極31に接続されている。層間接続導体51の第1端部51aと反対側の第2端部51bは、内部導体41に接続されている。 The interlayer connection conductor 51 penetrates the seven insulating layers 21-27. A first end portion 51 a of the interlayer connection conductor 51 is connected to the terminal electrode 31 . A second end portion 51 b of the interlayer connection conductor 51 opposite to the first end portion 51 a is connected to the internal conductor 41 .
 層間接続導体52は、5層の絶縁層23~27を貫通している。層間接続導体52の第1端部52aは、内部導体42に接続されている。層間接続導体52の第1端部52aと反対側の第2端部52bは、内部導体41に接続されている。 The interlayer connection conductor 52 penetrates the five insulating layers 23-27. A first end 52 a of the interlayer connection conductor 52 is connected to the internal conductor 42 . A second end portion 52 b of the interlayer connection conductor 52 opposite to the first end portion 52 a is connected to the internal conductor 41 .
 層間接続導体53は、1層の絶縁層21を貫通している。層間接続導体53は、両端において、端子電極32及び内部導体43にそれぞれ接続されている。 The interlayer connection conductor 53 penetrates one insulating layer 21 . The interlayer connection conductor 53 is connected to the terminal electrode 32 and the internal conductor 43 at both ends.
 図3に示すように、層間接続導体51,52は、厚み方向から見て、回転対称形状又は略回転対称形状である。ここで「回転対称形状」とは、当該形状を仮想中心点の周りに回転させたときに、回転後の形状が回転前の形状と一致する形状を指す。 As shown in FIG. 3, the interlayer connection conductors 51 and 52 are rotationally symmetrical or approximately rotationally symmetrical when viewed from the thickness direction. Here, the term “rotationally symmetrical shape” refers to a shape whose shape after rotation matches the shape before rotation when the shape is rotated around a virtual center point.
 図3に示す例では、層間接続導体51,52は、直径75μmの円柱形状である。つまり、層間接続導体51,52は、厚み方向から見て、円形又は略円形である。この場合、各層間接続導体51,52を各仮想中心点C51,C52(図3参照)の周りに回転させたときに、回転後の各層間接続導体51,52の形状は、回転前の各層間接続導体51,52の形状と一致する。よって、各層間接続導体51,52は、厚み方向から見て、回転対称形状である。各仮想中心点C51,C52は、本発明における「層間接続導体の中心」の一例である。層間接続導体51,52の厚み方向における長さは、例えば、貫通する絶縁層20の数と、貫通する各絶縁層20の厚みとによって決まる。本実施形態では、層間接続導体53(図3には図示せず)も、直径75μmの円柱形状である。 In the example shown in FIG. 3, the interlayer connection conductors 51 and 52 are cylindrical with a diameter of 75 μm. That is, the interlayer connection conductors 51 and 52 are circular or substantially circular when viewed from the thickness direction. In this case, when the interlayer connection conductors 51 and 52 are rotated around the virtual center points C51 and C52 (see FIG. 3), the shapes of the interlayer connection conductors 51 and 52 after rotation are the same as those before rotation. It matches the shape of the interlayer connection conductors 51 and 52 . Therefore, each of the interlayer connection conductors 51 and 52 has a rotationally symmetrical shape when viewed from the thickness direction. Each virtual center point C51, C52 is an example of "the center of the interlayer connection conductor" in the present invention. The length in the thickness direction of the interlayer connection conductors 51 and 52 is determined, for example, by the number of insulating layers 20 that penetrate through and the thickness of each insulating layer 20 that penetrates. In this embodiment, the interlayer connection conductor 53 (not shown in FIG. 3) is also cylindrical with a diameter of 75 μm.
 図2に示すように、層間接続導体51,52は、内部導体41と共に、絶縁層21~27にインダクタ7を形成している。層間接続導体52が内部導体42に接続されているので、インダクタ7は、コンデンサ6に電気的に接続されている。本実施形態では、インダクタ7は、厚み方向に直交する方向(以下、単に「直交方向」という。)から見てU字形状である。なお、インダクタ7は、直交方向から見て、例えば、スパイラル形状やミアンダ形状等であってもよい。スパイラル形状のインダクタ7の場合、インダクタ7の巻き数は、1回巻きであっても、複数回巻きであってもよい。 As shown in FIG. 2, the interlayer connection conductors 51 and 52 together with the internal conductor 41 form the inductor 7 in the insulating layers 21-27. The inductor 7 is electrically connected to the capacitor 6 because the interlayer connection conductor 52 is connected to the internal conductor 42 . In this embodiment, the inductor 7 is U-shaped when viewed in a direction orthogonal to the thickness direction (hereinafter simply referred to as "perpendicular direction"). Note that the inductor 7 may have, for example, a spiral shape, a meandering shape, or the like when viewed from the orthogonal direction. In the case of the spiral-shaped inductor 7, the number of turns of the inductor 7 may be one turn or multiple turns.
 層間接続導体53は、インダクタ7の一部を構成せず、内部導体43と端子電極32とを接続する配線として機能する。 The interlayer connection conductor 53 does not constitute a part of the inductor 7 and functions as a wiring that connects the internal conductor 43 and the terminal electrode 32 .
 層間接続導体51,52は、厚み方向に交差する方向を向く側面51c,52cを有する。層間接続導体51の側面51cと5層の絶縁層22~26を構成する絶縁体との間には、空間81が形成されている。層間接続導体52の側面52cと3層の絶縁層24~26を構成する絶縁体との間には、空間82が形成されている。空間81,82は、例えば、空気等の気体によって満たされている。 The interlayer connection conductors 51, 52 have side surfaces 51c, 52c facing in a direction intersecting the thickness direction. A space 81 is formed between the side surface 51c of the interlayer connection conductor 51 and the insulators forming the five insulating layers 22-26. A space 82 is formed between the side surface 52c of the interlayer connection conductor 52 and the insulators forming the three insulating layers 24-26. The spaces 81 and 82 are filled with gas such as air, for example.
 層間接続導体51,52の側面51c,52cは、絶縁層20を構成する絶縁体に接触する接触領域51c1,52c1と、対応する空間81,82を介して当該絶縁体から離れた離隔領域51c2,52c2とを有する。接触領域51c1,52c1は、層間接続導体51,52と当該絶縁体との境界面を構成する。 The side surfaces 51c and 52c of the interlayer connection conductors 51 and 52 are composed of contact regions 51c1 and 52c1 in contact with the insulator forming the insulating layer 20, separated regions 51c2 separated from the insulator via corresponding spaces 81 and 82, 52c2. The contact regions 51c1 and 52c1 form interfaces between the interlayer connection conductors 51 and 52 and the insulator.
 図3に示すように、空間81,82の厚み方向から見た外形は、回転対称形状又は略回転対称形状である。本実施形態では、空間81,82の厚み方向から見た外形は、円形又は略円形である。図3に示す仮想中心点C81,C82は、対応する空間81,82の外形の中心である。各仮想中心点C81,C82は、本発明における「空間の中心」の一例である。 As shown in FIG. 3, the outer shapes of the spaces 81 and 82 when viewed from the thickness direction are rotationally symmetrical or substantially rotationally symmetrical. In this embodiment, the outer shape of the spaces 81 and 82 when viewed in the thickness direction is circular or substantially circular. The virtual center points C81 and C82 shown in FIG. 3 are the centers of the contours of the corresponding spaces 81 and 82, respectively. Each virtual center point C81, C82 is an example of the "center of space" in the present invention.
 図3に示す例では、層間接続導体51,52は、厚み方向から見て、空間81,82によって囲まれている。厚み方向から見たとき、空間81,82の外形の直径は、対応する層間接続導体51,52の直径の1.1倍以上であることが好ましい。 In the example shown in FIG. 3, the interlayer connection conductors 51 and 52 are surrounded by spaces 81 and 82 when viewed from the thickness direction. When viewed in the thickness direction, the outer diameter of spaces 81 and 82 is preferably 1.1 times or more the diameter of corresponding interlayer connection conductors 51 and 52 .
 一方、図2に示すように、各層間接続導体51,52の第1端部51a,52a及び第2端部51b,52bにおいて、側面51c,52cは、絶縁層20を構成する絶縁体に接触している。 On the other hand, as shown in FIG. 2, the side surfaces 51c and 52c of the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52 are in contact with the insulator forming the insulating layer 20. are doing.
 層間接続導体51,52は、側面51c,52cが接触領域51c1,52c1で構成された接触部51d,52dと、側面51c,52cの少なくとも一部が離隔領域51c2,52c2で構成された離隔部51e,52eとを有する。換言すると、接触部51d,52dは、側面51c,52cに離隔領域51c2,52c2を有していない。接触部51d,52dと離隔部51e,52eとは、厚み方向において区切られている。図2に示す点線は、接触部51d,52dと離隔部51e,52eとの境界線を示す。図2に示す例では、接触部51d,52dは、層間接続導体51,52の第1端部51a,52a及び第2端部51b,52bに設けられている。具体的には、接触部51dは、層間接続導体51のうち絶縁層21,27に位置する部分であり、接触部52dは、層間接続導体52のうち絶縁層23,27に位置する部分である。 The interlayer connection conductors 51 and 52 have contact portions 51d and 52d formed by contact regions 51c1 and 52c1 on the side surfaces 51c and 52c, and a separation portion 51e formed by separation regions 51c2 and 52c2 on at least a part of the side surfaces 51c and 52c. , 52e. In other words, the contact portions 51d and 52d do not have the separation regions 51c2 and 52c2 on the side surfaces 51c and 52c. The contact portions 51d, 52d and the separation portions 51e, 52e are separated in the thickness direction. Dotted lines shown in FIG. 2 indicate boundaries between the contact portions 51d and 52d and the separation portions 51e and 52e. In the example shown in FIG. 2, the contact portions 51d and 52d are provided at the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52, respectively. Specifically, the contact portion 51d is a portion of the interlayer connection conductor 51 located on the insulating layers 21 and 27, and the contact portion 52d is a portion of the interlayer connection conductor 52 located on the insulating layers 23 and 27. .
 図4に示すように、層間接続導体52の側面52cにおいて、離隔領域52c2の算術平均粗さは、接触領域52c1の算術平均粗さよりも小さい。すなわち、離隔領域52c2の算術平均粗さは、層間接続導体52と絶縁層20を構成する絶縁体との境界面の算術平均粗さよりも小さい。また、層間接続導体51の側面51cにおいても、離隔領域51c2の算術平均粗さは、接触領域52c1の算術平均粗さよりも小さい。本明細書における「算術平均粗さ」は、例えば、JIS B 0601:2013に準拠して算出される。 As shown in FIG. 4, on the side surface 52c of the interlayer connection conductor 52, the arithmetic mean roughness of the separation region 52c2 is smaller than the arithmetic mean roughness of the contact region 52c1. That is, the arithmetic mean roughness of the separation region 52 c 2 is smaller than the arithmetic mean roughness of the interface between the interlayer connection conductor 52 and the insulator forming the insulating layer 20 . Also, on the side surface 51c of the interlayer connection conductor 51, the arithmetic mean roughness of the separation region 51c2 is smaller than the arithmetic mean roughness of the contact region 52c1. "Arithmetic mean roughness" in this specification is calculated according to, for example, JIS B 0601:2013.
 第1実施形態に係る電子部品1によれば、インダクタ7の少なくとも一部を構成する層間接続導体51,52の側面51c,52cの少なくとも一部と絶縁層20を構成する絶縁体との間に、空間81,82が形成されている。空間81,82に存在する空気の誘電率は、当該絶縁体の誘電率よりも低い。そのため、層間接続導体51,52の側面51c,52cの全面が当該絶縁体に接触する構成と比較して、層間接続導体51,52の周囲における誘電率が低くなる。したがって、インダクタ7の誘電体損失を低減することができる。 According to the electronic component 1 according to the first embodiment, between at least part of the side surfaces 51 c and 52 c of the interlayer connection conductors 51 and 52 that form at least part of the inductor 7 and the insulator that forms the insulating layer 20 . , spaces 81 and 82 are formed. The dielectric constant of the air present in the spaces 81 and 82 is lower than that of the insulator. Therefore, the dielectric constant around the interlayer connection conductors 51 and 52 is lower than in the case where the entire side surfaces 51c and 52c of the interlayer connection conductors 51 and 52 are in contact with the insulator. Therefore, the dielectric loss of inductor 7 can be reduced.
 また、第1実施形態に係る電子部品1によれば、層間接続導体51,52の少なくとも一部は、厚み方向から見て空間81,82に囲まれている。そのため、層間接続導体51,52の側面51c,52cの周方向の一部のみが空間81,82に面する構成と比較して、層間接続導体51,52の周囲における誘電率が低くなる。したがって、インダクタ7の誘電体損失を低減することができる。 Further, according to the electronic component 1 according to the first embodiment, at least part of the interlayer connection conductors 51 and 52 are surrounded by the spaces 81 and 82 when viewed from the thickness direction. Therefore, the dielectric constant around the interlayer connection conductors 51 and 52 is lower than in the configuration in which only the circumferential portions of the side surfaces 51c and 52c of the interlayer connection conductors 51 and 52 face the spaces 81 and 82. FIG. Therefore, the dielectric loss of inductor 7 can be reduced.
 また、第1実施形態に係る電子部品1によれば、厚み方向から見て、空間81,82の直径が層間接続導体51,52の直径の1.1倍未満である構成と比較して、インダクタ7の挿入損失を低減することができる。 Further, according to the electronic component 1 according to the first embodiment, when viewed from the thickness direction, the diameter of the spaces 81 and 82 is less than 1.1 times the diameter of the interlayer connection conductors 51 and 52. The insertion loss of inductor 7 can be reduced.
 電子部品1の体積に対する空間81,82の体積の割合が大きい場合、電子部品1の強度が低くなることがある。この場合、空間81,82の周囲では、絶縁層20を構成する絶縁体及び層間接続導体51,52が外部からの衝撃や熱衝撃等によって破損する可能性が高まる。第1実施形態に係る電子部品1によれば、層間接続導体51,52に接触部51d,52dが設けられる。このことにより、層間接続導体51,52が接触部51d,52dを有しない構成と比較して、電子部品1の強度を高めることができる。一方で、層間接続導体51,52の離隔部51e,52eでは、側面51c,52cと絶縁層20を構成する絶縁体との間に空間81,82が形成されている。そのため、層間接続導体51,52の離隔部51e,52eの周囲における誘電率が低くなる。したがって、インダクタ7の誘電体損失が低減され、かつ、前記の破損が抑制された電子部品1を実現することができる。 When the ratio of the volume of the spaces 81 and 82 to the volume of the electronic component 1 is large, the strength of the electronic component 1 may become low. In this case, around the spaces 81 and 82, the insulator and the interlayer connection conductors 51 and 52 forming the insulating layer 20 are more likely to be damaged by external impact, thermal shock, or the like. According to the electronic component 1 according to the first embodiment, the interlayer connection conductors 51 and 52 are provided with the contact portions 51d and 52d. As a result, the strength of the electronic component 1 can be increased compared to a configuration in which the interlayer connection conductors 51 and 52 do not have the contact portions 51d and 52d. On the other hand, spaces 81 and 82 are formed between the side surfaces 51c and 52c and the insulator forming the insulating layer 20 in the separated portions 51e and 52e of the interlayer connection conductors 51 and 52, respectively. Therefore, the dielectric constant around the separation portions 51e and 52e of the interlayer connection conductors 51 and 52 is lowered. Therefore, it is possible to realize the electronic component 1 in which the dielectric loss of the inductor 7 is reduced and the breakage is suppressed.
 以下では、「層間接続導体51,52の端部51a,51b,52a,52b」とは、層間接続導体51の第1端部51aと、第2端部51bと、層間接続導体52の第1端部52aと、第2端部52bとを指す。層間接続導体51,52の端部51a,51b,52a,52bは、多くの場合、端子電極31,32又は内部導体41,42に接続される。このような層間接続導体51,52の端部51a,51b,52a,52bは、外部からの衝撃や熱衝撃等によって破損しやすい。一方、第1実施形態に係る電子部品1によれば、層間接続導体51,52の端部51a,51b,52a,52bに、接触部51d,52dが設けられる。このことにより、端部51a,51b,52a,52bにおいて層間接続導体51,52の強度が向上する。そのため、端部51a,51b,52a,52bが層間接続導体51,52の離隔部51e,52eである構成と比較して、層間接続導体51,52が破損する可能性を低くすることができる。 Hereinafter, “the ends 51a, 51b, 52a, 52b of the interlayer connection conductors 51 and 52” refer to the first end 51a and the second end 51b of the interlayer connection conductor 51, and the first end 51a and the second end 51b of the interlayer connection conductor 52. It refers to the end 52a and the second end 52b. The ends 51a, 51b, 52a, 52b of the interlayer connection conductors 51, 52 are connected to the terminal electrodes 31, 32 or the internal conductors 41, 42 in many cases. The end portions 51a, 51b, 52a, 52b of such interlayer connection conductors 51, 52 are easily damaged by external impact, thermal shock, or the like. On the other hand, according to the electronic component 1 according to the first embodiment, the contact portions 51d and 52d are provided at the end portions 51a, 51b, 52a and 52b of the interlayer connection conductors 51 and 52, respectively. This improves the strength of the interlayer connection conductors 51 and 52 at the ends 51a, 51b, 52a and 52b. Therefore, compared to the configuration in which the end portions 51a, 51b, 52a, 52b are the separation portions 51e, 52e of the interlayer connection conductors 51, 52, the possibility of damage to the interlayer connection conductors 51, 52 can be reduced.
 層間接続導体51の第1端部51aに接続されて外部に露出した端子電極31は、例えば、電子部品1が基板(図示せず)に実装されるときに、当該基板に配置された電極に接続される。この場合、当該基板が変形すると、端子電極31に接続された第1端部51aに応力が集中し、層間接続導体51が破損するおそれがある。一方、第1実施形態に係る電子部品1によれば、層間接続導体51の端子電極31に接続された第1端部51aに、接触部51dが設けられる。このことにより、第1端部51aにおいて層間接続導体51の強度が向上する。そのため、端子電極31に接続された第1端部51aが離隔部51eである構成と比較して、層間接続導体51が破損する可能性を低くすることができる。 For example, when the electronic component 1 is mounted on a substrate (not shown), the terminal electrode 31 connected to the first end portion 51a of the interlayer connection conductor 51 and exposed to the outside may be connected to an electrode arranged on the substrate (not shown). Connected. In this case, if the substrate is deformed, stress is concentrated on the first end portion 51a connected to the terminal electrode 31, and the interlayer connection conductor 51 may be damaged. On the other hand, according to the electronic component 1 according to the first embodiment, the contact portion 51d is provided at the first end portion 51a of the interlayer connection conductor 51 connected to the terminal electrode 31 . This improves the strength of the interlayer connection conductor 51 at the first end portion 51a. Therefore, compared with the configuration in which the first end portion 51a connected to the terminal electrode 31 is the separation portion 51e, the possibility of the interlayer connection conductor 51 being damaged can be reduced.
 導体を流れる高周波電流は、表皮効果により当該導体の表面に集中して流れる。第1実施形態に係る電子部品1によれば、離隔領域51c2,52c2の算術平均粗さは、接触領域51c1,52c1の算術平均粗さよりも小さい。このことにより、層間接続導体51,52を流れる高周波電流に対する抵抗を小さくすることができる。したがって、インダクタ7の挿入損失を低減することができる。 A high-frequency current flowing through a conductor concentrates on the surface of the conductor due to the skin effect. According to the electronic component 1 according to the first embodiment, the arithmetic mean roughness of the separation regions 51c2 and 52c2 is smaller than the arithmetic mean roughness of the contact regions 51c1 and 52c1. As a result, the resistance to the high-frequency current flowing through the interlayer connection conductors 51 and 52 can be reduced. Therefore, the insertion loss of inductor 7 can be reduced.
<実施例>
 次に、厚み方向から見て円形である空間の直径と、当該空間に面する層間接続導体によって一部が構成されたインダクタの挿入損失との関係について説明する。本発明者は、当該関係について検討するため、5つのインダクタと7つのコンデンサを備えた電子部品を想定したシミュレーションを行い、空間の直径を変化させたときの挿入損失を推定した。シミュレーションでは、空間が形成されていない比較例、空間の直径が77.5μmである第1実施例、空間の直径が87.5μmである第2実施例、空間の直径が150μmである第3実施例、及び空間の直径が200μmである第4実施例が想定された。層間接続導体の直径は、前記の比較例及び第1~第4実施例のいずれにおいても、75μmとされた。
<Example>
Next, the relationship between the diameter of the space, which is circular when viewed in the thickness direction, and the insertion loss of the inductor partially configured by the interlayer connection conductor facing the space will be described. In order to examine this relationship, the inventor performed a simulation assuming an electronic component having five inductors and seven capacitors, and estimated the insertion loss when the diameter of the space was changed. In the simulation, a comparative example with no space, a first example with a space diameter of 77.5 μm, a second example with a space diameter of 87.5 μm, and a third example with a space diameter of 150 μm. Example and a fourth example in which the diameter of the space is 200 μm was assumed. The diameter of the interlayer connection conductor was set to 75 μm in all of the comparative example and the first to fourth examples.
 図5は、空間の各直径に対応するインダクタの挿入損失を示すグラフである。グラフの横軸は、インダクタを伝達する信号の周波数を示す。グラフの縦軸は、インダクタの挿入損失を示す。挿入損失は、図中の下に向かうほど大きい。図5に示すように、インダクタの挿入損失は、空間の直径が大きくなるに従って、小さくなっている。  Fig. 5 is a graph showing the insertion loss of the inductor corresponding to each diameter of the space. The horizontal axis of the graph indicates the frequency of the signal transmitted through the inductor. The vertical axis of the graph indicates the insertion loss of the inductor. The insertion loss increases downward in the figure. As shown in FIG. 5, the inductor insertion loss decreases as the diameter of the space increases.
<第2実施形態>
 図6~図8を参照しながら、本発明の第2実施形態に係る電子部品について説明する。図6は、本発明の第2実施形態に係る電子部品の底面図である。図7は、図6の電子部品のVII-VII線断面図である。図8は、図7の電子部品のVIII-VIII線断面図である。
<Second embodiment>
An electronic component according to a second embodiment of the present invention will be described with reference to FIGS. 6 to 8. FIG. FIG. 6 is a bottom view of the electronic component according to the second embodiment of the invention. 7 is a cross-sectional view of the electronic component of FIG. 6 taken along line VII-VII. 8 is a cross-sectional view of the electronic component of FIG. 7 taken along line VIII-VIII.
 第2実施形態に係る電子部品1Aが第1実施形態に係る電子部品1と異なる点は、インダクタ7の一部を構成する層間接続導体52の側面52cの全面が絶縁層20を構成する絶縁体に接触している点である。また、厚み方向から見て、層間接続導体52と電子部品1Aの縁部1b(後述)との間の距離は、層間接続導体52と電子部品1Aの仮想中心点C1(後述)との間の距離よりも短い。 The electronic component 1A according to the second embodiment differs from the electronic component 1 according to the first embodiment in that the entire side surface 52c of the interlayer connection conductor 52 that constitutes a part of the inductor 7 is an insulator that constitutes the insulating layer 20. It is the point that is in contact with In addition, when viewed from the thickness direction, the distance between the interlayer connection conductor 52 and the edge 1b (described later) of the electronic component 1A is the distance between the interlayer connection conductor 52 and the virtual center point C1 (described later) of the electronic component 1A. shorter than distance.
 図6に示すように、電子部品1Aは、厚み方向から見て、回転対称形状又は略回転対称形状である。本実施形態では、電子部品1Aは、厚み方向から見て、略長方形である。この場合、電子部品1Aを仮想中心点C1の周りに180度回転させたとき、回転後の電子部品1Aの形状は、回転前の電子部品1Aの形状と一致する。仮想中心点C1は、本発明における「電子部品の中心」の一例である。電子部品1Aは、厚み方向から見たときの縁部1bを有する。 As shown in FIG. 6, the electronic component 1A has a rotationally symmetrical shape or a substantially rotationally symmetrical shape when viewed from the thickness direction. In this embodiment, the electronic component 1A has a substantially rectangular shape when viewed from the thickness direction. In this case, when the electronic component 1A is rotated 180 degrees around the virtual center point C1, the shape of the electronic component 1A after rotation matches the shape of the electronic component 1A before rotation. The virtual center point C1 is an example of "the center of the electronic component" in the present invention. The electronic component 1A has an edge portion 1b when viewed from the thickness direction.
 図6に示す例では、端子電極31,32を含む6つの端子電極3が設けられている。端子電極31は、略長方形である縁部1bの長手方向における中央部に配置されている。 In the example shown in FIG. 6, six terminal electrodes 3 including terminal electrodes 31 and 32 are provided. The terminal electrode 31 is arranged in the central portion in the longitudinal direction of the substantially rectangular edge portion 1b.
 図7に示すように、層間接続導体51,52は、内部導体41と共に、絶縁層21~27にインダクタ7を形成している。層間接続導体51は、本発明における「第1層間接続導体」の一例である。層間接続導体52は、本発明における「第2層間接続導体」の一例である。 As shown in FIG. 7, the interlayer connection conductors 51 and 52 together with the internal conductor 41 form the inductor 7 in the insulating layers 21-27. The interlayer connection conductor 51 is an example of the "first interlayer connection conductor" in the present invention. The interlayer connection conductor 52 is an example of the "second interlayer connection conductor" in the present invention.
 層間接続導体51の側面51cは、接触領域51c1と離隔領域51c2との両方を有する。すなわち、側面51cの一部は、空間81を形成している。一方、層間接続導体52では、側面52cの全面が絶縁層23~27を構成する絶縁体に接触している。つまり、側面52cは、接触領域52c1によって構成され、離隔領域を有していない。つまり、電子部品1における空間82(図2参照)は、第2実施形態に係る電子部品1Aには形成されていない。 A side surface 51c of the interlayer connection conductor 51 has both a contact region 51c1 and a separation region 51c2. That is, a part of the side surface 51c forms a space 81. As shown in FIG. On the other hand, in the interlayer connection conductor 52, the entire side surface 52c is in contact with the insulator forming the insulating layers 23-27. In other words, the side surface 52c is formed by the contact area 52c1 and does not have a separation area. That is, the space 82 (see FIG. 2) in the electronic component 1 is not formed in the electronic component 1A according to the second embodiment.
 図8に示すように、厚み方向から見て、層間接続導体52と電子部品1Aの縁部1bとの間の距離は、層間接続導体52と電子部品1Aの仮想中心点C1との間の距離よりも短い。例えば、層間接続導体52の仮想中心点C52と電子部品1Aの縁部1bとの間の最短距離D1は、層間接続導体52の仮想中心点C52と電子部品1Aの仮想中心点C1との間の最短距離D2よりも短い。また、例えば、層間接続導体52の側面52cと電子部品1Aの縁部1bとの間の最短距離D3は、層間接続導体52の側面52cと電子部品1Aの仮想中心点C1との間の最短距離D4よりも短い。 As shown in FIG. 8, when viewed from the thickness direction, the distance between the interlayer connection conductor 52 and the edge 1b of the electronic component 1A is the distance between the interlayer connection conductor 52 and the virtual center point C1 of the electronic component 1A. shorter than For example, the shortest distance D1 between the virtual center point C52 of the interlayer connection conductor 52 and the edge 1b of the electronic component 1A is the distance between the virtual center point C52 of the interlayer connection conductor 52 and the virtual center point C1 of the electronic component 1A. shorter than the shortest distance D2. Further, for example, the shortest distance D3 between the side surface 52c of the interlayer connection conductor 52 and the edge 1b of the electronic component 1A is the shortest distance between the side surface 52c of the interlayer connection conductor 52 and the virtual center point C1 of the electronic component 1A. Shorter than D4.
 図8に示す例では、厚み方向から見て、層間接続導体51と電子部品1Aの縁部1bとの間の距離は、層間接続導体51と電子部品1Aの仮想中心点C1との間の距離よりも長い。例えば、層間接続導体51の仮想中心点C51と電子部品1Aの縁部1bとの間の最短距離D5は、層間接続導体51の仮想中心点C51と電子部品1Aの仮想中心点C1との間の最短距離D6よりも長い。また、例えば、層間接続導体51の側面51cと電子部品1Aの縁部1bとの間の最短距離D7は、層間接続導体51の側面51cと電子部品1Aの仮想中心点C1との間の最短距離D8よりも長い。 In the example shown in FIG. 8, the distance between the interlayer connection conductor 51 and the edge 1b of the electronic component 1A when viewed in the thickness direction is the distance between the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A. longer than For example, the shortest distance D5 between the virtual center point C51 of the interlayer connection conductor 51 and the edge 1b of the electronic component 1A is the distance between the virtual center point C51 of the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A. Longer than the shortest distance D6. Further, for example, the shortest distance D7 between the side surface 51c of the interlayer connection conductor 51 and the edge 1b of the electronic component 1A is the shortest distance between the side surface 51c of the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A. Longer than D8.
 なお、各層間接続導体51,52が厚み方向に対して傾いて延びている場合、層間接続導体51,52と電子部品1Aの縁部1b又は仮想中心点C1との間の各距離は、例えば、当該距離が最も短くなる断面において測定される。ここで「断面」とは、層間接続導体51,52が電子部品1Aの表面(例えば、図7に示す底面1a)に到達している場合、当該表面も含む。本実施形態では、図7に示すように、層間接続導体51,52は、厚み方向に真っ直ぐ延びている。 When the interlayer connection conductors 51 and 52 extend obliquely with respect to the thickness direction, each distance between the interlayer connection conductors 51 and 52 and the edge portion 1b of the electronic component 1A or the virtual center point C1 is, for example, , is measured at the cross-section where the distance is the shortest. Here, the “cross section” includes the surface when the interlayer connection conductors 51 and 52 reach the surface of the electronic component 1A (for example, the bottom surface 1a shown in FIG. 7). In this embodiment, as shown in FIG. 7, the interlayer connection conductors 51 and 52 extend straight in the thickness direction.
 厚み方向から見て電子部品1Aの縁部1bの近くでは、絶縁層20を構成する絶縁体及び層間接続導体52は、外部からの衝撃や熱衝撃等によって破損しやすい。第2実施形態に係る電子部品1Aによれば、電子部品1Aの縁部1bの近くに配置された層間接続導体52は、側面52cの全面を介して当該絶縁体に接触している。このことにより、層間接続導体52及び層間接続導体52の周囲にある当該絶縁体の強度が向上する。そのため、絶縁層20を構成する絶縁体及び層間接続導体52の破損を抑制することができる。 In the vicinity of the edge 1b of the electronic component 1A when viewed from the thickness direction, the insulators and interlayer connection conductors 52 forming the insulating layer 20 are likely to be damaged by external impact, thermal shock, or the like. According to the electronic component 1A according to the second embodiment, the interlayer connection conductor 52 arranged near the edge 1b of the electronic component 1A is in contact with the insulator via the entire side surface 52c. This improves the strength of the interlayer connection conductor 52 and the insulator around the interlayer connection conductor 52 . Therefore, breakage of the insulator and the interlayer connection conductor 52 forming the insulating layer 20 can be suppressed.
<第3実施形態>
 図9及び図10を参照しながら、本発明の第3実施形態に係る電子部品1Bについて説明する。図9は、本発明の第3実施形態に係る電子部品の図6におけるIX-IX線に対応する断面図である。図10は、図9の電子部品のX-X線断面図である。
<Third Embodiment>
An electronic component 1B according to a third embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG. FIG. 9 is a cross-sectional view corresponding to the IX-IX line in FIG. 6 of the electronic component according to the third embodiment of the present invention. 10 is a cross-sectional view of the electronic component of FIG. 9, taken along the line XX.
 第3実施形態に係る電子部品1Bが第1実施形態に係る電子部品1と異なる点は、厚み方向から見て、層間接続導体51,52の仮想中心点C51,C52が各空間81,82の仮想中心点C81,C82と異なる位置にある点である。 The electronic component 1B according to the third embodiment differs from the electronic component 1 according to the first embodiment in that virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are located between the spaces 81 and 82 when viewed from the thickness direction. This point is located at a different position from the virtual center points C81 and C82.
 図9に示す電子部品1Bは、絶縁層21と絶縁層22との境界面に、内部導体44を更に備えている。内部導体44は、例えば、図示しない層間接続導体によって、端子電極31に接続されている。 The electronic component 1B shown in FIG. 9 further includes an internal conductor 44 on the interface between the insulating layer 21 and the insulating layer 22 . The internal conductor 44 is connected to the terminal electrode 31 by, for example, an interlayer connection conductor (not shown).
 第3実施形態において、層間接続導体51は、6層の絶縁層22~27を貫通している。層間接続導体51の第1端部51aは、内部導体44に接続されている。層間接続導体51は、内部導体41及び層間接続導体52と共に、絶縁層22~27にインダクタ7を形成している。 In the third embodiment, the interlayer connection conductor 51 penetrates the six insulating layers 22-27. A first end 51 a of the interlayer connection conductor 51 is connected to the internal conductor 44 . The interlayer connection conductor 51 forms the inductor 7 in the insulating layers 22 to 27 together with the internal conductor 41 and the interlayer connection conductor 52 .
 内部導体42は、図9には図示されていないが、厚み方向において内部導体43と対向している(図7参照)。このことにより、内部導体42と内部導体43とは、コンデンサ6として機能する。 Although not shown in FIG. 9, the internal conductor 42 faces the internal conductor 43 in the thickness direction (see FIG. 7). As a result, the internal conductor 42 and the internal conductor 43 function as the capacitor 6 .
 層間接続導体51の側面51cと4層の絶縁層23~26を構成する絶縁体との間には、空間81が形成されている。層間接続導体52の側面52cと3層の絶縁層24~26を構成する絶縁体との間には、空間82が形成されている。 A space 81 is formed between the side surface 51c of the interlayer connection conductor 51 and the insulators forming the four insulating layers 23-26. A space 82 is formed between the side surface 52c of the interlayer connection conductor 52 and the insulators forming the three insulating layers 24-26.
 図9に示すように、層間接続導体51,52及び空間81,82のそれぞれは、厚み方向に真っ直ぐ延びている。図10に示すように、層間接続導体51,52及び空間81,82のそれぞれは、厚み方向から見て円形又は略円形である。 As shown in FIG. 9, each of the interlayer connection conductors 51, 52 and the spaces 81, 82 extends straight in the thickness direction. As shown in FIG. 10, each of the interlayer connection conductors 51, 52 and the spaces 81, 82 has a circular or substantially circular shape when viewed from the thickness direction.
 層間接続導体51,52の仮想中心点C51,C52は、対応する各空間81,82の仮想中心点C81,C82と異なる位置にある。図10に示す例では、層間接続導体51,52の仮想中心点C51,C52は、対応する空間81,82の仮想中心点C81,C82と電子部品1Bの縁部1bとの間に位置している。本実施形態では、各層間接続導体51,52の仮想中心点C51,C52と電子部品1Bの仮想中心点C1との間の各距離D9,D10は、対応する各空間81,82の仮想中心点C81,C82と電子部品1の仮想中心点C1との間の各距離D11,D12よりも長い。また、本実施形態では、層間接続導体51の仮想中心点C51と層間接続導体52の仮想中心点C52との間の距離D13は、空間81の仮想中心点C81と空間82の仮想中心点C82との間の距離D14よりも長い。 The virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are different from the virtual center points C81 and C82 of the corresponding spaces 81 and 82, respectively. In the example shown in FIG. 10, the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are positioned between the virtual center points C81 and C82 of the corresponding spaces 81 and 82 and the edge 1b of the electronic component 1B. there is In this embodiment, the distances D9 and D10 between the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 and the virtual center point C1 of the electronic component 1B correspond to the virtual center points of the corresponding spaces 81 and 82. It is longer than the respective distances D11, D12 between C81, C82 and the virtual center point C1 of the electronic component 1 . Further, in the present embodiment, the distance D13 between the virtual center point C51 of the interlayer connection conductor 51 and the virtual center point C52 of the interlayer connection conductor 52 is the same as the virtual center point C81 of the space 81 and the virtual center point C82 of the space 82. longer than the distance D14 between
 図9に示す例では、層間接続導体52は、絶縁層24~26を構成する絶縁体に線接触している。そのため、図10に示すように、層間接続導体52は、厚み方向から見て、絶縁層25を構成する絶縁体に点接触している。 In the example shown in FIG. 9, the interlayer connection conductor 52 is in line contact with the insulators forming the insulating layers 24-26. Therefore, as shown in FIG. 10, the interlayer connection conductor 52 is in point contact with the insulator forming the insulating layer 25 when viewed in the thickness direction.
 層間接続導体51,52がインダクタ7の少なくとも一部を構成する場合、厚み方向から見て、層間接続導体51,52と電子部品1Bの縁部1bとの間の距離は短いことが好ましい。このことにより、インダクタ7が大きくなるので、インダクタ7のインダクタンスを向上させることができる。一方、絶縁層20を構成する絶縁体及び層間接続導体51,52が外部からの衝撃や熱衝撃等に起因して破損するのを抑制するため、空間81,82は、厚み方向から見て、電子部品1Bの縁部1bから距離を空けて形成される必要がある。 When the interlayer connection conductors 51 and 52 constitute at least part of the inductor 7, it is preferable that the distance between the interlayer connection conductors 51 and 52 and the edge 1b of the electronic component 1B is short when viewed from the thickness direction. As a result, the size of the inductor 7 is increased, so that the inductance of the inductor 7 can be improved. On the other hand, in order to prevent the insulators and interlayer connection conductors 51 and 52 that make up the insulating layer 20 from being damaged due to external impact, thermal shock, or the like, the spaces 81 and 82 are arranged in the following directions when viewed from the thickness direction: It needs to be formed with a distance from the edge 1b of the electronic component 1B.
 第3実施形態に係る電子部品1Bによれば、厚み方向から見て、層間接続導体51,52の仮想中心点C51,C52は、空間81,82の仮想中心点C81,C82と異なる位置にある。そのため、層間接続導体51,52の仮想中心点C51,C52を電子部品1Bの縁部1bと空間81,82の仮想中心点C81,C82との間に位置させることによって、層間接続導体51,52の仮想中心点C51,C52と空間81,82の仮想中心点C81,C82とが同じ位置にある構成と比較して、層間接続導体51,52を電子部品1Bの縁部1bの近くに配置することができる。このことにより、電子部品1Bに設けられるインダクタ7を大きくすることができる。したがって、インダクタ7のインダクタンスを大きくすることができる。 According to the electronic component 1B according to the third embodiment, when viewed from the thickness direction, the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 are different from the virtual center points C81 and C82 of the spaces 81 and 82. . Therefore, by positioning the virtual center points C51 and C52 of the interlayer connection conductors 51 and 52 between the edge portion 1b of the electronic component 1B and the virtual center points C81 and C82 of the spaces 81 and 82, the interlayer connection conductors 51 and 52 and the virtual center points C81 and C82 of the spaces 81 and 82 are located at the same positions, the interlayer connection conductors 51 and 52 are arranged near the edge 1b of the electronic component 1B. be able to. As a result, the size of the inductor 7 provided in the electronic component 1B can be increased. Therefore, the inductance of inductor 7 can be increased.
<電子部品の製造方法>
 図11~図17を参照しながら、本発明に係る電子部品の製造方法の一例について説明する。図11~図17は、図2の電子部品の製造方法の一例を示す断面図である。
<Method for manufacturing electronic components>
An example of the method for manufacturing an electronic component according to the present invention will be described with reference to FIGS. 11 to 17. FIG. 11 to 17 are cross-sectional views showing an example of a method of manufacturing the electronic component shown in FIG.
 電子部品1は、積層体を複数の積層個片17(図17参照)に個片化することにより製造される。当該積層体は、複数の積層個片17が直交方向に配列された状態で一体化されたものである。1つの積層個片17は、1つの電子部品1に対応する。図11~図16では、説明の便宜上、積層体のうち1つの積層個片17に対応する部分のみを示す。 The electronic component 1 is manufactured by singulating a laminate into a plurality of laminated pieces 17 (see FIG. 17). The laminated body is formed by integrating a plurality of laminated pieces 17 arranged in the orthogonal direction. One laminated piece 17 corresponds to one electronic component 1 . 11 to 16 show only a portion of the laminate corresponding to one laminate piece 17 for convenience of explanation.
 電子部品1の製造では、まず、絶縁層シート120(図15参照)を構成するスラリが作製される。絶縁層シート120は、絶縁層シート121~129を有する。各絶縁層シート121~129は、各絶縁層21~29に対応する。前記のスラリは、主剤、可塑剤、バインダ等を含む。主剤は、例えば、焼結性セラミック粉末等であり、粒を有する。可塑剤には、例えば、フタル酸エステルやジ-n-ブチルフタレート等が使用される。バインダには、例えば、アクリル樹脂やポリビニルブチラール等が使用される。 In the manufacture of the electronic component 1, first, a slurry that forms the insulating layer sheet 120 (see FIG. 15) is produced. The insulating layer sheet 120 has insulating layer sheets 121-129. Each insulating layer sheet 121-129 corresponds to each insulating layer 21-29. The slurry contains a main agent, a plasticizer, a binder, and the like. The main agent is, for example, a sinterable ceramic powder or the like, and has grains. Phthalic acid esters, di-n-butyl phthalate, and the like are used as plasticizers. Acrylic resin, polyvinyl butyral, or the like is used for the binder, for example.
 前記のスラリは、例えば、リップコータやドクターブレード等を用いて、キャリアフィルム11上にシート状に成形される(例えば、図11参照)。このことにより、絶縁層シート120が形成される。キャリアフィルム11には、例えば、PET(ポリエチレンテレフタレート)フィルム等が使用される。 The slurry is formed into a sheet on the carrier film 11 using, for example, a lip coater or doctor blade (see, for example, FIG. 11). Thus, the insulating layer sheet 120 is formed. A PET (polyethylene terephthalate) film or the like is used for the carrier film 11, for example.
(空間が形成される絶縁層の形成工程)
 次に、空間が形成される絶縁層の形成工程について、絶縁層シート126を例に説明する。図11に示すように、絶縁層シート126及びキャリアフィルム11を貫通する空間形成孔13が形成される。空間形成孔13は、空間81,82に対応する部分に形成される。
(Step of forming insulating layer in which space is formed)
Next, the insulating layer sheet 126 is used as an example to describe the process of forming an insulating layer in which a space is formed. As shown in FIG. 11, space forming holes 13 are formed through the insulating layer sheet 126 and the carrier film 11 . Space forming holes 13 are formed in portions corresponding to spaces 81 and 82 .
 次いで、空間形成孔13に、後述する焼成工程において焼失する空間形成材14が充填される。空間形成材14は、例えば、主剤として樹脂を含む。 Next, the space-forming holes 13 are filled with a space-forming material 14 that will be burned out in the firing process, which will be described later. The space forming member 14 contains, for example, a resin as a main agent.
 次いで、図12に示すように、空間形成孔13に充填された空間形成材14に、導体形成孔15が形成される。導体形成孔15は、層間接続導体51~53に対応する部分に形成される。空間形成孔13及び導体形成孔15の形成には、例えば、メカパンチ、紫外線(UV)レーザ、COレーザ等が使用される。 Next, as shown in FIG. 12, conductor forming holes 15 are formed in the space forming material 14 filled in the space forming holes 13 . Conductor formation holes 15 are formed in portions corresponding to interlayer connection conductors 51-53. A mechanical punch, an ultraviolet (UV) laser, a CO 2 laser, or the like is used to form the space forming holes 13 and the conductor forming holes 15, for example.
 次いで、導体形成孔15に、導電性ペースト16が充填される。導電性ペースト16は、焼成工程において焼結し、層間接続導体51~53になる。導電性ペースト16は、例えば、導電性粉末と可塑剤とバインダとを含む原料を混合することにより作製される。 Then, the conductive paste 16 is filled into the conductor forming holes 15 . The conductive paste 16 is sintered in the firing process to become interlayer connection conductors 51-53. The conductive paste 16 is produced, for example, by mixing raw materials including conductive powder, a plasticizer, and a binder.
(空間が形成されない絶縁層の形成工程)
 空間が形成されない絶縁層の形成工程では、図13に例示するように、空間形成孔13は、形成されない。この場合、導体形成孔15は、絶縁層シート120及びキャリアフィルム11を貫通するように形成される。導体形成孔15に充填された導電性ペースト16は、絶縁層シート120と接触している。
(Step of forming insulating layer in which no space is formed)
In the step of forming an insulating layer in which no space is formed, as illustrated in FIG. 13, the space forming hole 13 is not formed. In this case, the conductor forming hole 15 is formed so as to penetrate the insulating layer sheet 120 and the carrier film 11 . The conductive paste 16 filled in the conductor forming holes 15 is in contact with the insulating layer sheet 120 .
(内部導体及び端子電極の形成工程)
 次いで、図14に示すように、絶縁層シート120のキャリアフィルム11に接触した面と反対側の表面に、前記の導電性ペースト16が塗布される。導電性ペースト16の塗布は、例えば、スクリーン印刷、インクジェット印刷、グラビア印刷等により行われる。なお、図14に示す例では、空間形成孔13が形成されない絶縁層シート121の表面に導電性ペースト16が塗布されているが、これに限定されない。導電性ペースト16は、空間形成孔13が形成された絶縁層シート120に塗布されてもよい。また、導電性ペースト16は、導体形成孔15が形成されない絶縁層シート120の表面に塗布されてもよい。
(Process of forming internal conductors and terminal electrodes)
Next, as shown in FIG. 14, the conductive paste 16 is applied to the surface of the insulating layer sheet 120 opposite to the surface in contact with the carrier film 11 . The application of the conductive paste 16 is performed by, for example, screen printing, inkjet printing, gravure printing, or the like. In the example shown in FIG. 14, the conductive paste 16 is applied to the surface of the insulating layer sheet 121 on which the space forming holes 13 are not formed, but the present invention is not limited to this. The conductive paste 16 may be applied to the insulating layer sheet 120 in which the space forming holes 13 are formed. Also, the conductive paste 16 may be applied to the surface of the insulating layer sheet 120 where the conductor forming holes 15 are not formed.
(積層工程)
 次いで、図15に示すように、キャリアフィルム11が取り除かれた絶縁層シート121~129が積層される。このとき、各絶縁層シート120の厚み方向における向きは、同じであっても、異なってもよい。図15に示す例では、絶縁層シート125~129は、キャリアフィルム11に接触していた面が図中の下を向くように積層されている。一方で、絶縁層シート121~124は、キャリアフィルム11に接触していた面が図中の上を向くように積層されている。図15に示す例では、内部導体41に対応する導電性ペースト16は、絶縁層シート127の表面(図15における上面)に塗布されている。内部導体42に対応する導電性ペースト16は、絶縁層シート123の表面(図15における下面)に塗布されている。内部導体43に対応する導電性ペースト16は、絶縁層シート122の表面(図15における下面)に塗布されている。なお、全ての絶縁層シート120が同じ向きに積層される場合、各内部導体41~43に対応する導電性ペースト16は、積層工程において、各絶縁層シート120の同じ方向を向く面に塗布された状態になる。
(Lamination process)
Next, as shown in FIG. 15, insulating layer sheets 121 to 129 from which the carrier film 11 is removed are laminated. At this time, the thickness direction of each insulating layer sheet 120 may be the same or different. In the example shown in FIG. 15, the insulating layer sheets 125 to 129 are laminated so that the surfaces in contact with the carrier film 11 face downward in the figure. On the other hand, the insulating layer sheets 121 to 124 are laminated so that the surface in contact with the carrier film 11 faces upward in the figure. In the example shown in FIG. 15, the conductive paste 16 corresponding to the internal conductors 41 is applied to the surface (upper surface in FIG. 15) of the insulating layer sheet 127 . The conductive paste 16 corresponding to the internal conductors 42 is applied to the surface (lower surface in FIG. 15) of the insulating layer sheet 123 . A conductive paste 16 corresponding to the internal conductors 43 is applied to the surface (lower surface in FIG. 15) of the insulating layer sheet 122 . When all the insulating layer sheets 120 are laminated in the same direction, the conductive paste 16 corresponding to each of the internal conductors 41 to 43 is applied to the surfaces of the insulating layer sheets 120 facing the same direction in the lamination process. state.
(圧着工程)
 次いで、図16に示すように、積層された絶縁層シート120は、厚み方向にプレスされることにより互いに圧着される。図16に示す例では、各導電性ペースト16は、当該圧着により、絶縁層シート120に対して入り込んでいる。例えば、絶縁層シート121の表面に塗布され(図15参照)、端子電極31,32に対応する導電性ペースト16は、絶縁層シート121に入り込んでいる。
(Crimping process)
Next, as shown in FIG. 16, the laminated insulating layer sheets 120 are pressed in the thickness direction to be crimped to each other. In the example shown in FIG. 16, each conductive paste 16 penetrates into the insulating layer sheet 120 by the pressure bonding. For example, the conductive paste 16 applied to the surface of the insulating layer sheet 121 (see FIG. 15) and corresponding to the terminal electrodes 31 and 32 penetrates into the insulating layer sheet 121 .
 なお、各内部導体41~43に対応する導電性ペースト16は、当該導電性ペースト16を挟む2つの絶縁層シート120のいずれか一方のみに入り込んでもよく、両方に入り込んでもよい。例えば、内部導体41に対応する導電性ペースト16は、図16では絶縁層シート127のみに入り込んでいるが、絶縁層シート128のみに入りこんでもよく、絶縁層シート127,128の両方に入り込んでもよい。 The conductive paste 16 corresponding to each of the internal conductors 41 to 43 may enter only one of the two insulating layer sheets 120 sandwiching the conductive paste 16, or may enter both. For example, the conductive paste 16 corresponding to the internal conductor 41 enters only the insulating layer sheet 127 in FIG. .
(個片化工程)
 次いで、図17に示すように、積層体は、各積層個片17に切断される。積層体の切断には、例えば、ダイシングソー、ギロチンカッタ、レーザ等が使用される。積層個片17の角部及び縁部は、例えば、バレル加工等により研磨されてもよい。
(Singulation process)
The laminate is then cut into individual laminate pieces 17, as shown in FIG. A dicing saw, a guillotine cutter, a laser, or the like, for example, is used to cut the laminate. The corners and edges of the laminated piece 17 may be polished, for example, by barreling or the like.
(焼成工程)
 次いで、積層個片17が焼成される。このことにより、図2に示す電子部品1が得られる。焼成時に空間形成材14が焼失することにより、空間81,82が形成される。絶縁層シート121~129が焼結することにより、絶縁層21~29が一体に形成される。導電性ペースト16が焼結することにより、端子電極31,32、内部導体41~43、及び層間接続導体51~53が形成される。
(Baking process)
The laminated pieces 17 are then fired. As a result, the electronic component 1 shown in FIG. 2 is obtained. Spaces 81 and 82 are formed by burning out the space forming material 14 during firing. By sintering the insulating layer sheets 121-129, the insulating layers 21-29 are integrally formed. By sintering the conductive paste 16, terminal electrodes 31, 32, internal conductors 41-43, and interlayer connection conductors 51-53 are formed.
 絶縁層シート120は、焼結時に、層間接続導体51,52に対応する導電性ペースト16を圧縮するように収縮する。このとき、導電性ペースト16の表面のうち、層間接続導体51,52の接触領域51c1,52c1に対応する領域には、絶縁層シート120に含まれるセラミック等の粒が押し当てられる。このことにより、導電性ペースト16の表面の当該領域には、凹凸が形成される。一方で、導電性ペースト16の表面のうち、空間形成材14に接触している領域には、絶縁層シート120が接触しないので、セラミック等の粒に起因する凹凸は形成されない。この状態で、導電性ペースト16が焼結することにより、離隔領域51c2,52c2の算術平均粗さが接触領域51c1,52c1の算術平均粗さよりも小さい層間接続導体51,52を形成することができる。 The insulating layer sheet 120 shrinks during sintering so as to compress the conductive paste 16 corresponding to the interlayer connection conductors 51 and 52 . At this time, grains of ceramic or the like contained in the insulating layer sheet 120 are pressed against regions of the surface of the conductive paste 16 that correspond to the contact regions 51c1 and 52c1 of the interlayer connection conductors 51 and 52 . As a result, unevenness is formed in the region on the surface of the conductive paste 16 . On the other hand, since the insulating layer sheet 120 does not come into contact with the area of the surface of the conductive paste 16 that is in contact with the space forming member 14, unevenness due to grains of ceramic or the like is not formed. By sintering the conductive paste 16 in this state, it is possible to form the interlayer connection conductors 51 and 52 in which the arithmetic mean roughness of the separation regions 51c2 and 52c2 is smaller than the arithmetic mean roughness of the contact regions 51c1 and 52c1. .
 なお、本発明は、前述の実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、第1実施形態及び第3実施形態では、インダクタ7の少なくとも一部を構成する層間接続導体51,52が2つ設けられていたが、これに限定されない。インダクタ7の少なくとも一部を構成する層間接続導体51,52の総数は、1つであっても、3つ以上であってもよい。 It should be noted that the present invention is not limited to the above-described embodiments, and can be implemented in various other aspects. For example, in the first and third embodiments, two interlayer connection conductors 51 and 52 that constitute at least part of the inductor 7 are provided, but the present invention is not limited to this. The total number of interlayer connection conductors 51 and 52 forming at least part of inductor 7 may be one or three or more.
 第2実施形態では、第1層間接続導体に対応する層間接続導体51及び第2層間接続導体に対応する層間接続導体52が1つずつ設けられていたが、これに限定されない。層間接続導体51の数は、2つ以上であってもよい。層間接続導体52の数は、2つ以上であってもよい。層間接続導体51の数と層間接続導体52の数とは、同じであっても、異なってもよい。 In the second embodiment, one interlayer connection conductor 51 corresponding to the first interlayer connection conductor and one interlayer connection conductor 52 corresponding to the second interlayer connection conductor were provided, but the present invention is not limited to this. The number of interlayer connection conductors 51 may be two or more. The number of interlayer connection conductors 52 may be two or more. The number of interlayer connection conductors 51 and the number of interlayer connection conductors 52 may be the same or different.
 前記では、層間接続導体51,52が複数の絶縁層20を貫通するものとしたが、これに限定されない。層間接続導体51,52は、絶縁層20のうち1層のみを貫通してもよい。 Although the interlayer connection conductors 51 and 52 are assumed to pass through the plurality of insulating layers 20 in the above description, the present invention is not limited to this. The interlayer connection conductors 51 and 52 may pass through only one layer of the insulating layers 20 .
 前記では、第2実施形態における層間接続導体52を除き、接触部51d,52dが層間接続導体51,52の第1端部51a,52a及び第2端部51b,52bに設けられるものとしたが、これに限定されない。接触部51d,52dは、層間接続導体51,52の第1端部51a,52a及び第2端部51b,52b以外の位置に設けられてもよい。例えば、接触部51d,52dは、層間接続導体51,52の厚み方向における中央部に設けられてもよい。層間接続導体51,52が厚み方向に長い場合、空間81,82が厚み方向に長くなり、層間接続導体51,52の強度が低くなるおそれがある。接触部51d,52dが層間接続導体51,52の厚み方向における中央部に設けられることにより、前記の強度の低下を抑制することができる。層間接続導体51,52において、接触部51d,52dは、第1端部51a,52a又は第2端部51b,52bのいずれか一方のみに設けられてもよい。または、接触部51d,52dは、層間接続導体51,52に設けられなくてもよい。 In the above description, except for the interlayer connection conductor 52 in the second embodiment, the contact portions 51d and 52d are provided at the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52. , but not limited to. The contact portions 51d and 52d may be provided at positions other than the first end portions 51a and 52a and the second end portions 51b and 52b of the interlayer connection conductors 51 and 52, respectively. For example, the contact portions 51d and 52d may be provided at the central portions of the interlayer connection conductors 51 and 52 in the thickness direction. If the interlayer connection conductors 51 and 52 are long in the thickness direction, the spaces 81 and 82 are long in the thickness direction, and the strength of the interlayer connection conductors 51 and 52 may decrease. By providing the contact portions 51d and 52d at the central portions in the thickness direction of the interlayer connection conductors 51 and 52, the reduction in strength can be suppressed. In the interlayer connection conductors 51 and 52, the contact portions 51d and 52d may be provided only at either the first end portions 51a and 52a or the second end portions 51b and 52b. Alternatively, the contact portions 51 d and 52 d may not be provided on the interlayer connection conductors 51 and 52 .
 前記では、インダクタ7が6層又は7層の絶縁層20に亘って形成されるものとしたが、これに限定されない。インダクタ7は、1~5層又は8層以上の絶縁層20に亘って形成されてもよい。 Although the inductor 7 is formed over six or seven insulating layers 20 in the above description, it is not limited to this. The inductor 7 may be formed over one to five insulating layers or eight or more insulating layers 20 .
 インダクタ7の一部を構成しない層間接続導体53と、絶縁層20を構成する絶縁体との間に、空間が形成されていてもよい。 A space may be formed between the interlayer connection conductor 53 that does not form part of the inductor 7 and the insulator that forms the insulating layer 20 .
 第2実施形態において、層間接続導体51と電子部品1Aの縁部1bとの間の距離は、層間接続導体51と電子部品1Aの仮想中心点C1との間の距離以下であってもよい。 In the second embodiment, the distance between the interlayer connection conductor 51 and the edge 1b of the electronic component 1A may be less than or equal to the distance between the interlayer connection conductor 51 and the virtual center point C1 of the electronic component 1A.
 本明細書および特許請求の範囲において、「フィルム」及び「シート」という用語は、部品の厚さを特定の範囲に限定することを意図するものではない。 In the present specification and claims, the terms "film" and "sheet" are not intended to limit the thickness of parts to a specific range.
 なお、前述の様々な実施形態から任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 By appropriately combining any of the various embodiments described above, the respective effects can be achieved.
 本発明は、添付図面を参照しながら、好ましい実施形態に関連して充分に記載されているが、この技術に熟練した人々にとって、種々の変形や修正は明白である。このような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments and with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such variations and modifications are to be included therein insofar as they do not depart from the scope of the invention as set forth in the appended claims.
 本発明に係る電子部品は、当該電子部品が備えるインダクタの誘電体損失が低減されているので、種々の電子部品に有用である。 The electronic component according to the present invention is useful for various electronic components because the dielectric loss of the inductor included in the electronic component is reduced.
  1,1A,1B 電子部品
  1b 縁部
  20,21~29 絶縁層
  3,31,32 端子電極
  51,52 層間接続導体
  51a,52a 第1端部
  51b,52b 第2端部
  51c,52c 側面
  51c1,52c1 接触領域
  51c2,52c2 離隔領域
  51d,52d 接触部
  6 コンデンサ
  7 インダクタ
  81,82 空間
  C1 電子部品の仮想中心点
  C51,C52 層間接続導体の仮想中心点
  C81,C82 空間の仮想中心点
1, 1A, 1B Electronic component 1b Edge 20, 21 to 29 Insulating layer 3, 31, 32 Terminal electrode 51, 52 Interlayer connection conductor 51a, 52a First end 51b, 52b Second end 51c, 52c Side 51c1, 52c1 Contact area 51c2, 52c2 Separation area 51d, 52d Contact part 6 Capacitor 7 Inductor 81, 82 Space C1 Virtual center point of electronic component C51, C52 Virtual center point of interlayer connection conductor C81, C82 Virtual center point of space

Claims (9)

  1.  絶縁体で形成された少なくとも1層の絶縁層と、
     前記絶縁層に設けられたインダクタと、
     前記絶縁層に設けられ、前記インダクタに電気的に接続されたコンデンサと、
     前記絶縁層のうち少なくとも1層を貫通し、前記インダクタの少なくとも一部を構成する層間接続導体と、
     を備え、
     前記層間接続導体は、前記絶縁層の厚み方向に交差する方向を向く側面を有し、
     少なくとも1つの前記層間接続導体の側面の少なくとも一部と前記絶縁体との間に、空間が形成されている、
     電子部品。
    at least one insulating layer made of an insulator;
    an inductor provided in the insulating layer;
    a capacitor provided in the insulating layer and electrically connected to the inductor;
    an interlayer connection conductor that penetrates at least one of the insulating layers and constitutes at least part of the inductor;
    with
    The interlayer connection conductor has a side surface facing a direction intersecting the thickness direction of the insulating layer,
    A space is formed between at least a portion of a side surface of at least one interlayer connection conductor and the insulator.
    electronic components.
  2.  前記層間接続導体の少なくとも一部は、前記厚み方向から見て前記空間に囲まれている、請求項1に記載の電子部品。 The electronic component according to claim 1, wherein at least part of said interlayer connection conductor is surrounded by said space when viewed from said thickness direction.
  3.  前記層間接続導体及び前記空間のそれぞれは、前記厚み方向から見て回転対称形状又は略回転対称形状であり、
     前記厚み方向から見て、前記層間接続導体の中心は、前記空間の中心と異なる位置にある、
     請求項1又は請求項2に記載の電子部品。
    each of the interlayer connection conductor and the space has a rotationally symmetrical shape or a substantially rotationally symmetrical shape when viewed from the thickness direction;
    When viewed from the thickness direction, the center of the interlayer connection conductor is located at a different position from the center of the space.
    The electronic component according to claim 1 or 2.
  4.  前記層間接続導体及び前記空間のそれぞれは、前記厚み方向から見て円形又は略円形であり、
     前記厚み方向から見て、前記空間の直径は、前記層間接続導体の直径の1.1倍以上である、請求項1~3のいずれか1つに記載の電子部品。
    each of the interlayer connection conductor and the space is circular or substantially circular when viewed from the thickness direction;
    4. The electronic component according to claim 1, wherein the diameter of said space is 1.1 times or more the diameter of said interlayer connection conductor when viewed from said thickness direction.
  5.  前記層間接続導体の側面は、前記絶縁体に接触する接触領域と、前記空間を介して前記絶縁体から離れた離隔領域とを有し、
     前記層間接続導体は、前記層間接続導体の前記厚み方向の一部であって前記側面が前記接触領域で構成された接触部を有する、
     請求項1~4のいずれか1つに記載の電子部品。
    a side surface of the interlayer connection conductor has a contact area that contacts the insulator and a separation area that is separated from the insulator through the space;
    The interlayer connection conductor has a contact portion which is a part of the interlayer connection conductor in the thickness direction and the side surface is formed by the contact area.
    The electronic component according to any one of claims 1-4.
  6.  前記接触部は、前記層間接続導体の前記厚み方向の端部に設けられる、請求項5に記載の電子部品。 The electronic component according to claim 5, wherein the contact portion is provided at an end portion of the interlayer connection conductor in the thickness direction.
  7.  前記絶縁層の表面に配置されて外部に露出した端子電極を更に備え、
     前記層間接続導体の前記厚み方向の端部に設けられた前記接触部は、前記端子電極に接続されている、
     請求項6に記載の電子部品。
    further comprising a terminal electrode disposed on the surface of the insulating layer and exposed to the outside;
    The contact portion provided at the end portion in the thickness direction of the interlayer connection conductor is connected to the terminal electrode,
    The electronic component according to claim 6.
  8.  前記離隔領域の算術平均粗さは、前記接触領域の算術平均粗さよりも小さい、請求項5~7のいずれか1つに記載の電子部品。 The electronic component according to any one of claims 5 to 7, wherein the arithmetic average roughness of the separation area is smaller than the arithmetic average roughness of the contact area.
  9.  前記電子部品は、前記厚み方向から見て回転対称形状であり、
     前記層間接続導体は、
     前記層間接続導体の側面の少なくとも一部が前記空間を形成する第1層間接続導体と、
     前記層間接続導体の側面の全面が前記絶縁体に接触する第2層間接続導体と、を有し、
     前記厚み方向から見て、前記第2層間接続導体と前記電子部品の縁部との間の距離は、前記第2層間接続導体と前記電子部品の中心との間の距離よりも短い、
     請求項1~8のいずれか1つに記載の電子部品。
    The electronic component has a rotationally symmetrical shape when viewed from the thickness direction,
    The interlayer connection conductor is
    a first interlayer connection conductor in which at least part of a side surface of the interlayer connection conductor forms the space;
    a second interlayer connection conductor in which the entire side surface of the interlayer connection conductor is in contact with the insulator;
    When viewed from the thickness direction, the distance between the second interlayer connection conductor and the edge of the electronic component is shorter than the distance between the second interlayer connection conductor and the center of the electronic component.
    The electronic component according to any one of claims 1-8.
PCT/JP2022/035435 2021-09-24 2022-09-22 Electronic component WO2023048249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156003 2021-09-24
JP2021156003 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048249A1 true WO2023048249A1 (en) 2023-03-30

Family

ID=85720800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035435 WO2023048249A1 (en) 2021-09-24 2022-09-22 Electronic component

Country Status (1)

Country Link
WO (1) WO2023048249A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289451A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Method for manufacturing chip-type impedance element
JP2013016688A (en) * 2011-07-05 2013-01-24 Murata Mfg Co Ltd Manufacturing method of laminate type inductor element
JP2014216370A (en) * 2013-04-23 2014-11-17 株式会社村田製作所 Laminated inductor element and manufacturing method thereof
JP2017059749A (en) * 2015-09-18 2017-03-23 Tdk株式会社 Lamination coil component
JP2021136267A (en) * 2020-02-25 2021-09-13 株式会社村田製作所 Coil component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289451A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Method for manufacturing chip-type impedance element
JP2013016688A (en) * 2011-07-05 2013-01-24 Murata Mfg Co Ltd Manufacturing method of laminate type inductor element
JP2014216370A (en) * 2013-04-23 2014-11-17 株式会社村田製作所 Laminated inductor element and manufacturing method thereof
JP2017059749A (en) * 2015-09-18 2017-03-23 Tdk株式会社 Lamination coil component
JP2021136267A (en) * 2020-02-25 2021-09-13 株式会社村田製作所 Coil component

Similar Documents

Publication Publication Date Title
JP5206440B2 (en) Ceramic electronic components
JP6238487B2 (en) Inductor and manufacturing method thereof
JP5621573B2 (en) Coil built-in board
US11127529B2 (en) Method of manufacturing laminated coil component
KR100370670B1 (en) Inductor element and manufacturing method thereof
JP2005136132A (en) Laminated capacitor
US20150028988A1 (en) Laminated coil
US11189413B2 (en) Multilayer coil component and method for producing the same
JPWO2007010768A1 (en) Capacitor and manufacturing method thereof
US20120306607A1 (en) Chip-type coil component
CN107527724B (en) Coil component and method for manufacturing same
JP5429376B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2020141079A (en) Passive component and electronic device
KR20160019265A (en) Chip coil component and manufacturing method thereof
JP4463045B2 (en) Ceramic electronic components and capacitors
CN107615422B (en) Laminated ceramic electronic component
KR20160004602A (en) Multi-layered inductor, manufacturing method of the same and board having the same mounted thereon
JP2010206089A (en) Electronic component
KR101434103B1 (en) Multilayered ceramic electronic component and board for mounting the same
WO2023048249A1 (en) Electronic component
KR20160000329A (en) Multi-layered inductor and board having the same mounted thereon
JP4272183B2 (en) Multilayer electronic components
CN115394537A (en) Electronic component and electronic apparatus
JP6784183B2 (en) Multilayer coil parts
JP2000012375A (en) Laminated ceramic electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873000

Country of ref document: EP

Kind code of ref document: A1