WO2023048147A1 - Vehicle control device and vehicle - Google Patents

Vehicle control device and vehicle Download PDF

Info

Publication number
WO2023048147A1
WO2023048147A1 PCT/JP2022/035022 JP2022035022W WO2023048147A1 WO 2023048147 A1 WO2023048147 A1 WO 2023048147A1 JP 2022035022 W JP2022035022 W JP 2022035022W WO 2023048147 A1 WO2023048147 A1 WO 2023048147A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control device
accelerated
signal information
signal
Prior art date
Application number
PCT/JP2022/035022
Other languages
French (fr)
Japanese (ja)
Inventor
正宗 長嶋
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2023048147A1 publication Critical patent/WO2023048147A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used

Definitions

  • the present disclosure relates to a vehicle control device and a vehicle.
  • a vehicle control device that can improve drivability by automatically downshifting from the current gear to a lower gear when the accelerator is pressed to accelerate the vehicle. It is
  • the gear stage of the automatic transmission is controlled based on a shift map in which the target gear stage is set according to the accelerator opening and the vehicle speed.
  • a shift control unit that executes an automatic shift mode is provided (see Patent Literature 1).
  • Patent Document 1 has a problem that it is impossible to prevent a delay in the acceleration of the vehicle because the downshift is performed after the accelerator is depressed.
  • An object of the present disclosure is to provide a vehicle control device and a vehicle that can prevent a delay in acceleration of the vehicle.
  • the vehicle control device of the present disclosure includes: an acquisition unit that acquires signal information to be displayed on a traffic signal installed in front of the vehicle in the traveling direction from the signal information utilization driving support system; a determination unit that determines whether or not the vehicle can be accelerated based on the acquired signal information; a control unit for controlling a transmission to select a gear stage corresponding to acceleration when the vehicle can be accelerated; Prepare.
  • a vehicle according to the present disclosure includes the vehicle control device.
  • delay in vehicle acceleration can be prevented.
  • FIG. 1 is a configuration block diagram showing an example configuration of a vehicle control device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the positional relationship between a vehicle and a traffic light.
  • FIG. 3 is a diagram showing an example of a shift map.
  • FIG. 4 is a flow chart showing an example of the operation of the vehicle control device according to the present embodiment.
  • FIG. 5 is a diagram showing an example of a shift map including shift down regions.
  • FIG. 1 is a configuration block diagram showing an example configuration of a vehicle control device 10 according to an embodiment of the present disclosure.
  • the vehicle control device 10 is mounted on the vehicle 1 and performs various controls of the vehicle 1 .
  • the vehicle control device 10 is also called an in-vehicle device.
  • the vehicle control device 10 (in-vehicle device) is configured by, for example, an electronic control unit 100 (Electronic Control Unit: ECU).
  • the ECU 100 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), an input device and an output device.
  • the CPU expands the program stored in the ROM into the RAM and executes each function to be described later.
  • the vehicle control device 10 has respective functions as an acquisition unit 11 , a determination unit 12 , a shift control unit 13 and a calculation unit 14 .
  • a light beacon 3 is installed on the road.
  • the optical beacon 3 provides the vehicle 1 with signal information from Traffic Signal Prediction Systems (TSPS).
  • TSPS Traffic Signal Prediction Systems
  • a vehicle traffic signal 2 (hereinafter referred to as a "traffic signal”, see FIG. 2) that displays traffic signal information includes, for example, a horizontal light device in which blue, yellow, and red light sources are arranged from the left.
  • a blue signal with a blue light source on indicates that the vehicle 1 traveling on the road is permitted to proceed.
  • a red light with a red light source indicates a stop instruction to the vehicle 1 traveling on the road.
  • the acquisition unit 11 acquires signal information from the TSPS. As a result, the acquiring unit 11 can acquire signal information to be displayed on the traffic signal 2 installed ahead of the vehicle 1 in the traveling direction. In addition, the acquisition unit 11 acquires the depression amount of the accelerator pedal from an accelerator opening sensor (not shown). Also, the acquisition unit 11 acquires the vehicle speed from a vehicle speed sensor (not shown). In addition, the acquisition unit 11 acquires surrounding information (for example, an image in front of the vehicle) from an in-vehicle camera (not shown).
  • FIG. 2 is a diagram showing the positional relationship between the vehicle 1 and the traffic light 2.
  • the horizontal axis represents time
  • the vertical axis represents vehicle speed.
  • the calculation unit 14 calculates the inter-vehicle traffic signal distance between the vehicle 1 and the traffic signal 2 by performing image processing or the like on the forward image of the vehicle 1 .
  • the vehicle 1 may be equipped with a laser rangefinder for measuring the distance between the vehicle traffic signals based on the time from when the laser beam is irradiated toward the traffic signal 2 until when the reflected light is received.
  • the vehicle speed when a normal downshift is performed in a normal downshift, the acceleration of the vehicle 1 is delayed because the downshift is performed after the accelerator pedal is depressed. As a result, it takes time for the vehicle speed to reach the target speed.
  • the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the signal information acquired by the acquisition unit 11 .
  • the traffic signal information is, for example, information indicating that the signal displayed by the traffic signal 2 will change from a red signal to a blue signal after a predetermined time T1 (see FIG. 2) from when the signal information is acquired (current time). Specifically, when the vehicle 1 does not reach the traffic light 2 within the predetermined time T1 (when the traffic light 2 changes from red to green before the traffic light 2), the determination unit 12 determines that the vehicle 1 can be accelerated.
  • the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the three parameters of signal information, vehicle speed, and distance between vehicle signals.
  • the shift control unit 13 controls the automatic transmission 20 so as to select the gear corresponding to the acceleration.
  • the shift control unit 13 has a shift control unit that automatically controls the gear stage of the automatic transmission 20 based on the shift map.
  • the shift map is a map in which gears determined by accelerator opening and vehicle speed are set, and is stored in the storage unit of the vehicle control device 10 .
  • FIG. 3 is a diagram showing an example of a shift map.
  • FIG. 3 shows downshift lines from 4th speed to 3rd speed as a representative of a plurality of downshift lines. For example, when the vehicle 1 is accelerated and the driving state of the vehicle 1 is the accelerator opening ⁇ and the vehicle speed V1 (position P1 shown in FIG. 3), the shift control unit 13 shifts the gear of the automatic transmission 20 to A control for downshifting from 4th gear to 3rd gear is executed.
  • FIG. 4 is a flow chart showing an example of the operation of the vehicle control device 10 according to the embodiment of the present disclosure. This flow is started, for example, when the engine start switch of the vehicle 1 is turned on. In the following description, it is assumed that the functions of the acquisition unit 11, the determination unit 12, the shift control unit 13, and the calculation unit 14 are performed by the ECU 100.
  • FIG. 11 the functions of the acquisition unit 11, the determination unit 12, the shift control unit 13, and the calculation unit 14 are performed by the ECU 100.
  • step S100 the ECU 100 acquires signal information from the TSPS.
  • step S110 the ECU 100 acquires the accelerator opening and the vehicle speed.
  • step S120 the ECU 100 acquires a forward image of the vehicle 1.
  • step S130 the ECU 100 calculates the inter-vehicle traffic signal distance between the vehicle 1 and the traffic signal 2 based on the front image of the vehicle 1.
  • step S140 the ECU 100 determines whether or not the vehicle 1 can be accelerated based on the three parameters of signal information, vehicle speed, and distance between vehicle signals. If the vehicle 1 can be accelerated (step S140: YES), the process proceeds to step S150. If the vehicle 1 cannot be accelerated (step S140: NO), the flow shown in FIG. 4 ends.
  • step S150 the ECU 100 executes control to select a gear stage corresponding to acceleration.
  • the ECU 100 refers to a shift map based on the vehicle speed and accelerator opening, and controls the automatic transmission 20 so as to select a gear stage.
  • the acquisition unit 11 acquires the signal information scheduled to be displayed on the traffic signal 2 installed in front of the vehicle 1 in the traveling direction from the signal information utilization driving support system. and a determination unit 12 that determines whether or not the vehicle 1 can be accelerated based on the acquired signal information, and if the vehicle 1 can be accelerated, selects the gear stage corresponding to the acceleration. and a shift control unit 13 that controls the automatic transmission 20 as described above.
  • FIG. 2 is a diagram showing a comparison between the vehicle speed when downshifting is performed in advance and the vehicle speed when normal downshifting is performed at the timing when the signal information of the traffic light 2 changes from a red signal to a green signal.
  • the solid line indicates the vehicle speed when a preliminary downshift is performed
  • the dashed line indicates the vehicle speed when a normal downshift is performed.
  • tp at which the vehicle 1 reaches the target vehicle speed when the preliminary downshift is performed is earlier than tn at which the vehicle 1 reaches the target vehicle speed when the normal downshift is performed. .
  • the acquisition unit 11 acquires signal information scheduled to be displayed on the traffic light 2 installed in front of the vehicle 1 in the direction of travel.
  • the acquisition unit 11 acquires signal information scheduled to be displayed on the traffic signal 2 installed within the first threshold from the vehicle 1 .
  • the first threshold can be set through experiments and simulations from the viewpoint of ensuring safe and smooth traffic. With the above configuration, it is possible to ensure safe and smooth traffic.
  • Modification 2 In order to ensure safe traffic, it is necessary to ensure a sufficient inter-vehicle distance between the vehicle 1 and a preceding vehicle (not shown) traveling in front of the vehicle 1 . Therefore, in Modified Example 2, even if it is determined that the vehicle 1 can be accelerated based on the above three parameters, the determination unit 12 determines the inter-vehicle distance between the vehicle 1 and the preceding vehicle. is less than a predetermined second threshold value, it is not determined whether the vehicle 1 can be accelerated. In other words, the determination unit 12 determines whether or not the vehicle 1 can be accelerated when the inter-vehicle distance between the vehicle 1 and the preceding vehicle is equal to or greater than the predetermined second threshold. Note that the second threshold can be set through experiments and simulations from the viewpoint of ensuring safe and smooth traffic.
  • the calculation unit 14 calculates the inter-vehicle distance between the vehicle 1 and the preceding vehicle traveling in front of the vehicle 1 by performing image processing or the like on the front image of the vehicle 1 .
  • the vehicle 1 may be equipped with a laser rangefinder for measuring the inter-vehicle distance based on the time from when the preceding vehicle is irradiated with the laser beam to when the reflected light is received.
  • the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the three parameters of signal information, vehicle speed, and distance between vehicle signals (see FIG. 4). See step S140).
  • the determination unit 12 determines whether or not the vehicle is in the shift down region based on the vehicle speed of the vehicle 1 and the accelerator opening. Then, when it is in the downshift region, the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the above three parameters. In other words, the determining unit 12 does not determine whether or not the vehicle 1 can be accelerated based on the above three parameters unless the shift down region is set.
  • FIG. 5 is a diagram showing an example of a shift map including a shift down area.
  • FIG. 5 shows the shift-down region as a hatched region. If the position determined by the vehicle speed and accelerator opening (position P2 shown in FIG. 5) is not in the downshift region, the determination unit 12 determines whether the vehicle 1 can be accelerated based on the above three parameters. does not determine whether By providing a region that is not a shift down region (non-shift down region), it is possible to prevent downshifts that deteriorate drivability.
  • the present disclosure is suitably used for a vehicle equipped with a vehicle control device that is required to prevent a delay in acceleration of the vehicle.

Abstract

This vehicle control device comprises an acquisition unit that acquires signal information to be displayed on a traffic signal installed in front of a vehicle in a travel direction from a signal-information-utilization driving assistance system, a determination unit that determines whether or not the vehicle can be accelerated on the basis of the acquired signal information, and a control unit that controls a transmission to select a gear stage corresponding to the acceleration when the vehicle can be accelerated. The vehicle control device is capable of preventing delays in the acceleration of the vehicle.

Description

車両用制御装置および車両Vehicle controller and vehicle
 本開示は、車両用制御装置および車両に関する。 The present disclosure relates to a vehicle control device and a vehicle.
 車両を加速するためにアクセルを踏むと、現ギヤ段から現ギヤ段よりも低いギヤ段にシフトダウンが自動で行われることにより、ドライバビリティを向上させることが可能となる車両用制御装置が知られている。 Known is a vehicle control device that can improve drivability by automatically downshifting from the current gear to a lower gear when the accelerator is pressed to accelerate the vehicle. It is
 例えば、車両用制御装置としては、シフトレバーにおいてドライブレンジが選択されているとき、アクセル開度および車速に応じた目標ギヤ段が設定されたシフトマップに基づいて、自動変速機のギヤ段を制御する自動変速モードを実行する変速制御部を備えている(特許文献1を参照)。 For example, as a vehicle control device, when the drive range is selected with the shift lever, the gear stage of the automatic transmission is controlled based on a shift map in which the target gear stage is set according to the accelerator opening and the vehicle speed. A shift control unit that executes an automatic shift mode is provided (see Patent Literature 1).
日本国特開2020-133755号公報Japanese Patent Application Laid-Open No. 2020-133755
 ところで、特許文献1に記載の発明では、アクセルを踏んでからシフトダウンが行われるため、車両の加速の遅れを防止することができないという問題がある。 By the way, the invention described in Patent Document 1 has a problem that it is impossible to prevent a delay in the acceleration of the vehicle because the downshift is performed after the accelerator is depressed.
 本開示の目的は、車両の加速の遅れを防止することが可能な車両用制御装置および車両を提供することである。 An object of the present disclosure is to provide a vehicle control device and a vehicle that can prevent a delay in acceleration of the vehicle.
 上記の目的を達成するため、本開示における車両用制御装置は、
 車両の走行方向前方に設置された信号機に表示される予定の信号情報を、信号情報活用運転支援システムから取得する取得部と、
 取得された前記信号情報に基づいて、前記車両の加速が可能であるか否かについて判定する判定部と、
 前記車両の加速が可能である場合、当該加速に対応するギヤ段を選択するように変速機を制御する制御部と、
 を備える。
In order to achieve the above object, the vehicle control device of the present disclosure includes:
an acquisition unit that acquires signal information to be displayed on a traffic signal installed in front of the vehicle in the traveling direction from the signal information utilization driving support system;
a determination unit that determines whether or not the vehicle can be accelerated based on the acquired signal information;
a control unit for controlling a transmission to select a gear stage corresponding to acceleration when the vehicle can be accelerated;
Prepare.
 本開示における車両は、上記車両用制御装置を備える。 A vehicle according to the present disclosure includes the vehicle control device.
 本開示によれば、車両の加速の遅れを防止することができる。 According to the present disclosure, delay in vehicle acceleration can be prevented.
図1は、本開示の実施の形態に係る車両用制御装置の構成の一例を示す構成ブロック図である。FIG. 1 is a configuration block diagram showing an example configuration of a vehicle control device according to an embodiment of the present disclosure. 図2は、車両および信号機のそれぞれの位置関係を示す図である。FIG. 2 is a diagram showing the positional relationship between a vehicle and a traffic light. 図3は、シフトマップの一例を示す図である。FIG. 3 is a diagram showing an example of a shift map. 図4は、本実施の形態に係る車両用制御装置の動作の一例を示すフローチャートである。FIG. 4 is a flow chart showing an example of the operation of the vehicle control device according to the present embodiment. 図5は、シフトダウン領域を含むシフトマップの一例を示す図である。FIG. 5 is a diagram showing an example of a shift map including shift down regions.
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 図1は、本開示の実施の形態に係る車両用制御装置10の構成の一例を示す構成ブロック図である。車両用制御装置10は、車両1に搭載され、車両1の各種制御を行うものである。車両用制御装置10は車載機とも呼ばれる。
Embodiments of the present disclosure will be described below with reference to the drawings.
FIG. 1 is a configuration block diagram showing an example configuration of a vehicle control device 10 according to an embodiment of the present disclosure. The vehicle control device 10 is mounted on the vehicle 1 and performs various controls of the vehicle 1 . The vehicle control device 10 is also called an in-vehicle device.
 車両用制御装置10(車載機)は、例えば電子制御ユニット100(Electronic Control Unit:ECU)により構成される。ECU100は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、入力装置および出力装置を有している。CPUは、ROMに格納されたプログラムをRAMに展開して後述する各機能を実行する。車両用制御装置10は、取得部11、判定部12、変速制御部13および算出部14としての各機能とを有する。 The vehicle control device 10 (in-vehicle device) is configured by, for example, an electronic control unit 100 (Electronic Control Unit: ECU). The ECU 100 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), an input device and an output device. The CPU expands the program stored in the ROM into the RAM and executes each function to be described later. The vehicle control device 10 has respective functions as an acquisition unit 11 , a determination unit 12 , a shift control unit 13 and a calculation unit 14 .
 道路には光ビーコン3が設置されている。光ビーコン3は、信号情報活用運転支援システム(Traffic Signal Prediction Systems:TSPS)からの信号情報を車両1に提供する。信号情報を表示する車両用信号機2(以下「信号機」という。図2を参照)には、例えば、左から青色、黄色、赤色のそれぞれの光源が配列された横型灯器がある。青色の光源が点灯する青色信号は、道路を走行する車両1に対して進行許可を示す。また、赤色の光源が点灯する赤色信号は、道路を走行する車両1に対して停止指示を示す。 A light beacon 3 is installed on the road. The optical beacon 3 provides the vehicle 1 with signal information from Traffic Signal Prediction Systems (TSPS). A vehicle traffic signal 2 (hereinafter referred to as a "traffic signal", see FIG. 2) that displays traffic signal information includes, for example, a horizontal light device in which blue, yellow, and red light sources are arranged from the left. A blue signal with a blue light source on indicates that the vehicle 1 traveling on the road is permitted to proceed. A red light with a red light source indicates a stop instruction to the vehicle 1 traveling on the road.
 取得部11は、TSPSからの信号情報を取得する。これにより、取得部11は車両1の走行方向前方に設置された信号機2に表示される予定の信号情報を取得することが可能となる。また、取得部11は、アクセル開度センサ(不図示)からアクセルペダルの踏み込み量を取得する。また、取得部11は、車速センサ(不図示)から車速を取得する。また、取得部11は、車載カメラ(不図示)から周辺情報(例えば、車両の前方画像)を取得する。 The acquisition unit 11 acquires signal information from the TSPS. As a result, the acquiring unit 11 can acquire signal information to be displayed on the traffic signal 2 installed ahead of the vehicle 1 in the traveling direction. In addition, the acquisition unit 11 acquires the depression amount of the accelerator pedal from an accelerator opening sensor (not shown). Also, the acquisition unit 11 acquires the vehicle speed from a vehicle speed sensor (not shown). In addition, the acquisition unit 11 acquires surrounding information (for example, an image in front of the vehicle) from an in-vehicle camera (not shown).
 図2は、車両1および信号機2のそれぞれの位置関係を示す図である。図2の横軸に時間、縦軸に車速を表す。算出部14は、車両1の前方画像を画像処理等することにより、車両1と信号機2との間の車両信号機間距離を算出する。なお、信号機2に向けてレーザービームを照射してからその反射光を受けるまでの時間に基づいて車両信号機間距離を計るためのレーザー距離計を車両1に搭載してもよい。 FIG. 2 is a diagram showing the positional relationship between the vehicle 1 and the traffic light 2. In FIG. 2, the horizontal axis represents time, and the vertical axis represents vehicle speed. The calculation unit 14 calculates the inter-vehicle traffic signal distance between the vehicle 1 and the traffic signal 2 by performing image processing or the like on the forward image of the vehicle 1 . The vehicle 1 may be equipped with a laser rangefinder for measuring the distance between the vehicle traffic signals based on the time from when the laser beam is irradiated toward the traffic signal 2 until when the reflected light is received.
 車両1の走行中において、車両1の走行方向前方の信号機2の信号情報が赤色信号である場合、アクセルペダルを戻してアクセル開度を減少させることで、車両1にエンジンブレーキが作用する。これにより、車両1が減速する。車両1が信号機2の位置を通過するまでの間に、信号機2の信号情報が赤色信号から青色信号に変わる場合、アクセルペダルを踏み込んでアクセル開度を増大させることで、車両1を加速させる。このとき、より加速させるために、現ギヤ段よりも低いギヤ段にシフトダウンが行われる。ここで、信号機2の信号情報が赤色信号から青色信号に変わるタイミングでアクセルペダルを踏み込んでから行われるシフトダウンを「通常のシフトダウン」という。 While the vehicle 1 is running, if the signal information of the traffic light 2 in front of the vehicle 1 in the running direction is a red signal, the accelerator pedal is released to reduce the accelerator opening, and engine braking is applied to the vehicle 1. As a result, the vehicle 1 decelerates. When the signal information of the traffic signal 2 changes from a red signal to a blue signal before the vehicle 1 passes the position of the traffic signal 2, the vehicle 1 is accelerated by stepping on the accelerator pedal to increase the accelerator opening. At this time, a downshift is performed to a gear stage lower than the current gear stage in order to accelerate further. Here, a downshift that is performed after the accelerator pedal is depressed at the timing when the signal information of the traffic light 2 changes from a red signal to a blue signal is referred to as a "normal downshift."
 図2に通常のシフトダウンが行われた場合の車速を破線で示すように、通常のシフトダウンでは、アクセルペダルを踏み込んでからシフトダウンが行われるため、車両1の加速が遅れる。その結果、車速が目標速度に到達するまでに時間がかかる。 As shown by the dashed line in FIG. 2, the vehicle speed when a normal downshift is performed, in a normal downshift, the acceleration of the vehicle 1 is delayed because the downshift is performed after the accelerator pedal is depressed. As a result, it takes time for the vehicle speed to reach the target speed.
 本実施の形態では、判定部12は、取得部11により取得された信号情報に基づいて、車両1の加速が可能であるか否かについて判定する。信号情報は、例えば、信号情報の取得時(現時点)から所定時間T1(図2を参照)後に信号機2が表示する信号が赤色信号から青色信号に変わることを示す情報である。具体的には、判定部12は、所定時間T1内に車両1が信号機2に達しない場合(信号機2の手前で信号機2が赤色信号から青色信号に変わる場合)、車両1の加速が可能であると判定し、所定時間T1内に車両1が信号機2に達する場合(信号機2の手前で信号機2が赤色信号から青色信号に変わらない場合)、車両1の加速が可能でないと判定する。所定時間T1内に車両1が信号機2に達するか否かは、車両1から信号機2までの距離である車両信号機間距離と車両1の車速とに基づいて判定することができる。つまり、判定部12は、信号情報、車速および車両信号機間距離の3つのパラメータに基づいて、車両1の加速が可能であるか否かについて判定する。 In this embodiment, the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the signal information acquired by the acquisition unit 11 . The traffic signal information is, for example, information indicating that the signal displayed by the traffic signal 2 will change from a red signal to a blue signal after a predetermined time T1 (see FIG. 2) from when the signal information is acquired (current time). Specifically, when the vehicle 1 does not reach the traffic light 2 within the predetermined time T1 (when the traffic light 2 changes from red to green before the traffic light 2), the determination unit 12 determines that the vehicle 1 can be accelerated. When the vehicle 1 reaches the traffic light 2 within a predetermined time T1 (when the traffic light 2 does not change from red to green before the traffic light 2), it is determined that the vehicle 1 cannot be accelerated. Whether or not the vehicle 1 reaches the traffic signal 2 within the predetermined time T1 can be determined based on the distance between the vehicle traffic signals, which is the distance from the vehicle 1 to the traffic signal 2, and the vehicle speed of the vehicle 1. FIG. That is, the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the three parameters of signal information, vehicle speed, and distance between vehicle signals.
 変速制御部13は、車両1の加速が可能である場合、当該加速に対応するギヤ段を選択するように自動変速機20を制御する。 When the vehicle 1 can be accelerated, the shift control unit 13 controls the automatic transmission 20 so as to select the gear corresponding to the acceleration.
 変速制御部13は、具体的にはシフトマップに基づいて、自動変速機20のギヤ段を自動制御する変速制御部を有する。シフトマップは、アクセル開度と車速とにより決定されるギヤ段が設定されたものであり、車両用制御装置10の記憶部に記憶される。図3は、シフトマップの一例を示す図である。図3に、複数のダウンシフト線の中から代表して4速から3速のダウンシフト線を示す。例えば、変速制御部13は、車両1を加速する場合、かつ、車両1の運転状態がアクセル開度α、車速V1である場合(図3に示す位置P1)、自動変速機20のギヤ段を4速から3速にシフトダウンする制御を実行する。 Specifically, the shift control unit 13 has a shift control unit that automatically controls the gear stage of the automatic transmission 20 based on the shift map. The shift map is a map in which gears determined by accelerator opening and vehicle speed are set, and is stored in the storage unit of the vehicle control device 10 . FIG. 3 is a diagram showing an example of a shift map. FIG. 3 shows downshift lines from 4th speed to 3rd speed as a representative of a plurality of downshift lines. For example, when the vehicle 1 is accelerated and the driving state of the vehicle 1 is the accelerator opening α and the vehicle speed V1 (position P1 shown in FIG. 3), the shift control unit 13 shifts the gear of the automatic transmission 20 to A control for downshifting from 4th gear to 3rd gear is executed.
 次に、本開示の実施の形態に係る車両用制御装置10の動作の一例について図4を参照して説明する。図4は、本開示の実施の形態に係る車両用制御装置10の動作の一例を示すフローチャートである。本フローは、例えば、車両1のエンジンスタートスイッチのオンにより開始される。以下の説明では、取得部11,判定部12、変速制御部13および算出部14のそれぞれの機能をECU100が行うものとして説明する。 Next, an example of the operation of the vehicle control device 10 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 4 is a flow chart showing an example of the operation of the vehicle control device 10 according to the embodiment of the present disclosure. This flow is started, for example, when the engine start switch of the vehicle 1 is turned on. In the following description, it is assumed that the functions of the acquisition unit 11, the determination unit 12, the shift control unit 13, and the calculation unit 14 are performed by the ECU 100. FIG.
 先ず、ステップS100において、ECU100は、TSPSから信号情報を取得する。 First, in step S100, the ECU 100 acquires signal information from the TSPS.
 次に、ステップS110において、ECU100は、アクセル開度および車速を取得する。 Next, in step S110, the ECU 100 acquires the accelerator opening and the vehicle speed.
 次に、ステップS120において、ECU100は、車両1の前方画像を取得する。 Next, in step S120, the ECU 100 acquires a forward image of the vehicle 1.
 次に、ステップS130において、ECU100は、車両1の前方画像に基づいて、車両1と信号機2との間の車両信号機間距離を算出する。 Next, in step S130, the ECU 100 calculates the inter-vehicle traffic signal distance between the vehicle 1 and the traffic signal 2 based on the front image of the vehicle 1.
 次に、ステップS140において、ECU100は、信号情報、車速および車両信号機間距離の3つのパラメータに基づいて、車両1の加速が可能であるか否かについて判定する。車両1の加速が可能である場合(ステップS140:YES)、処理はステップS150に遷移する。車両1の加速が可能でない場合(ステップS140:NO)、図4に示すフローは終了する。 Next, in step S140, the ECU 100 determines whether or not the vehicle 1 can be accelerated based on the three parameters of signal information, vehicle speed, and distance between vehicle signals. If the vehicle 1 can be accelerated (step S140: YES), the process proceeds to step S150. If the vehicle 1 cannot be accelerated (step S140: NO), the flow shown in FIG. 4 ends.
 ステップS150において、ECU100は、加速に対応するギヤ段を選択する制御を実行する。具体的には、ECU100は、車速およびアクセル開度に基づいてシフトマップを参照して、ギヤ段を選択するように自動変速機20を制御する。 In step S150, the ECU 100 executes control to select a gear stage corresponding to acceleration. Specifically, the ECU 100 refers to a shift map based on the vehicle speed and accelerator opening, and controls the automatic transmission 20 so as to select a gear stage.
 上記の実施の形態に係る車両用制御装置10によれば、車両1の走行方向前方に設置された信号機2に表示される予定の信号情報を、信号情報活用運転支援システムから取得する取得部11と、取得された信号情報に基づいて、車両1の加速が可能であるか否かについて判定する判定部12と、車両1の加速が可能である場合、当該加速に対応するギヤ段を選択するように自動変速機20を制御する変速制御部13と、を備える。 According to the vehicle control device 10 according to the above embodiment, the acquisition unit 11 acquires the signal information scheduled to be displayed on the traffic signal 2 installed in front of the vehicle 1 in the traveling direction from the signal information utilization driving support system. and a determination unit 12 that determines whether or not the vehicle 1 can be accelerated based on the acquired signal information, and if the vehicle 1 can be accelerated, selects the gear stage corresponding to the acceleration. and a shift control unit 13 that controls the automatic transmission 20 as described above.
 上記構成により、信号機2の信号情報が赤色信号から青色信号に変わるタイミングよりも早く、事前にシフトダウンが行われるため、車両1の加速の遅れを防止することが可能となる。図2は、事前のシフトダウンを行った場合の車速と、信号機2の信号情報が赤色信号から青色信号に変わるタイミングで通常のシフトダウンを行った場合の車速とを比較して示す図である。図2に実線で事前のシフトダウンを行った場合の車速を示し、破線で通常のシフトダウンを行った場合の車速を示す。図2に示すように、事前のシフトダウンを行った場合に車両1が目標車速に到達するtpの方が、通常のシフトダウンを行った場合に車両1が目標車速に到達するtnよりも早い。 With the above configuration, the downshift is performed earlier than the timing at which the signal information of the traffic signal 2 changes from red to blue, so it is possible to prevent delays in acceleration of the vehicle 1. FIG. 2 is a diagram showing a comparison between the vehicle speed when downshifting is performed in advance and the vehicle speed when normal downshifting is performed at the timing when the signal information of the traffic light 2 changes from a red signal to a green signal. . In FIG. 2, the solid line indicates the vehicle speed when a preliminary downshift is performed, and the dashed line indicates the vehicle speed when a normal downshift is performed. As shown in FIG. 2, tp at which the vehicle 1 reaches the target vehicle speed when the preliminary downshift is performed is earlier than tn at which the vehicle 1 reaches the target vehicle speed when the normal downshift is performed. .
<変形例1>
 次に、本実施の形態に係る車両用制御装置10の変形例について説明する。なお、変形例の説明においては、実施の形態と異なる構成について主に説明し、同じ構成についてその説明を省略する。
<Modification 1>
Next, a modification of the vehicle control device 10 according to the present embodiment will be described. In addition, in the description of the modification, the configuration different from the embodiment will be mainly described, and the description of the same configuration will be omitted.
 上記実施の形態では、取得部11は、車両1の進行方向前方に設置された信号機2に表示される予定の信号情報を取得する。これに対して、変形例1では、取得部11は、車両1との間の距離が第1閾値以内に設置された信号機2に表示される予定の信号情報を取得する。なお、第1閾値は、安全かつ円滑な交通を確保する観点から、実験やシミュレーションにより設定することが可能となる。上記の構成により、安全かつ円滑な交通を確保することが可能となる。 In the above embodiment, the acquisition unit 11 acquires signal information scheduled to be displayed on the traffic light 2 installed in front of the vehicle 1 in the direction of travel. On the other hand, in Modification 1, the acquisition unit 11 acquires signal information scheduled to be displayed on the traffic signal 2 installed within the first threshold from the vehicle 1 . Note that the first threshold can be set through experiments and simulations from the viewpoint of ensuring safe and smooth traffic. With the above configuration, it is possible to ensure safe and smooth traffic.
<変形例2>
 次に、変形例2について説明する。安全な交通を確保するためには、車両1と車両1の前方を走行する先行車両(不図示)との車車間距離を十分に確保する必要がある。そこで、変形例2では、判定部12は、上記3つのパラメータに基づいて、車両1の加速が可能であると判定される場合であっても、車両1と先行車両との間の車車間距離が所定の第2閾値未満である場合、車両1の加速が可能であるか否かの判定をしない。換言すれば、判定部12は、車両1と先行車両との間の車車間距離が所定の第2閾値以上である場合、車両1の加速が可能であるか否かの判定をする。なお、第2閾値は、安全かつ円滑な交通を確保する観点から、実験やシミュレーションにより設定することが可能となる。
<Modification 2>
Next, modification 2 will be described. In order to ensure safe traffic, it is necessary to ensure a sufficient inter-vehicle distance between the vehicle 1 and a preceding vehicle (not shown) traveling in front of the vehicle 1 . Therefore, in Modified Example 2, even if it is determined that the vehicle 1 can be accelerated based on the above three parameters, the determination unit 12 determines the inter-vehicle distance between the vehicle 1 and the preceding vehicle. is less than a predetermined second threshold value, it is not determined whether the vehicle 1 can be accelerated. In other words, the determination unit 12 determines whether or not the vehicle 1 can be accelerated when the inter-vehicle distance between the vehicle 1 and the preceding vehicle is equal to or greater than the predetermined second threshold. Note that the second threshold can be set through experiments and simulations from the viewpoint of ensuring safe and smooth traffic.
 この場合、算出部14は、車両1の前方画像を画像処理等することにより、車両1と車両1の前方を走行する先行車両との間の車車間距離を算出する。なお、先行車両に向けてレーザービームを照射してからその反射光を受けるまでの時間に基づいて車車間距離を計るためのレーザー距離計を車両1に搭載してもよい。 In this case, the calculation unit 14 calculates the inter-vehicle distance between the vehicle 1 and the preceding vehicle traveling in front of the vehicle 1 by performing image processing or the like on the front image of the vehicle 1 . The vehicle 1 may be equipped with a laser rangefinder for measuring the inter-vehicle distance based on the time from when the preceding vehicle is irradiated with the laser beam to when the reflected light is received.
<変形例3>
 次に、変形例3について説明する。上記実施の形態においては、判定部12は、信号情報、車速、および、車両信号機間距離の3つのパラメータに基づいて、車両1の加速が可能であるか否かについて判定する(図4に示すステップS140を参照)。
<Modification 3>
Next, modification 3 will be described. In the above embodiment, the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the three parameters of signal information, vehicle speed, and distance between vehicle signals (see FIG. 4). See step S140).
 これに対し、変形例3では、判定部12は、車両1の車速およびアクセル開度に基づいて、シフトダウン領域であるか否かを判定する。そして、判定部12は、シフトダウン領域である場合、上記の3つのパラメータに基づいて、車両1の加速が可能であるか否かについて判定する。換言すれば、判定部12は、シフトダウン領域でない場合、上記の3つのパラメータに基づいて、車両1の加速が可能であるか否かについて判定しない。 On the other hand, in Modification 3, the determination unit 12 determines whether or not the vehicle is in the shift down region based on the vehicle speed of the vehicle 1 and the accelerator opening. Then, when it is in the downshift region, the determination unit 12 determines whether or not the vehicle 1 can be accelerated based on the above three parameters. In other words, the determining unit 12 does not determine whether or not the vehicle 1 can be accelerated based on the above three parameters unless the shift down region is set.
 図5は、シフトダウン領域を含むシフトマップの一例を示す図である。図5にシフトダウン領域をハッチングで描かれた領域で示す。車速およびアクセル開度により定められた位置(図5に示す位置P2)がシフトダウン領域ではない場合、判定部12は、上記の3つのパラメータに基づいて、車両1の加速が可能であるか否かについて判定しない。シフトダウン領域でない領域(非シフトダウン領域)を設けることにより、ドライバビリティを悪化させるようなシフトダウンを防止することが可能となる。 FIG. 5 is a diagram showing an example of a shift map including a shift down area. FIG. 5 shows the shift-down region as a hatched region. If the position determined by the vehicle speed and accelerator opening (position P2 shown in FIG. 5) is not in the downshift region, the determination unit 12 determines whether the vehicle 1 can be accelerated based on the above three parameters. does not determine whether By providing a region that is not a shift down region (non-shift down region), it is possible to prevent downshifts that deteriorate drivability.
 その他、上記実施の形態は、何れも本開示の実施をするにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, the above-described embodiments are merely examples of specific implementations of the present disclosure, and the technical scope of the present disclosure should not be construed to be limited by these. . That is, the present disclosure can be embodied in various forms without departing from its spirit or key features.
 本出願は、2021年9月21日付けで出願された日本国特許出願(特願2021-153222)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-153222) filed on September 21, 2021, the contents of which are incorporated herein by reference.
 本開示は、車両の加速の遅れを防止することが要求される車両用制御装置を搭載する車両に好適に利用される。 The present disclosure is suitably used for a vehicle equipped with a vehicle control device that is required to prevent a delay in acceleration of the vehicle.
 1 車両
 2 信号機
 3 光ビーコン
 10 車両用制御装置
 11 取得部
 12 判定部
 13 変速制御部
 14 算出部
 20 自動変速機
Reference Signs List 1 vehicle 2 traffic light 3 optical beacon 10 vehicle control device 11 acquisition unit 12 determination unit 13 shift control unit 14 calculation unit 20 automatic transmission

Claims (5)

  1.  車両の走行方向前方に設置された信号機に表示される予定の信号情報を、信号情報活用運転支援システムから取得する取得部と、
     取得された前記信号情報に基づいて、前記車両の加速が可能であるか否かについて判定する判定部と、
     前記車両の加速が可能である場合、当該加速に対応するギヤ段を選択するように変速機を制御する制御部と、
     を備える、車両用制御装置。
    an acquisition unit that acquires signal information to be displayed on a traffic signal installed in front of the vehicle in the traveling direction from the signal information utilization driving support system;
    a determination unit that determines whether or not the vehicle can be accelerated based on the acquired signal information;
    a control unit for controlling a transmission to select a gear stage corresponding to acceleration when the vehicle can be accelerated;
    A vehicle control device.
  2.  前記取得部は、前記車両との間の距離が所定の第1閾値以内に設置された前記信号機に表示される予定の信号情報を取得する、請求項1に記載の車両用制御装置。 The vehicle control device according to claim 1, wherein the acquisition unit acquires signal information scheduled to be displayed on the traffic light installed within a predetermined first threshold from the vehicle.
  3.  前記判定部は、さらに、前記車両と当該車両の前方を走行する先行車両との間の車車間距離が所定の第2閾値以上である場合、前記車両の加速が可能であるか否かについて判定する、請求項1に記載の車両用制御装置。 The determining unit further determines whether or not the vehicle can be accelerated when the inter-vehicle distance between the vehicle and a preceding vehicle traveling in front of the vehicle is equal to or greater than a predetermined second threshold. The vehicle control device according to claim 1, wherein
  4.  前記判定部は、さらに、前記車両の車速およびアクセル開度に基づいて、前記車両の加速が可能であるか否かについて判定する、請求項1に記載の車両用制御装置。 The vehicle control device according to claim 1, wherein the determination unit further determines whether or not the vehicle can be accelerated based on the vehicle speed and accelerator opening.
  5.  請求項1から4のいずれか一項に記載の車両用制御装置を備える車両。 A vehicle comprising the vehicle control device according to any one of claims 1 to 4.
PCT/JP2022/035022 2021-09-21 2022-09-20 Vehicle control device and vehicle WO2023048147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-153222 2021-09-21
JP2021153222A JP7334767B2 (en) 2021-09-21 2021-09-21 Vehicle controller and vehicle

Publications (1)

Publication Number Publication Date
WO2023048147A1 true WO2023048147A1 (en) 2023-03-30

Family

ID=85719477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035022 WO2023048147A1 (en) 2021-09-21 2022-09-20 Vehicle control device and vehicle

Country Status (2)

Country Link
JP (1) JP7334767B2 (en)
WO (1) WO2023048147A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227630A (en) * 2000-02-15 2001-08-24 Nissan Diesel Motor Co Ltd Automatic transmission for vehicle
JP2009003577A (en) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd Vehicle operation support system, operation support device, vehicle, and vehicle operation support method
JP2010064576A (en) * 2008-09-10 2010-03-25 Masahiro Watanabe Vehicle travel control method
JP2011141008A (en) * 2010-01-08 2011-07-21 Toyota Motor Corp Device for supporting vehicle operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227630A (en) * 2000-02-15 2001-08-24 Nissan Diesel Motor Co Ltd Automatic transmission for vehicle
JP2009003577A (en) * 2007-06-19 2009-01-08 Sumitomo Electric Ind Ltd Vehicle operation support system, operation support device, vehicle, and vehicle operation support method
JP2010064576A (en) * 2008-09-10 2010-03-25 Masahiro Watanabe Vehicle travel control method
JP2011141008A (en) * 2010-01-08 2011-07-21 Toyota Motor Corp Device for supporting vehicle operation

Also Published As

Publication number Publication date
JP7334767B2 (en) 2023-08-29
JP2023045043A (en) 2023-04-03

Similar Documents

Publication Publication Date Title
US6970779B2 (en) Vehicle speed control system and program
US7447583B2 (en) Vehicle control apparatus
JP2008296798A (en) Control device for vehicle
JP6776968B2 (en) Driving control device, vehicle and driving control method
US10501079B2 (en) Vehicle driving control apparatus and method thereof
JPH09290665A (en) Automatic speed control device of vehicle
JP4075585B2 (en) Vehicle speed control device and program
US20210221379A1 (en) Control device for vehicles
JP5729539B2 (en) Auto cruise control device
KR20170022695A (en) Method and apparatus of controlling shift based on relative speed between host vehicle and preceding vehicle
WO2023048147A1 (en) Vehicle control device and vehicle
JP2007038759A (en) Traveling control system for vehicle
JP5262124B2 (en) Vehicle travel control device
JP5211653B2 (en) Driving force control device
JP2000318484A (en) Vehicle running control device
JPH09323585A (en) Deceleration warning device for vehicle
JP2006044591A (en) Deceleration control device for vehicle
JP5024125B2 (en) Fuel efficiency improvement device
JP2003072410A (en) Following travel control device
JP2006151126A (en) Driver&#39;s control dependency detector and vehicle deceleration control device equipped with the same
JP2005265176A (en) Running control device of vehicle
JP6743405B2 (en) Travel control device and travel control method
JP4946686B2 (en) Vehicle driving force control device
JP2023124060A (en) Automatic-transmission shift control apparatus
JP5333104B2 (en) Shift control device for automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872899

Country of ref document: EP

Kind code of ref document: A1