WO2023047839A1 - All-solid-state battery, and method for manufacturing same - Google Patents

All-solid-state battery, and method for manufacturing same Download PDF

Info

Publication number
WO2023047839A1
WO2023047839A1 PCT/JP2022/030821 JP2022030821W WO2023047839A1 WO 2023047839 A1 WO2023047839 A1 WO 2023047839A1 JP 2022030821 W JP2022030821 W JP 2022030821W WO 2023047839 A1 WO2023047839 A1 WO 2023047839A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
electrode
width
solid
layer
Prior art date
Application number
PCT/JP2022/030821
Other languages
French (fr)
Japanese (ja)
Inventor
原田智宏
渡辺剛基
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023047839A1 publication Critical patent/WO2023047839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery and its manufacturing method.
  • All-solid-state batteries are manufactured by stacking multiple layers of electrode paste for electrode layers and green sheets for solid electrolyte layers and firing them. At this time, the all-solid-state battery may warp due to the difference in thermal contraction rate between the electrode layer and the solid electrolyte layer.
  • the present invention has been made in view of the above problems, and an object of the present invention is to suppress the occurrence of warpage in an all-solid-state battery.
  • a plurality of each of a first electrode layer, a solid electrolyte layer, and a second electrode layer are laminated along a first direction, and the first electrode layer is exposed.
  • a laminate having a first surface and a second surface from which the second electrode layer is exposed; and a first electrode layer provided on the first surface and connected to the first electrode layer. and a second external electrode provided on the second surface and connected to the second electrode layer, wherein the first electrode layer is connected to the first external electrode and a second portion extending along a second direction from the first external electrode toward the second external electrode, wherein the first direction and the second external electrode are aligned.
  • a first width of the first portion along a third direction intersecting each of the directions is greater than a second width of the second portion.
  • the second electrode layer has a third portion connected to the second external electrode and a fourth portion extending along the second direction.
  • a third width along the third direction of the three portions may be greater than a fourth width of the fourth portion.
  • the all-solid-state battery has a region where the first electrode layer and the second electrode layer overlap when viewed from the first direction, and the first electrode layer and the second electrode in the region T1/T2 ⁇ 1 may be satisfied, where T1 is the thickness of any one of the layers, and T2 is the thickness of the solid electrolyte layer in the region.
  • the first width may be 1.01 times or more the second width
  • the third width may be 1.01 times or more the fourth width
  • the first width may be 1.02 times or more the second width
  • the third width may be 1.02 times or more the fourth width
  • the first width may be 1.05 times or more the second width
  • the third width may be 1.05 times or more the fourth width
  • the laminate further has a third surface parallel to each of the first direction and the second direction and from which the solid electrolyte layer is exposed, (D2 ⁇ D1) ⁇ 0.1 ⁇ D2, where D1 is the distance between the portion and the third surface, and D2 is the distance between the second portion and the third surface.
  • the all-solid-state battery further includes a first current collector layer sandwiched between the two first electrode layers and a second current collector layer sandwiched between the two second electrode layers.
  • a plurality of each of a first electrode layer, a solid electrolyte layer, and a second electrode layer are laminated along a first direction, and the first electrode layer is exposed.
  • the first electrode layer includes a first portion connected to the first external electrode and a second electrode layer extending along a second direction from the first external electrode toward the second external electrode.
  • a first width of the first portion along a third direction intersecting each of the first direction and the second direction is a second width of the second portion; is wider than the width of
  • FIG. 1 is an external view of an all-solid-state battery
  • FIG. FIG. 2 is a cross-sectional view taken along line II of FIG. 1
  • 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. FIG. 4 is a plan view of the first electrode layer and its surroundings; 4 is an enlarged cross-sectional view of a first electrode layer
  • FIG. FIG. 4 is a plan view of the second electrode layer and its surroundings
  • 4 is an enlarged cross-sectional view of a second electrode layer
  • FIG. FIG. 3 is a perspective view showing the positional relationship of each electrode layer in the laminate
  • FIG. 4 is a plan view of the first electrode layer and the second electrode layer viewed from the first direction; 3 is a flow chart of a method for manufacturing an all-solid-state battery according to the present embodiment; FIG. 4 is a plan view of a first electrode layer and its surroundings according to a comparative example; FIG. 4 is a plan view of a second electrode layer and its surroundings according to a comparative example; FIG. 5 is a perspective view showing the positional relationship of each electrode layer in a laminate according to a comparative example;
  • FIG. 1 is an external view of an all-solid-state battery 100.
  • the all-solid-state battery 100 includes a rectangular parallelepiped laminated chip 70 and external electrodes 40 a and 40 b provided on two opposing surfaces of the laminated chip 70 .
  • FIG. 2 is a cross-sectional view along line II in FIG.
  • the laminated chip 70 includes a laminated body 60 in which a plurality of solid electrolyte layers 11, first electrode layers 12, and second electrode layers 14 are laminated along the first direction Z. have.
  • the laminate 60 has a first surface 60a and a second surface 60b parallel to the first direction Z. Note that each of the first surface 60a and the second surface 60b is also a surface perpendicular to the second direction Y. As shown in FIG. The second direction Y is perpendicular to the first direction Z and is the direction from the first external electrode 40a to the second external electrode 40b.
  • a first external electrode 40a is provided on the first surface 60a, and the first electrode layer 12 is connected to the first external electrode 40a.
  • a second external electrode 40b is provided on the second surface 60b, and the second electrode layer 14 is connected to the second external electrode 40b.
  • Both the first electrode layer 12 and the second electrode layer 14 are conductive layers containing both a positive electrode active material and a negative electrode active material.
  • the positive electrode active material is not particularly limited, a material having an olivine crystal structure is used as the positive electrode active material here. Examples of such positive electrode active materials include phosphates containing transition metals and lithium.
  • the olivine type crystal structure is a crystal of natural olivine and can be identified by X-ray diffraction.
  • LiCoPO4 containing Co As an electrode active material having an olivine type crystal structure, there is, for example, LiCoPO4 containing Co.
  • a phosphate or the like in which the transition metal Co is replaced in this chemical formula may also be used.
  • the ratio of Li and PO4 can vary depending on the valence. Co, Mn, Fe, Ni, etc. may be used as the transition metal.
  • the negative electrode active material includes, for example, titanium oxide, lithium-titanium composite oxide, lithium-titanium composite phosphate, carbon, and vanadium lithium phosphate.
  • each of the first electrode layer 12 and the second electrode layer 14 functions as both a positive electrode and a negative electrode. Also, it can withstand actual use without malfunctioning in short-circuit inspection.
  • the present embodiment is not limited to this, and by forming a positive electrode layer as the first electrode layer 12 and forming a negative electrode layer as the second electrode layer 13, the all-solid-state battery 100 has polarity.
  • an oxide-based solid electrolyte material or a conductive aid such as carbon or metal may be added to these electrode layers.
  • the metal of the conductive aid include Pd, Ni, Cu, and Fe.
  • alloys of these metals may be used as conductive aids.
  • the layer structures of the first electrode layer 12 and the second electrode layer 14 are not particularly limited.
  • the first electrode layer 12 is formed on both main surfaces of the first current collector layer 12b made of a conductive material, thereby turning the first current collector layer 12b into a first collector layer 12b. It may be sandwiched by one electrode layer 12 .
  • the second electrode layers 14 is sandwiched between the second electrode layers 14. good too.
  • the solid electrolyte layer 11 there is a phosphate-based solid electrolyte having a NASICON structure.
  • Phosphate-based solid electrolytes having the NASICON structure have high ionic conductivity and are chemically stable in the atmosphere.
  • the phosphate-based solid electrolyte is not particularly limited, a phosphate containing lithium is used here.
  • the phosphate is based on, for example, a composite lithium phosphate salt with Ti (LiTi 2 (PO 4 ) 3 ), and a trivalent compound such as Al, Ga, In, Y, or La to increase the Li content. It is a salt in which a transition metal is partially substituted.
  • Such salts include Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 1+x Al x Zr 2-x (PO 4 ) 3 and Li 1+x Al x Ti 2-x (PO 4 ) 3 .
  • Li--Al--M--PO 4 system phosphate M is Ge, Ti, Zr, etc.).
  • a Li—Al—Ge—PO 4 -based phosphate to which a transition metal contained in the phosphate in the first electrode layer 12 is added in advance may be used as the material for the solid electrolyte layer 11 .
  • the first electrode layer 12 contains a phosphate containing either Co or Li
  • the Li—Al—Ge—PO 4 -based phosphate to which Co is previously added is used as the solid electrolyte layer 11. may be contained in Thereby, it is possible to suppress the elution of the transition metal from the first electrode layer 12 to the solid electrolyte layer 11 .
  • FIG. 3 is a cross-sectional view along line II-II in FIG. As illustrated in FIG. 3, the laminate 60 has a third surface 60c and a fourth surface 60d parallel to the first direction Z and the second direction Y, respectively.
  • the laminate 60 has a fifth surface 60e and a sixth surface 60f perpendicular to the first direction Z.
  • the fifth surface 60e is an upper surface that faces upward when the all-solid-state battery 100 is mounted on the wiring substrate.
  • the sixth surface 60f is the lower surface that is the lower side during mounting.
  • the outermost layer of laminate 60 is solid electrolyte layer 11, and the surfaces of solid electrolyte layer 11 define the third to sixth surfaces 60c to 60f, respectively.
  • a moisture-proof layer 80 is provided on each surface of the third to sixth surfaces 60c to 60f.
  • the moisture-proof layer 80 is a layer of inorganic oxide containing silicon, and serves to protect the laminate 60 from moisture in the atmosphere. Any one of B, Bi, Zn, Ba, Li, P, Sn, Pb, Mg, and Na may be added to the moisture-proof layer 80 .
  • FIG. 4 is a plan view of the first electrode layer 12 and its surroundings. As shown in FIG. 4, the first electrode layer 12 has a first portion 12x connected to the first external electrode 40a and a second portion 12x extending along the second direction Y from the first portion 12x. and a portion 12y.
  • the first width W1 of the first portion 12x along the third direction X perpendicular to each of the first direction Z and the second direction Y is the second width along the third direction X. It is wider than the second width W2 of the portion 12y. As a result, the first electrode layer 12 becomes substantially T-shaped in plan view.
  • W1 ⁇ 1.01 ⁇ W2 W1 ⁇ 1.01 ⁇ W2.
  • concentration of stress on the corners of the all-solid-state battery 100 can be suppressed, and warping can be suppressed more effectively.
  • FIG. 5 is an enlarged cross-sectional view of the first electrode layer 12.
  • the distance between the first portion 12x of the first electrode layer 12 and the third surface 60c is D1
  • the distance between the second portion 12y of the first electrode layer 12 and the third surface 60c is D1.
  • the interval is D2.
  • these intervals D1 and D2 satisfy (D2-D1) ⁇ 0.1 ⁇ D2. Thereby, it is possible to suppress the occurrence of warping in the all-solid-state battery 100 due to the difference in contraction rate between the first electrode layer 12 and the solid electrolyte layer 11 .
  • FIG. 6 is a plan view of the second electrode layer 14 and its surroundings. As shown in FIG. 4, the second electrode layer 14 has a third portion 14x connected to the second external electrode 40b and a fourth portion 14x extending along the second direction Y from the third portion 14x. and a portion 14y.
  • a third width W3 of the third portion 14x along the third direction X is wider than a fourth width W4 of the fourth portion 14y along the third direction X.
  • the second electrode layer 14 becomes substantially T-shaped in plan view.
  • concentration of stress on the corners of the all-solid-state battery 100 can be suppressed, and warping can be suppressed more effectively.
  • FIG. 7 is an enlarged cross-sectional view of the second electrode layer 14.
  • the distance between the third portion 14x of the second electrode layer 14 and the third surface 60c is D3, and the distance between the fourth portion 14y of the second electrode layer 14 and the third surface 60c is D3.
  • the interval is D4.
  • these intervals D3 and D4 satisfy (D4-D3) ⁇ 0.1 ⁇ D4. Thereby, it is possible to suppress the occurrence of warpage in the all-solid-state battery 100 due to the difference in contraction rate between the second electrode layer 14 and the solid electrolyte layer 11 .
  • the third portion 14x is exposed on the third surface 60c, the third portion 14x and the second external electrode 40b are in close contact with each other, and the second electrode layer 14 and the second external electrode 40b are brought into close contact with each other. The adhesion strength of is increased.
  • FIG. 8 is a perspective view showing the positional relationship between the electrode layers 12 and 14 in the laminate 60.
  • the first portion 12x of the first electrode layer 12 is exposed on the first surface 60a and the third portion 14x of the second electrode layer 14 is exposed on the second surface 60b. .
  • FIG. 9 is a plan view of the first electrode layer 12 and the second electrode layer 14 viewed from the first direction Z.
  • the first portion 12x of the first electrode layer 12 and the third portion 14x of the second electrode layer 14 overlap each other in the region R.
  • the thickness of either the first electrode layer 12 or the second electrode layer 14 in the region R is T1
  • the thickness T2 of the solid electrolyte layer 11 in the region R is T1/ T2 ⁇ 1.
  • T1/T2 ⁇ 10 More preferably, T1/T2 ⁇ 50.
  • T1/T2 ⁇ 10 More preferably, T1/T2 ⁇ 50.
  • the film thickness of the first electrode layer 12 is set to 2 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m.
  • the film thickness of the second electrode layer 14 is 2 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. By adopting this range, it is possible to prevent a decrease in capacity due to thinning of the electrode layers 12 and 14 and to prevent a decrease in stacking accuracy due to thickening of the electrode layers 12 and 14 .
  • the film thickness of the solid electrolyte layer 11 is 2 ⁇ m to 50 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m.
  • the first width W1 is wider than the second width W2
  • the area of the first electrode layer 12 exposed on the first surface 60a is increases. Therefore, even if there is a difference in thermal contraction rate between the solid electrolyte layer 11 and the first electrode layer 12 when the stacked body 60 after firing is cooled, the first portion widely present in the first portion 12x Since the electrode layer 12 acts to suppress the contraction of the solid electrolyte layer 11, the first portion 12x and the laminate 60 in the vicinity thereof are less likely to warp.
  • the third width W3 is wider than the fourth width W4
  • the area of the second electrode layer 14 exposed on the second surface 60b is increased.
  • the second electrode layer 14 widely present in the third portion 14x Since the electrode layer 14 acts to suppress contraction of the solid electrolyte layer 11, the third portion 14x and the laminate 60 in the vicinity thereof are less likely to warp.
  • first portion 12x and the third portion 14x having the wide width increase the strength of the laminate 60 in the vicinity of the first surface 60a and the second surface 60b, the mechanical strength of the all-solid-state battery 100 is increased. can also be increased.
  • FIG. 10 is a flowchart of the method for manufacturing an all-solid-state battery according to this embodiment.
  • powder of the phosphate-based solid electrolyte that constitutes the solid electrolyte layer 11 is prepared.
  • the powder of the phosphate-based solid electrolyte that constitutes the solid electrolyte layer 11 can be produced by mixing raw materials and additives and using a solid-phase synthesis method or the like.
  • a desired average particle size can be obtained by dry pulverizing the obtained powder.
  • a planetary ball mill using 5 mm ⁇ ZrO 2 balls is used to adjust the desired average particle size.
  • Additives include sintering aids.
  • a sintering aid for example, Li—B—O based compounds, Li—Si—O based compounds, Li—C—O based compounds, Li—SO based compounds, and Li—P—O based compounds. Any glass component can be used.
  • the obtained powder is uniformly dispersed in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., and wet pulverized to obtain a solid electrolyte slurry having a desired average particle size.
  • a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse.
  • a binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste.
  • a green sheet for the solid electrolyte layer 11 is obtained by applying the solid electrolyte paste.
  • the coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used.
  • the particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
  • Electrode layer paste preparation step Next, an electrode layer paste for forming the first electrode layer 12 and the second electrode layer 14 is prepared.
  • a positive electrode active material, a negative electrode active material, and a solid electrolyte material are highly dispersed in a bead mill or the like to prepare a ceramic paste consisting only of ceramic particles.
  • a carbon paste containing carbon particles such as carbon black may be prepared, and the carbon paste may be kneaded with the ceramic paste.
  • an electrode layer paste is printed on one main surface of the green sheet.
  • 150 printed green sheets are stacked alternately and cut into a predetermined size by a dicer to obtain a laminate 60 .
  • the uppermost layer and the lowermost layer of the laminate 60 are green sheets.
  • the laminate 60 is fired in a firing atmosphere containing oxygen.
  • the oxygen partial pressure in the firing atmosphere is preferably 2 ⁇ 10 ⁇ 13 atm or less.
  • the first external electrode 40a and the second external electrode 40b are formed by applying a metal paste to each surface 60a, 60b of the laminate 60 and baking it.
  • the first external electrode 40a and the second external electrode 40b may be formed by sputtering or plating.
  • the film thickness of the first electrode layer 12 after firing is 14 ⁇ m
  • the film thickness of the second electrode layer 14 is 10 ⁇ m
  • the film thickness of the solid electrolyte layer 11 after baking is 8 ⁇ m.
  • the third to sixth surfaces 60c to 60f of the laminate 60 are coated with dibutyl ether or a solution obtained by dissolving tetraalkoxysilane in a dibutyl ether-based solvent. Thereafter, the moisture-proof layer 80 is obtained by heating the solution to a temperature of about 100.degree. C. to 150.degree. With the above, the basic structure of the all-solid-state battery 100 is completed.
  • An all-solid-state battery was produced according to this embodiment.
  • Each parameter W1 to W4 and D1 to D4 shown in FIGS. D3) 0.7 ⁇ D4.
  • both the first electrode layer 12 and the second electrode layer 14 have a thickness difference from the solid electrolyte layer 11, but each electrode layer can suppress the shrinkage of the solid electrolyte layer 11 during firing. , no warpage was observed.
  • FIG. 11 is a plan view of a first electrode layer 12 and its periphery according to a comparative example. As shown in FIG. 11, in the comparative example, the first electrode layer 12 has a rectangular shape in plan view.
  • the first electrode layer 12 cannot suppress the contraction of the solid electrolyte layer 11 in the vicinity of the first surface 60a, and the laminate 60 is warped. occur.
  • FIG. 12 is a plan view of the second electrode layer 14 and its surroundings according to the comparative example.
  • the second electrode layer 14 according to the comparative example has a rectangular shape in plan view, like the first electrode layer 12 . Therefore, the laminated body 60 is warped for the same reason as the first electrode layer 12 in FIG.
  • FIG. 13 is a perspective view showing the positional relationship of each electrode layer in a laminate according to a comparative example. As shown in FIG. 13, in the comparative example, the first electrode layer 12 is exposed on the first surface 60a, and the second electrode layer 14 is exposed on the second surface 60b.

Abstract

This all-solid-state battery comprises a stacked body in which a plurality of each of a first electrode layer, a solid electrolyte layer, and a second electrode layer are stacked in a first direction, and which has a first surface in which the first electrode layer is exposed, and a second surface in which the second electrode layer is exposed, a first external electrode which is provided on the first surface and which is connected to the first electrode layer, and a second external electrode which is provided on the second surface and which is connected to the second electrode layer, characterized in that: the first electrode layer includes a first part connected to the first external electrode, and a second part which extends in a second direction from the first external electrode toward the second external electrode; and a first width of the first part in a third direction intersecting both the first direction and the second direction is greater than a second width of the second part.

Description

全固体電池とその製造方法All-solid-state battery and manufacturing method thereof
 本発明は、全固体電池とその製造方法に関する。 The present invention relates to an all-solid-state battery and its manufacturing method.
 近年、二次電池が様々な分野で利用されている。電解液を用いた二次電池には電解液の漏液等の問題がある。そこで、固体電解質を備え、他の構成要素も固体で構成した全固体電池の開発が行われている(特許文献1~4参照)。 In recent years, secondary batteries have been used in various fields. A secondary battery using an electrolytic solution has problems such as leakage of the electrolytic solution. Therefore, development of all-solid-state batteries in which solid electrolytes are provided and other constituent elements are also solid (see Patent Documents 1 to 4) is underway.
特開平6-231796号公報JP-A-6-231796 特開2011-216235号公報JP 2011-216235 A 特開2015-220106号公報JP 2015-220106 A 特開2020-166980号公報Japanese Unexamined Patent Application Publication No. 2020-166980
 全固体電池は、電極層用の電極ペーストと、固体電解質層用のグリーンシートとを複数積層し、それらを焼成することで作製される。このとき、電極層と固体電解質層の各々の熱収縮率の差に起因して全固体電池に反りが生じることがある。 All-solid-state batteries are manufactured by stacking multiple layers of electrode paste for electrode layers and green sheets for solid electrolyte layers and firing them. At this time, the all-solid-state battery may warp due to the difference in thermal contraction rate between the electrode layer and the solid electrolyte layer.
 本発明は上記課題に鑑みなされたものであり、全固体電池に反りが発生するのを抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress the occurrence of warpage in an all-solid-state battery.
 本発明に係る全固体電池は、第1の電極層、固体電解質層、及び第2の電極層の各々が第1の方向に沿って複数積層され、前記第1の電極層が表出する第1の面と、前記第2の電極層が表出する第2の面とを備えた積層体と、前記第1の面に設けられ、かつ前記第1の電極層に接続された第1の外部電極と、前記第2の面に設けられ、かつ前記第2の電極層に接続された第2の外部電極とを有し、前記第1の電極層は、前記第1の外部電極に接続された第1の部分と、前記第1の外部電極から前記第2の外部電極に向かう第2の方向に沿って延びる第2の部分とを有し、前記第1の方向と前記第2の方向の各々と交叉する第3の方向に沿った前記第1の部分の第1の幅が前記第2の部分の第2の幅よりも広いことを特徴とする。 In the all-solid-state battery according to the present invention, a plurality of each of a first electrode layer, a solid electrolyte layer, and a second electrode layer are laminated along a first direction, and the first electrode layer is exposed. a laminate having a first surface and a second surface from which the second electrode layer is exposed; and a first electrode layer provided on the first surface and connected to the first electrode layer. and a second external electrode provided on the second surface and connected to the second electrode layer, wherein the first electrode layer is connected to the first external electrode and a second portion extending along a second direction from the first external electrode toward the second external electrode, wherein the first direction and the second external electrode are aligned. A first width of the first portion along a third direction intersecting each of the directions is greater than a second width of the second portion.
 上記全固体電池において、前記第2の電極層は、前記第2の外部電極に接続された第3の部分と、前記第2の方向に沿って延びる第4の部分とを有し、前記第3の部分の前記第3の方向に沿った第3の幅が前記第4の部分の第4の幅よりも広くてもよい。 In the all-solid-state battery described above, the second electrode layer has a third portion connected to the second external electrode and a fourth portion extending along the second direction. A third width along the third direction of the three portions may be greater than a fourth width of the fourth portion.
 上記全固体電池において、前記第1の方向から見て前記第1の電極層と前記第2の電極層とが重なる領域を有し、前記領域における前記第1の電極層と前記第2の電極層のいずれかの膜厚をT1、前記領域における前記固体電解質層の膜厚をT2としたときに、T1/T2≧1となってもよい。 The all-solid-state battery has a region where the first electrode layer and the second electrode layer overlap when viewed from the first direction, and the first electrode layer and the second electrode in the region T1/T2≧1 may be satisfied, where T1 is the thickness of any one of the layers, and T2 is the thickness of the solid electrolyte layer in the region.
 上記全固体電池において、前記第1の幅は、前記第2の幅の1.01倍以上であり、前記第3の幅は、前記第4の幅の1.01倍以上でもよい。 In the all-solid-state battery, the first width may be 1.01 times or more the second width, and the third width may be 1.01 times or more the fourth width.
 上記全固体電池において、前記第1の幅は、前記第2の幅の1.02倍以上であり、前記第3の幅は、前記第4の幅の1.02倍以上でもよい。 In the all-solid-state battery, the first width may be 1.02 times or more the second width, and the third width may be 1.02 times or more the fourth width.
 上記全固体電池において、前記第1の幅は、前記第2の幅の1.05倍以上であり、前記第3の幅は、前記第4の幅の1.05倍以上でもよい。 In the all-solid-state battery, the first width may be 1.05 times or more the second width, and the third width may be 1.05 times or more the fourth width.
 上記全固体電池において、前記積層体は、前記第1の方向と前記第2の方向の各々に平行であり、かつ前記固体電解質層が表出する第3の面を更に有し、前記第1の部分と前記第3の面との間隔をD1、前記第2の部分と前記第3の面との間隔をD2としたときに、(D2-D1)≧0.1×D2でもよい。 In the above all-solid-state battery, the laminate further has a third surface parallel to each of the first direction and the second direction and from which the solid electrolyte layer is exposed, (D2−D1)≧0.1×D2, where D1 is the distance between the portion and the third surface, and D2 is the distance between the second portion and the third surface.
 上記全固体電池において、二つの前記第1の電極層に挟まれた第1の集電体層と、二つの前記第2の電極層に挟まれた第2の集電体層とを更に有してもよい。 The all-solid-state battery further includes a first current collector layer sandwiched between the two first electrode layers and a second current collector layer sandwiched between the two second electrode layers. You may
 本発明に係る全固体電池の製造方法は、第1の電極層、固体電解質層、及び第2の電極層の各々が第1の方向に沿って複数積層され、前記第1の電極層が表出する第1の面と、前記第2の電極層が表出する第2の面とを備えた積層体を形成する工程と、前記積層体を焼成する工程と、前記第1の面に、前記第1の電極層に接続された第1の外部電極を形成する工程と、前記第2の面に、前記第2の電極層に接続された第2の外部電極を形成する工程とを有し、前記第1の電極層は、前記第1の外部電極に接続された第1の部分と、前記第1の外部電極から前記第2の外部電極に向かう第2の方向に沿って延びる第2の部分とを有し、前記第1の方向と前記第2の方向の各々と交叉する第3の方向に沿った前記第1の部分の第1の幅が前記第2の部分の第2の幅よりも広いことを特徴とする。 In the method for manufacturing an all-solid-state battery according to the present invention, a plurality of each of a first electrode layer, a solid electrolyte layer, and a second electrode layer are laminated along a first direction, and the first electrode layer is exposed. forming a laminate having a first surface exposed and a second surface exposed by the second electrode layer; firing the laminate; forming a first external electrode connected to the first electrode layer; and forming a second external electrode connected to the second electrode layer on the second surface. and the first electrode layer includes a first portion connected to the first external electrode and a second electrode layer extending along a second direction from the first external electrode toward the second external electrode. a first width of the first portion along a third direction intersecting each of the first direction and the second direction is a second width of the second portion; is wider than the width of
 本発明によれば、全固体電池に反りが発生するのを抑制することができる。 According to the present invention, it is possible to suppress the occurrence of warpage in the all-solid-state battery.
全固体電池の外観図である。1 is an external view of an all-solid-state battery; FIG. 図1のI-I線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line II of FIG. 1; 図1のII-II線に沿う断面図である。2 is a cross-sectional view taken along line II-II of FIG. 1; FIG. 第1の電極層とのその周囲の平面図である。FIG. 4 is a plan view of the first electrode layer and its surroundings; 第1の電極層の拡大断面図である。4 is an enlarged cross-sectional view of a first electrode layer; FIG. 第2の電極層とのその周囲の平面図である。FIG. 4 is a plan view of the second electrode layer and its surroundings; 第2の電極層の拡大断面図である。4 is an enlarged cross-sectional view of a second electrode layer; FIG. 積層体における各電極層の位置関係を示す斜視図である。FIG. 3 is a perspective view showing the positional relationship of each electrode layer in the laminate; 第1の方向から見た第1の電極層と第2の電極層の平面図である。FIG. 4 is a plan view of the first electrode layer and the second electrode layer viewed from the first direction; 本実施形態に係る全固体電池の製造方法のフローチャートである。3 is a flow chart of a method for manufacturing an all-solid-state battery according to the present embodiment; 比較例に係る第1の電極層とのその周囲の平面図である。FIG. 4 is a plan view of a first electrode layer and its surroundings according to a comparative example; 比較例に係る第2の電極層とのその周囲の平面図である。FIG. 4 is a plan view of a second electrode layer and its surroundings according to a comparative example; 比較例に係る積層体における各電極層の位置関係を示す斜視図である。FIG. 5 is a perspective view showing the positional relationship of each electrode layer in a laminate according to a comparative example;
(実施形態)
 図1は、全固体電池100の外観図である。図1に例示するように、全固体電池100は、直方体形状を有する積層チップ70と、積層チップ70の対向する2つの面に設けられた外部電極40a、40bとを備える。
(embodiment)
FIG. 1 is an external view of an all-solid-state battery 100. FIG. As illustrated in FIG. 1 , the all-solid-state battery 100 includes a rectangular parallelepiped laminated chip 70 and external electrodes 40 a and 40 b provided on two opposing surfaces of the laminated chip 70 .
 図2は、図1のI-I線に沿う断面図である。図2に例示するように、積層チップ70は、固体電解質層11、第1の電極層12、及び第2の電極層14の各々を第1の方向Zに沿って複数積層した積層体60を有する。 FIG. 2 is a cross-sectional view along line II in FIG. As illustrated in FIG. 2, the laminated chip 70 includes a laminated body 60 in which a plurality of solid electrolyte layers 11, first electrode layers 12, and second electrode layers 14 are laminated along the first direction Z. have.
 積層体60は、第1の方向Zに平行な第1の面60aと第2の面60bとを有する。なお、第1の面60aと第2の面60bの各々は第2の方向Yに垂直な面でもある。第2の方向Yは、第1の方向Zに垂直であり、第1の外部電極40aから第2の外部電極40bに向かう方向である。 The laminate 60 has a first surface 60a and a second surface 60b parallel to the first direction Z. Note that each of the first surface 60a and the second surface 60b is also a surface perpendicular to the second direction Y. As shown in FIG. The second direction Y is perpendicular to the first direction Z and is the direction from the first external electrode 40a to the second external electrode 40b.
 また、第1の面60aには第1の外部電極40aが設けられており、第1の電極層12が第1の外部電極40aと接続される。一方、第2の面60bには第2の外部電極40bが設けられており、第2の電極層14が第2の外部電極40bと接続される。 A first external electrode 40a is provided on the first surface 60a, and the first electrode layer 12 is connected to the first external electrode 40a. On the other hand, a second external electrode 40b is provided on the second surface 60b, and the second electrode layer 14 is connected to the second external electrode 40b.
 また、第1の電極層12と第2の電極層14は、いずれも正極活物質と負極活物質の両方を含む導電層である。正極活物質は特に限定されないが、ここではオリビン型結晶構造をもつ材料を正極活物質として使用する。このような正極活物質としては、例えば遷移金属とリチウムとを含むリン酸塩がある。オリビン型結晶構造は、天然のカンラン石(olivine)が有する結晶であり、X線回折において判別することができる。 Both the first electrode layer 12 and the second electrode layer 14 are conductive layers containing both a positive electrode active material and a negative electrode active material. Although the positive electrode active material is not particularly limited, a material having an olivine crystal structure is used as the positive electrode active material here. Examples of such positive electrode active materials include phosphates containing transition metals and lithium. The olivine type crystal structure is a crystal of natural olivine and can be identified by X-ray diffraction.
 オリビン型結晶構造をもつ電極活物質としては、例えばCoを含むLiCoPO等がある。この化学式において遷移金属のCoが置き換わったリン酸塩等を用いてもよい。ここで、価数に応じてLiやPOの比率は変動し得る。なお、遷移金属として、Co,Mn,Fe,Niなどを用いてもよい。 As an electrode active material having an olivine type crystal structure, there is, for example, LiCoPO4 containing Co. A phosphate or the like in which the transition metal Co is replaced in this chemical formula may also be used. Here, the ratio of Li and PO4 can vary depending on the valence. Co, Mn, Fe, Ni, etc. may be used as the transition metal.
 また、負極活物質としては、例えばチタン酸化物、リチウムチタン複合酸化物、リチウムチタン複合リン酸塩、カーボン、及びリン酸バナジウムリチウムのいずれかがある。 In addition, the negative electrode active material includes, for example, titanium oxide, lithium-titanium composite oxide, lithium-titanium composite phosphate, carbon, and vanadium lithium phosphate.
 このように第1の電極層12と第2の電極層14の各々に正極活物質と負極活物質の両方を使用することにより各電極層12、14の類似性が高まる。その結果、第1の電極層12と第2の電極層14の各々が正極としても負極としても機能するようになり、全固体電池100の端子の取り付けを正負逆にしてしまった場合であっても、短絡検査において誤作動せずに実使用に耐えられる。なお、本実施形態はこれに限定されず、第1の電極層12として正極層を形成し、かつ第2の電極層13として負極層を形成することにより、全固体電池100に極性を持たせてもよい。 By using both the positive electrode active material and the negative electrode active material in each of the first electrode layer 12 and the second electrode layer 14 in this manner, the similarity between the electrode layers 12 and 14 is enhanced. As a result, each of the first electrode layer 12 and the second electrode layer 14 functions as both a positive electrode and a negative electrode. Also, it can withstand actual use without malfunctioning in short-circuit inspection. Note that the present embodiment is not limited to this, and by forming a positive electrode layer as the first electrode layer 12 and forming a negative electrode layer as the second electrode layer 13, the all-solid-state battery 100 has polarity. may
 更に、第1の電極層12と第2の電極層14を作製する際に、これらの電極層に酸化物系固体電解質材料や、カーボンや金属等の導電助剤を添加してもよい。導電助剤の金属としては、例えばPd、Ni、Cu、及びFeのいずれかがある。更に、これらの金属の合金を導電助剤として使用してもよい。 Furthermore, when the first electrode layer 12 and the second electrode layer 14 are produced, an oxide-based solid electrolyte material or a conductive aid such as carbon or metal may be added to these electrode layers. Examples of the metal of the conductive aid include Pd, Ni, Cu, and Fe. Furthermore, alloys of these metals may be used as conductive aids.
 また、第1の電極層12と第2の電極層14の層構造は特に限定されない。例えば、点線円内に示すように、導電性材料からなる第1の集電体層12bの両主面に第1の電極層12を形成することにより、第1の集電体層12bを第1の電極層12で挟むようにしてもよい。同様に、導電性材料からなる第2の集電体層14bの両主面に第2の電極層14を形成することにより、第2の集電体14bを第2の電極層14で挟むようにしてもよい。 Also, the layer structures of the first electrode layer 12 and the second electrode layer 14 are not particularly limited. For example, as shown in the dotted line circle, the first electrode layer 12 is formed on both main surfaces of the first current collector layer 12b made of a conductive material, thereby turning the first current collector layer 12b into a first collector layer 12b. It may be sandwiched by one electrode layer 12 . Similarly, by forming the second electrode layers 14 on both main surfaces of the second current collector layer 14b made of a conductive material, the second current collector 14b is sandwiched between the second electrode layers 14. good too.
 一方、固体電解質層11の材料としては、例えばNASICON構造を有するリン酸塩系固体電解質がある。NASICON構造を有するリン酸塩系固体電解質は、高いイオン導電率を有すると共に、大気中で化学的に安定である。リン酸塩系固体電解質は特に限定されないが、ここではリチウムを含んだリン酸塩を使用する。当該リン酸塩は、例えばTiとの複合リン酸リチウム塩(LiTi(PO)をベースとし、Li含有量を増加させるためにAl,Ga,In,Y,Laなどの3価の遷移金属に一部置換させた塩である。そのような塩としては、Li1+xAlGe2-x(PO、Li1+xAlZr2-x(PO、及びLi1+xAlTi2-x(PO等のLi-Al-M-PO系リン酸塩(Mは、Ge,Ti,Zr等)がある。 On the other hand, as a material of the solid electrolyte layer 11, for example, there is a phosphate-based solid electrolyte having a NASICON structure. Phosphate-based solid electrolytes having the NASICON structure have high ionic conductivity and are chemically stable in the atmosphere. Although the phosphate-based solid electrolyte is not particularly limited, a phosphate containing lithium is used here. The phosphate is based on, for example, a composite lithium phosphate salt with Ti (LiTi 2 (PO 4 ) 3 ), and a trivalent compound such as Al, Ga, In, Y, or La to increase the Li content. It is a salt in which a transition metal is partially substituted. Such salts include Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 1+x Al x Zr 2-x (PO 4 ) 3 and Li 1+x Al x Ti 2-x (PO 4 ) 3 . Li--Al--M--PO 4 system phosphate (M is Ge, Ti, Zr, etc.).
 また、第1の電極層12中のリン酸塩に含まれる遷移金属を予め添加したLi-Al-Ge-PO系リン酸塩を固体電解質層11の材料として用いてもよい。例えば、第1の電極層12にCoとLiのいずれかを含むリン酸塩が含有される場合には、Coを予め添加したLi-Al-Ge-PO系リン酸塩を固体電解質層11に含有させてもよい。これにより、第1の電極層12から固体電解質層11に遷移金属が溶出するのを抑制することができる。 Alternatively, a Li—Al—Ge—PO 4 -based phosphate to which a transition metal contained in the phosphate in the first electrode layer 12 is added in advance may be used as the material for the solid electrolyte layer 11 . For example, when the first electrode layer 12 contains a phosphate containing either Co or Li, the Li—Al—Ge—PO 4 -based phosphate to which Co is previously added is used as the solid electrolyte layer 11. may be contained in Thereby, it is possible to suppress the elution of the transition metal from the first electrode layer 12 to the solid electrolyte layer 11 .
 図3は、図1のII-II線に沿う断面図である。図3に例示するように、積層体60は、第1の方向Zと第2の方向Yの各々に平行な第3の面60cと第4の面60dとを有する。 FIG. 3 is a cross-sectional view along line II-II in FIG. As illustrated in FIG. 3, the laminate 60 has a third surface 60c and a fourth surface 60d parallel to the first direction Z and the second direction Y, respectively.
 更に、積層体60は、第1の方向Zに垂直な第5の面60eと第6の面60fとを有する。第5の面60eは、配線基板に全固体電池100を実装するときに上側となる上面である。また、第6の面60fは、実装時に下側となる下面である。この例では積層体60の最外層は固体電解質層11であり、第3~第6の面60c~60fの各々は固体電解質層11の表面で画定される。 Furthermore, the laminate 60 has a fifth surface 60e and a sixth surface 60f perpendicular to the first direction Z. The fifth surface 60e is an upper surface that faces upward when the all-solid-state battery 100 is mounted on the wiring substrate. Also, the sixth surface 60f is the lower surface that is the lower side during mounting. In this example, the outermost layer of laminate 60 is solid electrolyte layer 11, and the surfaces of solid electrolyte layer 11 define the third to sixth surfaces 60c to 60f, respectively.
 更に、第3~第6の面60c~60fの各々の表面には防湿層80が設けられる。防湿層80は、シリコンを含む無機酸化物の層であって、大気中の水分から積層体60を保護する役割を担う層である。なお、B、Bi、Zn、Ba、Li、P、Sn、Pb、Mg、及びNaのいずれかを防湿層80に添加してもよい。 Furthermore, a moisture-proof layer 80 is provided on each surface of the third to sixth surfaces 60c to 60f. The moisture-proof layer 80 is a layer of inorganic oxide containing silicon, and serves to protect the laminate 60 from moisture in the atmosphere. Any one of B, Bi, Zn, Ba, Li, P, Sn, Pb, Mg, and Na may be added to the moisture-proof layer 80 .
 図4は、第1の電極層12とのその周囲の平面図である。図4に示すように、第1の電極層12は、第1の外部電極40aに接続された第1の部分12xと、第1の部分12xから第2の方向Yに沿って延びる第2の部分12yとを有する。 FIG. 4 is a plan view of the first electrode layer 12 and its surroundings. As shown in FIG. 4, the first electrode layer 12 has a first portion 12x connected to the first external electrode 40a and a second portion 12x extending along the second direction Y from the first portion 12x. and a portion 12y.
 また、第1の方向Zと第2の方向Yの各々に垂直な第3の方向Xに沿った第1の部分12xの第1の幅W1は、第3の方向Xに沿った第2の部分12yの第2の幅W2よりも広い。これにより、第1の電極層12は、平面視で概略T字型となる。 Also, the first width W1 of the first portion 12x along the third direction X perpendicular to each of the first direction Z and the second direction Y is the second width along the third direction X. It is wider than the second width W2 of the portion 12y. As a result, the first electrode layer 12 becomes substantially T-shaped in plan view.
 なお、この例ではW1≧1.01×W2とする。これにより、第1の電極層12と固体電解質層11の各々の収縮率の差に起因して全固体電池100に反りが発生するのを抑制することができる。また、より好ましくはW1≧1.02×W2とし、更に好ましくはW1≧1.05×W2とする。これにより、全固体電池100の角に応力が集中するのを抑制でき、反りの発生を更に効果的に抑制することができる。 In this example, W1≧1.01×W2. Thereby, it is possible to suppress the occurrence of warping in the all-solid-state battery 100 due to the difference in contraction rate between the first electrode layer 12 and the solid electrolyte layer 11 . More preferably, W1≧1.02×W2, and even more preferably W1≧1.05×W2. As a result, concentration of stress on the corners of the all-solid-state battery 100 can be suppressed, and warping can be suppressed more effectively.
 図5は、第1の電極層12の拡大断面図である。図5においては、第1の電極層12の第1の部分12xと第3の面60cとの間隔をD1とし、第1の電極層12の第2の部分12yと第3の面60cとの間隔をD2としている。本実施形態では、これらの間隔D1、D2が(D2-D1)≧0.1×D2を満たすようにする。これにより、第1の電極層12と固体電解質層11の各々の収縮率の差に起因して全固体電池100に反りが発生するのを抑制することができる。より好ましくは(D2-D1)≧0.5×D2とし、更に好ましくは(D2-D1)≧1.0×D2、すなわち第1の部分12xが第3の面60cに露出するものとする。これにより、第1の電極層12と固体電解質層11の各々の収縮率の差に起因して全固体電池100に反りが発生するのを効果的に抑制することができる。しかも、第1の部分12xが第3の面60cに露出することで、第1の部分12xと第1の外部電極40aとが密着し、第1の電極層12と第1の外部電極40aとの密着強度が高まる。 FIG. 5 is an enlarged cross-sectional view of the first electrode layer 12. FIG. In FIG. 5, the distance between the first portion 12x of the first electrode layer 12 and the third surface 60c is D1, and the distance between the second portion 12y of the first electrode layer 12 and the third surface 60c is D1. The interval is D2. In this embodiment, these intervals D1 and D2 satisfy (D2-D1)≧0.1×D2. Thereby, it is possible to suppress the occurrence of warping in the all-solid-state battery 100 due to the difference in contraction rate between the first electrode layer 12 and the solid electrolyte layer 11 . More preferably (D2−D1)≧0.5×D2, and even more preferably (D2−D1)≧1.0×D2, that is, the first portion 12x is exposed on the third surface 60c. Thereby, it is possible to effectively suppress the occurrence of warpage in the all-solid-state battery 100 due to the difference in contraction rate between the first electrode layer 12 and the solid electrolyte layer 11 . Moreover, since the first portion 12x is exposed on the third surface 60c, the first portion 12x and the first external electrode 40a are in close contact with each other, and the first electrode layer 12 and the first external electrode 40a are brought into close contact with each other. The adhesion strength of is increased.
 図6は、第2の電極層14とのその周囲の平面図である。図4に示すように、第2の電極層14は、第2の外部電極40bに接続された第3の部分14xと、第3の部分14xから第2の方向Yに沿って延びる第4の部分14yとを有する。 FIG. 6 is a plan view of the second electrode layer 14 and its surroundings. As shown in FIG. 4, the second electrode layer 14 has a third portion 14x connected to the second external electrode 40b and a fourth portion 14x extending along the second direction Y from the third portion 14x. and a portion 14y.
 また、第3の方向Xに沿った第3の部分14xの第3の幅W3は、第3の方向Xに沿った第4の部分14yの第4の幅W4よりも広い。これにより、第2の電極層14は、平面視で概略T字型となる。なお、この例ではW3≧1.01×W4とする。これにより、第2の電極層14と固体電解質層11の各々の収縮率の差に起因して全固体電池100に反りが発生するのを抑制することができる。また、より好ましくはW3≧1.02×W4とし、更に好ましくはW3≧1.05×W4とする。これにより、全固体電池100の角に応力が集中するのを抑制でき、反りの発生を更に効果的に抑制することができる。 A third width W3 of the third portion 14x along the third direction X is wider than a fourth width W4 of the fourth portion 14y along the third direction X. As a result, the second electrode layer 14 becomes substantially T-shaped in plan view. In this example, W3≧1.01×W4. Thereby, it is possible to suppress the occurrence of warpage in the all-solid-state battery 100 due to the difference in contraction rate between the second electrode layer 14 and the solid electrolyte layer 11 . More preferably, W3≧1.02×W4, and even more preferably W3≧1.05×W4. As a result, concentration of stress on the corners of the all-solid-state battery 100 can be suppressed, and warping can be suppressed more effectively.
 図7は、第2の電極層14の拡大断面図である。図7においては、第2の電極層14の第3の部分14xと第3の面60cとの間隔をD3とし、第2の電極層14の第4の部分14yと第3の面60cとの間隔をD4としている。本実施形態では、これらの間隔D3、D4が(D4-D3)≧0.1×D4を満たすようにする。これにより、第2の電極層14と固体電解質層11の各々の収縮率の差に起因して全固体電池100に反りが発生するのを抑制することができる。より好ましくは(D4-D3)≧0.5×D4とし、更に好ましくは(D4-D3)≧1.0×D4、すなわち第3の部分14xが第3の面60cに露出するものとする。これにより、第2の電極層14と固体電解質層11の各々の収縮率の差に起因して全固体電池100に反りが発生するのを効果的に抑制することができる。しかも、第3の部分14xが第3の面60cに露出することで、第3の部分14xと第2の外部電極40bとが密着し、第2の電極層14と第2の外部電極40bとの密着強度が高まる。 7 is an enlarged cross-sectional view of the second electrode layer 14. FIG. In FIG. 7, the distance between the third portion 14x of the second electrode layer 14 and the third surface 60c is D3, and the distance between the fourth portion 14y of the second electrode layer 14 and the third surface 60c is D3. The interval is D4. In this embodiment, these intervals D3 and D4 satisfy (D4-D3)≧0.1×D4. Thereby, it is possible to suppress the occurrence of warpage in the all-solid-state battery 100 due to the difference in contraction rate between the second electrode layer 14 and the solid electrolyte layer 11 . More preferably, (D4-D3)≧0.5×D4, and even more preferably (D4-D3)≧1.0×D4, that is, the third portion 14x is exposed on the third surface 60c. Thereby, it is possible to effectively suppress the occurrence of warpage in the all-solid-state battery 100 due to the difference in contraction rate between the second electrode layer 14 and the solid electrolyte layer 11 . Moreover, since the third portion 14x is exposed on the third surface 60c, the third portion 14x and the second external electrode 40b are in close contact with each other, and the second electrode layer 14 and the second external electrode 40b are brought into close contact with each other. The adhesion strength of is increased.
 図8は、積層体60における各電極層12、14の位置関係を示す斜視図である。図8に示すように、第1の電極層12の第1の部分12xは第1の面60aに露出し、第2の電極層14の第3の部分14xは第2の面60bに露出する。 FIG. 8 is a perspective view showing the positional relationship between the electrode layers 12 and 14 in the laminate 60. FIG. As shown in FIG. 8, the first portion 12x of the first electrode layer 12 is exposed on the first surface 60a and the third portion 14x of the second electrode layer 14 is exposed on the second surface 60b. .
 図9は、第1の方向Zから見た第1の電極層12と第2の電極層14の平面図である。図9に示すように、第1の電極層12の第1の部分12xと、第2の電極層14の第3の部分14xは、領域Rにおいて相互に重なる。本実施形態では、領域Rにおける第1の電極層12と第2の電極層14のいずれかの膜厚をT1とし、当該領域Rにおける固体電解質層11の膜厚T2としたときに、T1/T2≧1とする。このように固体電解質層11の膜厚T2を小さくすることで、全固体電池において各電極層12、14が占める割合が増え、全固体電池の容量が増大する。更に好ましくは、T1/T2≧10とし、より好ましくはT1/T2≧50とする。これにより、固体電解質層11の薄厚化に伴うショートやリーク電流の増大を防止しつつ、固体電解質層11の厚膜化に伴う容量低下や応答性低下を防止できる。 9 is a plan view of the first electrode layer 12 and the second electrode layer 14 viewed from the first direction Z. FIG. As shown in FIG. 9, the first portion 12x of the first electrode layer 12 and the third portion 14x of the second electrode layer 14 overlap each other in the region R. As shown in FIG. In the present embodiment, when the thickness of either the first electrode layer 12 or the second electrode layer 14 in the region R is T1, and the thickness T2 of the solid electrolyte layer 11 in the region R is T1/ T2≧1. By reducing the film thickness T2 of the solid electrolyte layer 11 in this manner, the proportion of the electrode layers 12 and 14 in the all-solid battery increases, and the capacity of the all-solid battery increases. More preferably, T1/T2≧10, more preferably T1/T2≧50. As a result, it is possible to prevent a short circuit and an increase in leakage current due to the thinning of the solid electrolyte layer 11, and prevent a decrease in capacity and response due to an increase in the thickness of the solid electrolyte layer 11. FIG.
 一例として、本実施形態では、第1の電極層12の膜厚を2μm~100μm、より好ましくは5μm~50μmとする。また、第2の電極層14の膜厚は2μm~100μm、より好ましくは5μm~50μmである。この範囲を採用することで、各電極層12、14の薄厚化に伴う容量低下を防止し、かつ各電極層12、14の厚膜化に伴う積層精度の低下を防止できる。更に、固体電解質層11の膜厚は2μm~50μm、より好ましくは5μm~25μmである。この範囲を採用することで、固体電解質層11の薄厚化に伴うショートやリーク電流の増大を防止しつつ、固体電解質層11の厚膜化に伴う容量低下や応答性低下を防止できる。 As an example, in the present embodiment, the film thickness of the first electrode layer 12 is set to 2 μm to 100 μm, more preferably 5 μm to 50 μm. The film thickness of the second electrode layer 14 is 2 μm to 100 μm, preferably 5 μm to 50 μm. By adopting this range, it is possible to prevent a decrease in capacity due to thinning of the electrode layers 12 and 14 and to prevent a decrease in stacking accuracy due to thickening of the electrode layers 12 and 14 . Furthermore, the film thickness of the solid electrolyte layer 11 is 2 μm to 50 μm, preferably 5 μm to 25 μm. By adopting this range, it is possible to prevent a short circuit and an increase in leakage current due to the thinning of the solid electrolyte layer 11, and prevent a decrease in capacity and a decrease in responsiveness due to the thickening of the solid electrolyte layer 11.
 上記した本実施形態によれば、図4に示したように、第1の幅W1を第2の幅W2よりも広くするため、第1の面60aに露出する第1の電極層12の面積が増大する。そのため、焼成後の積層体60が冷却するときに固体電解質層11と第1の電極層12との間に熱収縮率に差が生じても、第1の部分12xに広く存在する第1の電極層12が固体電解質層11の収縮を抑えるように作用するため、第1の部分12xとその近傍の積層体60に反りが発生し難くなる。 According to the present embodiment described above, as shown in FIG. 4, since the first width W1 is wider than the second width W2, the area of the first electrode layer 12 exposed on the first surface 60a is increases. Therefore, even if there is a difference in thermal contraction rate between the solid electrolyte layer 11 and the first electrode layer 12 when the stacked body 60 after firing is cooled, the first portion widely present in the first portion 12x Since the electrode layer 12 acts to suppress the contraction of the solid electrolyte layer 11, the first portion 12x and the laminate 60 in the vicinity thereof are less likely to warp.
 同様に、図6に示したように、第3の幅W3を第4の幅W4よりも広くするため、第2の面60bに露出する第2の電極層14の面積が増大する。その結果、焼成後の積層体60が冷却するときに固体電解質層11と第2の電極層14との間に熱収縮率に差が生じても、第3の部分14xに広く存在する第2の電極層14が固体電解質層11の収縮を抑えるように作用するため、第3の部分14xとその近傍の積層体60に反りが発生し難くなる。 Similarly, as shown in FIG. 6, since the third width W3 is wider than the fourth width W4, the area of the second electrode layer 14 exposed on the second surface 60b is increased. As a result, even if there is a difference in thermal shrinkage between the solid electrolyte layer 11 and the second electrode layer 14 when the laminated body 60 after firing is cooled, the second electrode layer 14 widely present in the third portion 14x Since the electrode layer 14 acts to suppress contraction of the solid electrolyte layer 11, the third portion 14x and the laminate 60 in the vicinity thereof are less likely to warp.
 しかも、幅が広い第1の部分12xと第3の部分14xにより、第1の面60aと第2の面60bの近傍における積層体60の強度が高まるため、全固体電池100の機械的強度を高めることもできる。 Moreover, since the first portion 12x and the third portion 14x having the wide width increase the strength of the laminate 60 in the vicinity of the first surface 60a and the second surface 60b, the mechanical strength of the all-solid-state battery 100 is increased. can also be increased.
 次に、本実施形態に係る全固体電池の製造方法について説明する。図10は、本実施形態に係る全固体電池の製造方法のフローチャートである。 Next, a method for manufacturing an all-solid-state battery according to this embodiment will be described. FIG. 10 is a flowchart of the method for manufacturing an all-solid-state battery according to this embodiment.
 (セラミック原料粉末作製工程)
 まず、上述の固体電解質層11を構成するリン酸塩系固体電解質の粉末を作製する。例えば、原料と添加物とを混合し、固相合成法などを用いることにより、固体電解質層11を構成するリン酸塩系固体電解質の粉末を作製することができる。得られた粉末を乾式粉砕することにより、所望の平均粒径に調整することができる。例えば、5mmφのZrOボールを用いた遊星ボールミルで、所望の平均粒径に調整する。
(Ceramic raw material powder preparation process)
First, powder of the phosphate-based solid electrolyte that constitutes the solid electrolyte layer 11 is prepared. For example, the powder of the phosphate-based solid electrolyte that constitutes the solid electrolyte layer 11 can be produced by mixing raw materials and additives and using a solid-phase synthesis method or the like. A desired average particle size can be obtained by dry pulverizing the obtained powder. For example, a planetary ball mill using 5 mmφ ZrO 2 balls is used to adjust the desired average particle size.
 添加物には焼結助剤が含まれる。焼結助剤として、例えば、Li-B-O系化合物、Li-Si-O系化合物、Li-C-O系化合物、Li-S-O系化合物,及びLi-P-O系化合物のいずれかのガラス成分を使用し得る。 Additives include sintering aids. As a sintering aid, for example, Li—B—O based compounds, Li—Si—O based compounds, Li—C—O based compounds, Li—SO based compounds, and Li—P—O based compounds. Any glass component can be used.
 (グリーンシート作製工程)
 次に、得られた粉末を、結着材、分散剤、及び可塑剤等と共に、水性溶媒又は有機溶媒に均一に分散させて、湿式粉砕を行うことにより所望の平均粒径を有する固体電解質スラリを得る。このとき、ビーズミル、湿式ジェットミル、各種混錬機、高圧ホモジナイザーなどを用いることができ、粒度分布の調整と分散とを同時に行うことができる観点からビーズミルを用いることが好ましい。
(Green sheet manufacturing process)
Next, the obtained powder is uniformly dispersed in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., and wet pulverized to obtain a solid electrolyte slurry having a desired average particle size. get At this time, a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse.
 そして、得られた固体電解質スラリにバインダを添加して固体電解質ペーストを得る。固体電解質ペーストを塗工することにより、固体電解質層11用のグリーンシートが得られる。塗工方法は特に限定されず、スロットダイ方式、リバースコート方式、グラビアコート方式、バーコート方式、ドクターブレード方式などを用いることができる。湿式粉砕後の粒度分布は、例えば、レーザ回折散乱法を用いたレーザ回折測定装置を用いて測定することができる。 Then, a binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste. A green sheet for the solid electrolyte layer 11 is obtained by applying the solid electrolyte paste. The coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used. The particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
 (電極層用ペースト作製工程)
 次に、第1の電極層12と第2の電極層14とを作製するための電極層用ペーストを作製する。例えば、正極活物質、負極活物質、及び固体電解質材料をビーズミル等で高分散化し、セラミックス粒子のみからなるセラミックスペーストを作製する。また、カーボンブラック等のカーボン粒子を含むカーボンペーストを作製し、セラミックスペーストにカーボンペーストを混錬してもよい。
(Electrode layer paste preparation step)
Next, an electrode layer paste for forming the first electrode layer 12 and the second electrode layer 14 is prepared. For example, a positive electrode active material, a negative electrode active material, and a solid electrolyte material are highly dispersed in a bead mill or the like to prepare a ceramic paste consisting only of ceramic particles. Alternatively, a carbon paste containing carbon particles such as carbon black may be prepared, and the carbon paste may be kneaded with the ceramic paste.
 (積層工程)
 次に、グリーンシートの一方の主面に電極層用ペーストを印刷する。次いで、印刷後の複数のグリーンシートを交互にずらして150枚積層し、それをダイサーで所定のサイズにカットすることで積層体60を得る。なお、その積層体60の最上層と最下層はグリーンシートとなる。
(Lamination process)
Next, an electrode layer paste is printed on one main surface of the green sheet. Next, 150 printed green sheets are stacked alternately and cut into a predetermined size by a dicer to obtain a laminate 60 . The uppermost layer and the lowermost layer of the laminate 60 are green sheets.
 (焼成工程)
 次に、酸素を含む焼成雰囲気中で積層体60を焼成する。電極層用ペーストに含まれるカーボン材料の消失を抑制するために、焼成雰囲気の酸素分圧を2×10-13atm以下とすることが好ましい。一方、リン酸塩系固体電解質の融解を抑制するために酸素分圧を5×10-22atm以上とすることが好ましい。
(Baking process)
Next, the laminate 60 is fired in a firing atmosphere containing oxygen. In order to suppress disappearance of the carbon material contained in the electrode layer paste, the oxygen partial pressure in the firing atmosphere is preferably 2×10 −13 atm or less. On the other hand, it is preferable to set the oxygen partial pressure to 5×10 −22 atm or more in order to suppress melting of the phosphate-based solid electrolyte.
 その後、積層体60の各面60a、60bに金属ペーストを塗布してそれを焼き付けることにより第1の外部電極40aと第2の外部電極40bを形成する。なお、スパッタ法やめっき法で第1の外部電極40aと第2の外部電極40bを形成してもよい。 After that, the first external electrode 40a and the second external electrode 40b are formed by applying a metal paste to each surface 60a, 60b of the laminate 60 and baking it. Alternatively, the first external electrode 40a and the second external electrode 40b may be formed by sputtering or plating.
 なお、焼成後の第1の電極層12の膜厚は14μmであり、第2の電極層14の膜厚は10μmである。また、焼成後の固体電解質層11の膜厚は8μmである。 The film thickness of the first electrode layer 12 after firing is 14 μm, and the film thickness of the second electrode layer 14 is 10 μm. Moreover, the film thickness of the solid electrolyte layer 11 after baking is 8 μm.
 (塗布工程)
 次に、積層体60の第3~第6の面60c~60fにジブチルエーテル又はジブチルエーテル系の溶媒にテトラアルコキシシランを溶解させた溶液を塗布する。その後、その溶液を100℃~150℃程度の温度に加熱することにより防湿層80を得る。以上により、全固体電池100の基本構造が完成する。
(Coating process)
Next, the third to sixth surfaces 60c to 60f of the laminate 60 are coated with dibutyl ether or a solution obtained by dissolving tetraalkoxysilane in a dibutyl ether-based solvent. Thereafter, the moisture-proof layer 80 is obtained by heating the solution to a temperature of about 100.degree. C. to 150.degree. With the above, the basic structure of the all-solid-state battery 100 is completed.
 本実施形態に従って全固体電池を作製した。図4~図7に示した各パラメータW1~W4及びD1~D4を、W1=1.1×W2、W3=1.1×W4、(D2-D1)=0.7×D2、(D4-D3)=0.7×D4となるようにした。作製した全固体電池チップは第1の電極層12、第2の電極層14ともに固体電解質層11と厚み差があるものの、焼成においてそれぞれの電極層が固体電解質層11の収縮を抑えることができ、反りがみられなかった。 An all-solid-state battery was produced according to this embodiment. Each parameter W1 to W4 and D1 to D4 shown in FIGS. D3)=0.7×D4. In the fabricated all-solid battery chip, both the first electrode layer 12 and the second electrode layer 14 have a thickness difference from the solid electrolyte layer 11, but each electrode layer can suppress the shrinkage of the solid electrolyte layer 11 during firing. , no warpage was observed.
 (比較例)
 図11は、比較例に係る第1の電極層12とのその周囲の平面図である。図11に示すように、比較例においては第1の電極層12は平面視で矩形状である。
(Comparative example)
FIG. 11 is a plan view of a first electrode layer 12 and its periphery according to a comparative example. As shown in FIG. 11, in the comparative example, the first electrode layer 12 has a rectangular shape in plan view.
 そのため、図4の本実施形態と比較して、比較例では第1の面60aの近傍における固体電解質層11の収縮を第1の電極層12で抑えることができず、積層体60に反りが生じてしまう。 Therefore, compared with the present embodiment shown in FIG. 4, in the comparative example, the first electrode layer 12 cannot suppress the contraction of the solid electrolyte layer 11 in the vicinity of the first surface 60a, and the laminate 60 is warped. occur.
 図12は、比較例に係る第2の電極層14とのその周囲の平面図である。図12に示すように、比較例に係る第2の電極層14は、第1の電極層12と同様に平面視で矩形状である。そのため、図11の第1の電極層12と同じ理由によって積層体60に反りが生じてしまう。 FIG. 12 is a plan view of the second electrode layer 14 and its surroundings according to the comparative example. As shown in FIG. 12 , the second electrode layer 14 according to the comparative example has a rectangular shape in plan view, like the first electrode layer 12 . Therefore, the laminated body 60 is warped for the same reason as the first electrode layer 12 in FIG.
 図13は、比較例に係る積層体における各電極層の位置関係を示す斜視図である。図13に示すように、比較例においては第1の面60aに第1の電極層12が露出し、第2の面60bに第2の電極層14が露出する。 FIG. 13 is a perspective view showing the positional relationship of each electrode layer in a laminate according to a comparative example. As shown in FIG. 13, in the comparative example, the first electrode layer 12 is exposed on the first surface 60a, and the second electrode layer 14 is exposed on the second surface 60b.
 以上、本発明の実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the claims. Change is possible.

Claims (9)

  1.  第1の電極層、固体電解質層、及び第2の電極層の各々が第1の方向に沿って複数積層され、前記第1の電極層が表出する第1の面と、前記第2の電極層が表出する第2の面とを備えた積層体と、
     前記第1の面に設けられ、かつ前記第1の電極層に接続された第1の外部電極と、
     前記第2の面に設けられ、かつ前記第2の電極層に接続された第2の外部電極とを有し、
     前記第1の電極層は、前記第1の外部電極に接続された第1の部分と、前記第1の外部電極から前記第2の外部電極に向かう第2の方向に沿って延びる第2の部分とを有し、
     前記第1の方向と前記第2の方向の各々と交叉する第3の方向に沿った前記第1の部分の第1の幅が前記第2の部分の第2の幅よりも広いことを特徴とする全固体電池。
    Each of a first electrode layer, a solid electrolyte layer, and a second electrode layer is laminated along a first direction, and a first surface where the first electrode layer is exposed; a laminate comprising a second surface from which the electrode layer is exposed;
    a first external electrode provided on the first surface and connected to the first electrode layer;
    a second external electrode provided on the second surface and connected to the second electrode layer;
    The first electrode layer has a first portion connected to the first external electrode and a second portion extending along a second direction from the first external electrode toward the second external electrode. having a part and
    A first width of the first portion along a third direction crossing each of the first direction and the second direction is wider than a second width of the second portion. All-solid-state battery.
  2.  前記第2の電極層は、前記第2の外部電極に接続された第3の部分と、前記第2の方向に沿って延びる第4の部分とを有し、
     前記第3の部分の前記第3の方向に沿った第3の幅が前記第4の部分の第4の幅よりも広いことを特徴とする請求項1に記載の全固体電池。
    the second electrode layer has a third portion connected to the second external electrode and a fourth portion extending along the second direction;
    2. The all-solid-state battery according to claim 1, wherein a third width of said third portion along said third direction is wider than a fourth width of said fourth portion.
  3.  前記第1の方向から見て前記第1の電極層と前記第2の電極層とが重なる領域を有し、前記領域における前記第1の電極層と前記第2の電極層のいずれかの膜厚をT1、前記領域における前記固体電解質層の膜厚をT2としたときに、T1/T2≧1となることを特徴とする請求項2に記載の全固体電池。 a region where the first electrode layer and the second electrode layer overlap when viewed from the first direction, and a film of either the first electrode layer or the second electrode layer in the region; 3. The all-solid-state battery according to claim 2, wherein T1/T2≧1, where T1 is the thickness and T2 is the film thickness of the solid electrolyte layer in the region.
  4.  前記第1の幅は、前記第2の幅の1.01倍以上であり、
     前記第3の幅は、前記第4の幅の1.01倍以上であることを特徴とする請求項2又は請求項3に記載の全固体電池。
    The first width is 1.01 times or more the second width,
    4. The all-solid-state battery according to claim 2, wherein the third width is 1.01 times or more the fourth width.
  5.  前記第1の幅は、前記第2の幅の1.02倍以上であり、
     前記第3の幅は、前記第4の幅の1.02倍以上であることを特徴とする請求項2又は請求項3に記載の全固体電池。
    The first width is 1.02 times or more the second width,
    4. The all-solid-state battery according to claim 2, wherein the third width is 1.02 times or more the fourth width.
  6.  前記第1の幅は、前記第2の幅の1.05倍以上であり、
     前記第3の幅は、前記第4の幅の1.05倍以上であることを特徴とする請求項2又は請求項3に記載の全固体電池。
    The first width is 1.05 times or more the second width,
    4. The all-solid-state battery according to claim 2, wherein the third width is 1.05 times or more the fourth width.
  7.  前記積層体は、前記第1の方向と前記第2の方向の各々に平行であり、かつ前記固体電解質層が表出する第3の面を更に有し、
     前記第1の部分と前記第3の面との間隔をD1、前記第2の部分と前記第3の面との間隔をD2としたときに、(D2-D1)≧0.1×D2であることを特徴とする請求項2乃至請求項4のいずれか1項に記載の全固体電池。
    The laminate further has a third surface parallel to each of the first direction and the second direction and from which the solid electrolyte layer is exposed,
    When the distance between the first portion and the third surface is D1, and the distance between the second portion and the third surface is D2, (D2−D1)≧0.1×D2. The all-solid-state battery according to any one of claims 2 to 4, characterized in that there is a
  8.  二つの前記第1の電極層に挟まれた第1の集電体層と、
     二つの前記第2の電極層に挟まれた第2の集電体層とを更に有することを特徴とする請求項1乃至請求項5のいずれか1項に記載の全固体電池。
    a first current collector layer sandwiched between the two first electrode layers;
    The all-solid-state battery according to any one of claims 1 to 5, further comprising a second current collector layer sandwiched between the two second electrode layers.
  9.  第1の電極層、固体電解質層、及び第2の電極層の各々が第1の方向に沿って複数積層され、前記第1の電極層が表出する第1の面と、前記第2の電極層が表出する第2の面とを備えた積層体を形成する工程と、
     前記積層体を焼成する工程と、
     前記第1の面に、前記第1の電極層に接続された第1の外部電極を形成する工程と、
     前記第2の面に、前記第2の電極層に接続された第2の外部電極を形成する工程とを有し、
     前記第1の電極層は、前記第1の外部電極に接続された第1の部分と、前記第1の外部電極から前記第2の外部電極に向かう第2の方向に沿って延びる第2の部分とを有し、
     前記第1の方向と前記第2の方向の各々と交叉する第3の方向に沿った前記第1の部分の第1の幅が前記第2の部分の第2の幅よりも広いことを特徴とする全固体電池の製造方法。
    Each of a first electrode layer, a solid electrolyte layer, and a second electrode layer is laminated along a first direction, and a first surface where the first electrode layer is exposed; forming a laminate having a second surface from which the electrode layer is exposed;
    a step of firing the laminate;
    forming on the first surface a first external electrode connected to the first electrode layer;
    forming on the second surface a second external electrode connected to the second electrode layer;
    The first electrode layer has a first portion connected to the first external electrode and a second portion extending along a second direction from the first external electrode toward the second external electrode. having a part and
    A first width of the first portion along a third direction crossing each of the first direction and the second direction is wider than a second width of the second portion. A method for manufacturing an all-solid-state battery.
PCT/JP2022/030821 2021-09-27 2022-08-12 All-solid-state battery, and method for manufacturing same WO2023047839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156747 2021-09-27
JP2021156747A JP2023047686A (en) 2021-09-27 2021-09-27 All-solid battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2023047839A1 true WO2023047839A1 (en) 2023-03-30

Family

ID=85719410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030821 WO2023047839A1 (en) 2021-09-27 2022-08-12 All-solid-state battery, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2023047686A (en)
WO (1) WO2023047839A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151325A (en) * 1998-11-13 2000-05-30 Sumitomo Metal Ind Ltd Stacked chip-type noise filter and its manufacture
JP2019204911A (en) * 2018-05-25 2019-11-28 日本特殊陶業株式会社 Method for manufacturing power storage device
WO2020145226A1 (en) * 2019-01-10 2020-07-16 Tdk株式会社 All-solid battery
WO2021125337A1 (en) * 2019-12-19 2021-06-24 株式会社村田製作所 Solid-state battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151325A (en) * 1998-11-13 2000-05-30 Sumitomo Metal Ind Ltd Stacked chip-type noise filter and its manufacture
JP2019204911A (en) * 2018-05-25 2019-11-28 日本特殊陶業株式会社 Method for manufacturing power storage device
WO2020145226A1 (en) * 2019-01-10 2020-07-16 Tdk株式会社 All-solid battery
WO2021125337A1 (en) * 2019-12-19 2021-06-24 株式会社村田製作所 Solid-state battery

Also Published As

Publication number Publication date
JP2023047686A (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2017135461A1 (en) Solid electrolyte and all-solid-state battery
CN109755653B (en) All-solid battery
WO2019044901A1 (en) Solid electrolyte and all-solid battery
WO2014132320A1 (en) All-solid ion secondary cell
JP7431540B2 (en) All-solid-state batteries and battery modules
JP7290978B2 (en) All-solid battery
WO2013175991A1 (en) All-solid-state battery and method for manufacturing same
JP7027125B2 (en) All-solid-state battery and its manufacturing method
JP2019087348A (en) All-solid battery
WO2018056082A1 (en) Solid electrolyte and all-solid battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2023047839A1 (en) All-solid-state battery, and method for manufacturing same
WO2022185710A1 (en) All-solid-state battery and manufacturing method thereof
JP7465077B2 (en) All-solid-state battery and its manufacturing method
WO2023047842A1 (en) All-solid-state battery and method for producing same
JP2019087347A (en) All-solid battery
JP7328790B2 (en) CERAMIC RAW MATERIAL POWDER, METHOD FOR MANUFACTURING ALL-SOLID BATTERY, AND ALL-SOLID BATTERY
JP2021190302A (en) Solid electrolyte, all-solid battery, solid electrolyte manufacturing method, and all-solid battery manufacturing method
JP2021140899A (en) All-solid battery and manufacturing method thereof
WO2023047845A1 (en) All-solid-state battery
WO2023210188A1 (en) All-solid-state battery and method for manufacturing same
WO2023053753A1 (en) All-solid-state battery, all-solid-state battery production method, raw material powder, and raw material powder production method
US20240154161A1 (en) All solid battery
WO2023127283A1 (en) All-solid-state battery and method for producing same
US11769907B2 (en) All solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872595

Country of ref document: EP

Kind code of ref document: A1