WO2023047828A1 - 形状計測装置用光学系 - Google Patents

形状計測装置用光学系 Download PDF

Info

Publication number
WO2023047828A1
WO2023047828A1 PCT/JP2022/030521 JP2022030521W WO2023047828A1 WO 2023047828 A1 WO2023047828 A1 WO 2023047828A1 JP 2022030521 W JP2022030521 W JP 2022030521W WO 2023047828 A1 WO2023047828 A1 WO 2023047828A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
measured
shape measuring
pinhole
Prior art date
Application number
PCT/JP2022/030521
Other languages
English (en)
French (fr)
Inventor
功兵 西山
喬生 川原田
洋平 古田
Original Assignee
株式会社神戸製鋼所
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 株式会社コベルコ科研 filed Critical 株式会社神戸製鋼所
Priority to KR1020247011860A priority Critical patent/KR20240054380A/ko
Priority to EP22872584.2A priority patent/EP4400806A1/en
Priority to CN202280061711.2A priority patent/CN117940737A/zh
Publication of WO2023047828A1 publication Critical patent/WO2023047828A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth

Definitions

  • the present invention is a shape measurement device used in a shape measuring device that irradiates parallel light toward an image sensor through an object to be measured and measures the two-dimensional shape of the object by using the shadow image of the object to be measured projected on the image sensor. It relates to an optical system for an apparatus.
  • An optical system for a shape measuring device used in a shape measuring device that irradiates parallel light toward an image sensor through a measured object and measures the two-dimensional shape of the measured object from the shadow image of the measured object projected on the image sensor. is disclosed, for example, in US Pat.
  • the optical system for a shape measuring apparatus disclosed in Patent Document 1 is arranged so as to follow the circular surface of the object to be measured and A parallel light irradiation system for irradiating parallel light so that the portion to be measured of the object to be measured is arranged in a luminous flux, and an imaging optical system for capturing a shadow image of the portion to be measured, wherein the parallel light irradiation
  • the system comprises a point light source having a white LED, a collimator lens for making parallel light by making light from the point light source incident, and the light from the collimator lens being irradiated through the object to be measured, both sides or the object a telecentric lens having a side-telecentric structure, and the imaging optical system includes an image sensor on which a shadow image of the measured portion is projected by light that has passed through the telecentric lens.
  • the present invention has been made in view of the circumstances described above, and an object of the present invention is to provide an optical system for a shape measuring apparatus capable of reducing luminance unevenness.
  • An optical system for a shape measuring apparatus includes a parallel light irradiation system and an imaging optical system.
  • the point light source includes an LED, a diffusion member that diffuses and emits the light from the LED, and a pinhole member that forms a pinhole into which the light from the diffusion member is incident.
  • FIG. 1 is a schematic diagram for explaining the configuration of an optical system for a shape measuring device according to an embodiment.
  • the optical system A for the shape measuring apparatus according to the embodiment irradiates parallel light toward the image sensor through the object to be measured, and the image of the object to be measured Ob projected on the image sensor determines the two-dimensional shape of the object to be measured Ob.
  • An optical system used in a shape measuring apparatus for measuring for example, as shown in FIG.
  • a parallel light irradiation system 1 that irradiates parallel light so that the part to be measured of the object to be measured Ob is arranged in the light flux, and an imaging that picks up a shadow image of the part to be measured. and an optical system 2 .
  • the object to be measured Ob may be any member as long as it is a disk-shaped member, such as a semiconductor wafer or a hard disk substrate (aluminum substrate or glass substrate).
  • the parallel light irradiation system 1 includes a point light source 11a, a collimator lens 12, and a telecentric lens 13.
  • the point light source 11a includes an LED 111 (light emitting diode) 111, a diffusion member 112 (for example, an optical fiber 112a), and a pinhole member 113.
  • the LED 111 is a light source that emits light.
  • the diffusion member 112 is a member that diffuses and emits the light from the LED 111, and in the example shown in FIG. 1, it is an optical fiber 112a as an example thereof.
  • the optical fiber 112a propagates the light from the LED 111 by repeating reflection within its core and emits the light. The light from the LED 111 is diffused by repeating this reflection.
  • the optical fiber 112a is preferably in a bent shape because it can reflect more than when the optical fiber is in a straight shape. In the example shown in FIG. ).
  • the diameter and the number of turns of the coil shape in the wound optical fiber 112a are suitably set according to the required diffusion of light, and in one example, the radius is about 50 mm and the number of turns is 3 or more.
  • the optical fiber 112a may be made of, for example, glass or resin, and the material thereof is not particularly limited.
  • the pinhole member 113 is a plate-shaped member that blocks the white light emitted from the LED 111.
  • the plate-shaped member receives light from the diffusion member 112 (optical fiber 112a in this example).
  • An aperture pinhole is formed.
  • the diameter of the pinhole is preferably as small as possible, but if it is too small, a sufficient amount of light for shape measurement cannot be obtained. be.
  • the diameter of the optical fiber 112a is preferably the same as the diameter of the pinhole, and therefore preferably within the range of 1 ⁇ m to 1 mm, more preferably within the range of 10 ⁇ m to 800 ⁇ m.
  • the white light from the LED 111 is incident on the optical fiber 112a, repeatedly reflected within the core of the optical fiber 112a, propagates, is emitted from the optical fiber 112a, and enters the pinhole of the pinhole member 113. is incident.
  • the collimator lens 12 is an optical system (including a single lens and a lens group) that converts the light from the point light source 11a into parallel light (parallel light flux).
  • Collimator lens 12 and pinhole member 113 are arranged such that the pinhole of pinhole member 113 is positioned at the focal position of collimator lens 12 .
  • the telecentric lens 13 is an optical system with a bilateral or object-side telecentric structure in which the light from the collimator lens 12 is irradiated through the object Ob to be measured.
  • the telecentric lens 13 is an optical system with a telecentric structure on both sides. are aligned, and a variable stop (aperture stop) 132 is provided at this focal position.
  • the telecentric lens 13 has principal rays parallel to the optical axis AX on both the object side (object to be measured Ob side) and the image side (imaging optical system 2 side). Allows only light (including light that is very nearly parallel) to pass through.
  • the distance between the collimator lens 12 and the first lens 131 is set to about 200 mm, for example, and the object to be measured Ob is placed in the parallel light flux from the collimator lens 12 to the first lens 131 .
  • the object to be measured Ob is preferably arranged so that the front and back surfaces thereof are parallel to the optical axis AX so that the shape of the portion to be measured, which is the outer peripheral edge portion of the object to be measured, can be preferably measured.
  • the telecentric lens 13 is replaced with the above-described optical system having a telecentric structure on both sides in order to allow only parallel light (including light that is extremely parallel) to pass through the light after passing through the object to be measured Ob.
  • the optical system may have an object-side telecentric structure in which the principal ray is parallel to the optical axis only on the side (object to be measured Ob side).
  • a general imaging lens is used as the second lens behind the diaphragm.
  • the imaging optical system 2 includes an image sensor that projects a shadow image of the portion to be measured, which is the outer peripheral edge portion of the object to be measured Ob, by the light that has passed through the telecentric lens 13 .
  • the image sensor is, for example, a two-dimensional CCD image sensor, a two-dimensional CMOS image sensor, or the like.
  • the parallel light irradiation system 1 configured as described above forms a better shadow image of the outer peripheral edge portion of the object to be measured Ob on the image sensor of the imaging optical system 2, even when the object to be measured Ob is not disposed. It is preferable to irradiate the parallel light so that the luminance distribution of the light irradiated to the sensor is 25% or less, and it is more preferable to irradiate the parallel light so that the luminance distribution is 20% or less. . Since the shape measuring device is optimized assuming that there is no luminance distribution, the smaller the luminance distribution, the better. However, for further improvement, it is effective to reduce the diameter of the pinhole and the fiber to make it closer to an ideal point light source. do not have. If the voltage is raised in order to obtain the required amount of light, there is a possibility that demerits such as shortening the life of the LED 111 may occur.
  • a shape measuring device including the optical system A for a shape measuring device configured as described above is an image (image Data) is subjected to predetermined image processing, such as edge extraction processing for extracting edges, to extract the outer contour of the outer peripheral edge portion of the object to be measured Ob. can measure the shape of
  • the optical system A for the shape measuring apparatus is provided with the point light source 11a, so that it is possible to irradiate the object to be measured with almost perfectly parallel light through the collimator lens 12, and the telecentric lens 13 allows only parallel light (including light that is extremely parallel) to pass through the light after passing through the object to be measured.
  • the image sensor of the imaging optical system 2 can obtain a favorable shadow image of the outer peripheral edge portion of the object to be measured Ob with a small degree of outline blur. Therefore, even if the object to be measured Ob is, for example, a semiconductor wafer having a long depth length along the optical axis direction, the image sensor of the imaging optical system 2 has a small degree of blurring of the contour, and the outer peripheral edge of the semiconductor wafer is good. You can capture the image of the part.
  • the optical system A for a shape measuring device diffuses the light from the LED 111 by the diffusion member 112, which is the optical fiber 112a in the above example, before entering the pinhole, so that uneven brightness can be reduced.
  • the optical system A for a shape measuring device in which the diffusion member is an optical fiber.
  • the optical fiber 112a Since the optical system A for the shape measuring apparatus in the present embodiment has a shape in which the optical fiber 112a is bent, the optical fiber 112a is more suitable than when the optical fiber has a straight shape, because the light propagates through the core with more reflections. light can be diffused evenly, and luminance unevenness can be further reduced.
  • FIG. 2 is a diagram for explaining a method of calculating the luminance distribution.
  • An LED 111 is used as the point light source 11a of the optical system for the shape measuring apparatus in the embodiment, an optical fiber wound three times in a coil shape with a radius of 50 mm is used as the diffusion member 112, and a pinhole member 113 has a diameter of 400 ⁇ m.
  • the surface emitting LED is composed of an InGaN blue LED and a yellow YAG:Ce phosphor coated on the surface thereof.
  • a collimator lens with a focal length f of 50 mm was used as the collimator lens 12, and an object-side telecentric lens with an optical magnification of 2 was used as the telecentric lens 13.
  • FIG. A two-dimensional CMOS image sensor was used for the image sensor of the imaging optical system 2 .
  • the object-side telecentric lens has a working distance (distance from the tip of the lens to the object to be measured): about 110 mm.
  • the optical system for a shape measuring device in the comparative example has a configuration in which the diffusion member 112 (coil-shaped optical fiber 112a in the above example) is removed from the optical system for a shape measuring device in the above example.
  • the luminance distribution in the optical system for the shape measuring device of the example was 11%, and the luminance distribution in the optical system for the shape measuring device of the comparative example was 26%. Therefore, the optical system for the shape measuring device of the example is improved in luminance unevenness as compared with the optical system for the shape measuring device of the comparative example.
  • the luminance distribution BD is a diagonal line It was obtained from the following equation 1 using the maximum luminance Bmax and the minimum luminance Bmin in LN.
  • Formula 1; BD (1-Bmin/Bmax) x 100 [%]
  • the diffusion member 112 is the optical fiber 112a in the above embodiment, the diffusion member 112 may be an integrating sphere. According to this, it is possible to provide an optical system for a shape measuring apparatus in which the diffusing member is an integrating sphere.
  • FIG. 3 is a schematic diagram for explaining the configuration of a modified point light source used in the optical system for the shape measuring device.
  • the optical system A for a shape measuring apparatus in such a modified form includes a point light source 11b shown in FIG. 3 instead of the point light source 11a in the above configuration.
  • a point light source 11 b shown in FIG. 3 includes a white LED 111 , an integrating sphere 112 b and a pinhole member 113 .
  • the white LED 111 and the pinhole member 113 are the same as the white LED 111 and the pinhole member 113 described above with reference to FIG. 1, respectively, so description thereof will be omitted.
  • the integrating sphere 12b is a hollow spherical member, and has an entrance opening into which the light from the white LED 111 is incident and an exit opening through which the light diffusely reflected inside the spherical member is emitted to the pinhole of the pinhole member 113.
  • the white light from the white LED 111 is incident on the integrating sphere 12b via its entrance opening, diffusely reflected within the integrating sphere, and exits from the integrating sphere 112b via its exit opening. It is incident on the pinhole of the hole member 113 .
  • the LED 111 may be arranged in an integrating sphere and the entrance aperture may be omitted.
  • a light blocking plate is provided between the LED 111 and the exit opening so that the light from the LED 111 does not directly reach the exit opening.
  • An optical system for a shape measuring apparatus is such that a portion to be measured, which is an outer peripheral edge portion of a disk-shaped object to be measured, is aligned along a circular surface of the object to be measured, and A parallel light irradiation system that irradiates parallel light so that the part to be measured is arranged in a light flux, and an imaging optical system that takes a shadow image of the part to be measured, wherein the parallel light irradiation system is a point light source and a collimator lens that converts the light from the point light source into parallel light and emits the light, and a telecentric lens that has a bilateral or object-side telecentric structure that irradiates the light from the collimator lens through the object to be measured, and the imaging
  • the optical system includes an image sensor that projects a shadow image of the part to be measured by the light that has passed through the telecentric lens, and the point light source includes an LED, a diffusion member that diffuses and emits the light from the
  • the parallel light irradiation system has a luminance distribution of light irradiated to the image sensor of 25% or less (more preferably 20%) when the object to be measured is not arranged. % or less).
  • the light from the white LED is diffused by the diffusing member before entering the pinhole, so uneven brightness can be reduced.
  • the diffusion member is an optical fiber.
  • the optical fiber in another aspect, in the optical system for a shape measuring device described above, has a bent shape.
  • the optical fiber has a wound shape.
  • the optical fiber since the optical fiber has a bent shape, the light propagates through the core with more reflection than when the optical fiber has a straight shape, so it is more preferable. Light can be diffused, and luminance unevenness can be further reduced.
  • the diffusion member is an integrating sphere.
  • INDUSTRIAL APPLICABILITY it is used in a shape measuring device that irradiates parallel light toward an image sensor through an object to be measured and measures the two-dimensional shape of the object by using the shadow image of the object to be measured projected on the image sensor.
  • An optical system for a shape measuring device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本発明の形状計測装置用光学系は、平行光照射系と、撮像光学系とを備え、前記平行光照射系は、点光源と、コリメータレンズと、前記コリメータレンズからの光が被測定物体越しに照射される、両側または物体側テレセントリック構造のテレセントリックレンズとを備え、前記撮像光学系は、前記テレセントリックレンズを通過した光による前記被測定物体の一部分の影像が投影されるイメージセンサを備え、前記点光源は、LEDと、前記LEDからの光を拡散して射出する拡散部材と、前記拡散部材からの光が入射されるピンホールを形成したピンホール部材とを備える。

Description

形状計測装置用光学系
 本発明は、平行光を被測定物体越しにイメージセンサに向けて照射し、イメージセンサに投影された被測定物体の影像により被測定物体の2次元形状を計測する形状計測装置に用いられる形状計測装置用光学系に関する。
 平行光を被測定物体越しにイメージセンサに向けて照射し、イメージセンサに投影された被測定物体の影像により被測定物体の2次元形状を計測する形状計測装置に用いられる形状計測装置用光学系は、例えば、特許文献1に開示されている。
 この特許文献1に開示された形状計測装置用光学系は、円盤状の被測定物体の外周端縁部分である被測定部に対し、前記被測定物体の円形面に沿うように、かつ、前記被測定物体の前記被測定部が光束の中に配されるように平行光を照射する平行光照射系と、前記被測定部の影像を撮像する撮像光学系とを具備し、前記平行光照射系が、白色LEDを有する点光源と、前記点光源からの光を入射させて平行光をつくるためのコリメータレンズと、前記コリメータレンズからの光が被測定物体越しに照射される、両側又は物体側テレセントリック構造のテレセントリックレンズとを備え、前記撮像光学系が、前記テレセントリックレンズを通過した光による前記被測定部の影像が投影されるイメージセンサを備える。
 ところで、特許文献1に開示された形状計測装置用光学系では、輝度の高い白色LEDが用いられる場合では、その指向性のため、ピンホールの通過後の光に輝度ムラが生じ、その結果、被測定物体の外周端縁部分の輪郭形状に歪みが生じてしまう虞がある。
特許第4500157号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、輝度ムラを低減できる形状計測装置用光学系を提供することである。
 本発明にかかる形状計測装置用光学系は、平行光照射系と、撮像光学系とを備え、前記平行光照射系は、点光源と、コリメータレンズと、前記コリメータレンズからの光が被測定物体越しに照射される、両側または物体側テレセントリック構造のテレセントリックレンズとを備え、前記撮像光学系は、前記テレセントリックレンズを通過した光による前記被測定物体の一部分の影像が投影されるイメージセンサを備え、前記点光源は、LEDと、前記LEDからの光を拡散して射出する拡散部材と、前記拡散部材からの光が入射されるピンホールを形成したピンホール部材とを備える。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態における形状計測装置用光学系の構成を説明するための模式図である。 輝度分布の演算手法を説明するための図である。 前記形状計測装置用光学系に用いられる変形形態の点光源の構成を説明するための模式図である。
 以下、図面を参照して、本発明の1または複数の実施形態が説明される。しかしながら、発明の範囲は、開示された実施形態に限定されない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 図1は、実施形態における形状計測装置用光学系の構成を説明するための模式図である。実施形態における形状計測装置用光学系Aは、平行光を被測定物体越しにイメージセンサに向けて照射し、イメージセンサに投影された被測定物体Obの影像により被測定物体Obの2次元形状を計測する形状計測装置に用いられる光学系であって、例えば、図1に示すように、円盤状の被測定物体Obの外周端縁部分である被測定部に対し、前記被測定物体Obの円形面に沿うように、かつ、前記被測定物体Obの前記被測定部が光束の中に配されるように平行光を照射する平行光照射系1と、前記被測定部の影像を撮像する撮像光学系2とを備える。
 被測定物体Obは、円盤状の部材であれば、任意の部材であってよく、例えば、半導体ウェハやハードディスクの基板(アルミニウム製基板やガラス製基板)等である。
 平行光照射系1は、点光源11aと、コリメータレンズ12と、テレセントリックレンズ13とを備える。
 点光源11aは、LED111(発光ダイオード)111と、拡散部材112(例えば光ファイバー112a)と、ピンホール部材113とを備える。
 LED111は、光を射出する光源である。
 拡散部材112は、LED111からの光を拡散して射出する部材であり、図1に示す例では、その一例としての光ファイバー112aである。光ファイバー112aは、LED111からの光を、そのコア内で反射を繰り返して伝播し、射出する。この反射の繰り返しによってLED111からの光が拡散される。前記光ファイバーが直線形状である場合に較べてより多く反射できることから、光ファイバー112aは、曲げられた形状であることが好ましく、図1に示す例では、光ファイバー112aは、巻き回された形状(コイル形状)である。巻き回された光ファイバー112aにおけるコイル形状の径および巻き数は、必要な光の拡散に応じて好適に設定され、一例では、半径約50mmで巻き数3以上である。光ファイバー112aは、例えばガラス製であってよく、あるいは、例えば樹脂製であってよく、その材質は、特に限定されない。
 ピンホール部材113は、LED111から射出される白色光を遮光する板状の部材であり、前記板状の部材には、拡散部材112(この例では光ファイバー112a)からの光が入射される、貫通開口のピンホールが形成されている。前記ピンホールの直径は、小さいほど好ましいが、小さ過ぎると形状計測に十分な光量が得られないため、好ましくは、1μm~1mmの範囲内であり、より好ましくは、10μm~800μmの範囲内である。
 光ファイバー112aの直径は、ピンホールの直径と同一であることが好ましく、したがって、好ましくは、1μm~1mmの範囲内であり、より好ましくは、10μm~800μmの範囲内である。
 このような構成の点光源11aでは、LED111からの白色光は、光ファイバー112aに入射され、光ファイバー112aのコア内で反射を繰り返して伝播して光ファイバー112aから射出され、ピンホール部材113のピンホールに入射される。
 コリメータレンズ12は、点光源11aからの光を平行光(平行光束)にして射出する光学系(単レンズおよびレンズ群を含む)である。コリメータレンズ12とピンホール部材113とは、ピンホール部材113のピンホールがコリメータレンズ12の焦点位置に位置するように、配置される。
 テレセントリックレンズ13は、コリメータレンズ12からの光が被測定物体Ob越しに照射される、両側または物体側テレセントリック構造の光学系である。図1に示す例では、テレセントリックレンズ13は、両側テレセントリック構造の光学系であり、第1レンズ(レンズ群を含む)131の後側焦点と第2レンズ(レンズ群を含む)133の前側焦点とを一致させて2つのレンズ131、133を配列し、この焦点位置に可変の絞り(開口絞り)132を備えて構成されている。このテレセントリックレンズ13は、物体側(被測定物体Ob側)、像側(撮像光学系2側)とも主光線が光軸AXに対して平行であり、被測定物体Ob通過後の光のうち平行光(平行に極めて近い光を含む)のみを通過させる。コリメータレンズ12と第1レンズ131との間隔距離は、例えば200mm程度に設定されており、被測定物体Obは、このコリメータレンズ12から第1レンズ131への平行光束のなかに配される。被測定物体の外周端縁部分である被測定部の形状を好適に計測できるように、被測定物体Obは、その表裏各面が光軸AXと平行になるように配されることが好ましい。
 なお、被測定物体Ob通過後の光のうち平行光(平行に極めて近い光を含む)のみを通過させるようにすべく、テレセントリックレンズ13は、上述の両側テレセントリック構造の光学系に代えて、物体側(被測定物体Ob側)のみ主光線が光軸に対して平行となる物体側テレセントリック構造の光学系であってもよい。この物体側テレセントリック構造の場合、絞りの後側の第2レンズとしては一般の結像レンズが用いられる。
 撮像光学系2は、テレセントリックレンズ13を通過した光による、被測定物体Obの外周端縁部分である被測定部の影像が投影されるイメージセンサを備える。前記イメージセンサは、例えば、2次元CCDイメージセンサや2次元CMOSイメージセンサ等である。
 上記構成の平行光照射系1は、被測定物体Obの外周端縁部分の影像をより良好に撮像光学系2のイメージセンサに形成するために、被測定物体Obを配さない場合で前記イメージセンサに照射された光の輝度分布が25%以下となるように、前記平行光を照射することが好ましく、前記輝度分布が20%以下となるように、前記平行光を照射することがより好ましい。形状計測測定装置は、輝度分布がないとして最適化されているため、輝度分布は小さいほどよい。ただし、さらに改善するためには、ピンホール径やファイバー径を小さくして、より理想的な点光源に近づけることが有効であるが、径を小さくすると入射する光量が減ってしまうため測定に適さない。必要な光量を得るため電圧を上昇させるとLED111の寿命が短くなるなどのデメリットが生じる虞れがある。
 このような構成の形状計測装置用光学系Aを備えた形状計測装置は、撮像光学系2の前記イメージセンサから出力される、被測定物体Obの外周端縁部分の影像を撮像した画像(画像データ)を、例えばエッジを抽出するエッジ抽出処理等の所定の画像処理を施すことによって、被測定物体Obの外周端縁部分における外輪郭を抽出することにより、被測定物体Obの外周端縁部分の形状を計測できる。
 本実施形態における形状計測装置用光学系Aは、点光源11aを備えることで、コリメータレンズ12を経て、できるだけ完全に近い平行な光を被測定物体越しに照射することができるとともに、テレセントリックレンズ13により、被測定物体通過後の光のうち平行光(平行に極めて近い光を含む)のみを通過させることができるので、光軸方向に沿う奥行き長さが長い被測定物体Obであっても、撮像光学系2の前記イメージセンサにおいて輪郭のボケの程度が小さい良好な被測定物体Obの外周端縁部分の影像を得ることができる。よって、被測定物体Obが光軸方向に沿う奥行き長さが長い例えば半導体ウェハであっても、撮像光学系2の前記イメージセンサにおいて輪郭のボケの程度が小さく、良好な半導体ウェハの外周端縁部分の影像を捉えることができる。
 本実施形態における形状計測装置用光学系Aは、LED111からの光を拡散部材112、上述の例では光ファイバー112aで拡散してからピンホールに入射させるので、輝度ムラを低減できる。
 本実施形態によれば、前記拡散部材が光ファイバーである形状計測装置用光学系Aが提供できる。
 本実施形態における形状計測装置用光学系Aは、光ファイバー112aが曲げられた形状であるので、光ファイバーが直線形状である場合に較べてより多く反射してコア内を光が伝播するから、より好適に光を拡散でき、輝度ムラをより低減できる。
 次に、実施例および比較例について説明する。図2は、輝度分布の演算手法を説明するための図である。
 実施例における形状計測装置用光学系の点光源11aには、LED111が用いられ、拡散部材112に、半径50mmでコイル形状に3回巻き回された光ファイバーが用いられ、ピンホール部材113に、φ400μmのピンホールを形成した板状の部材が用いられた。前記面発光型LEDは、InGaN系青色LEDと、その表面に塗布されたYAG:Ce蛍光体の黄色蛍光体とを備えて構成されている。コリメータレンズ12には、焦点距離f:50mmのコリメータレンズが用いられ、テレセントリックレンズ13には、光学倍率2倍の物体側テレセントリックレンズが用いられた。撮像光学系2のイメージセンサには、2次元CMOSイメージセンサが用いられた。前記物体側テレセントリックレンズは、ワーキングディスタンス(レンズ先端から被測定物体までの距離):約110mmである。
 一方、比較例における形状計測装置用光学系は、上述の実施例における形状計測装置用光学系から、拡散部材112(上述の例ではコイル形状の光ファイバー112a)を除いた構成である。
 実施例の形状計測装置用光学系における輝度分布は、11%であり、比較例の形状計測装置用光学系における輝度分布は、26%であった。したがって、実施例の形状計測装置用光学系は、比較例の形状計測装置用光学系に較べ、輝度ムラが改善されている。
 前記輝度分布BDは、例えば図2に示すように、被測定物体Obを形状計測装置用光学系に配さない場合において、撮像光学系2の前記イメージセンサに照射された光による画像Pにおける対角線LNでの最大輝度Bmaxおよび最小輝度Bminを用いて次式1から求めた。
式1;BD=(1-Bmin/Bmax)×100[%]
 なお、上述の実施形態では、拡散部材112は、光ファイバー112aであったが、拡散部材112は、積分球であってもよい。これによれば、拡散部材が積分球である形状計測装置用光学系が提供できる。
 図3は、前記形状計測装置用光学系に用いられる変形形態の点光源の構成を説明するための模式図である。
 このような変形形態の形状計測装置用光学系Aは、上述の構成において、点光源11aに代え、図3に示す点光源11bを備える。この図3に示す点光源11bは、白色LED111と、積分球112bと、ピンホール部材113とを備える。これら白色LED111およびピンホール部材113は、それぞれ、図1を用いて説明した上述の白色LED111およびピンホール部材113と同様であるので、その説明を省略する。
 積分球12bは、中空の球体部材であり、白色LED111からの光が入射される入射開口と、前記球体部材の内部で拡散反射した光をピンホール部材113のピンホールへ射出する射出開口とを備える。前記球体部材の内面(内壁面)には、効率よく拡散反射させるために、例えば酸化マグネシウムや酸化バリウムや酸化亜鉛等が塗布される。
 このような構成の点光源11bでは、白色LED111からの白色光は、その入射開口を介して積分球12bに入射され、積分球内で拡散反射し、積分球112bからその射出開口を介してピンホール部材113のピンホールに入射される。
 なお、LED111は、積分球内に配置され、前記入射開口が省略されてもよい。この場合、LED111からの光が前記射出開口へ直達しないように、LED111と前記射出開口との間には、遮光板が設けられる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる形状計測装置用光学系は、円盤状の被測定物体の外周端縁部分である被測定部に対し、前記被測定物体の円形面に沿うように、かつ、前記被測定物体の前記被測定部が光束の中に配されるように平行光を照射する平行光照射系と、前記被測定部の影像を撮像する撮像光学系とを備え、前記平行光照射系は、点光源と、前記点光源からの光を平行光にして射出するコリメータレンズと、前記コリメータレンズからの光が被測定物体越しに照射される、両側または物体側テレセントリック構造のテレセントリックレンズとを備え、前記撮像光学系は、前記テレセントリックレンズを通過した光による前記被測定部の影像が投影されるイメージセンサを備え、前記点光源は、LEDと、前記LEDからの光を拡散して射出する拡散部材と、前記拡散部材からの光が入射されるピンホールを形成したピンホール部材とを備える。好ましくは、上述の形状計測装置用光学系において、前記平行光照射系は、前記被測定物体を配さない場合で前記イメージセンサに照射された光の輝度分布が25%以下(さらに好ましくは20%以下)となるように、前記平行光を照射する。
 このような形状計測装置用光学系は、白色LEDからの光を拡散部材で拡散してからピンホールに入射させるので、輝度ムラを低減できる。
 他の一態様では、上述の形状計測装置用光学系において、前記拡散部材は、光ファイバーである。
 これによれば、前記拡散部材が光ファイバーである形状計測装置用光学系が提供できる。
 他の一態様では、上述の形状計測装置用光学系において、前記光ファイバーは、曲げられた形状である。好ましくは、上述の形状計測装置用光学系において、前記光ファイバーは、巻き回された形状である。
 このような形状計測装置用光学系は、前記光ファイバーが曲げられた形状であるので、前記光ファイバーが直線形状である場合に較べてより多く反射してコア内を光が伝播するから、より好適に光を拡散でき、輝度ムラをより低減できる。
 他の一態様では、上述の形状計測装置用光学系において、前記拡散部材は、積分球である。
 これによれば、前記拡散部材が積分球である形状計測装置用光学系が提供できる。
 この出願は、2021年9月27日に出願された日本国特許出願特願2021-157114を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、平行光を被測定物体越しにイメージセンサに向けて照射し、イメージセンサに投影された被測定物体の影像により被測定物体の2次元形状を計測する形状計測装置に用いられる形状計測装置用光学系が提供できる。

Claims (4)

  1.  円盤状の被測定物体の外周端縁部分である被測定部に対し、前記被測定物体の円形面に沿うように、かつ、前記被測定物体の前記被測定部が光束の中に配されるように平行光を照射する平行光照射系と、
     前記被測定部の影像を撮像する撮像光学系とを備え、
     前記平行光照射系は、点光源と、前記点光源からの光を平行光にして射出するコリメータレンズと、前記コリメータレンズからの光が被測定物体越しに照射される、両側または物体側テレセントリック構造のテレセントリックレンズとを備え、
     前記撮像光学系は、前記テレセントリックレンズを通過した光による前記被測定部の影像が投影されるイメージセンサを備え、
     前記点光源は、LEDと、前記LEDからの光を拡散して射出する拡散部材と、前記拡散部材からの光が入射されるピンホールを形成したピンホール部材とを備える、
     形状計測装置用光学系。
  2.  前記拡散部材は、光ファイバーである、
     請求項1に記載の形状計測装置用光学系。
  3.  前記光ファイバーは、曲げられた形状である、
     請求項2に記載の形状計測装置用光学系。
  4.  前記拡散部材は、積分球である、
     請求項1に記載の形状計測装置用光学系。
PCT/JP2022/030521 2021-09-27 2022-08-10 形状計測装置用光学系 WO2023047828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247011860A KR20240054380A (ko) 2021-09-27 2022-08-10 형상 계측 장치용 광학계
EP22872584.2A EP4400806A1 (en) 2021-09-27 2022-08-10 Optical system for shape measuring device
CN202280061711.2A CN117940737A (zh) 2021-09-27 2022-08-10 形状测量装置用光学系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-157114 2021-09-27
JP2021157114A JP2023047919A (ja) 2021-09-27 2021-09-27 形状計測装置用光学系

Publications (1)

Publication Number Publication Date
WO2023047828A1 true WO2023047828A1 (ja) 2023-03-30

Family

ID=85719423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030521 WO2023047828A1 (ja) 2021-09-27 2022-08-10 形状計測装置用光学系

Country Status (6)

Country Link
EP (1) EP4400806A1 (ja)
JP (1) JP2023047919A (ja)
KR (1) KR20240054380A (ja)
CN (1) CN117940737A (ja)
TW (1) TWI843197B (ja)
WO (1) WO2023047828A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217630A (ja) * 1985-07-16 1987-01-26 Nippon Kogaku Kk <Nikon> 照明用フアイバ−束検査装置
JPS62294903A (ja) * 1986-03-25 1987-12-22 ドラン−ジエナ−・インダストリ−ズ・インコ−ポレ−テツド オンライン監視のための光フアイバ像形成システム
JP2005114499A (ja) * 2003-10-07 2005-04-28 Toppan Printing Co Ltd ダイコートビードの検査装置及びその検査方法
JP4500157B2 (ja) 2004-11-24 2010-07-14 株式会社神戸製鋼所 形状計測装置用光学系
JP2021157114A (ja) 2020-03-27 2021-10-07 三井化学株式会社 フォトマスク及び露光方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772128A (en) * 1986-03-25 1988-09-20 Dolan-Jenner Industries, Inc. Fiber optic imaging system for on-line monitoring
JP4147169B2 (ja) * 2003-10-17 2008-09-10 日立ビアメカニクス株式会社 バンプ形状計測装置及びその方法
CN103097857B (zh) * 2010-09-07 2014-12-24 大日本印刷株式会社 扫描器装置及物体的三维形状测定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217630A (ja) * 1985-07-16 1987-01-26 Nippon Kogaku Kk <Nikon> 照明用フアイバ−束検査装置
JPS62294903A (ja) * 1986-03-25 1987-12-22 ドラン−ジエナ−・インダストリ−ズ・インコ−ポレ−テツド オンライン監視のための光フアイバ像形成システム
JP2005114499A (ja) * 2003-10-07 2005-04-28 Toppan Printing Co Ltd ダイコートビードの検査装置及びその検査方法
JP4500157B2 (ja) 2004-11-24 2010-07-14 株式会社神戸製鋼所 形状計測装置用光学系
JP2021157114A (ja) 2020-03-27 2021-10-07 三井化学株式会社 フォトマスク及び露光方法

Also Published As

Publication number Publication date
KR20240054380A (ko) 2024-04-25
JP2023047919A (ja) 2023-04-06
TW202323764A (zh) 2023-06-16
EP4400806A1 (en) 2024-07-17
TWI843197B (zh) 2024-05-21
CN117940737A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US7456978B2 (en) Shape measuring apparatus
US10883944B2 (en) Inspection system and method of inspection
EP3009886B1 (en) Handling system
EP3355049A1 (en) Inspection illumination device and inspection system
TWI451073B (zh) Measuring the optical system and the use of its brightness meter, color brightness meter and color meter
JP6024841B1 (ja) 照明装置、パターン照射装置およびシステム
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
CN109073197A (zh) 照明装置和检查设备
JP2017067758A (ja) システム
JP5180269B2 (ja) 照明装置
WO2011132360A1 (ja) 測定用光学系ならびにそれを用いた色彩輝度計および色彩計
JP2007333563A (ja) 光透過性シートの検査装置および検査方法
WO2023047828A1 (ja) 形状計測装置用光学系
JP4656393B2 (ja) 光源装置
WO2018225774A1 (ja) 光源装置
JP7221688B2 (ja) 紫外線照射装置、及び紫外線探傷装置
CN107843335B (zh) 靶面杂光光照度测量装置及测量方法
JP6749084B2 (ja) Led照明装置
US7485889B2 (en) Apparatus for capturing information contained in a phosphor layer
JP2006202665A (ja) 光源装置
JP6381865B2 (ja) 検査装置及び検査方法
JP5565278B2 (ja) 配光計測装置、配光計測方法および配光計測プログラム
TW201502468A (zh) 形狀測量裝置
JP2015210872A (ja) 半導体発光装置
JP2007298898A (ja) 照明光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18686743

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280061711.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247011860

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022872584

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022872584

Country of ref document: EP

Effective date: 20240412

WWE Wipo information: entry into national phase

Ref document number: 202447032843

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE