WO2023047716A1 - Heat exchanger and air-conditioning device - Google Patents

Heat exchanger and air-conditioning device Download PDF

Info

Publication number
WO2023047716A1
WO2023047716A1 PCT/JP2022/022910 JP2022022910W WO2023047716A1 WO 2023047716 A1 WO2023047716 A1 WO 2023047716A1 JP 2022022910 W JP2022022910 W JP 2022022910W WO 2023047716 A1 WO2023047716 A1 WO 2023047716A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
hole
holes
air
heat transfer
Prior art date
Application number
PCT/JP2022/022910
Other languages
French (fr)
Japanese (ja)
Inventor
剛士 木村
良行 辻
祐介 森北
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280063692.7A priority Critical patent/CN117980688A/en
Publication of WO2023047716A1 publication Critical patent/WO2023047716A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/06Safety or protection arrangements; Arrangements for preventing malfunction by using means for draining heat exchange media from heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/22Safety or protection arrangements; Arrangements for preventing malfunction for draining

Definitions

  • the present disclosure relates to heat exchangers and air conditioners.
  • Fin-and-tube heat exchangers are used in air conditioners and air conditioners.
  • heat exchanger a plurality of heat transfer tubes are passed through a plurality of fins during manufacturing.
  • a heat exchanger includes a heat transfer tube through which a refrigerant can flow, and a fin having a plurality of through holes through which the heat transfer tube can pass in a thickness direction. is formed in a plurality of rows along a second direction that intersects with a first direction in which air flows from the windward side to the leeward side, the first through holes through which the heat transfer tubes penetrate, and the heat transfer tubes through the fin includes a first region in which the first through holes are aligned along the second direction; and a second region in which the second through holes are aligned along the second direction. 2 regions, wherein the second region is adjacent to the first region on one side or both sides in the first direction, and adjacent to the first region on both sides in the second direction, heat exchange It is a vessel.
  • the second region is a region in which the second through holes through which the heat transfer tubes do not penetrate are arranged in the second direction
  • the air passing through the second region passes through the first region (heat transfer tube region). It is not cooled sufficiently compared to the air that cools it.
  • air after passing through (or before passing) the second region is more reliably can be cooled to As a result, dew condensation can be generated more reliably in the heat exchanger, so that dew condensation on members located on the leeward side of the heat exchanger can be suppressed.
  • the first through-hole includes an outlet through-hole through which the heat transfer tube passes through, which serves as an outlet for refrigerant when the heat exchanger functions as an evaporator, and the outlet through-hole is It is formed at a position adjacent to the first region in the first direction.
  • the outlet through-hole is formed at a position adjacent to the windward side of the first region.
  • the plurality of through holes included in the windward row are arranged in a staggered manner with respect to the plurality of through holes included in the leeward row. ing.
  • the fin has a narrow portion whose width in the first direction is narrower than an average, and the narrow portion penetrating portion is formed closest to the narrow portion among the plurality of through holes.
  • the hole is the first through hole.
  • the narrow part has a lower cooling capacity than other parts of the fin.
  • the narrow portion is a bent portion where the fin bends in the first direction.
  • the first through-hole includes an inlet through-hole through which the heat transfer tube passes through which serves as an inlet for refrigerant when the heat exchanger functions as an evaporator, and the narrow through-hole is , said inlet through hole.
  • the heat exchanger When the heat exchanger functions as an evaporator, most (or all) of the refrigerant flowing inside is in a liquid state in the heat transfer tube, which is the inlet of the refrigerant. Therefore, in this heat transfer tube, the refrigerant absorbs heat from the air and evaporates easily, so that the passing air can be well cooled.
  • the inlet through-holes through which the heat transfer tubes pass through in the narrow portion where the cooling capability is low, the low cooling capability in the narrow portion can be compensated for. Thereby, the air passing through the narrow portion can be cooled more reliably.
  • the narrow through hole is formed at a position adjacent to the second region in the first direction.
  • the narrow through-hole is an inlet through-hole, the air passing through the narrow through-hole and its vicinity can be well cooled. Therefore, by forming the narrow through hole at a position adjacent to the second region in the first direction, the air that has not been sufficiently cooled after (or before passing) the second region and its vicinity can be removed. , the cooling can be more reliably performed by the heat transfer tubes passing through the narrow through-holes.
  • the first through-hole includes an inlet through-hole through which the heat transfer tube passes through which serves as an inlet for refrigerant when the heat exchanger functions as an evaporator, and the inlet through-hole is It is an area where the wind speed of the air passing through the heat exchanger is higher than average and is formed in the line on the leeward side.
  • the cooling efficiency of the air is improved by forming the inlet through-hole, which is the area where the heat transfer tube that is the inlet of the refrigerant penetrates and is the most chilled area, in the area where the air velocity is faster than the average (that is, the area where the air volume is large).
  • the inlet through-hole which is the area where the heat transfer tube that is the inlet of the refrigerant penetrates and is the most chilled area, in the area where the air velocity is faster than the average (that is, the area where the air volume is large).
  • the passing air is gradually cooled, so that the cooling efficiency of the air can be further improved.
  • the air conditioner of the present disclosure includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, a decompression mechanism, and a user side heat exchanger are connected in this order, and the user side heat exchanger is the above (1 ) to (9), including the heat exchanger.
  • the air conditioner of the present disclosure further includes a control unit that controls the degree of opening of the decompression mechanism, and the control unit controls the amount of refrigerant when the utilization side heat exchanger functions as an evaporator.
  • the degree of opening is controlled so that the dryness of the refrigerant flowing out of the heat transfer tube serving as an outlet is equal to or higher than a predetermined value.
  • FIG. 1 is a functional block diagram of an air conditioner according to an embodiment;
  • FIG. It is a schematic diagram which shows the internal structure of the indoor unit which concerns on embodiment. It is a mimetic diagram showing a heat exchanger concerning an embodiment. It is a mimetic diagram showing a heat exchanger concerning an embodiment. It is a schematic diagram which shows the heat exchanger which concerns on a comparative example, and its peripheral structure.
  • FIG. 5 is a schematic diagram showing an internal structure of an indoor unit according to a modification; It is a mimetic diagram showing a heat exchanger concerning a modification.
  • the heat exchanger functions as an evaporator
  • the moisture in the air is normally condensed on the fins to remove the moisture from the air passing through the heat exchanger. This suppresses dew condensation on a member (for example, a fan) located on the leeward side of the heat exchanger.
  • the heat exchanger has a vented area, it may not be possible to sufficiently remove moisture from the air passing through the heat exchanger.
  • the air passing through the unpiped area is not sufficiently cooled compared to the air passing through the area where the heat transfer tubes are provided (heat transfer tube area). For this reason, the air that has mainly passed through the unpipe region and hardly passed through the heat transfer tube region is not sufficiently dehydrated, and may cause dew condensation on members positioned on the leeward side.
  • the present disclosure aims to suppress dew condensation on members located on the leeward side of the heat exchanger.
  • FIG. 1 is a diagram schematically showing the configuration of an air conditioner 1 according to an embodiment.
  • FIG. 2 is a functional block diagram of the air conditioner 1 according to the embodiment. The configuration of the air conditioner 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a diagram schematically showing the configuration of an air conditioner 1 according to an embodiment.
  • FIG. 2 is a functional block diagram of the air conditioner 1 according to the embodiment. The configuration of the air conditioner 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a diagram schematically showing the configuration of an air conditioner 1 according to an embodiment.
  • FIG. 2 is a functional block diagram of the air conditioner 1 according to the embodiment. The configuration of the air conditioner 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a diagram schematically showing the configuration of an air conditioner 1 according to an embodiment.
  • FIG. 2 is a functional block diagram of the air conditioner 1 according to the embodiment. The configuration of the air conditioner 1 will be described below with reference to FIGS
  • the air conditioner 1 has the function of cooling and heating the room R1.
  • the air conditioner 1 includes an indoor unit 2 installed in a room R1, an outdoor unit 3 installed outdoors, a refrigerant circuit 4 in which a refrigerant circulates, and a controller 5.
  • the refrigerant is, for example, R32.
  • the use of the room R1 is not particularly limited. server) may be installed.
  • the refrigerant circuit 4 has a compressor 11 , a switching mechanism 12 , a heat source side heat exchanger 13 , a pressure reducing mechanism 14 , a utilization side heat exchanger 15 and an accumulator 16 .
  • the heat source side heat exchanger 13 functions as a condenser (that is, when the air conditioner 1 performs cooling operation)
  • the refrigerant discharged from the compressor 11 flows through the switching mechanism 12 and the heat source.
  • the parts 11 to 16 are connected so that the heat flows in the order of the side heat exchanger 13 , the decompression mechanism 14 , the use side heat exchanger 15 , the switching mechanism 12 and the accumulator 16 and returns to the compressor 11 .
  • the control unit 5 has an indoor control unit 5a and an outdoor control unit 5b that are connected to each other by a communication line.
  • the indoor controller 5a has a processor 52a and a memory 53a.
  • the indoor controller 5a controls each part included in the indoor unit 2 by the processor 52a performing various calculations and controls based on the programs included in the memory 53a.
  • the outdoor controller 5b has a processor 52b and a memory 53b.
  • the outdoor control section 5b controls each section included in the outdoor unit 3 by the processor 52b performing various calculations and controls based on the programs included in the memory 53b.
  • the outdoor unit 3 has a housing 31 in which a suction port (not shown) and an exhaust port (not shown) are formed.
  • the housing 31 houses the compressor 11 , the switching mechanism 12 , the heat source side heat exchanger 13 and the accumulator 16 of the refrigerant circuit 4 .
  • the housing 31 further accommodates the outdoor controller 5 b and the outdoor fan 32 .
  • the compressor 11 is, for example, a variable displacement compressor, and the rotation frequency is controlled by the inverter based on the operation command from the control unit 5.
  • the switching mechanism 12 is a mechanism for switching the flow direction of the refrigerant in the refrigerant circuit 4, and is, for example, a four-way switching valve. Under the control of the control unit 5, the switching mechanism 12 has a first connection state (solid line in FIG. 1) in which the refrigerant discharged from the compressor 11 is sent to the heat source side heat exchanger 13, and is sent to the heat exchanger 15 on the user side (broken line in FIG. 1).
  • the heat source side heat exchanger 13 is, for example, a cross-fin tube heat exchanger.
  • the accumulator 16 is a device that performs gas-liquid separation of the refrigerant to protect the compressor 11 .
  • the outdoor fan 32 is, for example, a propeller fan. When the outdoor fan 32 operates, the outdoor air is sucked from the intake port (not shown) of the housing 31, and the air after heat exchange with the refrigerant in the heat source side heat exchanger 13 is discharged from the exhaust port (not shown) of the housing 31. to the outdoor space.
  • the indoor unit 2 has a housing 21 in which suction ports 26a and 26b (Fig. 3) and an air outlet 26c (Fig. 3) are formed.
  • the housing 21 accommodates the decompression mechanism 14 and the user-side heat exchanger 15 of the refrigerant circuit 4 .
  • the housing 21 further accommodates the indoor controller 5 a and the indoor fan 22 .
  • the decompression mechanism 14 is, for example, an electromagnetic valve (expansion valve) and adjusts the pressure and flow rate of the refrigerant flowing through the refrigerant circuit 4 .
  • the decompression mechanism 14 may be housed in the housing 31 of the outdoor unit 3 .
  • the utilization side heat exchanger 15 is, for example, a cross-fin tube type heat exchanger.
  • the indoor fan 22 is, for example, a cross-flow fan.
  • the indoor fan 22 operates, the air in the room R1 is sucked in through the suction ports 26a and 26b of the housing 21, and the conditioned air that has exchanged heat with the refrigerant in the user-side heat exchanger 15 is discharged from the air outlet 26c of the housing 21 into the room. fed into R1.
  • a remote control unit 51 (hereinafter referred to as "remote control 51") is attached to the indoor unit 2.
  • the remote controller 51 is provided in the room R1 so as to be able to communicate with the indoor controller 5a by wire or wirelessly, and transmits a control signal to the indoor controller 5a according to the user's operation.
  • the control unit 5 causes the air conditioner 1 to perform cooling operation or heating operation based on the instruction received by the remote controller 51 .
  • the controller 5 sets the switching mechanism 12 to the first connection state (solid line in FIG. 1).
  • a refrigeration cycle is performed in which the heat source side heat exchanger 13 functions as a condenser and the utilization side heat exchanger 15 functions as an evaporator.
  • the high-pressure refrigerant discharged from the compressor 11 passes through the switching mechanism 12, enters the heat source side heat exchanger 13, exchanges heat with the outdoor air, and condenses.
  • the condensed refrigerant is decompressed when passing through the decompression mechanism 14, then enters the utilization side heat exchanger 15, exchanges heat with the air in the room R1, and evaporates.
  • the conditioned air cooled by the refrigerant is blown into the room R1 by the indoor fan 22 .
  • the refrigerant exiting the user-side heat exchanger 15 passes through the switching mechanism 12, enters the accumulator 16, and is sucked into the compressor 11 after gas-liquid separation.
  • the control unit 5 controls the opening degree of the decompression mechanism 14 during cooling operation. More specifically, when the usage-side heat exchanger 15 functions as an evaporator, the control unit 5 controls the dryness of the refrigerant flowing out from the later-described heat transfer tubes 6 serving as the refrigerant outlet in the usage-side heat exchanger 15. is a predetermined value or more (for example, 95% or more).
  • Controlling the dryness by the control unit 5 reduces the amount of refrigerant flowing out from the outlet of the user-side heat exchanger 15 to the outdoor unit 3, so that the compressor 11 sucks excessively wet refrigerant. can be suppressed.
  • the cooling capacity of the heat transfer tube 6, which is the outlet of the refrigerant decreases.
  • the air passing through the exchanger 15 may not be sufficiently cooled.
  • the heat transfer tube regions (first regions A1, A2, A3) and the unpipe region (second region B1) described later so that the air passing through the utilization side heat exchanger 15 is sufficiently cooled , B2, B3) are devised, the above-described problems associated with the control can be solved.
  • the control unit 5 puts the switching mechanism 12 in the second connection state (broken line in FIG. 1).
  • a refrigeration cycle is performed in which the heat source side heat exchanger 13 functions as an evaporator and the utilization side heat exchanger 15 functions as a condenser.
  • the high-pressure refrigerant discharged from the compressor 11 passes through the switching mechanism 12, enters the user-side heat exchanger 15, exchanges heat with the air in the room R1, and condenses.
  • the conditioned air heated by the refrigerant is blown into the room R1 by the indoor fan 22 .
  • the condensed refrigerant is decompressed when passing through the decompression mechanism 14, then enters the heat source side heat exchanger 13, exchanges heat with outdoor air, and evaporates.
  • the refrigerant exiting the heat source side heat exchanger 13 passes through the switching mechanism 12, enters the accumulator 16, and is sucked into the compressor 11 after gas-liquid separation.
  • FIG. 3 is a schematic diagram showing the internal structure of the indoor unit 2 according to the embodiment.
  • the portion shown as a cross section is hatched.
  • the indoor unit 2 of this embodiment is a wall-mounted unit, and is installed, for example, on the upper part of the side wall of the room R1.
  • the side wall on which the indoor unit 2 is installed facing the room is called the "front side” of the indoor unit 2, and the side opposite to the front side is called the “rear side” of the indoor unit 2.
  • the left side of FIG. 3 is the “front side” and the right side of FIG. 3 is the “rear side”.
  • the upper side in the vertical direction is the “upper side” of the indoor unit 2, and corresponds to the upper side in FIG.
  • the lower side in the vertical direction is the “lower side” of the indoor unit 2, and corresponds to the lower side in FIG.
  • the direction orthogonal to the front-back direction and the up-down direction is the left-right direction
  • the "right side” of the indoor unit 2 corresponds to the back side of the paper surface of FIG. 3
  • the "left side” of the indoor unit 2 corresponds to the front side of the paper surface of FIG. .
  • the usage-side heat exchanger 15 includes a heat exchanger 15a installed on the front side of the indoor fan 22 and a heat exchanger 15b installed on the rear side of the indoor fan 22.
  • the housing 21 includes a front plate 21a, a top plate 21b, a back plate 21c, a first accommodation plate 21d, a second accommodation plate 21e, and a channel bottom plate 21f.
  • the front plate 21 a is a plate-like member that covers the front sides of the user-side heat exchanger 15 and the indoor fan 22 .
  • a front suction port 26a is formed in the front plate 21a.
  • the top plate 21b is a plate-shaped member that covers the upper sides of the user-side heat exchanger 15 and the indoor fan 22.
  • a grill 23 is installed on the top plate 21b, and the grill 23 is formed with an upper suction port 26b.
  • the front suction port 26a and the upper suction port 26b are also simply referred to as "suction ports”.
  • the back plate 21 c is a plate-shaped member that covers the rear side of the utilization side heat exchanger 15 and the indoor fan 22 .
  • the first housing plate 21d is a plate-shaped member that houses the heat exchanger 15a from below.
  • a drain pan 24a is provided between the first housing plate 21d and the heat exchanger 15a.
  • the drain pan 24a is a gutter-like member for collecting dew condensation water generated in the heat exchanger 15a.
  • the second housing plate 21e is a plate-shaped member that houses the heat exchanger 15b from below.
  • a drain pan 24b is provided between the second housing plate 21e and the heat exchanger 15b.
  • the drain pan 24b is a gutter-like member for collecting dew condensation water generated in the heat exchanger 15b.
  • the flow path bottom plate 21f is a plate-shaped member extending from the rear side of the indoor fan 22 to the front obliquely downward side.
  • a flow path for the air blown out from the indoor fan 22 is formed by the lower surface of the first housing plate 21d and the upper surface of the flow path bottom plate 21f.
  • An outlet of the flow path is the outlet 26 c of the housing 21 .
  • a flap 25 is provided on the housing 21 .
  • the outlet 26c is closed or opened.
  • the direction of blowing out the conditioned air is adjusted by the inclination angle of the flap 25 .
  • the indoor unit 2 in FIG. 3 has two flaps 25 as an example, but the number of flaps 25 is not limited.
  • the airflow F1 is a flow of air from the front suction port 26a to the indoor fan 22 through the heat exchanger 15a.
  • the airflow F2 is a flow of air from the upper suction port 26b to the indoor fan 22 through the heat exchanger 15a.
  • the airflow F3 is a flow of air from the upper suction port 26b to the indoor fan 22 through the heat exchanger 15b.
  • the air flow F4 is a flow of air sent indoors from the indoor fan 22 through the outlet 26c.
  • FIG. 4 is a schematic diagram showing an enlarged view of the heat exchanger 15a of FIG.
  • the heat exchanger 15 a is a so-called fin-and-tube heat exchanger, and includes heat transfer tubes 6 and fins 7 .
  • the heat transfer pipes 6 are metal pipes through which a refrigerant can flow.
  • the fin 7 is a plate-shaped member whose thickness direction is the left-right direction, and is a metal plate made of aluminum, for example.
  • a plurality of fins 7 are laminated at a predetermined pitch in the horizontal direction.
  • the direction in which the air flows from the windward side to the leeward side will be referred to as the "first direction”.
  • a direction intersecting with the first direction is referred to as a "second direction”.
  • the second direction is, more specifically, a direction perpendicular to the first direction. Since the first direction depends on the direction in which the air flows, the first direction may differ for each region of the fins 7 .
  • the first direction is the direction from the front side to the rear side (from the left side to the right side in FIG. 4) in the first direction.
  • the first direction is the direction from the front side to the diagonally lower rear side (from the left side to the diagonally lower right side in FIG. 4).
  • the fin 7 has a narrow portion 7a whose width in the first direction is narrower than the average.
  • the narrow portion 7a is formed in the central portion of the fin 7 in the vertical direction.
  • a region of the fin 7 below the narrow portion 7a is referred to as a fin lower portion P1, and a region above the narrow portion 7a is referred to as a fin upper portion P2.
  • the narrow portion 7a is a bent portion where the fin 7 bends in the first direction.
  • the fin upper portion P2 is inclined to the leeward side with respect to the fin lower portion P1.
  • a center line L1 in the first direction in the fin lower portion P1 extends in a direction substantially along the vertical direction.
  • the direction of the center line L1 is the longitudinal direction of the fin lower portion P1 and corresponds to the second direction of the fin lower portion P1.
  • a center line L2 in the first direction in the fin upper portion P2 extends in a direction inclined from the upper side to the lower side and the front side.
  • the direction of the center line L2 is the longitudinal direction of the fin upper portion P2 and corresponds to the second direction in the fin upper portion P2.
  • a plurality of through holes 70 through which the heat transfer tubes 6 can pass are formed in the fins 7 in the thickness direction. Although 16 through-holes 70 are formed in the fin 7 in the example of FIG. 4, the number of through-holes 70 is not particularly limited.
  • a collar for fixing the heat transfer tube 6 passing through the through-holes 70 may be provided on the inner peripheral portion of the fin 7 forming the plurality of through-holes 70 .
  • a plurality of through holes 70 are formed in a plurality of rows along the second direction.
  • the plurality of through holes 70 are formed in two rows, one on the windward side and the other on the leeward side, with eight holes each.
  • the plurality of through holes 70 included in the row on the windward side are arranged in a zigzag manner with respect to the plurality of through holes 70 included in the row on the leeward side.
  • the centers of the plurality of through holes 70 included in the windward row are formed at positions that do not overlap the centers of the plurality of through holes 70 included in the leeward row when viewed in the first direction. ing.
  • an imaginary line C1 extending in the first direction passing through the center of an arbitrary through-hole 70 on the windward side is between two through-holes 70, 70 included in the row on the leeward side (more Specifically, it passes through the midpoint of a line segment connecting the centers of the two through holes 70 , 70 .
  • An imaginary line C2 extending in the first direction through the center of an arbitrary through-hole 70 on the leeward side passes between the two through-holes 70, 70 included in the row on the windward side. In this way, the through holes 70 on the windward side and the leeward side are alternately arranged.
  • the plurality of through-holes 70 includes first through-holes 71 through which the heat transfer tubes 6 pass and second through-holes 72 through which the heat transfer tubes 6 do not pass.
  • first through-holes 71 through which the heat transfer tubes 6 pass
  • second through-holes 72 through which the heat transfer tubes 6 do not pass.
  • all eight through-holes 70 included in the fin lower portion P1 are first through-holes 71 .
  • six are the first through-holes 71 and two are the second through-holes 72 .
  • the fin 7 has a first region A1 in which a plurality of first through holes 71 are arranged along the second direction, and a plurality of (two in the example of FIG. 4) second through holes 72 are arranged in the second direction. and a second region B1 arranged side by side.
  • first through holes 71 are arranged along the second direction
  • second through holes 72 are arranged in the second direction
  • second region B1 arranged side by side.
  • four areas A11 to A14 each correspond to the first area A1.
  • the area A11 is an area where the two first through holes 71 are arranged on the windward side of the fin upper portion P2.
  • the area A12 is an area where the four first through holes 71 are arranged on the leeward side of the fin upper portion P2.
  • An area A13 is an area where four first through holes 71 are arranged on the windward side of the fin lower portion P1.
  • the area A14 is an area where the four first through holes 71 are arranged on the leeward side of the fin lower portion P1.
  • the second area B1 is surrounded by the first area A1 with the windward side open. More specifically, the second area B1 is adjacent to the first area A1 (area A12) on the leeward side and adjacent to the first area A1 (areas A11 and A13) on both sides in the second direction.
  • FIG. 5 is a schematic diagram showing an enlarged view of the heat exchanger 15b of FIG.
  • the same components as those of the heat exchanger 15a are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the heat exchanger 15b includes heat transfer tubes 6 and fins 7.
  • a center line L3 in the first direction of the fins 7 of the heat exchanger 15b extends along the second direction.
  • a plurality of through holes 70 are formed in the fin 7 .
  • six through-holes 70 are formed in each of two rows, one on the windward side and the other on the leeward side.
  • the plurality of through holes 70 in the heat exchanger 15b include first through holes 71 and second through holes 72.
  • all the six through-holes 70 included in the row on the windward side are the first through-holes 71 .
  • two upper and two lower through holes 70 are first through holes 71
  • two central through holes 70 are second through holes 72 .
  • the fin 7 of the heat exchanger 15b has a first region A2 in which a plurality of first through holes 71 are arranged along the second direction and a second region B2 in which a plurality of second through holes 72 are arranged along the second direction. and including.
  • first region A2 in which a plurality of first through holes 71 are arranged along the second direction
  • second region B2 in which a plurality of second through holes 72 are arranged along the second direction. and including.
  • three areas A21 to A23 each correspond to the first area A2.
  • An area A21 is an area where two first through holes 71 are arranged in the upper part of the fin 7 on the leeward side.
  • the area A22 is an area where the two first through holes 71 are aligned in the lower part of the fin 7 on the leeward side.
  • An area A23 is an area where six first through holes 71 are arranged on the windward side of the fins 7 .
  • the second area B2 is surrounded by the first area A2 with the leeward side open. More specifically, the second area B2 is adjacent to the first area A2 (area A23) on the windward side and adjacent to the first area A2 (areas A21 and A22) on both sides in the second direction.
  • FIG. 6 is a schematic diagram showing a heat exchanger 15c and its peripheral structure according to a comparative example.
  • the heat exchanger 15c is an example in which the arrangement of the first through-holes 71 and the second through-holes 72 is different from that of the heat exchanger 15b (FIG. 5).
  • FIG. 6 the same reference numerals are given to the same configurations as in the embodiment, and the description thereof will be omitted. The problem to be solved by the present disclosure will be described in more detail with reference to FIG.
  • a heat exchanger in which the heat transfer tubes 6 are passed through all the through-holes 70 included in the fins 7 may be used.
  • a heat exchanger in which the heat transfer tubes 6 pass through some of the plurality of through holes 70 included in the shaped fins 7 and the heat transfer tubes 6 do not pass through the other part of the through holes 70 is manufactured.
  • the number of heat transfer tubes 6 passing through the through-holes 70 is reduced in order to reduce the manufacturing cost (this process is referred to as tube removal). Therefore, the fin 7 of the comparative example has first regions A91 and A92 (that is, heat transfer tube regions) and a second region B9 (that is, extubation region).
  • the heat exchanger 15c When the heat exchanger 15c functions as an evaporator, the moisture in the air is normally condensed on the fins 7 to remove the moisture from the air passing through the heat exchanger 15c. Moisture condensed on the fins 7 is collected in the drain pan 24b. This dries the air flowing on the leeward side of the heat exchanger 15c, and suppresses the formation of dew condensation on the member (for example, the indoor fan 22) located on the leeward side of the heat exchanger 15c.
  • the member for example, the indoor fan 22
  • the heat exchanger 15c has the second region B9, it may not be possible to sufficiently remove moisture from the air passing through the heat exchanger 15c.
  • the air passing through the second region B9 is not sufficiently cooled compared to the air passing through the first regions A91 and A92 where the heat transfer tubes 6 are provided. For this reason, the air that has mainly passed through the second region B9 and hardly passed through the first regions A91 and A92 is not sufficiently dehydrated, and relatively moist air flows downwind, resulting in Condensation may occur on the components where it is located.
  • the first area A91 is arranged on the leeward side of the second area B9.
  • the air flow F91 that linearly passes through the width direction of the fin 7 passes through the first region A91 after passing through the second region B9.
  • moisture removal can be performed.
  • the air flow F91 described above is a flow called “laminar flow” or “main flow”, etc., and passes linearly and stably from the suction port 26b toward the indoor fan 22 (that is, in a relatively short distance). It is the flow to do.
  • the "first direction” in the present disclosure means the flow direction of this mainstream.
  • the flow of air is slowed down by the second accommodation plate 21e and the drain pan 24b.
  • an air flow F92 can be generated that passes through the lower end of the fin 7 from the suction port 26b so as to largely bypass the lower end of the fin 7 and is directed to the indoor fan 22.
  • the air flow F92 is a flow called "turbulent flow” or “bypass flow” or the like, and is a flow that passes in an oblique direction with respect to the air flow F91 (first direction).
  • the air flow F92 reaches the indoor fan 22 without passing through the first region A91 after passing through the second region B9 at the lower end of the fin 7. , water cannot be sufficiently removed.
  • the second region B9 is formed at the end (upper end or lower end) of the fin 7 in the second direction, it is not possible to sufficiently remove moisture from the air flow F92 that flows obliquely with respect to the main flow. Moisture contained in F92 may cause dew condensation on members located on the leeward side of the heat exchanger 15c.
  • the second regions B1 and B2 are surrounded by the first regions A1 and A2 (heat transfer tube regions) with their windward or leeward sides open. That is, the first regions A1 and A2 are located on both sides (upper side and lower side) of the second regions B1 and B2 in the second direction, and the first regions A1 are located on the windward side or the leeward side of the second regions B1 and B2. , A2 are located.
  • both ends in the second direction of the first regions A1 and A2 adjacent to the second regions B1 and B2 in the first direction are located outside the ends of the second regions B1 and B2 in the second direction. are doing.
  • the upper end in the second direction of the first region A1 (regions A12, A14) adjacent to the leeward side of the second region B1 is higher than the upper end in the second direction of the second region B1.
  • the lower ends in the second direction of the first regions A1 (regions A12 and A14) adjacent to the leeward side of the second regions B1 are positioned below the lower ends of the second regions B1 in the second direction.
  • the air passing obliquely can be cooled more reliably, and dew condensation on members located on the leeward side of the heat exchangers 15a and 15b can be suppressed.
  • the first through-hole 71 includes an outlet through-hole 73 and an inlet through-hole 75 .
  • the outlet through-hole 73 is the first through-hole 71 through which the heat transfer tube 6, which serves as an outlet for the refrigerant, penetrates when the heat exchangers 15a and 15b function as evaporators.
  • the outlet through-hole 73 is indicated by an arrowhead (black dot mark).
  • the outlet through-hole 73 is formed at a position adjacent to the first regions A1 and A2 in the first direction.
  • the heat exchangers 15a and 15b function as evaporators, most (or all) of the refrigerant flowing inside the heat transfer tube 6, which is the outlet of the refrigerant, is in a gaseous state. For this reason, the heat transfer tube 6, which is the outlet of the refrigerant, has little room for the refrigerant to evaporate by absorbing heat from the air, and the passing air cannot be sufficiently cooled.
  • the outlet through-hole 73 of the area A11 is adjacent to the windward side of the area A12
  • the outlet through-hole 73 of the area A13 is adjacent to the windward side of the area A14.
  • the inlet through-hole 75 is the first through-hole 71 through which the heat transfer pipe 6 that serves as the refrigerant inlet penetrates when the heat exchangers 15a and 15b function as evaporators.
  • the inlet through-hole 75 is indicated by an arrow mark (“X” mark).
  • the inlet through-holes 75 are formed in a row on the leeward side in an area where the wind speed of the air passing through the heat exchangers 15a and 15b is higher than the average. It is In FIG. 4, the air flows F1 and F2 mainly flow in, and the area where the wind speed is faster than the average is shown as area D1. Also, a region D2 is illustrated as a region where the flow is blocked by the first housing plate 21d and the like and the wind speed is slower than the average. As shown in FIG. 4, the inlet through-hole 75 of area A12 is included in area D1.
  • the inlet through-hole 75 is the region that is most likely to cool when the heat exchangers 15a and 15b function as evaporators.
  • the cooling efficiency of air can be improved.
  • the passing air is gradually cooled, so that the cooling efficiency of the air can be further improved.
  • the inlet through-hole 75 is formed at a position adjacent to the second regions B1 and B2 in the first direction or the second direction, the air passing through the second through-hole 72 and its vicinity can be cooled more reliably. can be done.
  • the inlet through-hole 75 included in the area A12 is adjacent to the second area B1 in the first direction.
  • the inlet through-hole 75 included in the area A21 is adjacent to the second area B2 in the second direction.
  • the narrow portion through hole 74 formed closest to the narrow portion 7 a is the first through hole 71 . Since the narrow portion 7 a has a narrow width, it has a lower cooling capacity than the other portions of the fin 7 .
  • the narrow portion through-hole 74 formed closest to the narrow portion 7a as the first through-hole 71 (the through-hole 70 through which the heat transfer tube 6 penetrates), the air passing through such a portion is further reduced. can be reliably cooled.
  • the narrow through-hole 74 is the inlet through-hole 75.
  • the inlet through-hole 75 is the region that cools most when the heat exchangers 15a and 15b function as evaporators.
  • the narrow through hole 74 is formed at a position adjacent to the leeward side of the second region B1. Since the narrow through-hole 74 is the inlet through-hole 75, the air passing through the narrow through-hole 74 and the vicinity thereof can be well cooled. Therefore, by forming the narrow portion through hole 74 at a position adjacent to the leeward side of the second region B1, the air that has not been sufficiently cooled after passing through the second region B1 and its vicinity can pass through the narrow portion. Cooling can be more reliably performed by the heat transfer tubes 6 passing through the holes 74 .
  • the narrow through-hole 74 is located on the leeward side of the second region B1 in FIG. 4, it may be located on the windward side of the second region B1. That is, the narrow through-hole 74, which is the inlet through-hole 75, may be formed at a position adjacent to the second region B1 in the first direction.
  • FIG. 7 is a schematic diagram showing the internal structure of an indoor unit 2a according to a modification.
  • the indoor unit 2a is a ceiling-embedded unit, and is embedded in the ceiling space of the room R1 (FIG. 1), for example.
  • the method of installing the indoor unit of the present disclosure in the room R1 is not limited, and may be a wall-mounted indoor unit 2 as shown in FIG. 3, or a ceiling-embedded indoor unit 2a as shown in FIG. Alternatively, it may be a ceiling-suspended or floor-mounted indoor unit (not shown).
  • the indoor unit 2a has a housing 21, and an indoor fan 22 and a heat exchanger 15d housed in the housing 21.
  • the heat exchanger 15d functions as the user-side heat exchanger 15 of the air conditioner 1 (Fig. 1).
  • the airflow F5 blown out from the indoor fan 22 passes through the heat exchanger 15d.
  • the heat exchanger 15d includes heat transfer tubes 6 and fins 7b.
  • Three rows of through-holes 70 are formed in the fin 7b in the first direction through which the air flow F5 passes. That is, three rows of through-holes 70 are formed along a second direction that intersects the first direction (a direction that intersects with the air flow F5).
  • the number of rows of the through-holes 70 included in the fins 7b is not limited, and may be three rows in the first direction, or may be four rows or more in the first direction.
  • the plurality of through-holes 70 includes first through-holes 71 through which the heat transfer tubes 6 pass and second through-holes 72 through which the heat transfer tubes 6 do not pass. That is, the heat transfer tubes 6 are removed from some of the plurality of through holes 70 .
  • all the ten through-holes 70 located in the windward-most row are the first through-holes 71
  • all the ten through-holes 70 located in the leeward-most row are the second through-holes 72.
  • the ten through holes 70 positioned in the central row in the first direction four are the first through holes 71, two are the second through holes 72, and two are the first through holes 71 in order from the top. There are two through holes 71 and two second through holes 72 .
  • the second area B3 in which the second through holes 72 are arranged in the second direction is surrounded by the first area A3 in which the first through holes 71 are arranged in the second direction. More specifically, the second area B3 is adjacent to the first area A3 (area A32) on the windward side, and adjacent to the first areas A3 (areas A31 and A33) on both sides in the second direction. With such a configuration, the air before passing through the second area B3 can be cooled more reliably by the first area A3.
  • FIG. 8 is a schematic diagram showing a heat exchanger 15e according to a modification.
  • the heat exchanger 15e is a further modification of the modification heat exchanger 15d (FIG. 7).
  • the heat exchanger 15e includes heat transfer tubes 6 and fins 7c. Three rows of through-holes 70 are formed in the fin 7c in the first direction through which the air flow F5 passes.
  • the plurality of through holes 70 include first through holes 71 and second through holes 72 .
  • all the 16 through holes 70 located in the windward most row are the first through holes 71 .
  • the 16 through-holes 70 positioned in the central row in the first direction two are first through-holes 71, three are second through-holes 72, and two are first through-holes in order from the top. 71 , two of which are the second through holes 72 and seven of which are the first through holes 71 .
  • the 16 through-holes 70 positioned in the row on the most leeward side two are first through-holes 71, three are second through-holes 72, and five are first through-holes in order from the top. 71 , four of which are the second through holes 72 and two of which are the first through holes 71 .
  • the fin 7c includes a first area A4 in which a plurality of first through holes 71 are arranged along the second direction, and a second area B4 in which a plurality of second through holes 72 are arranged along the second direction.
  • the six areas A41 to A46 each correspond to the first area A4, and the three areas B41 to B43 each correspond to the second area B4.
  • the second area B4 is surrounded by the first area A4.
  • FIG. 8 shows various variations in which the second area B4 is surrounded by the first area A4.
  • the area B41 is adjacent to the area A42 on the windward side and adjacent to the areas A41 and A43 on both sides in the second direction while the leeward side is open.
  • the area B42 is adjacent to the area A42 on the windward side, adjacent to the area A44 on the leeward side, and adjacent to the areas A43 and A45 on both sides in the second direction. Since the area B42 is surrounded by the first area A4 on both sides in the first direction and both sides in the second direction, it can be cooled more reliably than the air passing through the second area B4.
  • the area B43 is adjacent to the area A45 on the windward side and adjacent to the areas A44 and A46 on both sides in the second direction.
  • the first area A4 for two rows of the areas A42 and A45 is positioned on the windward side of the area B43, the air flowing in the first direction can be cooled more reliably.
  • the heat exchangers 15a, 15b, 15d, and 15e of the embodiment include the heat transfer tubes 6 through which the refrigerant can flow, and the fins 7 formed with a plurality of through holes 70 through which the heat transfer tubes 6 can pass in the thickness direction. , 7b and 7c, and the plurality of through holes 70 are formed in a plurality of rows along a second direction that intersects with the first direction in which the air flows from the windward side to the leeward side, and the heat transfer tubes 6 pass through the through holes 70. and a second through hole 72 through which the heat transfer tube 6 does not pass. A2, A3, A4, and second regions B1, B2, B3, B4 in which the second through holes 72 are arranged along the second direction.
  • the second regions B1, B2, B3, and B4 are regions in which the second through holes 72 through which the heat transfer tubes 6 do not pass are arranged in the second direction.
  • the air passing through is not sufficiently cooled compared to the air passing through the first regions A1, A2, A3, A4 (heat transfer tube regions).
  • such second regions B1, B2, B3, B4 are surrounded by the first regions A1, A2, A3, A4 in the first direction and the second direction, so that the second regions B1, B2, B3 , B4 can be cooled more reliably by the first regions A1, A2, A3 and A4.
  • dew condensation can be generated more reliably in the heat exchangers 15a, 15b, 15d, and 15e, so that dew condensation on the members located on the leeward side of the heat exchangers 15a, 15b, 15d, and 15e can be suppressed. can.
  • the first through-hole 71 of the embodiment includes an outlet through-hole 73 through which the heat transfer tube 6 passes through, which serves as an outlet for refrigerant when the heat exchangers 15a and 15b function as evaporators.
  • 73 is formed at a position adjacent to the first regions A1 and A2 in the first direction.
  • the outlet through hole 73 of the embodiment is formed at a position adjacent to the windward side of the first area A1.
  • the passing air is gradually cooled. Efficient. Since the heat transfer pipes 6 having a low cooling capacity pass through the outlet through-holes 73, the air cooling efficiency can be improved by providing the outlet through-holes 73 on the windward side of the other first area A1. .
  • the plurality of through holes 70 included in the windward row are arranged in a staggered manner with respect to the plurality of through holes 70 included in the leeward row. ing.
  • the fin 7 of the embodiment has a narrow portion 7a having a width narrower than the average in the first direction, and the narrow portion formed closest to the narrow portion 7a among the plurality of through-holes 70.
  • the through hole 74 is the first through hole 71 .
  • the narrow portion 7a has a lower cooling capacity than other portions of the fin 7.
  • the narrow portion 7a of the embodiment is a bent portion where the fin 7 bends in the first direction.
  • the first through-hole 71 of the embodiment includes an inlet through-hole 75 through which the heat transfer tube 6 penetrates, which serves as an inlet for refrigerant when the heat exchanger 15a functions as an evaporator. is the inlet through-hole 75 .
  • the heat exchanger 15a When the heat exchanger 15a functions as an evaporator, most (or all) of the refrigerant flowing inside is in a liquid state in the heat transfer tube 6 serving as the refrigerant inlet. Therefore, in the heat transfer tube 6, the refrigerant absorbs heat from the air and evaporates easily, so that the passing air can be well cooled.
  • the inlet through-hole 75 through which the heat transfer tube 6 penetrates in the narrow portion 7a having low cooling ability, the low cooling ability in the narrow portion 7a can be compensated. Thereby, the air passing through the narrow portion 7a can be cooled more reliably.
  • the narrow through hole 74 of the embodiment is formed at a position adjacent to the second region B1 in the first direction.
  • the narrow through-hole 74 is the inlet through-hole 75, the air passing through the narrow through-hole 74 and the vicinity thereof can be well cooled. Therefore, by forming the narrow through-hole 74 at a position adjacent to the second region B1 in the first direction, it is sufficiently cooled after (or before) passing through the second region B1 and its vicinity.
  • the heat transfer tube 6 passing through the narrow portion through-hole 74 can cool the air that does not exist in the air more reliably.
  • the first through-hole 71 of the embodiment includes an inlet through-hole 75 through which the heat transfer tube 6 passes through, which serves as an inlet for refrigerant when the heat exchanger 15a functions as an evaporator. , the wind speed of the air passing through the heat exchanger 15 is faster than the average, and is formed in the line on the leeward side.
  • the inlet through-hole 75 which is the area where the heat transfer tube 6, which is the inlet of the refrigerant, penetrates and is most likely to be cooled, in the area where the air velocity is faster than the average (that is, the area where the air volume is large), the air is cooled. Efficiency can be improved. In addition, by forming such inlet through-holes 75 in the row on the leeward side, the passing air is gradually cooled, so that the cooling efficiency of the air can be further improved.
  • the air conditioner 1 of the embodiment includes a refrigerant circuit 4 in which a compressor 11, a heat source side heat exchanger 13, a pressure reducing mechanism 14, and a user side heat exchanger 15 are connected in this order.
  • 15 is an air conditioner 1 including heat exchangers 15a, 15b, 15d, and 15e according to any one of claims 1 to 9.
  • the air conditioner 1 of the embodiment further includes a control unit 5 that controls the opening degree of the decompression mechanism 14.
  • the control unit 5 controls the refrigerant outlet when the utilization side heat exchanger 15 functions as an evaporator.
  • the opening is controlled so that the dryness of the refrigerant flowing out of the heat transfer tube 6 becomes a predetermined value or more.
  • the air conditioner 1 that performs such control, it is possible to suppress the intake of excessively wet refrigerant into the compressor 11 by reducing the amount of refrigerant flowing out from the outlet. On the other hand, if such control is performed, the cooling capacity of the heat transfer tube 6, which is the outlet of the refrigerant, is lowered. it may not be done.
  • the first areas A1, A2, A3, A4 and the second areas B1, B2, B3, B4 are arranged so that the passing air is sufficiently cooled. is devised, it is possible to solve the problems associated with the above control.
  • Air conditioner 11 Compressor 12: Switching mechanism 13: Heat source side heat exchanger 14: Pressure reducing mechanism 15: User side heat exchanger 15a: Heat exchanger 15b: Heat exchanger 15c : heat exchanger 15d: heat exchanger 15e: heat exchanger 16: accumulator 2: indoor unit 2a: indoor unit 21: housing 21a: front plate 21b: top plate 21c: back plate , 21d: first housing plate, 21e: second housing plate, 21f: channel bottom plate, 22: indoor fan, 23: grill, 24a: drain pan, 24b: drain pan, 25: flap, 26a: front suction port, 26b : upper suction port, 26c: outlet, 3: outdoor unit, 31: housing, 32: outdoor fan, 4: refrigerant circuit, 5: control unit, 5a: indoor control unit, 5b: outdoor control unit, 51: remote Control unit (remote control), 52a: processor, 52b: processor, 53a: memory, 53b: memory, 6: heat transfer tube, 7: fin, 7b: fin,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

This heat exchanger 15a comprises heat transfer piping 6 through which refrigerant can flow, and a fan 7 in which are formed a plurality of through-holes 70 through which the heat transfer piping 6 can pass in the thickness direction. The plurality of through-holes 70 include: first through-holes 71 through which the heat transfer piping 6 passes, the first through-holes 71 being formed in a plurality of rows along a second direction intersecting a first direction in which the air flows from the upwind side toward the downwind side; and second through-holes 72 through which the heat transfer pipes 6 do not pass. In the fan 7, the first through-holes 71 include first regions A1 lined up along the second direction, and the second through-holes 72 include second regions B1 lined up along the second direction. The second regions B1 are adjacent to the first regions A1 on one or both first-direction sides, and are also adjacent to the first regions A1 on both second-direction sides.

Description

熱交換器および空気調和装置heat exchangers and air conditioners
 本開示は、熱交換器および空気調和装置に関する。 The present disclosure relates to heat exchangers and air conditioners.
 空気調和装置や空気調和装置などにおいて、フィンアンドチューブ型の熱交換器が用いられている。このタイプの熱交換器(以下、単に「熱交換器」と称する。)は、製造時に、複数枚のフィンに対して、複数本の伝熱管を貫通させる。 Fin-and-tube heat exchangers are used in air conditioners and air conditioners. In this type of heat exchanger (hereinafter simply referred to as "heat exchanger"), a plurality of heat transfer tubes are passed through a plurality of fins during manufacturing.
 従来より、熱交換器の製造コストを下げるために、フィンを共通形状としつつ、フィンに貫通させる伝熱管の本数を異ならせて、複数種類の熱交換器を製造する場合がある(例えば、特許文献1)。例えば、2列のカラー部(フィンの貫通孔部分)を有するフィンに2列の伝熱管が挿入された熱交換器と、同形状のフィンに1列の伝熱管が挿入された熱交換器とを製造することで、フィンの製造コストなどを低減しつつ、異なる種類の熱交換器を製造することができる。このように製造された熱交換器は、フィンのカラー部のうち伝熱管が設けられていない領域(抜管領域)を有する場合がある。 Conventionally, in order to reduce the manufacturing cost of heat exchangers, there are cases where multiple types of heat exchangers are manufactured by making the fins of a common shape and varying the number of heat transfer tubes that pass through the fins (for example, patent Reference 1). For example, a heat exchanger in which two rows of heat transfer tubes are inserted into fins having two rows of collars (fin through-hole portions), and a heat exchanger in which one row of heat transfer tubes is inserted in fins of the same shape By manufacturing the fins, it is possible to manufacture different types of heat exchangers while reducing the manufacturing cost of the fins. A heat exchanger manufactured in this way may have an area (extracted tube area) in which the heat transfer tube is not provided in the collar portion of the fin.
特開2015-127607号公報JP 2015-127607 A
(1)本開示の熱交換器は、冷媒が流通可能な伝熱管と、厚み方向に前記伝熱管が貫通可能な複数の貫通孔が形成されているフィンと、を備え、前記複数の貫通孔は、空気が風上側から風下側に向かう第1方向と交差する第2方向に沿って複数列に形成され、前記伝熱管が貫通している第1貫通孔と、前記伝熱管が貫通していない第2貫通孔と、を含み、前記フィンは、前記第1貫通孔が、前記第2方向に沿って並ぶ第1領域と、前記第2貫通孔が、前記第2方向に沿って並ぶ第2領域と、を含み、前記第2領域は、前記第1方向の一方側又は両側において前記第1領域と隣接し、前記第2方向の両側において前記第1領域と隣接している、熱交換器である。 (1) A heat exchanger according to the present disclosure includes a heat transfer tube through which a refrigerant can flow, and a fin having a plurality of through holes through which the heat transfer tube can pass in a thickness direction. is formed in a plurality of rows along a second direction that intersects with a first direction in which air flows from the windward side to the leeward side, the first through holes through which the heat transfer tubes penetrate, and the heat transfer tubes through the fin includes a first region in which the first through holes are aligned along the second direction; and a second region in which the second through holes are aligned along the second direction. 2 regions, wherein the second region is adjacent to the first region on one side or both sides in the first direction, and adjacent to the first region on both sides in the second direction, heat exchange It is a vessel.
 第2領域(抜管領域)は、伝熱管が貫通していない第2貫通孔が第2方向に並ぶ領域であるため、第2領域を通過する空気は、第1領域(伝熱管領域)を通過する空気と比べて十分に冷却されない。本開示では、このような第2領域を、第1方向及び第2方向において第1領域により囲むことで、第2領域を通過した後(又は通過する前)の空気を第1領域によってより確実に冷却することができる。これにより、熱交換器において結露をより確実に発生させることができるため、熱交換器の風下側に位置する部材における結露を抑制することができる。 Since the second region (extraction region) is a region in which the second through holes through which the heat transfer tubes do not penetrate are arranged in the second direction, the air passing through the second region passes through the first region (heat transfer tube region). It is not cooled sufficiently compared to the air that cools it. In the present disclosure, by surrounding such a second region with the first region in the first direction and the second direction, air after passing through (or before passing) the second region is more reliably can be cooled to As a result, dew condensation can be generated more reliably in the heat exchanger, so that dew condensation on members located on the leeward side of the heat exchanger can be suppressed.
(2)好ましくは、前記第1貫通孔は、前記熱交換器が蒸発器として機能する場合の冷媒の出口となる前記伝熱管が貫通している出口貫通孔を含み、前記出口貫通孔は、前記第1領域と前記第1方向に隣接する位置に形成されている。 (2) Preferably, the first through-hole includes an outlet through-hole through which the heat transfer tube passes through, which serves as an outlet for refrigerant when the heat exchanger functions as an evaporator, and the outlet through-hole is It is formed at a position adjacent to the first region in the first direction.
 熱交換器が蒸発器として機能する場合に、冷媒の出口となる伝熱管では、内部を流れる大半(又は全て)の冷媒がガス状態となっている。このため、この伝熱管では、空気から熱を吸収して冷媒が蒸発する余地がほとんどなく、通過する空気を十分に冷却することができない。このような伝熱管が貫通している出口貫通孔を第1領域と第1方向に隣接する位置に形成することで、出口貫通孔及びその近傍を通過した後(又は通過する前)の十分に冷却されていない空気を、当該隣接する第1領域によってより確実に冷却することができる。これにより、熱交換器において結露をより確実に発生させることができるため、熱交換器の風下側に位置する部材における結露を抑制することができる。 When the heat exchanger functions as an evaporator, most (or all) of the refrigerant flowing inside is in a gaseous state in the heat transfer tube, which is the outlet of the refrigerant. Therefore, in this heat transfer tube, there is almost no room for the refrigerant to evaporate by absorbing heat from the air, and the passing air cannot be sufficiently cooled. By forming the exit through-hole through which such a heat transfer tube penetrates at a position adjacent to the first region in the first direction, after (or before passing) passing through the exit through-hole and its vicinity, Uncooled air can be cooled more reliably by the adjacent first region. As a result, dew condensation can be generated more reliably in the heat exchanger, so that dew condensation on members located on the leeward side of the heat exchanger can be suppressed.
(3)好ましくは、前記出口貫通孔は、前記第1領域の前記風上側に隣接する位置に形成されている。 (3) Preferably, the outlet through-hole is formed at a position adjacent to the windward side of the first region.
 冷却能力が低い伝熱管を風上側に設け、冷却能力が高い伝熱管を風下側に設けると、通過する空気が徐々に冷却されるため、上記の逆順に配置する場合と比べて冷却の効率が良い。出口貫通孔は、冷却能力が低い伝熱管が貫通しているため、出口貫通孔を他の第1領域の風上側に設けることで、空気の冷却効率をより良くすることができる。 If heat transfer tubes with low cooling capacity are provided on the windward side and heat transfer tubes with high cooling capacity are provided on the leeward side, the passing air is gradually cooled, so the cooling efficiency is higher than in the case of arranging them in the reverse order of the above. good. Since the outlet through-hole is penetrated by a heat transfer tube having a low cooling capacity, the air cooling efficiency can be improved by providing the outlet through-hole on the windward side of the other first region.
(4)好ましくは、前記フィンにおいて、前記風上側の列に含まれる前記複数の貫通孔は、前記風下側の列に含まれる前記複数の貫通孔に対して千鳥状に配置するように形成されている。 (4) Preferably, in the fin, the plurality of through holes included in the windward row are arranged in a staggered manner with respect to the plurality of through holes included in the leeward row. ing.
 複数の貫通孔を千鳥配置するように形成することで、通過する空気をまんべんなく冷却することが可能となる。 By forming multiple through-holes in a staggered arrangement, it is possible to evenly cool the passing air.
(5)好ましくは、前記フィンは、前記第1方向の幅が平均よりも狭まった狭部を有し、前記複数の貫通孔のうち、前記狭部の最も近くに形成されている狭部貫通孔は、前記第1貫通孔である。 (5) Preferably, the fin has a narrow portion whose width in the first direction is narrower than an average, and the narrow portion penetrating portion is formed closest to the narrow portion among the plurality of through holes. The hole is the first through hole.
 狭部は、フィンの他の部分と比べて冷却能力が低い。狭部の最も近くに形成されている狭部貫通孔を第1貫通孔(伝熱管が貫通している貫通孔)とすることで、このような部分を通過する空気をより確実に冷却することができる。 The narrow part has a lower cooling capacity than other parts of the fin. By using the narrow portion through-hole formed closest to the narrow portion as the first through-hole (the through-hole through which the heat transfer tube penetrates), the air passing through such a portion is cooled more reliably. can be done.
(6)好ましくは、前記狭部は、前記フィンが前記第1方向に屈曲する屈曲部である。 (6) Preferably, the narrow portion is a bent portion where the fin bends in the first direction.
(7)好ましくは、前記第1貫通孔は、前記熱交換器が蒸発器として機能する場合の冷媒の入口となる前記伝熱管が貫通している入口貫通孔を含み、前記狭部貫通孔は、前記入口貫通孔である。 (7) Preferably, the first through-hole includes an inlet through-hole through which the heat transfer tube passes through which serves as an inlet for refrigerant when the heat exchanger functions as an evaporator, and the narrow through-hole is , said inlet through hole.
 熱交換器が蒸発器として機能する場合に、冷媒の入口となる伝熱管では、内部を流れる大半(又は全て)の冷媒が液状態となっている。このため、この伝熱管では、冷媒が空気から熱を吸収して蒸発しやすく、通過する空気を良好に冷却することができる。このような伝熱管が貫通している入口貫通孔を、冷却能力が低い狭部に形成することで、狭部における冷却能力の低さを補うことができる。これにより、狭部を通過する空気をより確実に冷却することができる。 When the heat exchanger functions as an evaporator, most (or all) of the refrigerant flowing inside is in a liquid state in the heat transfer tube, which is the inlet of the refrigerant. Therefore, in this heat transfer tube, the refrigerant absorbs heat from the air and evaporates easily, so that the passing air can be well cooled. By forming the inlet through-holes through which the heat transfer tubes pass through in the narrow portion where the cooling capability is low, the low cooling capability in the narrow portion can be compensated for. Thereby, the air passing through the narrow portion can be cooled more reliably.
(8)好ましくは、前記狭部貫通孔は、前記第2領域と前記第1方向に隣接する位置に形成されている。 (8) Preferably, the narrow through hole is formed at a position adjacent to the second region in the first direction.
 狭部貫通孔は入口貫通孔であるため、狭部貫通孔及びその近傍を通過する空気を良好に冷却することができる。このため、狭部貫通孔を第2領域と第1方向に隣接する位置に形成することで、第2領域及びその近傍を通過した後(又は通過する前)の十分に冷却されていない空気を、狭部貫通孔を貫通する伝熱管によってより確実に冷却することができる。 Since the narrow through-hole is an inlet through-hole, the air passing through the narrow through-hole and its vicinity can be well cooled. Therefore, by forming the narrow through hole at a position adjacent to the second region in the first direction, the air that has not been sufficiently cooled after (or before passing) the second region and its vicinity can be removed. , the cooling can be more reliably performed by the heat transfer tubes passing through the narrow through-holes.
(9)好ましくは、前記第1貫通孔は、前記熱交換器が蒸発器として機能する場合の冷媒の入口となる前記伝熱管が貫通している入口貫通孔を含み、前記入口貫通孔は、前記熱交換器を通過する空気の風速が平均よりも速い領域であって、かつ前記風下側の列に形成されている。 (9) Preferably, the first through-hole includes an inlet through-hole through which the heat transfer tube passes through which serves as an inlet for refrigerant when the heat exchanger functions as an evaporator, and the inlet through-hole is It is an area where the wind speed of the air passing through the heat exchanger is higher than average and is formed in the line on the leeward side.
 冷媒の入口となる伝熱管が貫通し、最も冷えやすい領域となる入口貫通孔を、空気の風速が平均よりも速い領域(すなわち、風量の多い領域)に形成することで、空気の冷却効率を向上させることができる。また、そのような入口貫通孔を風下側の列に形成することで、通過する空気が徐々に冷却されるため、空気の冷却効率をより向上させることができる。 The cooling efficiency of the air is improved by forming the inlet through-hole, which is the area where the heat transfer tube that is the inlet of the refrigerant penetrates and is the most chilled area, in the area where the air velocity is faster than the average (that is, the area where the air volume is large). can be improved. In addition, by forming such inlet through-holes in the row on the leeward side, the passing air is gradually cooled, so that the cooling efficiency of the air can be further improved.
(10)本開示の空気調和装置は、圧縮機、熱源側熱交換器、減圧機構及び利用側熱交換器がこの順に接続された冷媒回路を備え、前記利用側熱交換器は、前記(1)から(9)のいずれかの熱交換器を含む、空気調和装置である。 (10) The air conditioner of the present disclosure includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, a decompression mechanism, and a user side heat exchanger are connected in this order, and the user side heat exchanger is the above (1 ) to (9), including the heat exchanger.
(11)好ましくは、本開示の空気調和装置は、前記減圧機構の開度を制御する制御部をさらに備え、前記制御部は、前記利用側熱交換器が蒸発器として機能する場合の冷媒の出口となる前記伝熱管から流出する冷媒の乾き度が所定値以上となるように前記開度を制御する。 (11) Preferably, the air conditioner of the present disclosure further includes a control unit that controls the degree of opening of the decompression mechanism, and the control unit controls the amount of refrigerant when the utilization side heat exchanger functions as an evaporator. The degree of opening is controlled so that the dryness of the refrigerant flowing out of the heat transfer tube serving as an outlet is equal to or higher than a predetermined value.
 このような制御を行う空気調和装置では、出口から流出する冷媒の液量をより少なくすることで、圧縮機に過度な湿り状態の冷媒が吸入されることを抑制することができる。一方で、このような制御を行うと、冷媒の出口となる伝熱管における冷却能力が低下するため、第2領域を設ける位置によっては、通過する空気が十分に冷却されないおそれがある。本開示の空気調和装置に含まれる利用側熱交換器では、通過する空気が十分に冷却されるように第1領域および第2領域の配置を工夫しているため、上記制御に伴う課題を解決することができる。 In an air conditioner that performs such control, it is possible to suppress excessively wet refrigerant from being drawn into the compressor by reducing the amount of refrigerant flowing out of the outlet. On the other hand, if such control is performed, the cooling capacity of the heat transfer tube, which is the outlet of the refrigerant, is lowered, so depending on the position of the second region, the passing air may not be sufficiently cooled. In the user-side heat exchanger included in the air conditioner of the present disclosure, the arrangement of the first region and the second region is devised so that the passing air is sufficiently cooled, so the problem associated with the above control is solved. can do.
実施形態に係る空気調和装置の構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus which concerns on embodiment. 実施形態に係る空気調和装置の機能ブロック図である。1 is a functional block diagram of an air conditioner according to an embodiment; FIG. 実施形態に係る室内ユニットの内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of the indoor unit which concerns on embodiment. 実施形態に係る熱交換器を示す模式図である。It is a mimetic diagram showing a heat exchanger concerning an embodiment. 実施形態に係る熱交換器を示す模式図である。It is a mimetic diagram showing a heat exchanger concerning an embodiment. 比較例に係る熱交換器とその周辺構造を示す模式図である。It is a schematic diagram which shows the heat exchanger which concerns on a comparative example, and its peripheral structure. 変形例に係る室内ユニットの内部構造を示す模式図である。FIG. 5 is a schematic diagram showing an internal structure of an indoor unit according to a modification; 変形例に係る熱交換器を示す模式図である。It is a mimetic diagram showing a heat exchanger concerning a modification.
[発明が解決しようとする課題]
 熱交換器を蒸発器として機能させる場合、空気中の水分をフィンにおいて結露させることで、熱交換器を通過する空気から水分を除去することが通常である。これにより、熱交換器の風下側に位置する部材(例えば、ファン)に結露が生じることを抑制する。
[Problems to be solved by the invention]
When the heat exchanger functions as an evaporator, the moisture in the air is normally condensed on the fins to remove the moisture from the air passing through the heat exchanger. This suppresses dew condensation on a member (for example, a fan) located on the leeward side of the heat exchanger.
 しかしながら、熱交換器が抜管領域を有する場合、熱交換器を通過する空気から水分を十分に除去できない場合がある。抜管領域を通る空気は、伝熱管が設けられている領域(伝熱管領域)を通る空気と比べて十分に冷却されない。このため、主に抜管領域を通り、伝熱管領域をほとんど通らなかった空気は、水分が十分に除去されず、風下側に位置する部材に結露を生じさせるおそれがある。 However, if the heat exchanger has a vented area, it may not be possible to sufficiently remove moisture from the air passing through the heat exchanger. The air passing through the unpiped area is not sufficiently cooled compared to the air passing through the area where the heat transfer tubes are provided (heat transfer tube area). For this reason, the air that has mainly passed through the unpipe region and hardly passed through the heat transfer tube region is not sufficiently dehydrated, and may cause dew condensation on members positioned on the leeward side.
 本開示は、熱交換器の風下側に位置する部材における結露の抑制を目的とする。 The present disclosure aims to suppress dew condensation on members located on the leeward side of the heat exchanger.
 以下、添付の図面を参照しつつ、本開示の実施形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings.
[実施形態]
[空気調和装置1の構成]
 図1は、実施形態に係る空気調和装置1の構成を概略的に示す図である。
 図2は、実施形態に係る空気調和装置1の機能ブロック図である。
 以下、図1及び図2を参照して、空気調和装置1の構成を説明する。
[Embodiment]
[Configuration of air conditioner 1]
FIG. 1 is a diagram schematically showing the configuration of an air conditioner 1 according to an embodiment.
FIG. 2 is a functional block diagram of the air conditioner 1 according to the embodiment.
The configuration of the air conditioner 1 will be described below with reference to FIGS. 1 and 2. FIG.
 空気調和装置1は、部屋R1の冷房及び暖房を行う機能を有する。空気調和装置1は、部屋R1に設置される室内ユニット2と、屋外に設置される室外ユニット3と、内部を冷媒が循環する冷媒回路4と、制御部5とを備える。冷媒は、例えばR32である。部屋R1の用途は特に限定されず、例えば人間の居住空間(例えば、住宅、店舗、オフィス、工場)であっても良いし、食材を保管する倉庫であってもよいし、機械機器具(例えばサーバ)が設置された空間であってもよい。 The air conditioner 1 has the function of cooling and heating the room R1. The air conditioner 1 includes an indoor unit 2 installed in a room R1, an outdoor unit 3 installed outdoors, a refrigerant circuit 4 in which a refrigerant circulates, and a controller 5. The refrigerant is, for example, R32. The use of the room R1 is not particularly limited. server) may be installed.
 冷媒回路4は、圧縮機11と、切換機構12と、熱源側熱交換器13と、減圧機構14と、利用側熱交換器15と、アキュムレータ16と、を有する。冷媒回路4では、熱源側熱交換器13が凝縮器として機能する場合に(すなわち、空気調和装置1が冷房運転をする場合に)、圧縮機11から吐出された冷媒が、切換機構12、熱源側熱交換器13、減圧機構14、利用側熱交換器15、切換機構12及びアキュムレータ16の順に流れて圧縮機11へ戻るように、各部11~16が接続されている。 The refrigerant circuit 4 has a compressor 11 , a switching mechanism 12 , a heat source side heat exchanger 13 , a pressure reducing mechanism 14 , a utilization side heat exchanger 15 and an accumulator 16 . In the refrigerant circuit 4, when the heat source side heat exchanger 13 functions as a condenser (that is, when the air conditioner 1 performs cooling operation), the refrigerant discharged from the compressor 11 flows through the switching mechanism 12 and the heat source. The parts 11 to 16 are connected so that the heat flows in the order of the side heat exchanger 13 , the decompression mechanism 14 , the use side heat exchanger 15 , the switching mechanism 12 and the accumulator 16 and returns to the compressor 11 .
 制御部5は、互いに通信線によって接続された室内制御部5a及び室外制御部5bを有する。図2に示すように、室内制御部5aはプロセッサ52a及びメモリ53aを有する。メモリ53aに含まれているプログラムに基づいてプロセッサ52aが各種の演算及び制御を行うことで、室内制御部5aは室内ユニット2に含まれる各部を制御する。室外制御部5bはプロセッサ52b及びメモリ53bを有する。メモリ53bに含まれているプログラムに基づいてプロセッサ52bが各種の演算及び制御を行うことで、室外制御部5bは室外ユニット3に含まれる各部を制御する。 The control unit 5 has an indoor control unit 5a and an outdoor control unit 5b that are connected to each other by a communication line. As shown in FIG. 2, the indoor controller 5a has a processor 52a and a memory 53a. The indoor controller 5a controls each part included in the indoor unit 2 by the processor 52a performing various calculations and controls based on the programs included in the memory 53a. The outdoor controller 5b has a processor 52b and a memory 53b. The outdoor control section 5b controls each section included in the outdoor unit 3 by the processor 52b performing various calculations and controls based on the programs included in the memory 53b.
 室外ユニット3は、吸込口(図示省略)と排気口(図示省略)とが形成されている筐体31を有する。筐体31は、冷媒回路4のうち圧縮機11、切換機構12、熱源側熱交換器13及びアキュムレータ16を収容している。筐体31は、室外制御部5b及び室外ファン32をさらに収容している。 The outdoor unit 3 has a housing 31 in which a suction port (not shown) and an exhaust port (not shown) are formed. The housing 31 houses the compressor 11 , the switching mechanism 12 , the heat source side heat exchanger 13 and the accumulator 16 of the refrigerant circuit 4 . The housing 31 further accommodates the outdoor controller 5 b and the outdoor fan 32 .
 圧縮機11は、例えば容量可変式圧縮機であり、制御部5の動作指令に基づいて、インバータによって回転周波数が制御される。 The compressor 11 is, for example, a variable displacement compressor, and the rotation frequency is controlled by the inverter based on the operation command from the control unit 5.
 切換機構12は、冷媒回路4における冷媒の流れ方向を切り換えるための機構であり、例えば四路切換弁である。切換機構12は、制御部5の制御により、圧縮機11から吐出された冷媒が熱源側熱交換器13に送られる第1接続状態(図1の実線)と、圧縮機11から吐出された冷媒が利用側熱交換器15に送られる第2接続状態(図1の破線)とに切り換えられる。 The switching mechanism 12 is a mechanism for switching the flow direction of the refrigerant in the refrigerant circuit 4, and is, for example, a four-way switching valve. Under the control of the control unit 5, the switching mechanism 12 has a first connection state (solid line in FIG. 1) in which the refrigerant discharged from the compressor 11 is sent to the heat source side heat exchanger 13, and is sent to the heat exchanger 15 on the user side (broken line in FIG. 1).
 熱源側熱交換器13は、例えばクロスフィンチューブ型の熱交換器である。
 アキュムレータ16は、圧縮機11の保護のために冷媒の気液分離を行う装置である。
The heat source side heat exchanger 13 is, for example, a cross-fin tube heat exchanger.
The accumulator 16 is a device that performs gas-liquid separation of the refrigerant to protect the compressor 11 .
 室外ファン32は、例えばプロペラファンである。室外ファン32が稼働すると、室外空気が筐体31の吸込口(図示省略)から吸い込まれ、熱源側熱交換器13において冷媒と熱交換した後の空気が筐体31の排気口(図示省略)から室外空間へ排出される。 The outdoor fan 32 is, for example, a propeller fan. When the outdoor fan 32 operates, the outdoor air is sucked from the intake port (not shown) of the housing 31, and the air after heat exchange with the refrigerant in the heat source side heat exchanger 13 is discharged from the exhaust port (not shown) of the housing 31. to the outdoor space.
 室内ユニット2は、吸込口26a,26b(図3)と吹出口26c(図3)とが形成されている筐体21を有する。筐体21は、冷媒回路4のうち減圧機構14と利用側熱交換器15とを収容している。筐体21は、室内制御部5aと室内ファン22とをさらに収容している。 The indoor unit 2 has a housing 21 in which suction ports 26a and 26b (Fig. 3) and an air outlet 26c (Fig. 3) are formed. The housing 21 accommodates the decompression mechanism 14 and the user-side heat exchanger 15 of the refrigerant circuit 4 . The housing 21 further accommodates the indoor controller 5 a and the indoor fan 22 .
 減圧機構14は、例えば電磁弁(膨張弁)であり、冷媒回路4を流れる冷媒の圧力及び流量を調節する。減圧機構14は、室外ユニット3の筐体31に収容されていてもよい。利用側熱交換器15は、例えばクロスフィンチューブ型の熱交換器である。 The decompression mechanism 14 is, for example, an electromagnetic valve (expansion valve) and adjusts the pressure and flow rate of the refrigerant flowing through the refrigerant circuit 4 . The decompression mechanism 14 may be housed in the housing 31 of the outdoor unit 3 . The utilization side heat exchanger 15 is, for example, a cross-fin tube type heat exchanger.
 室内ファン22は、例えばクロスフローファンである。室内ファン22が稼働すると、部屋R1内の空気が筐体21の吸込口26a,26bから吸い込まれ、利用側熱交換器15において冷媒と熱交換した調和空気が筐体21の吹出口26cから部屋R1内へ供給される。 The indoor fan 22 is, for example, a cross-flow fan. When the indoor fan 22 operates, the air in the room R1 is sucked in through the suction ports 26a and 26b of the housing 21, and the conditioned air that has exchanged heat with the refrigerant in the user-side heat exchanger 15 is discharged from the air outlet 26c of the housing 21 into the room. fed into R1.
 室内ユニット2にはリモートコントロールユニット51(以下、「リモコン51」と称する。)が付帯されている。リモコン51は、室内制御部5aと有線又は無線により通信可能な状態で部屋R1内に設けられ、ユーザの操作に応じて室内制御部5aに制御信号を送信する。 A remote control unit 51 (hereinafter referred to as "remote control 51") is attached to the indoor unit 2. The remote controller 51 is provided in the room R1 so as to be able to communicate with the indoor controller 5a by wire or wirelessly, and transmits a control signal to the indoor controller 5a according to the user's operation.
[運転モードについて]
 制御部5は、リモコン51が受け付けた指示に基づいて、空気調和装置1を冷房運転又は暖房運転させる。冷房運転では、制御部5は切換機構12を第1接続状態(図1の実線)とする。この状態で制御部5が圧縮機11を稼働させると、熱源側熱交換器13が凝縮器となり、利用側熱交換器15が蒸発器となる冷凍サイクルが行われる。
[About driving mode]
The control unit 5 causes the air conditioner 1 to perform cooling operation or heating operation based on the instruction received by the remote controller 51 . In the cooling operation, the controller 5 sets the switching mechanism 12 to the first connection state (solid line in FIG. 1). When the control unit 5 operates the compressor 11 in this state, a refrigeration cycle is performed in which the heat source side heat exchanger 13 functions as a condenser and the utilization side heat exchanger 15 functions as an evaporator.
 このサイクルにおいて、圧縮機11から吐出された高圧の冷媒は、切換機構12を通過して熱源側熱交換器13に入り、室外空気と熱交換して凝縮する。凝縮した冷媒は減圧機構14を通過する際に減圧され、その後に利用側熱交換器15に入り、部屋R1内の空気と熱交換して蒸発する。冷媒により冷却された調和空気は、室内ファン22によって部屋R1内に吹き出される。利用側熱交換器15を出た冷媒は、切換機構12を通過してアキュムレータ16に入り、気液分離がなされた後に圧縮機11に吸入される。 In this cycle, the high-pressure refrigerant discharged from the compressor 11 passes through the switching mechanism 12, enters the heat source side heat exchanger 13, exchanges heat with the outdoor air, and condenses. The condensed refrigerant is decompressed when passing through the decompression mechanism 14, then enters the utilization side heat exchanger 15, exchanges heat with the air in the room R1, and evaporates. The conditioned air cooled by the refrigerant is blown into the room R1 by the indoor fan 22 . The refrigerant exiting the user-side heat exchanger 15 passes through the switching mechanism 12, enters the accumulator 16, and is sucked into the compressor 11 after gas-liquid separation.
 制御部5は、冷房運転の際に、減圧機構14の開度を制御する。より具体的には、制御部5は、利用側熱交換器15が蒸発器として機能する場合に、利用側熱交換器15において冷媒の出口となる後述の伝熱管6から流出する冷媒の乾き度が所定値以上(例えば、95%以上)となるように減圧機構14の開度を制御する。 The control unit 5 controls the opening degree of the decompression mechanism 14 during cooling operation. More specifically, when the usage-side heat exchanger 15 functions as an evaporator, the control unit 5 controls the dryness of the refrigerant flowing out from the later-described heat transfer tubes 6 serving as the refrigerant outlet in the usage-side heat exchanger 15. is a predetermined value or more (for example, 95% or more).
 制御部5による乾き度の制御により、利用側熱交換器15の出口から室外ユニット3へ流出する冷媒の液量をより少なくすることで、圧縮機11に過度な湿り状態の冷媒が吸入されることを抑制することができる。一方で、このような制御を行うと、冷媒の出口となる伝熱管6における冷却能力が低下するため、後述の抜管領域(第2領域B1,B2,B3)を設ける位置によっては、利用側熱交換器15を通過する空気が十分に冷却されないおそれがある。本開示の空気調和装置1では、利用側熱交換器15を通過する空気が十分に冷却されるように後述の伝熱管領域(第1領域A1,A2,A3)および抜管領域(第2領域B1,B2,B3)の配置を工夫しているため、上記制御に伴う課題を解決することができる。 Controlling the dryness by the control unit 5 reduces the amount of refrigerant flowing out from the outlet of the user-side heat exchanger 15 to the outdoor unit 3, so that the compressor 11 sucks excessively wet refrigerant. can be suppressed. On the other hand, if such control is performed, the cooling capacity of the heat transfer tube 6, which is the outlet of the refrigerant, decreases. The air passing through the exchanger 15 may not be sufficiently cooled. In the air conditioner 1 of the present disclosure, the heat transfer tube regions (first regions A1, A2, A3) and the unpipe region (second region B1) described later so that the air passing through the utilization side heat exchanger 15 is sufficiently cooled , B2, B3) are devised, the above-described problems associated with the control can be solved.
 暖房運転では、制御部5は切換機構12を第2接続状態(図1の破線)とする。この状態で制御部5が圧縮機11を稼働させると、熱源側熱交換器13が蒸発器となり、利用側熱交換器15が凝縮器となる冷凍サイクルが行われる。 In the heating operation, the control unit 5 puts the switching mechanism 12 in the second connection state (broken line in FIG. 1). When the control unit 5 operates the compressor 11 in this state, a refrigeration cycle is performed in which the heat source side heat exchanger 13 functions as an evaporator and the utilization side heat exchanger 15 functions as a condenser.
 このサイクルにおいて、圧縮機11から吐出された高圧の冷媒は、切換機構12を通過して利用側熱交換器15に入り、部屋R1内の空気と熱交換して凝縮する。冷媒により加温された調和空気は、室内ファン22によって部屋R1内に吹き出される。凝縮した冷媒は減圧機構14を通過する際に減圧され、その後に熱源側熱交換器13に入り、室外空気と熱交換して蒸発する。熱源側熱交換器13を出た冷媒は、切換機構12を通過してアキュムレータ16に入り、気液分離がなされた後に圧縮機11に吸入される。 In this cycle, the high-pressure refrigerant discharged from the compressor 11 passes through the switching mechanism 12, enters the user-side heat exchanger 15, exchanges heat with the air in the room R1, and condenses. The conditioned air heated by the refrigerant is blown into the room R1 by the indoor fan 22 . The condensed refrigerant is decompressed when passing through the decompression mechanism 14, then enters the heat source side heat exchanger 13, exchanges heat with outdoor air, and evaporates. The refrigerant exiting the heat source side heat exchanger 13 passes through the switching mechanism 12, enters the accumulator 16, and is sucked into the compressor 11 after gas-liquid separation.
[室内ユニット2の内部構造]
 図3は、実施形態に係る室内ユニット2の内部構造を示す模式図である。図3において、断面として示す部分にはハッチングを付している。本実施形態の室内ユニット2は、壁掛け型のユニットであり、例えば部屋R1の側壁上部に設置される。
[Internal structure of indoor unit 2]
FIG. 3 is a schematic diagram showing the internal structure of the indoor unit 2 according to the embodiment. In FIG. 3, the portion shown as a cross section is hatched. The indoor unit 2 of this embodiment is a wall-mounted unit, and is installed, for example, on the upper part of the side wall of the room R1.
 以下の説明では、室内ユニット2が設置されている側壁が室内に向かう側を室内ユニット2の「前側」、前側の反対側を室内ユニット2の「後側」と適宜称する。図3の左側が「前側」であり、図3の右側が「後側」である。また、鉛直方向上側が室内ユニット2の「上側」であり、図3の上側にも対応する。鉛直方向下側が室内ユニット2の「下側」であり、図3の下側にも対応する。前後方向及び上下方向と直交する方向が左右方向であり、室内ユニット2の「右側」が図3の紙面奥側に対応し、室内ユニット2の「左側」が図3の紙面手前側に対応する。 In the following description, the side wall on which the indoor unit 2 is installed facing the room is called the "front side" of the indoor unit 2, and the side opposite to the front side is called the "rear side" of the indoor unit 2. The left side of FIG. 3 is the "front side" and the right side of FIG. 3 is the "rear side". Also, the upper side in the vertical direction is the "upper side" of the indoor unit 2, and corresponds to the upper side in FIG. The lower side in the vertical direction is the "lower side" of the indoor unit 2, and corresponds to the lower side in FIG. The direction orthogonal to the front-back direction and the up-down direction is the left-right direction, the "right side" of the indoor unit 2 corresponds to the back side of the paper surface of FIG. 3, and the "left side" of the indoor unit 2 corresponds to the front side of the paper surface of FIG. .
 利用側熱交換器15は、室内ファン22の前側に設置される熱交換器15aと、室内ファン22の後側に設置される熱交換器15bとを含む。 The usage-side heat exchanger 15 includes a heat exchanger 15a installed on the front side of the indoor fan 22 and a heat exchanger 15b installed on the rear side of the indoor fan 22.
 筐体21は、前板21a、天板21b、背板21c、第1収容板21d、第2収容板21e及び流路底板21fを含む。前板21aは、利用側熱交換器15及び室内ファン22の前側を覆う板状の部材である。前板21aには、前部吸込口26aが形成されている。 The housing 21 includes a front plate 21a, a top plate 21b, a back plate 21c, a first accommodation plate 21d, a second accommodation plate 21e, and a channel bottom plate 21f. The front plate 21 a is a plate-like member that covers the front sides of the user-side heat exchanger 15 and the indoor fan 22 . A front suction port 26a is formed in the front plate 21a.
 天板21bは、利用側熱交換器15及び室内ファン22の上側を覆う板状の部材である。天板21bにはグリル23が設置されており、グリル23には上部吸込口26bが形成されている。前部吸込口26a及び上部吸込口26bは、単に「吸込口」とも称する。背板21cは、利用側熱交換器15及び室内ファン22の後側を覆う板状の部材である。 The top plate 21b is a plate-shaped member that covers the upper sides of the user-side heat exchanger 15 and the indoor fan 22. A grill 23 is installed on the top plate 21b, and the grill 23 is formed with an upper suction port 26b. The front suction port 26a and the upper suction port 26b are also simply referred to as "suction ports". The back plate 21 c is a plate-shaped member that covers the rear side of the utilization side heat exchanger 15 and the indoor fan 22 .
 第1収容板21dは、熱交換器15aを下側から収容する板状の部材である。第1収容板21dと熱交換器15aとの間には、ドレンパン24aが設けられている。ドレンパン24aは、熱交換器15aで生じた結露水を集めるための樋状の部材である。 The first housing plate 21d is a plate-shaped member that houses the heat exchanger 15a from below. A drain pan 24a is provided between the first housing plate 21d and the heat exchanger 15a. The drain pan 24a is a gutter-like member for collecting dew condensation water generated in the heat exchanger 15a.
 第2収容板21eは、熱交換器15bを下側から収容する板状の部材である。第2収容板21eと熱交換器15bとの間には、ドレンパン24bが設けられている。ドレンパン24bは、熱交換器15bで生じた結露水を集めるための樋状の部材である。 The second housing plate 21e is a plate-shaped member that houses the heat exchanger 15b from below. A drain pan 24b is provided between the second housing plate 21e and the heat exchanger 15b. The drain pan 24b is a gutter-like member for collecting dew condensation water generated in the heat exchanger 15b.
 流路底板21fは、室内ファン22の後側から前斜め下側に延びる板状の部材である。第1収容板21dの下面と、流路底板21fの上面とで、室内ファン22から吹き出される空気の流路が形成されている。当該流路の出口が、筐体21の吹出口26cとなっている。 The flow path bottom plate 21f is a plate-shaped member extending from the rear side of the indoor fan 22 to the front obliquely downward side. A flow path for the air blown out from the indoor fan 22 is formed by the lower surface of the first housing plate 21d and the upper surface of the flow path bottom plate 21f. An outlet of the flow path is the outlet 26 c of the housing 21 .
 筐体21には、フラップ25が設けられている。フラップ25の傾斜角度が調整されることで、吹出口26cは閉鎖又は開放される。また、フラップ25の傾斜角度により、調和空気の吹き出し方向が調整される。図3の室内ユニット2は、例示として2個のフラップ25を有するが、フラップ25の個数は限定されない。 A flap 25 is provided on the housing 21 . By adjusting the inclination angle of the flap 25, the outlet 26c is closed or opened. Also, the direction of blowing out the conditioned air is adjusted by the inclination angle of the flap 25 . The indoor unit 2 in FIG. 3 has two flaps 25 as an example, but the number of flaps 25 is not limited.
 吹出口26cが開放されている状態で、室内ファン22が回転すると、例えば、空気流れF1~F4が生じる。空気流れF1は、前部吸込口26aから熱交換器15aを通過して室内ファン22に向かう空気の流れである。空気流れF2は、上部吸込口26bから熱交換器15aを通過して室内ファン22に向かう空気の流れである。空気流れF3は、上部吸込口26bから熱交換器15bを通過して室内ファン22に向かう空気の流れである。空気流れF4は、室内ファン22から吹出口26cを通過して室内に送られる空気の流れである。 When the indoor fan 22 rotates with the air outlet 26c open, for example, air flows F1 to F4 are generated. The airflow F1 is a flow of air from the front suction port 26a to the indoor fan 22 through the heat exchanger 15a. The airflow F2 is a flow of air from the upper suction port 26b to the indoor fan 22 through the heat exchanger 15a. The airflow F3 is a flow of air from the upper suction port 26b to the indoor fan 22 through the heat exchanger 15b. The air flow F4 is a flow of air sent indoors from the indoor fan 22 through the outlet 26c.
[熱交換器15aの構成]
 図4は、図3の熱交換器15aを拡大して示す模式図である。熱交換器15aは、いわゆるフィンアンドチューブ型の熱交換器であり、伝熱管6と、フィン7と、を備える。伝熱管6は、冷媒が流通可能な金属製の配管である。フィン7は、左右方向が厚み方向となる板状の部材であり、例えばアルミ製の金属板である。フィン7は、左右方向に所定のピッチで複数枚積層されている。
[Configuration of heat exchanger 15a]
FIG. 4 is a schematic diagram showing an enlarged view of the heat exchanger 15a of FIG. The heat exchanger 15 a is a so-called fin-and-tube heat exchanger, and includes heat transfer tubes 6 and fins 7 . The heat transfer pipes 6 are metal pipes through which a refrigerant can flow. The fin 7 is a plate-shaped member whose thickness direction is the left-right direction, and is a metal plate made of aluminum, for example. A plurality of fins 7 are laminated at a predetermined pitch in the horizontal direction.
 以下の説明において、空気が風上側から風下側に向かう方向を「第1方向」と称する。また、第1方向と交差する方向を「第2方向」と称する。第2方向は、より具体的には、第1方向と直交する方向である。第1方向は、空気が流れる方向に依存するため、フィン7の領域ごとに第1方向が相違する場合がある。例えば、フィン7のうち空気流れF1が流入する領域では、前側から後側(図4の左側から右側)へ向かう方向が第1方向となる。また、フィン7のうち空気流れF2が流入する領域では、前側から斜め後下側(図4の左側から斜め右下側)へ向かう方向が第1方向となる。 In the following description, the direction in which the air flows from the windward side to the leeward side will be referred to as the "first direction". Also, a direction intersecting with the first direction is referred to as a "second direction". The second direction is, more specifically, a direction perpendicular to the first direction. Since the first direction depends on the direction in which the air flows, the first direction may differ for each region of the fins 7 . For example, in the region of the fins 7 into which the air flow F1 flows, the direction from the front side to the rear side (from the left side to the right side in FIG. 4) is the first direction. In addition, in the region of the fins 7 into which the air flow F2 flows, the first direction is the direction from the front side to the diagonally lower rear side (from the left side to the diagonally lower right side in FIG. 4).
 フィン7は、第1方向の幅が平均よりも狭まった狭部7aを有する。狭部7aは、フィン7のうち上下方向の中央部分に形成されている。フィン7のうち、狭部7aよりも下側の領域をフィン下部P1と称し、狭部7aよりも上側の領域をフィン上部P2と称する。狭部7aは、フィン7が第1方向に屈曲する屈曲部である。フィン上部P2は、フィン下部P1に対して風下側に傾いている。 The fin 7 has a narrow portion 7a whose width in the first direction is narrower than the average. The narrow portion 7a is formed in the central portion of the fin 7 in the vertical direction. A region of the fin 7 below the narrow portion 7a is referred to as a fin lower portion P1, and a region above the narrow portion 7a is referred to as a fin upper portion P2. The narrow portion 7a is a bent portion where the fin 7 bends in the first direction. The fin upper portion P2 is inclined to the leeward side with respect to the fin lower portion P1.
 フィン下部P1における第1方向の中心線L1は、上下方向にほぼ沿う方向に延びている。中心線L1の方向は、フィン下部P1の長手方向であり、フィン下部P1における第2方向に相当する。フィン上部P2における第1方向の中心線L2は、上側から下側及び前側に傾く方向に延びている。中心線L2の方向は、フィン上部P2の長手方向であり、フィン上部P2における第2方向に相当する。 A center line L1 in the first direction in the fin lower portion P1 extends in a direction substantially along the vertical direction. The direction of the center line L1 is the longitudinal direction of the fin lower portion P1 and corresponds to the second direction of the fin lower portion P1. A center line L2 in the first direction in the fin upper portion P2 extends in a direction inclined from the upper side to the lower side and the front side. The direction of the center line L2 is the longitudinal direction of the fin upper portion P2 and corresponds to the second direction in the fin upper portion P2.
 フィン7には、厚み方向に伝熱管6が貫通可能な複数の貫通孔70が形成されている。図4の例では、フィン7に16個の貫通孔70が形成されているが、貫通孔70の個数は特に限定されない。フィン7のうち複数の貫通孔70をそれぞれ形成する内周部分には、貫通孔70に貫通される伝熱管6を固定するためのカラーが設けられていてもよい。 A plurality of through holes 70 through which the heat transfer tubes 6 can pass are formed in the fins 7 in the thickness direction. Although 16 through-holes 70 are formed in the fin 7 in the example of FIG. 4, the number of through-holes 70 is not particularly limited. A collar for fixing the heat transfer tube 6 passing through the through-holes 70 may be provided on the inner peripheral portion of the fin 7 forming the plurality of through-holes 70 .
 複数の貫通孔70は、第2方向に沿って複数列に形成されている。図4の例では、複数の貫通孔70は、風上側の列と、風下側の列との2列にそれぞれ8個ずつ形成されている。風上側の列に含まれる複数の貫通孔70は、風下側の列に含まれる複数の貫通孔70に対して千鳥状に配置するように形成されている。このように形成することで、熱交換器15aを通過する空気をまんべんなく冷却することが可能となる。 A plurality of through holes 70 are formed in a plurality of rows along the second direction. In the example of FIG. 4, the plurality of through holes 70 are formed in two rows, one on the windward side and the other on the leeward side, with eight holes each. The plurality of through holes 70 included in the row on the windward side are arranged in a zigzag manner with respect to the plurality of through holes 70 included in the row on the leeward side. By forming in this way, it is possible to evenly cool the air passing through the heat exchanger 15a.
 より具体的には、風上側の列に含まれる複数の貫通孔70の中心は、第1方向に見て、風下側の列に含まれる複数の貫通孔70の中心と重複しない位置に形成されている。例えば、図4に示すように、風上側の任意の貫通孔70の中心を通り第1方向に延びる仮想線C1は、風下側の列に含まれる2個の貫通孔70,70の間(より具体的には、2個の貫通孔70,70の中心を結ぶ線分の中点)を通る。風下側の任意の貫通孔70の中心を通り第1方向に延びる仮想線C2は、風上側の列に含まれる2個の貫通孔70,70の間を通る。このように、風上側と風下側の貫通孔70は、互い違いに配置されている。 More specifically, the centers of the plurality of through holes 70 included in the windward row are formed at positions that do not overlap the centers of the plurality of through holes 70 included in the leeward row when viewed in the first direction. ing. For example, as shown in FIG. 4, an imaginary line C1 extending in the first direction passing through the center of an arbitrary through-hole 70 on the windward side is between two through- holes 70, 70 included in the row on the leeward side (more Specifically, it passes through the midpoint of a line segment connecting the centers of the two through holes 70 , 70 . An imaginary line C2 extending in the first direction through the center of an arbitrary through-hole 70 on the leeward side passes between the two through- holes 70, 70 included in the row on the windward side. In this way, the through holes 70 on the windward side and the leeward side are alternately arranged.
 複数の貫通孔70は、伝熱管6が貫通している第1貫通孔71と、伝熱管6が貫通していない第2貫通孔72とを含む。図4の例では、フィン下部P1に含まれる8個の貫通孔70は全て第1貫通孔71である。フィン上部P2に含まれる8個の貫通孔70のうち第1貫通孔71は6個であり、第2貫通孔72は2個である。 The plurality of through-holes 70 includes first through-holes 71 through which the heat transfer tubes 6 pass and second through-holes 72 through which the heat transfer tubes 6 do not pass. In the example of FIG. 4, all eight through-holes 70 included in the fin lower portion P1 are first through-holes 71 . Of the eight through-holes 70 included in the fin upper portion P2, six are the first through-holes 71 and two are the second through-holes 72 .
 フィン7は、複数の第1貫通孔71が第2方向に沿って並ぶ第1領域A1と、複数の(図4の例では、2個の)第2貫通孔72が第2方向に沿って並ぶ第2領域B1と、を含む。図4の例では、領域A11~A14の4個の領域が、それぞれ第1領域A1に相当する。 The fin 7 has a first region A1 in which a plurality of first through holes 71 are arranged along the second direction, and a plurality of (two in the example of FIG. 4) second through holes 72 are arranged in the second direction. and a second region B1 arranged side by side. In the example of FIG. 4, four areas A11 to A14 each correspond to the first area A1.
 領域A11は、フィン上部P2の風上側の上側において2個の第1貫通孔71が並ぶ領域である。領域A12は、フィン上部P2の風下側において4個の第1貫通孔71が並ぶ領域である。領域A13は、フィン下部P1の風上側において4個の第1貫通孔71が並ぶ領域である。領域A14は、フィン下部P1の風下側において4個の第1貫通孔71が並ぶ領域である。 The area A11 is an area where the two first through holes 71 are arranged on the windward side of the fin upper portion P2. The area A12 is an area where the four first through holes 71 are arranged on the leeward side of the fin upper portion P2. An area A13 is an area where four first through holes 71 are arranged on the windward side of the fin lower portion P1. The area A14 is an area where the four first through holes 71 are arranged on the leeward side of the fin lower portion P1.
 第2領域B1は、風上側を開放した状態で、第1領域A1に囲まれている。より具体的には、第2領域B1は、風下側において第1領域A1(領域A12)と隣接し、第2方向の両側において第1領域A1(領域A11,A13)と隣接している。 The second area B1 is surrounded by the first area A1 with the windward side open. More specifically, the second area B1 is adjacent to the first area A1 (area A12) on the leeward side and adjacent to the first area A1 (areas A11 and A13) on both sides in the second direction.
[熱交換器15bの構成]
 図5は、図3の熱交換器15bを拡大して示す模式図である。熱交換器15bのうち、熱交換器15aと同様の構成については、同符号を付して説明を省略する。
[Configuration of heat exchanger 15b]
FIG. 5 is a schematic diagram showing an enlarged view of the heat exchanger 15b of FIG. In the heat exchanger 15b, the same components as those of the heat exchanger 15a are denoted by the same reference numerals, and descriptions thereof are omitted.
 熱交換器15bは、伝熱管6とフィン7とを備える。熱交換器15bのフィン7における第1方向の中心線L3は、第2方向に沿って延びている。フィン7には、複数の貫通孔70が形成されている。図5の例では、複数の貫通孔70は、風上側の列と、風下側の列との2列にそれぞれ6個ずつ形成されている。 The heat exchanger 15b includes heat transfer tubes 6 and fins 7. A center line L3 in the first direction of the fins 7 of the heat exchanger 15b extends along the second direction. A plurality of through holes 70 are formed in the fin 7 . In the example of FIG. 5, six through-holes 70 are formed in each of two rows, one on the windward side and the other on the leeward side.
 熱交換器15bにおける複数の貫通孔70は、第1貫通孔71と、第2貫通孔72とを含む。図5の例では、風上側の列に含まれる6個の貫通孔70は全て第1貫通孔71である。また、風下側の列のうち、上側2個と下側2個の貫通孔70は第1貫通孔71であり、中央2個の貫通孔70は第2貫通孔72である。 The plurality of through holes 70 in the heat exchanger 15b include first through holes 71 and second through holes 72. In the example of FIG. 5, all the six through-holes 70 included in the row on the windward side are the first through-holes 71 . In the leeward row, two upper and two lower through holes 70 are first through holes 71 , and two central through holes 70 are second through holes 72 .
 熱交換器15bのフィン7は、複数の第1貫通孔71が第2方向に沿って並ぶ第1領域A2と、複数の第2貫通孔72が、第2方向に沿って並ぶ第2領域B2と、を含む。図5の例では、領域A21~A23の3個の領域が、それぞれ第1領域A2に相当する。 The fin 7 of the heat exchanger 15b has a first region A2 in which a plurality of first through holes 71 are arranged along the second direction and a second region B2 in which a plurality of second through holes 72 are arranged along the second direction. and including. In the example of FIG. 5, three areas A21 to A23 each correspond to the first area A2.
 領域A21は、フィン7の風下側の上部において2個の第1貫通孔71が並ぶ領域である。領域A22は、フィン7の風下側の下部において2個の第1貫通孔71が並ぶ領域である。領域A23は、フィン7の風上側において6個の第1貫通孔71が並ぶ領域である。 An area A21 is an area where two first through holes 71 are arranged in the upper part of the fin 7 on the leeward side. The area A22 is an area where the two first through holes 71 are aligned in the lower part of the fin 7 on the leeward side. An area A23 is an area where six first through holes 71 are arranged on the windward side of the fins 7 .
 第2領域B2は、風下側を開放した状態で、第1領域A2に囲まれている。より具体的には、第2領域B2は、風上側において第1領域A2(領域A23)と隣接し、第2方向の両側において第1領域A2(領域A21,A22)と隣接している。 The second area B2 is surrounded by the first area A2 with the leeward side open. More specifically, the second area B2 is adjacent to the first area A2 (area A23) on the windward side and adjacent to the first area A2 (areas A21 and A22) on both sides in the second direction.
[比較例とその課題]
 図6は、比較例に係る熱交換器15cとその周辺構造を示す模式図である。熱交換器15cは、熱交換器15b(図5)と比べて第1貫通孔71及び第2貫通孔72の配置が相違する例である。図6のうち、実施形態と同様の構成については同符号を付して説明を省略する。図6を参照して、本開示が解決しようとする課題をより詳しく説明する。
[Comparative example and its problem]
FIG. 6 is a schematic diagram showing a heat exchanger 15c and its peripheral structure according to a comparative example. The heat exchanger 15c is an example in which the arrangement of the first through-holes 71 and the second through-holes 72 is different from that of the heat exchanger 15b (FIG. 5). In FIG. 6, the same reference numerals are given to the same configurations as in the embodiment, and the description thereof will be omitted. The problem to be solved by the present disclosure will be described in more detail with reference to FIG.
 例えば、フィン7の製造コストなどを低減しつつ、異なる種類の熱交換器を製造するために、フィン7に含まれる全ての貫通孔70に伝熱管6が貫通されている熱交換器と、同形状のフィン7に含まれる複数の貫通孔70のうち一部に伝熱管6が貫通され、他の一部の貫通孔70に伝熱管6が貫通されていない熱交換器と、が製造される場合がある。比較例の熱交換器15cは、製造コストを下げるために、貫通孔70を貫通させる伝熱管6の本数を減らしている(この工程を抜管と称する)。このため、比較例のフィン7は、第1領域A91,A92(すなわち、伝熱管領域)と、第2領域B9(すなわち、抜管領域)とを有する。 For example, in order to manufacture different types of heat exchangers while reducing the manufacturing cost of the fins 7, a heat exchanger in which the heat transfer tubes 6 are passed through all the through-holes 70 included in the fins 7 may be used. A heat exchanger in which the heat transfer tubes 6 pass through some of the plurality of through holes 70 included in the shaped fins 7 and the heat transfer tubes 6 do not pass through the other part of the through holes 70 is manufactured. Sometimes. In the heat exchanger 15c of the comparative example, the number of heat transfer tubes 6 passing through the through-holes 70 is reduced in order to reduce the manufacturing cost (this process is referred to as tube removal). Therefore, the fin 7 of the comparative example has first regions A91 and A92 (that is, heat transfer tube regions) and a second region B9 (that is, extubation region).
 熱交換器15cを蒸発器として機能させる場合、空気中の水分をフィン7において結露させることで、熱交換器15cを通過する空気から水分を除去することが通常である。フィン7において結露した水分は、ドレンパン24bに集められる。これにより、熱交換器15cの風下側に流れる空気を乾燥させ、熱交換器15cの風下側に位置する部材(例えば、室内ファン22)に結露が生じることを抑制する。 When the heat exchanger 15c functions as an evaporator, the moisture in the air is normally condensed on the fins 7 to remove the moisture from the air passing through the heat exchanger 15c. Moisture condensed on the fins 7 is collected in the drain pan 24b. This dries the air flowing on the leeward side of the heat exchanger 15c, and suppresses the formation of dew condensation on the member (for example, the indoor fan 22) located on the leeward side of the heat exchanger 15c.
 しかしながら、熱交換器15cが第2領域B9を有する場合、熱交換器15cを通過する空気から水分を十分に除去できない場合がある。第2領域B9を通る空気は、伝熱管6が設けられている第1領域A91,A92を通る空気と比べて十分に冷却されない。このため、主に第2領域B9を通り、第1領域A91,A92をほとんど通らなかった空気は、水分が十分に除去されず、比較的湿った空気が風下側に流れることで、風下側に位置する部材に結露を生じさせるおそれがある。 However, when the heat exchanger 15c has the second region B9, it may not be possible to sufficiently remove moisture from the air passing through the heat exchanger 15c. The air passing through the second region B9 is not sufficiently cooled compared to the air passing through the first regions A91 and A92 where the heat transfer tubes 6 are provided. For this reason, the air that has mainly passed through the second region B9 and hardly passed through the first regions A91 and A92 is not sufficiently dehydrated, and relatively moist air flows downwind, resulting in Condensation may occur on the components where it is located.
 比較例では、第2領域B9の風下側に第1領域A91を配置させている。このような構成であれば、フィン7の幅方向を直線的に通過するような空気流れF91は、第2領域B9を通過した後に第1領域A91を通過するため、空気流れF91に対しては、水分の除去を行うことができる。上記の空気流れF91は、「層流」又は「本流」等と称される流れであり、吸込口26bから室内ファン22に向かって直線的かつ安定的に(すなわち、比較的短距離で)通過する流れである。本開示における「第1方向」とは、この本流の流れ方向を意味する。 In the comparative example, the first area A91 is arranged on the leeward side of the second area B9. With such a configuration, the air flow F91 that linearly passes through the width direction of the fin 7 passes through the first region A91 after passing through the second region B9. , moisture removal can be performed. The air flow F91 described above is a flow called “laminar flow” or “main flow”, etc., and passes linearly and stably from the suction port 26b toward the indoor fan 22 (that is, in a relatively short distance). It is the flow to do. The "first direction" in the present disclosure means the flow direction of this mainstream.
 一方で、フィン7の下端部では、第2収容板21e及びドレンパン24bによって空気の流れが遅くなる結果、空気の回り込みが発生しやすくなる。これにより、フィン7の下端部では、図6に示すように、吸込口26bからフィン7の下端部を大きく迂回するように通過して室内ファン22に向かう空気流れF92が発生しうる。空気流れF92は、「乱流」又は「バイパス流」等と称される流れであり、空気流れF91(第1方向)に対して斜め方向に通過する流れである。 On the other hand, at the lower ends of the fins 7, the flow of air is slowed down by the second accommodation plate 21e and the drain pan 24b. As a result, at the lower end of the fin 7, as shown in FIG. 6, an air flow F92 can be generated that passes through the lower end of the fin 7 from the suction port 26b so as to largely bypass the lower end of the fin 7 and is directed to the indoor fan 22. The air flow F92 is a flow called "turbulent flow" or "bypass flow" or the like, and is a flow that passes in an oblique direction with respect to the air flow F91 (first direction).
 図6の例において、空気流れF92は、フィン7の下端部において第2領域B9を通過した後に第1領域A91をほとんど通らないまま室内ファン22に到達してしまうため、空気流れF92に対して、水分の除去を十分に行うことができない。このように、第2領域B9がフィン7の第2方向の端(上端又は下端)に形成されている場合、主流に対して斜めに流れる空気流れF92の水分除去を十分に行えず、空気流れF92に含まれる水分が、熱交換器15cの風下側に位置する部材に結露を生じさせるおそれがある。 In the example of FIG. 6, the air flow F92 reaches the indoor fan 22 without passing through the first region A91 after passing through the second region B9 at the lower end of the fin 7. , water cannot be sufficiently removed. As described above, when the second region B9 is formed at the end (upper end or lower end) of the fin 7 in the second direction, it is not possible to sufficiently remove moisture from the air flow F92 that flows obliquely with respect to the main flow. Moisture contained in F92 may cause dew condensation on members located on the leeward side of the heat exchanger 15c.
[熱交換器15a,15bの特徴]
 図4及び図5を参照する。熱交換器15a,15bにおいて、第2領域B1,B2(抜管領域)は、風上側又は風下側を開放した状態で、第1領域A1,A2(伝熱管領域)に囲まれている。すなわち、第2領域B1,B2の第2方向の両側(上側及び下側)には第1領域A1,A2が位置し、第2領域B1,B2の風上側又は風下側にも第1領域A1,A2が位置している。
[Characteristics of heat exchangers 15a and 15b]
Please refer to FIGS. In the heat exchangers 15a and 15b, the second regions B1 and B2 (pipe removal regions) are surrounded by the first regions A1 and A2 (heat transfer tube regions) with their windward or leeward sides open. That is, the first regions A1 and A2 are located on both sides (upper side and lower side) of the second regions B1 and B2 in the second direction, and the first regions A1 are located on the windward side or the leeward side of the second regions B1 and B2. , A2 are located.
 このような構成により、第2領域B1,B2を通過した後(又は通過する前)の空気は、第1領域A1,A2によって、より確実に冷却される。これにより、熱交換器15a,15bにおいて結露をより確実に発生させることができるため、熱交換器15a,15bの風下側に流れる空気を十分に乾燥させることができ、熱交換器15a,15bの風下側に位置する部材における結露を抑制することができる。 With this configuration, the air after (or before) passing through the second areas B1 and B2 is cooled more reliably by the first areas A1 and A2. As a result, dew condensation can be generated more reliably in the heat exchangers 15a and 15b, so that the air flowing on the leeward side of the heat exchangers 15a and 15b can be sufficiently dried. It is possible to suppress dew condensation on the member located on the leeward side.
 より具体的には、第2領域B1,B2の第1方向に隣接する第1領域A1,A2の第2方向の両端は、第2領域B1,B2の第2方向の両端よりも外側に位置している。例えば、図4に示すように、第2領域B1の風下側に隣接する第1領域A1(領域A12,A14)の第2方向の上端は、第2領域B1の第2方向の上端よりも上側に位置し、第2領域B1の風下側に隣接する第1領域A1(領域A12,A14)の第2方向の下端は、第2領域B1の第2方向の下端よりも下側に位置している。 More specifically, both ends in the second direction of the first regions A1 and A2 adjacent to the second regions B1 and B2 in the first direction are located outside the ends of the second regions B1 and B2 in the second direction. are doing. For example, as shown in FIG. 4, the upper end in the second direction of the first region A1 (regions A12, A14) adjacent to the leeward side of the second region B1 is higher than the upper end in the second direction of the second region B1. and the lower ends in the second direction of the first regions A1 (regions A12 and A14) adjacent to the leeward side of the second regions B1 are positioned below the lower ends of the second regions B1 in the second direction. there is
 このような構成により、たとえ空気が第2領域B1,B2を斜めに通過する場合であっても、第2領域B1,B2よりも第2方向に長い第1領域A1,A2が第2領域B1,B2を覆っているため、第2領域B1,B2を通過した後(又は通過する前)の空気は、より確実に第1領域A1,A2を通過する。このため、斜めに通過する空気をより確実に冷却することができ、熱交換器15a,15bの風下側に位置する部材における結露を抑制することができる。 With such a configuration, even if the air passes obliquely through the second regions B1 and B2, the first regions A1 and A2 that are longer than the second regions B1 and B2 in the second direction are the second regions B1. , B2, the air after (or before) passing through the second regions B1 and B2 passes through the first regions A1 and A2 more reliably. Therefore, the air passing obliquely can be cooled more reliably, and dew condensation on members located on the leeward side of the heat exchangers 15a and 15b can be suppressed.
 以下、図4及び図5を参照して、熱交換器15a,15bのさらなる特徴を説明する。第1貫通孔71は、出口貫通孔73と、入口貫通孔75とを含む。出口貫通孔73は、熱交換器15a,15bが蒸発器として機能する場合に、冷媒の出口となる伝熱管6が貫通している第1貫通孔71である。図4及び図5において、出口貫通孔73は、矢先印(黒点のマーク)にて図示している。 Further features of the heat exchangers 15a and 15b will be described below with reference to FIGS. The first through-hole 71 includes an outlet through-hole 73 and an inlet through-hole 75 . The outlet through-hole 73 is the first through-hole 71 through which the heat transfer tube 6, which serves as an outlet for the refrigerant, penetrates when the heat exchangers 15a and 15b function as evaporators. In FIGS. 4 and 5, the outlet through-hole 73 is indicated by an arrowhead (black dot mark).
 出口貫通孔73は、第1領域A1,A2と第1方向に隣接する位置に形成されている。熱交換器15a,15bが蒸発器として機能する場合に、冷媒の出口となる伝熱管6では、内部を流れる大半(又は全て)の冷媒がガス状態となっている。このため、冷媒の出口となる伝熱管6では、空気から熱を吸収して冷媒が蒸発する余地がほとんどなく、通過する空気を十分に冷却することができない。 The outlet through-hole 73 is formed at a position adjacent to the first regions A1 and A2 in the first direction. When the heat exchangers 15a and 15b function as evaporators, most (or all) of the refrigerant flowing inside the heat transfer tube 6, which is the outlet of the refrigerant, is in a gaseous state. For this reason, the heat transfer tube 6, which is the outlet of the refrigerant, has little room for the refrigerant to evaporate by absorbing heat from the air, and the passing air cannot be sufficiently cooled.
 本実施形態では、出口貫通孔73を第1領域A1,A2と第1方向に隣接する位置に形成することで、出口貫通孔73及びその近傍を通過した後(又は通過する前)の十分に冷却されていない空気を、当該隣接する第1領域A1,A2によってより確実に冷却することができる。これにより、熱交換器15a,15bにおいて結露をより確実に発生させることができるため、熱交換器15a,15bの風下側に位置する部材における結露を抑制することができる。 In the present embodiment, by forming the exit through-hole 73 at a position adjacent to the first regions A1 and A2 in the first direction, after (or before passing) passing through the exit through-hole 73 and its vicinity, Uncooled air can be cooled more reliably by the adjacent first regions A1 and A2. As a result, dew condensation can be generated more reliably in the heat exchangers 15a and 15b, so that dew condensation in members located on the leeward side of the heat exchangers 15a and 15b can be suppressed.
 具体的には、図4に示すように、領域A11の出口貫通孔73は領域A12の風上側に隣接し、領域A13の出口貫通孔73は、領域A14の風上側に隣接している。冷却能力が低い伝熱管6を風上側に設け、冷却能力が高い伝熱管6(冷媒の出口となる伝熱管6以外の伝熱管6)を風下側に設けると、通過する空気が徐々に冷却されるため、上記の逆順に配置する場合と比べて冷却の効率が良い。出口貫通孔73は、冷却能力が低い伝熱管6が貫通しているため、出口貫通孔73を他の第1領域A1の風上側に設けることで、空気の冷却効率をより良くすることができる。 Specifically, as shown in FIG. 4, the outlet through-hole 73 of the area A11 is adjacent to the windward side of the area A12, and the outlet through-hole 73 of the area A13 is adjacent to the windward side of the area A14. When the heat transfer tubes 6 with low cooling capacity are provided on the windward side and the heat transfer tubes 6 with high cooling capacity (the heat transfer tubes 6 other than the heat transfer tubes 6 serving as the outlet of the refrigerant) are provided on the leeward side, the passing air is gradually cooled. Therefore, cooling efficiency is better than in the case of arranging them in the reverse order. Since the heat transfer pipes 6 having a low cooling capacity pass through the outlet through-holes 73, the air cooling efficiency can be improved by providing the outlet through-holes 73 on the windward side of the other first area A1. .
 入口貫通孔75は、熱交換器15a,15bが蒸発器として機能する場合に、冷媒の入口となる伝熱管6が貫通している第1貫通孔71である。図4及び図5において、入口貫通孔75は、矢羽印(「X」のマーク)にて図示している。 The inlet through-hole 75 is the first through-hole 71 through which the heat transfer pipe 6 that serves as the refrigerant inlet penetrates when the heat exchangers 15a and 15b function as evaporators. In FIGS. 4 and 5, the inlet through-hole 75 is indicated by an arrow mark (“X” mark).
 領域A12(図4)及び領域A21(図5)において、入口貫通孔75は、熱交換器15a,15bを通過する空気の風速が平均よりも速い領域であって、かつ風下側の列に形成されている。図4では、空気流れF1,F2が主に流入し、風速が平均よりも速い領域を領域D1として図示している。また、第1収容板21d等によって流れが遮られ、風速が平均よりも遅い領域を領域D2として図示している。図4に示すように、領域A12の入口貫通孔75は、領域D1に含まれている。 In the area A12 (FIG. 4) and the area A21 (FIG. 5), the inlet through-holes 75 are formed in a row on the leeward side in an area where the wind speed of the air passing through the heat exchangers 15a and 15b is higher than the average. It is In FIG. 4, the air flows F1 and F2 mainly flow in, and the area where the wind speed is faster than the average is shown as area D1. Also, a region D2 is illustrated as a region where the flow is blocked by the first housing plate 21d and the like and the wind speed is slower than the average. As shown in FIG. 4, the inlet through-hole 75 of area A12 is included in area D1.
 熱交換器15a,15bが蒸発器として機能する場合に、冷媒の入口となる伝熱管6では、内部を流れる大半(又は全て)の冷媒が液状態となっている。このため、冷媒の入口となる伝熱管6では、冷媒が空気から熱を吸収して蒸発しやすく、通過する空気を良好に冷却することができる。このため、入口貫通孔75は、熱交換器15a,15bが蒸発器として機能する場合に最も冷えやすい領域となる。このような入口貫通孔75を、空気の風速が平均よりも速い領域(すなわち、風量の多い領域)に形成することで、空気の冷却効率を向上させることができる。また、このような入口貫通孔75を風下側の列に形成することで、通過する空気が徐々に冷却されるため、空気の冷却効率をより向上させることができる。 When the heat exchangers 15a and 15b function as evaporators, most (or all) of the refrigerant flowing inside is in a liquid state in the heat transfer tubes 6 serving as refrigerant inlets. Therefore, in the heat transfer tube 6 serving as the inlet of the refrigerant, the refrigerant absorbs heat from the air and evaporates easily, so that the passing air can be well cooled. Therefore, the inlet through-hole 75 is the region that is most likely to cool when the heat exchangers 15a and 15b function as evaporators. By forming such an inlet through-hole 75 in a region where the wind speed of air is higher than the average (that is, a region with a large amount of air), the cooling efficiency of air can be improved. In addition, by forming such inlet through-holes 75 in a row on the leeward side, the passing air is gradually cooled, so that the cooling efficiency of the air can be further improved.
 さらに、入口貫通孔75を第2領域B1,B2と第1方向又は第2方向に隣接する位置に形成することで、第2貫通孔72及びその近傍を通過する空気をより確実に冷却することができる。図4の例では、領域A12に含まれる入口貫通孔75は第2領域B1と第1方向に隣接している。図5の例では、領域A21に含まれる入口貫通孔75は第2領域B2と第2方向に隣接している。 Furthermore, by forming the inlet through-hole 75 at a position adjacent to the second regions B1 and B2 in the first direction or the second direction, the air passing through the second through-hole 72 and its vicinity can be cooled more reliably. can be done. In the example of FIG. 4, the inlet through-hole 75 included in the area A12 is adjacent to the second area B1 in the first direction. In the example of FIG. 5, the inlet through-hole 75 included in the area A21 is adjacent to the second area B2 in the second direction.
 図4に示すように、複数の貫通孔70のうち、狭部7aの最も近くに形成されている狭部貫通孔74は、第1貫通孔71である。狭部7aは、幅が狭いため、フィン7の他の部分と比べて冷却能力が低い。狭部7aの最も近くに形成されている狭部貫通孔74を第1貫通孔71(伝熱管6が貫通している貫通孔70)とすることで、このような部分を通過する空気をより確実に冷却することができる。 As shown in FIG. 4 , among the plurality of through holes 70 , the narrow portion through hole 74 formed closest to the narrow portion 7 a is the first through hole 71 . Since the narrow portion 7 a has a narrow width, it has a lower cooling capacity than the other portions of the fin 7 . By using the narrow portion through-hole 74 formed closest to the narrow portion 7a as the first through-hole 71 (the through-hole 70 through which the heat transfer tube 6 penetrates), the air passing through such a portion is further reduced. can be reliably cooled.
 さらに、図4に示すように、狭部貫通孔74は入口貫通孔75である。入口貫通孔75は、上記のとおり、熱交換器15a,15bが蒸発器として機能する場合に最も冷えやすい領域となる。このような入口貫通孔75を、冷却能力が低い狭部7aに形成することで、狭部7aにおける冷却能力の低さを補うことができる。これにより、狭部7aを通過する空気をより確実に冷却することができる。 Further, as shown in FIG. 4, the narrow through-hole 74 is the inlet through-hole 75. As described above, the inlet through-hole 75 is the region that cools most when the heat exchangers 15a and 15b function as evaporators. By forming such an inlet through-hole 75 in the narrow portion 7a with low cooling ability, it is possible to compensate for the low cooling ability in the narrow portion 7a. Thereby, the air passing through the narrow portion 7a can be cooled more reliably.
 狭部貫通孔74は、第2領域B1の風下側に隣接する位置に形成されている。狭部貫通孔74は入口貫通孔75であるため、狭部貫通孔74及びその近傍を通過する空気を良好に冷却することができる。このため、狭部貫通孔74を第2領域B1の風下側に隣接する位置に形成することで、第2領域B1及びその近傍を通過した後の十分に冷却されていない空気を、狭部貫通孔74を貫通する伝熱管6によってより確実に冷却することができる。 The narrow through hole 74 is formed at a position adjacent to the leeward side of the second region B1. Since the narrow through-hole 74 is the inlet through-hole 75, the air passing through the narrow through-hole 74 and the vicinity thereof can be well cooled. Therefore, by forming the narrow portion through hole 74 at a position adjacent to the leeward side of the second region B1, the air that has not been sufficiently cooled after passing through the second region B1 and its vicinity can pass through the narrow portion. Cooling can be more reliably performed by the heat transfer tubes 6 passing through the holes 74 .
 なお、図4では狭部貫通孔74は第2領域B1の風下側に位置しているが、第2領域B1の風上側に位置していてもよい。すなわち、入口貫通孔75である狭部貫通孔74は、第2領域B1と第1方向に隣接する位置に形成されていればよい。 Although the narrow through-hole 74 is located on the leeward side of the second region B1 in FIG. 4, it may be located on the windward side of the second region B1. That is, the narrow through-hole 74, which is the inlet through-hole 75, may be formed at a position adjacent to the second region B1 in the first direction.
[変形例]
 本開示は上記の実施形態に限定されるものではなく、種々の変更が可能である。以下の変形例において、上記の実施形態と同じ構成については同じ符号を付して説明を適宜省略する。
[Modification]
The present disclosure is not limited to the above embodiments, and various modifications are possible. In the following modified examples, the same reference numerals are given to the same configurations as in the above-described embodiment, and the description thereof will be omitted as appropriate.
[室内ユニットの変形例]
 図7は、変形例に係る室内ユニット2aの内部構造を示す模式図である。室内ユニット2aは、天井埋込み型のユニットであり、例えば部屋R1(図1)の天井裏に埋め込まれる。本開示の室内ユニットの部屋R1への設置方法は限定されず、図3のような壁掛け型の室内ユニット2であってもよいし、図7のような天井埋込み型の室内ユニット2aであってもよいし、天井吊り下げ型又は床置き型の室内ユニット(図示省略)であってもよい。
[Modified example of indoor unit]
FIG. 7 is a schematic diagram showing the internal structure of an indoor unit 2a according to a modification. The indoor unit 2a is a ceiling-embedded unit, and is embedded in the ceiling space of the room R1 (FIG. 1), for example. The method of installing the indoor unit of the present disclosure in the room R1 is not limited, and may be a wall-mounted indoor unit 2 as shown in FIG. 3, or a ceiling-embedded indoor unit 2a as shown in FIG. Alternatively, it may be a ceiling-suspended or floor-mounted indoor unit (not shown).
 室内ユニット2aは、筐体21と、筐体21に収容されている室内ファン22及び熱交換器15dを有する。熱交換器15dは、空気調和装置1(図1)の利用側熱交換器15として機能する。室内ファン22から吹き出された空気流れF5は、熱交換器15dを通過する。 The indoor unit 2a has a housing 21, and an indoor fan 22 and a heat exchanger 15d housed in the housing 21. The heat exchanger 15d functions as the user-side heat exchanger 15 of the air conditioner 1 (Fig. 1). The airflow F5 blown out from the indoor fan 22 passes through the heat exchanger 15d.
 熱交換器15dは、伝熱管6と、フィン7bとを備える。フィン7bには、空気流れF5が通過する第1方向に対して3列の貫通孔70が形成されている。すなわち、第1方向と交差する第2方向(空気流れF5と交差する方向)に沿って3列の貫通孔70が形成されている。フィン7bに含まれる貫通孔70の列数は限定されず、第1方向に対して3列であってもよいし、第1方向に対して4列以上であってもよい。 The heat exchanger 15d includes heat transfer tubes 6 and fins 7b. Three rows of through-holes 70 are formed in the fin 7b in the first direction through which the air flow F5 passes. That is, three rows of through-holes 70 are formed along a second direction that intersects the first direction (a direction that intersects with the air flow F5). The number of rows of the through-holes 70 included in the fins 7b is not limited, and may be three rows in the first direction, or may be four rows or more in the first direction.
 複数の貫通孔70は、伝熱管6が貫通している第1貫通孔71と、伝熱管6が貫通していない第2貫通孔72とを含む。すなわち、複数の貫通孔70のうち一部の貫通孔70では伝熱管6の抜管がなされている。フィン7bにおいて、最も風上側の列に位置する10個の貫通孔70は全て第1貫通孔71であり、最も風下側の列に位置する10個の貫通孔70は全て第2貫通孔72である。また、第1方向の中央の列に位置する10個の貫通孔70は、上側から順に4個が第1貫通孔71であり、2個が第2貫通孔72であり、2個が第1貫通孔71であり、2個が第2貫通孔72である。 The plurality of through-holes 70 includes first through-holes 71 through which the heat transfer tubes 6 pass and second through-holes 72 through which the heat transfer tubes 6 do not pass. That is, the heat transfer tubes 6 are removed from some of the plurality of through holes 70 . In the fin 7b, all the ten through-holes 70 located in the windward-most row are the first through-holes 71, and all the ten through-holes 70 located in the leeward-most row are the second through-holes 72. be. In addition, of the ten through holes 70 positioned in the central row in the first direction, four are the first through holes 71, two are the second through holes 72, and two are the first through holes 71 in order from the top. There are two through holes 71 and two second through holes 72 .
 図7に示すように、第2貫通孔72が第2方向に並ぶ第2領域B3は、第1貫通孔71が第2方向に並ぶ第1領域A3に囲まれている。より具体的には、第2領域B3は、風上側において第1領域A3(領域A32)と隣接し、第2方向の両側において第1領域A3(領域A31,A33)と隣接している。このような構成により、第2領域B3を通過する前の空気を第1領域A3によってより確実に冷却することができる。 As shown in FIG. 7, the second area B3 in which the second through holes 72 are arranged in the second direction is surrounded by the first area A3 in which the first through holes 71 are arranged in the second direction. More specifically, the second area B3 is adjacent to the first area A3 (area A32) on the windward side, and adjacent to the first areas A3 (areas A31 and A33) on both sides in the second direction. With such a configuration, the air before passing through the second area B3 can be cooled more reliably by the first area A3.
[熱交換器の変形例]
 図8は、変形例に係る熱交換器15eを示す模式図である。熱交換器15eは、変形例に係る熱交換器15d(図7)のさらなる変形例である。熱交換器15eは、伝熱管6と、フィン7cとを備える。フィン7cには、空気流れF5が通過する第1方向に対して3列の貫通孔70が形成されている。
[Modification of heat exchanger]
FIG. 8 is a schematic diagram showing a heat exchanger 15e according to a modification. The heat exchanger 15e is a further modification of the modification heat exchanger 15d (FIG. 7). The heat exchanger 15e includes heat transfer tubes 6 and fins 7c. Three rows of through-holes 70 are formed in the fin 7c in the first direction through which the air flow F5 passes.
 複数の貫通孔70は、第1貫通孔71と、第2貫通孔72とを含む。フィン7cにおいて、最も風上側の列に位置する16個の貫通孔70は全て第1貫通孔71である。第1方向の中央の列に位置する16個の貫通孔70は、上側から順に2個が第1貫通孔71であり、3個が第2貫通孔72であり、2個が第1貫通孔71であり、2個が第2貫通孔72であり、7個が第1貫通孔71である。また、最も風下側の列に位置する16個の貫通孔70は、上側から順に2個が第1貫通孔71であり、3個が第2貫通孔72であり、5個が第1貫通孔71であり、4個が第2貫通孔72であり、2個が第1貫通孔71である。 The plurality of through holes 70 include first through holes 71 and second through holes 72 . In the fin 7 c , all the 16 through holes 70 located in the windward most row are the first through holes 71 . Of the 16 through-holes 70 positioned in the central row in the first direction, two are first through-holes 71, three are second through-holes 72, and two are first through-holes in order from the top. 71 , two of which are the second through holes 72 and seven of which are the first through holes 71 . Of the 16 through-holes 70 positioned in the row on the most leeward side, two are first through-holes 71, three are second through-holes 72, and five are first through-holes in order from the top. 71 , four of which are the second through holes 72 and two of which are the first through holes 71 .
 フィン7cは、複数の第1貫通孔71が第2方向に沿って並ぶ第1領域A4と、複数の第2貫通孔72が、第2方向に沿って並ぶ第2領域B4と、を含む。図8の例では、領域A41~A46の6個の領域がそれぞれ第1領域A4に相当し、領域B41~B43の3個の領域がそれぞれ第2領域B4に相当する。 The fin 7c includes a first area A4 in which a plurality of first through holes 71 are arranged along the second direction, and a second area B4 in which a plurality of second through holes 72 are arranged along the second direction. In the example of FIG. 8, the six areas A41 to A46 each correspond to the first area A4, and the three areas B41 to B43 each correspond to the second area B4.
 図8に示すように、第2領域B4は第1領域A4に囲まれている。図8では、第2領域B4が第1領域A4に囲まれる様々なバリエーションを示している。例えば、領域B41は、風下側を開放した状態で、風上側において領域A42と隣接し、第2方向の両側において領域A41,A43と隣接している。 As shown in FIG. 8, the second area B4 is surrounded by the first area A4. FIG. 8 shows various variations in which the second area B4 is surrounded by the first area A4. For example, the area B41 is adjacent to the area A42 on the windward side and adjacent to the areas A41 and A43 on both sides in the second direction while the leeward side is open.
 このように、第1方向に対して2列分の第2領域B4(領域B41)が存在する場合でも、その第2領域B4を囲むように、第2方向の両側において2列分の領域A41,A43をそれぞれ隣接させることで、第2領域B4を通過する前の空気を第1領域A4によってより確実に冷却することができる。 Thus, even when there are two rows of second regions B4 (regions B41) in the first direction, two rows of regions A41 are arranged on both sides in the second direction so as to surround the second regions B4. , A43 adjacent to each other, the air before passing through the second area B4 can be cooled more reliably by the first area A4.
 領域B42は、風上側において領域A42と隣接し、風下側において領域A44と隣接し、第2方向の両側において領域A43,A45と隣接している。領域B42は、第1方向の両側および第2方向の両側において第1領域A4に囲まれているため、第2領域B4を通過する空気より確実に冷却することができる。 The area B42 is adjacent to the area A42 on the windward side, adjacent to the area A44 on the leeward side, and adjacent to the areas A43 and A45 on both sides in the second direction. Since the area B42 is surrounded by the first area A4 on both sides in the first direction and both sides in the second direction, it can be cooled more reliably than the air passing through the second area B4.
 領域B43は、風下側を開放した状態で、風上側において領域A45と隣接し、第2方向の両側において領域A44,A46と隣接している。特に、領域B43の風上側には領域A42,A45の2列分の第1領域A4が位置しているため、第1方向に流れる空気をより確実に冷却することができる。 With the leeward side open, the area B43 is adjacent to the area A45 on the windward side and adjacent to the areas A44 and A46 on both sides in the second direction. In particular, since the first area A4 for two rows of the areas A42 and A45 is positioned on the windward side of the area B43, the air flowing in the first direction can be cooled more reliably.
[その他]
 上記の各実施形態及び変形例については、その少なくとも一部を、相互に任意に組み合わせてもよい。
[others]
At least a part of each of the embodiments and modifications described above may be arbitrarily combined with each other.
[実施形態の作用効果]
(1)実施形態の熱交換器15a,15b,15d,15eは、冷媒が流通可能な伝熱管6と、厚み方向に伝熱管6が貫通可能な複数の貫通孔70が形成されているフィン7,7b,7cと、を備え、複数の貫通孔70は、空気が風上側から風下側に向かう第1方向と交差する第2方向に沿って複数列に形成され、伝熱管6が貫通している第1貫通孔71と、伝熱管6が貫通していない第2貫通孔72と、を含み、フィン7は、第1貫通孔71が、前記第2方向に沿って並ぶ第1領域A1,A2,A3,A4と、第2貫通孔72が、前記第2方向に沿って並ぶ第2領域B1,B2,B3,B4と、を含み、第2領域B1,B2,B3,B4は、前記第1方向の一方側又は両側において第1領域A1,A2,A3,A4と隣接し、前記第2方向の両側において第1領域A1,A2,A3,A4と隣接している、熱交換器15a,15b,15d,15eである。
[Action and effect of the embodiment]
(1) The heat exchangers 15a, 15b, 15d, and 15e of the embodiment include the heat transfer tubes 6 through which the refrigerant can flow, and the fins 7 formed with a plurality of through holes 70 through which the heat transfer tubes 6 can pass in the thickness direction. , 7b and 7c, and the plurality of through holes 70 are formed in a plurality of rows along a second direction that intersects with the first direction in which the air flows from the windward side to the leeward side, and the heat transfer tubes 6 pass through the through holes 70. and a second through hole 72 through which the heat transfer tube 6 does not pass. A2, A3, A4, and second regions B1, B2, B3, B4 in which the second through holes 72 are arranged along the second direction. A heat exchanger 15a adjacent to the first regions A1, A2, A3, A4 on one side or both sides in the first direction and adjacent to the first regions A1, A2, A3, A4 on both sides in the second direction. , 15b, 15d and 15e.
 第2領域B1,B2,B3,B4(抜管領域)は、伝熱管6が貫通していない第2貫通孔72が第2方向に並ぶ領域であるため、第2領域B1,B2,B3,B4を通過する空気は、第1領域A1,A2,A3,A4(伝熱管領域)を通過する空気と比べて十分に冷却されない。本開示では、このような第2領域B1,B2,B3,B4を、第1方向及び第2方向において第1領域A1,A2,A3,A4により囲むことで、第2領域B1,B2,B3,B4を通過した後(又は通過する前)の空気を第1領域A1,A2,A3,A4によってより確実に冷却することができる。これにより、熱交換器15a,15b,15d,15eにおいて結露をより確実に発生させることができるため、熱交換器15a,15b,15d,15eの風下側に位置する部材における結露を抑制することができる。 The second regions B1, B2, B3, and B4 (pipe removal regions) are regions in which the second through holes 72 through which the heat transfer tubes 6 do not pass are arranged in the second direction. The air passing through is not sufficiently cooled compared to the air passing through the first regions A1, A2, A3, A4 (heat transfer tube regions). In the present disclosure, such second regions B1, B2, B3, B4 are surrounded by the first regions A1, A2, A3, A4 in the first direction and the second direction, so that the second regions B1, B2, B3 , B4 can be cooled more reliably by the first regions A1, A2, A3 and A4. As a result, dew condensation can be generated more reliably in the heat exchangers 15a, 15b, 15d, and 15e, so that dew condensation on the members located on the leeward side of the heat exchangers 15a, 15b, 15d, and 15e can be suppressed. can.
(2)実施形態の第1貫通孔71は、熱交換器15a,15bが蒸発器として機能する場合の冷媒の出口となる伝熱管6が貫通している出口貫通孔73を含み、出口貫通孔73は、第1領域A1,A2と前記第1方向に隣接する位置に形成されている。 (2) The first through-hole 71 of the embodiment includes an outlet through-hole 73 through which the heat transfer tube 6 passes through, which serves as an outlet for refrigerant when the heat exchangers 15a and 15b function as evaporators. 73 is formed at a position adjacent to the first regions A1 and A2 in the first direction.
 熱交換器15a,15bが蒸発器として機能する場合に、冷媒の出口となる伝熱管6では、内部を流れる大半(又は全て)の冷媒がガス状態となっている。このため、この伝熱管6では、空気から熱を吸収して冷媒が蒸発する余地がほとんどなく、通過する空気を十分に冷却することができない。このような伝熱管6が貫通している出口貫通孔73を第1領域A1,A2と第1方向に隣接する位置に形成することで、出口貫通孔73及びその近傍を通過した後(又は通過する前)の十分に冷却されていない空気を、当該隣接する第1領域A1,A2によってより確実に冷却することができる。これにより、熱交換器15a,15bにおいて結露をより確実に発生させることができるため、熱交換器15a,15bの風下側に位置する部材における結露を抑制することができる。 When the heat exchangers 15a and 15b function as evaporators, most (or all) of the refrigerant flowing inside the heat transfer tube 6, which is the outlet of the refrigerant, is in a gaseous state. Therefore, in the heat transfer tube 6, there is almost no room for the refrigerant to evaporate by absorbing heat from the air, and the passing air cannot be sufficiently cooled. By forming the outlet through-hole 73 through which the heat transfer tube 6 penetrates at a position adjacent to the first regions A1 and A2 in the first direction, after passing through the outlet through-hole 73 and its vicinity (or The air that has not been sufficiently cooled (before cooling) can be cooled more reliably by the adjacent first regions A1 and A2. As a result, dew condensation can be generated more reliably in the heat exchangers 15a and 15b, so that dew condensation in members located on the leeward side of the heat exchangers 15a and 15b can be suppressed.
(3)実施形態の出口貫通孔73は、第1領域A1の前記風上側に隣接する位置に形成されている。 (3) The outlet through hole 73 of the embodiment is formed at a position adjacent to the windward side of the first area A1.
 冷却能力が低い伝熱管6を風上側に設け、冷却能力が高い伝熱管6を風下側に設けると、通過する空気が徐々に冷却されるため、上記の逆順に配置する場合と比べて冷却の効率が良い。出口貫通孔73は、冷却能力が低い伝熱管6が貫通しているため、出口貫通孔73を他の第1領域A1の風上側に設けることで、空気の冷却効率をより良くすることができる。 If the heat transfer tubes 6 with low cooling capacity are provided on the windward side and the heat transfer tubes 6 with high cooling capacity are provided on the leeward side, the passing air is gradually cooled. Efficient. Since the heat transfer pipes 6 having a low cooling capacity pass through the outlet through-holes 73, the air cooling efficiency can be improved by providing the outlet through-holes 73 on the windward side of the other first area A1. .
(4)実施形態のフィン7において、前記風上側の列に含まれる複数の貫通孔70は、前記風下側の列に含まれる複数の貫通孔70に対して千鳥状に配置するように形成されている。 (4) In the fin 7 of the embodiment, the plurality of through holes 70 included in the windward row are arranged in a staggered manner with respect to the plurality of through holes 70 included in the leeward row. ing.
 複数の貫通孔70を千鳥配置するように形成することで、通過する空気をまんべんなく冷却することが可能となる。 By forming a plurality of through-holes 70 in a zigzag arrangement, it is possible to evenly cool the passing air.
(5)実施形態のフィン7は、前記第1方向の幅が平均よりも狭まった狭部7aを有し、複数の貫通孔70のうち、狭部7aの最も近くに形成されている狭部貫通孔74は、第1貫通孔71である。 (5) The fin 7 of the embodiment has a narrow portion 7a having a width narrower than the average in the first direction, and the narrow portion formed closest to the narrow portion 7a among the plurality of through-holes 70. The through hole 74 is the first through hole 71 .
 狭部7aは、フィン7の他の部分と比べて冷却能力が低い。狭部7aの最も近くに形成されている狭部貫通孔74を第1貫通孔71(伝熱管6が貫通している貫通孔70)とすることで、このような部分を通過する空気をより確実に冷却することができる。 The narrow portion 7a has a lower cooling capacity than other portions of the fin 7. By using the narrow portion through-hole 74 formed closest to the narrow portion 7a as the first through-hole 71 (the through-hole 70 through which the heat transfer tube 6 penetrates), the air passing through such a portion is further reduced. can be reliably cooled.
(6)実施形態の狭部7aは、フィン7が前記第1方向に屈曲する屈曲部である。 (6) The narrow portion 7a of the embodiment is a bent portion where the fin 7 bends in the first direction.
(7)実施形態の第1貫通孔71は、熱交換器15aが蒸発器として機能する場合の冷媒の入口となる伝熱管6が貫通している入口貫通孔75を含み、狭部貫通孔74は、入口貫通孔75である。 (7) The first through-hole 71 of the embodiment includes an inlet through-hole 75 through which the heat transfer tube 6 penetrates, which serves as an inlet for refrigerant when the heat exchanger 15a functions as an evaporator. is the inlet through-hole 75 .
 熱交換器15aが蒸発器として機能する場合に、冷媒の入口となる伝熱管6では、内部を流れる大半(又は全て)の冷媒が液状態となっている。このため、この伝熱管6では、冷媒が空気から熱を吸収して蒸発しやすく、通過する空気を良好に冷却することができる。このような伝熱管6が貫通している入口貫通孔75を、冷却能力が低い狭部7aに形成することで、狭部7aにおける冷却能力の低さを補うことができる。これにより、狭部7aを通過する空気をより確実に冷却することができる。 When the heat exchanger 15a functions as an evaporator, most (or all) of the refrigerant flowing inside is in a liquid state in the heat transfer tube 6 serving as the refrigerant inlet. Therefore, in the heat transfer tube 6, the refrigerant absorbs heat from the air and evaporates easily, so that the passing air can be well cooled. By forming the inlet through-hole 75 through which the heat transfer tube 6 penetrates in the narrow portion 7a having low cooling ability, the low cooling ability in the narrow portion 7a can be compensated. Thereby, the air passing through the narrow portion 7a can be cooled more reliably.
(8)実施形態の狭部貫通孔74は、第2領域B1と前記第1方向に隣接する位置に形成されている。 (8) The narrow through hole 74 of the embodiment is formed at a position adjacent to the second region B1 in the first direction.
 狭部貫通孔74は入口貫通孔75であるため、狭部貫通孔74及びその近傍を通過する空気を良好に冷却することができる。このため、狭部貫通孔74を第2領域B1と第1方向に隣接する位置に形成することで、第2領域B1及びその近傍を通過した後(又は通過する前)の十分に冷却されていない空気を、狭部貫通孔74を貫通する伝熱管6によってより確実に冷却することができる。 Since the narrow through-hole 74 is the inlet through-hole 75, the air passing through the narrow through-hole 74 and the vicinity thereof can be well cooled. Therefore, by forming the narrow through-hole 74 at a position adjacent to the second region B1 in the first direction, it is sufficiently cooled after (or before) passing through the second region B1 and its vicinity. The heat transfer tube 6 passing through the narrow portion through-hole 74 can cool the air that does not exist in the air more reliably.
(9)実施形態の第1貫通孔71は、熱交換器15aが蒸発器として機能する場合の冷媒の入口となる伝熱管6が貫通している入口貫通孔75を含み、入口貫通孔75は、熱交換器15を通過する空気の風速が平均よりも速い領域であって、かつ前記風下側の列に形成されている。 (9) The first through-hole 71 of the embodiment includes an inlet through-hole 75 through which the heat transfer tube 6 passes through, which serves as an inlet for refrigerant when the heat exchanger 15a functions as an evaporator. , the wind speed of the air passing through the heat exchanger 15 is faster than the average, and is formed in the line on the leeward side.
 冷媒の入口となる伝熱管6が貫通し、最も冷えやすい領域となる入口貫通孔75を、空気の風速が平均よりも速い領域(すなわち、風量の多い領域)に形成することで、空気の冷却効率を向上させることができる。また、そのような入口貫通孔75を風下側の列に形成することで、通過する空気が徐々に冷却されるため、空気の冷却効率をより向上させることができる。 By forming the inlet through-hole 75, which is the area where the heat transfer tube 6, which is the inlet of the refrigerant, penetrates and is most likely to be cooled, in the area where the air velocity is faster than the average (that is, the area where the air volume is large), the air is cooled. Efficiency can be improved. In addition, by forming such inlet through-holes 75 in the row on the leeward side, the passing air is gradually cooled, so that the cooling efficiency of the air can be further improved.
(10)実施形態の空気調和装置1は、圧縮機11、熱源側熱交換器13、減圧機構14及び利用側熱交換器15がこの順に接続された冷媒回路4を備え、利用側熱交換器15は、請求項1から請求項9のいずれか1項に記載の熱交換器15a,15b,15d,15eを含む、空気調和装置1である。 (10) The air conditioner 1 of the embodiment includes a refrigerant circuit 4 in which a compressor 11, a heat source side heat exchanger 13, a pressure reducing mechanism 14, and a user side heat exchanger 15 are connected in this order. 15 is an air conditioner 1 including heat exchangers 15a, 15b, 15d, and 15e according to any one of claims 1 to 9.
(11)実施形態の空気調和装置1は、減圧機構14の開度を制御する制御部5をさらに備え、制御部5は、利用側熱交換器15が蒸発器として機能する場合の冷媒の出口となる伝熱管6から流出する冷媒の乾き度が所定値以上となるように前記開度を制御する。 (11) The air conditioner 1 of the embodiment further includes a control unit 5 that controls the opening degree of the decompression mechanism 14. The control unit 5 controls the refrigerant outlet when the utilization side heat exchanger 15 functions as an evaporator. The opening is controlled so that the dryness of the refrigerant flowing out of the heat transfer tube 6 becomes a predetermined value or more.
 このような制御を行う空気調和装置1では、出口から流出する冷媒の液量をより少なくすることで、圧縮機11に過度な湿り状態の冷媒が吸入されることを抑制することができる。一方で、このような制御を行うと、冷媒の出口となる伝熱管6における冷却能力が低下するため、第2領域B1,B2,B3,B4を設ける位置によっては、通過する空気が十分に冷却されないおそれがある。本開示の空気調和装置1に含まれる利用側熱交換器15では、通過する空気が十分に冷却されるように第1領域A1,A2,A3,A4および第2領域B1,B2,B3,B4の配置を工夫しているため、上記制御に伴う課題を解決することができる。 In the air conditioner 1 that performs such control, it is possible to suppress the intake of excessively wet refrigerant into the compressor 11 by reducing the amount of refrigerant flowing out from the outlet. On the other hand, if such control is performed, the cooling capacity of the heat transfer tube 6, which is the outlet of the refrigerant, is lowered. it may not be done. In the user-side heat exchanger 15 included in the air conditioner 1 of the present disclosure, the first areas A1, A2, A3, A4 and the second areas B1, B2, B3, B4 are arranged so that the passing air is sufficiently cooled. is devised, it is possible to solve the problems associated with the above control.
[補記]
 以上、実施形態について説明したが、請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
[Supplement]
Although embodiments have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the claims.
1:空気調和装置、11:圧縮機、12:切換機構、13:熱源側熱交換器、14:減圧機構、15:利用側熱交換器、15a:熱交換器、15b:熱交換器、15c:熱交換器、15d:熱交換器、15e:熱交換器、16:アキュムレータ、2:室内ユニット、2a:室内ユニット、21:筐体、21a:前板、21b:天板、21c:背板、21d:第1収容板、21e:第2収容板、21f:流路底板、22:室内ファン、23:グリル、24a:ドレンパン、24b:ドレンパン、25:フラップ、26a:前部吸込口、26b:上部吸込口、26c:吹出口、3:室外ユニット、31:筐体、32:室外ファン、4:冷媒回路、5:制御部、5a:室内制御部、5b:室外制御部、51:リモートコントロールユニット(リモコン)、52a:プロセッサ、52b:プロセッサ、53a:メモリ、53b:メモリ、6:伝熱管、7:フィン、7b:フィン、7c:フィン、7a:狭部、70:貫通孔、71:第1貫通孔、72:第2貫通孔、73:出口貫通孔、74:狭部貫通孔、75:入口貫通孔、R1:部屋、P1:フィン下部、P2:フィン上部、L1:中心線、L2:中心線、L3:中心線、C1:仮想線、C2:仮想線、D1:領域、D2:領域、A1:第1領域、A2:第1領域、A3:第1領域、A4:第1領域、A91:第1領域、A92:第1領域、B1:第2領域、B2:第2領域、B3:第2領域、B4:第2領域、B9:第2領域、A11:領域、A12:領域、A13:領域、A14:領域、A21:領域、A22:領域、A23:領域、A31:領域、A32:領域、A33:領域、A41:領域、A42:領域、A43:領域、A44:領域、A45:領域、A46:領域、B41:領域、B42:領域、B43:領域、F1:空気流れ、F2:空気流れ、F3:空気流れ、F4:空気流れ、F5:空気流れ、F91:空気流れ、F92:空気流れ 1: Air conditioner 11: Compressor 12: Switching mechanism 13: Heat source side heat exchanger 14: Pressure reducing mechanism 15: User side heat exchanger 15a: Heat exchanger 15b: Heat exchanger 15c : heat exchanger 15d: heat exchanger 15e: heat exchanger 16: accumulator 2: indoor unit 2a: indoor unit 21: housing 21a: front plate 21b: top plate 21c: back plate , 21d: first housing plate, 21e: second housing plate, 21f: channel bottom plate, 22: indoor fan, 23: grill, 24a: drain pan, 24b: drain pan, 25: flap, 26a: front suction port, 26b : upper suction port, 26c: outlet, 3: outdoor unit, 31: housing, 32: outdoor fan, 4: refrigerant circuit, 5: control unit, 5a: indoor control unit, 5b: outdoor control unit, 51: remote Control unit (remote control), 52a: processor, 52b: processor, 53a: memory, 53b: memory, 6: heat transfer tube, 7: fin, 7b: fin, 7c: fin, 7a: narrow part, 70: through hole, 71 : first through hole, 72: second through hole, 73: outlet through hole, 74: narrow portion through hole, 75: inlet through hole, R1: room, P1: fin lower part, P2: fin upper part, L1: center line , L2: center line, L3: center line, C1: virtual line, C2: virtual line, D1: area, D2: area, A1: first area, A2: first area, A3: first area, A4: second 1 area, A91: first area, A92: first area, B1: second area, B2: second area, B3: second area, B4: second area, B9: second area, A11: area, A12 : area, A13: area, A14: area, A21: area, A22: area, A23: area, A31: area, A32: area, A33: area, A41: area, A42: area, A43: area, A44: area , A45: area, A46: area, B41: area, B42: area, B43: area, F1: air flow, F2: air flow, F3: air flow, F4: air flow, F5: air flow, F91: air flow , F92: air flow

Claims (11)

  1.  冷媒が流通可能な伝熱管(6)と、
     厚み方向に前記伝熱管(6)が貫通可能な複数の貫通孔(70)が形成されているフィン(7,7b,7c)と、
    を備え、
     前記複数の貫通孔(70)は、
      空気が風上側から風下側に向かう第1方向と交差する第2方向に沿って複数列に形成され、
      前記伝熱管(6)が貫通している第1貫通孔(71)と、前記伝熱管(6)が貫通していない第2貫通孔(72)と、を含み、
     前記フィン(7)は、
      前記第1貫通孔(71)が、前記第2方向に沿って並ぶ第1領域(A1,A2,A3,A4)と、
      前記第2貫通孔(72)が、前記第2方向に沿って並ぶ第2領域(B1,B2,B3,B4)と、
    を含み、
     前記第2領域(B1,B2,B3,B4)は、前記第1方向の一方側又は両側において前記第1領域(A1,A2,A3,A4)と隣接し、前記第2方向の両側において前記第1領域(A1,A2,A3,A4)と隣接している、
    熱交換器(15a,15b,15d,15e)。
    a heat transfer tube (6) through which a refrigerant can flow;
    fins (7, 7b, 7c) formed with a plurality of through holes (70) through which the heat transfer tubes (6) can pass in the thickness direction;
    with
    The plurality of through holes (70) are
    The air is formed in a plurality of rows along a second direction that intersects with the first direction from the windward side to the leeward side,
    including a first through hole (71) through which the heat transfer tube (6) passes and a second through hole (72) through which the heat transfer tube (6) does not pass;
    The fins (7) are
    a first region (A1, A2, A3, A4) in which the first through holes (71) are arranged along the second direction;
    second regions (B1, B2, B3, B4) in which the second through holes (72) are arranged along the second direction;
    including
    The second regions (B1, B2, B3, B4) are adjacent to the first regions (A1, A2, A3, A4) on one side or both sides in the first direction, and the Adjacent to the first region (A1, A2, A3, A4),
    heat exchangers (15a, 15b, 15d, 15e);
  2.  前記第1貫通孔(71)は、前記熱交換器(15a,15b)が蒸発器として機能する場合の冷媒の出口となる前記伝熱管(6)が貫通している出口貫通孔(73)を含み、
     前記出口貫通孔(73)は、前記第1領域(A1,A2)と前記第1方向に隣接する位置に形成されている、
    請求項1に記載の熱交換器(15a,15b)。
    The first through-hole (71) is an outlet through-hole (73) through which the heat transfer pipe (6) passes, which serves as a refrigerant outlet when the heat exchanger (15a, 15b) functions as an evaporator. including
    The exit through-hole (73) is formed at a position adjacent to the first region (A1, A2) in the first direction,
    A heat exchanger (15a, 15b) according to claim 1.
  3.  前記出口貫通孔(73)は、前記第1領域(A1)の前記風上側に隣接する位置に形成されている、
    請求項2に記載の熱交換器(15a)。
    The outlet through hole (73) is formed at a position adjacent to the windward side of the first area (A1),
    A heat exchanger (15a) according to claim 2.
  4.  前記フィン(7)において、前記風上側の列に含まれる前記複数の貫通孔(70)は、前記風下側の列に含まれる前記複数の貫通孔(70)に対して千鳥状に配置するように形成されている、
    請求項1から請求項3のいずれか1項に記載の熱交換器(15a,15b,15d,15e)。
    In the fin (7), the plurality of through holes (70) included in the windward row are arranged in a staggered manner with respect to the plurality of through holes (70) included in the leeward row. is formed in
    A heat exchanger (15a, 15b, 15d, 15e) according to any one of claims 1 to 3.
  5.  前記フィン(7)は、前記第1方向の幅が平均よりも狭まった狭部(7a)を有し、
     前記複数の貫通孔(70)のうち、前記狭部(7a)の最も近くに形成されている狭部貫通孔(74)は、前記第1貫通孔(71)である、
    請求項1から請求項4のいずれか1項に記載の熱交換器(15a)。
    The fin (7) has a narrow portion (7a) with a narrower than average width in the first direction,
    Among the plurality of through-holes (70), a narrow-portion through-hole (74) formed closest to the narrow portion (7a) is the first through-hole (71).
    A heat exchanger (15a) according to any one of claims 1 to 4.
  6.  前記狭部(7a)は、前記フィン(7)が前記第1方向に屈曲する屈曲部である、
    請求項5に記載の熱交換器(15a)。
    The narrow portion (7a) is a bent portion where the fin (7) bends in the first direction,
    A heat exchanger (15a) according to claim 5.
  7.  前記第1貫通孔(71)は、前記熱交換器(15)が蒸発器として機能する場合の冷媒の入口となる前記伝熱管(6)が貫通している入口貫通孔(75)を含み、
     前記狭部貫通孔(74)は、前記入口貫通孔(75)である、
    請求項5又は請求項6に記載の熱交換器(15a)。
    The first through-hole (71) includes an inlet through-hole (75) through which the heat transfer pipe (6) passes, which serves as an inlet for refrigerant when the heat exchanger (15) functions as an evaporator,
    The narrow through-hole (74) is the entrance through-hole (75),
    A heat exchanger (15a) according to claim 5 or claim 6.
  8.  前記狭部貫通孔(74)は、前記第2領域(B1)と前記第1方向に隣接する位置に形成されている、
    請求項7に記載の熱交換器(15a)。
    The narrow through hole (74) is formed at a position adjacent to the second region (B1) in the first direction,
    A heat exchanger (15a) according to claim 7.
  9.  前記第1貫通孔(71)は、前記熱交換器(15a)が蒸発器として機能する場合の冷媒の入口となる前記伝熱管(6)が貫通している入口貫通孔(75)を含み、
     前記入口貫通孔(75)は、前記熱交換器(15a)を通過する空気の風速が平均よりも速い領域(D1)であって、かつ前記風下側の列に形成されている、
    請求項1から請求項8のいずれか1項に記載の熱交換器(15a)。
    The first through-hole (71) includes an inlet through-hole (75) through which the heat transfer pipe (6) passes, which serves as an inlet for refrigerant when the heat exchanger (15a) functions as an evaporator,
    The inlet through-hole (75) is formed in a region (D1) in which the wind speed of the air passing through the heat exchanger (15a) is higher than the average and in the row on the leeward side,
    A heat exchanger (15a) according to any one of the preceding claims.
  10.  圧縮機(11)、熱源側熱交換器(13)、減圧機構(14)及び利用側熱交換器(15)がこの順に接続された冷媒回路(4)を備え、
     前記利用側熱交換器(15)は、請求項1から請求項9のいずれか1項に記載の熱交換器(15a,15b,15d,15e)を含む、空気調和装置(1)。
    A refrigerant circuit (4) in which a compressor (11), a heat source side heat exchanger (13), a pressure reducing mechanism (14) and a user side heat exchanger (15) are connected in this order,
    An air conditioner (1), wherein the utilization side heat exchanger (15) includes the heat exchanger (15a, 15b, 15d, 15e) according to any one of claims 1 to 9.
  11.  前記減圧機構(14)の開度を制御する制御部(5)をさらに備え、
     前記制御部(5)は、前記利用側熱交換器(15)が蒸発器として機能する場合の冷媒の出口となる前記伝熱管(6)から流出する冷媒の乾き度が所定値以上となるように前記開度を制御する、
    請求項10に記載の空気調和装置(1)。
    further comprising a control unit (5) for controlling the opening degree of the decompression mechanism (14),
    The control unit (5) controls the dryness of the refrigerant flowing out from the heat transfer pipe (6), which is the refrigerant outlet when the utilization side heat exchanger (15) functions as an evaporator, to be a predetermined value or more. controlling the opening to
    Air conditioner (1) according to claim 10.
PCT/JP2022/022910 2021-09-27 2022-06-07 Heat exchanger and air-conditioning device WO2023047716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063692.7A CN117980688A (en) 2021-09-27 2022-06-07 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156954 2021-09-27
JP2021156954A JP7208558B1 (en) 2021-09-27 2021-09-27 heat exchangers and air conditioners

Publications (1)

Publication Number Publication Date
WO2023047716A1 true WO2023047716A1 (en) 2023-03-30

Family

ID=84974462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022910 WO2023047716A1 (en) 2021-09-27 2022-06-07 Heat exchanger and air-conditioning device

Country Status (3)

Country Link
JP (1) JP7208558B1 (en)
CN (1) CN117980688A (en)
WO (1) WO2023047716A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128168U (en) * 1984-02-07 1985-08-28 ダイキン工業株式会社 Heat exchanger with fins
JPS6458995A (en) * 1987-08-28 1989-03-06 Matsushita Refrigeration Fintube type heat exchanger
JP2002115986A (en) * 2000-10-10 2002-04-19 Lg Electronics Inc Heat exchanger
JP2012229897A (en) * 2011-04-27 2012-11-22 Daikin Industries Ltd Heat exchanger and air conditioner equipped with the heat exchanger
JP2015127607A (en) 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger
JP2015137806A (en) * 2014-01-22 2015-07-30 三菱電機株式会社 Indoor unit for air conditioner and air conditioner
JP2016044830A (en) * 2014-08-20 2016-04-04 株式会社富士通ゼネラル Heat exchanger and air conditioner using the same
WO2016079834A1 (en) * 2014-11-19 2016-05-26 三菱電機株式会社 Air conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128168U (en) * 1984-02-07 1985-08-28 ダイキン工業株式会社 Heat exchanger with fins
JPS6458995A (en) * 1987-08-28 1989-03-06 Matsushita Refrigeration Fintube type heat exchanger
JP2002115986A (en) * 2000-10-10 2002-04-19 Lg Electronics Inc Heat exchanger
JP2012229897A (en) * 2011-04-27 2012-11-22 Daikin Industries Ltd Heat exchanger and air conditioner equipped with the heat exchanger
JP2015127607A (en) 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger
JP2015137806A (en) * 2014-01-22 2015-07-30 三菱電機株式会社 Indoor unit for air conditioner and air conditioner
JP2016044830A (en) * 2014-08-20 2016-04-04 株式会社富士通ゼネラル Heat exchanger and air conditioner using the same
WO2016079834A1 (en) * 2014-11-19 2016-05-26 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP2023047822A (en) 2023-04-06
CN117980688A (en) 2024-05-03
JP7208558B1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
CN109891155B (en) Indoor unit and air conditioning device
WO2017159726A1 (en) Finless-type heat exchanger, outdoor unit of air conditioner provided with finless-type heat exchanger, and indoor unit of air conditioner provided with finless-type heat exchanger
KR20100128812A (en) Ventilating device and controlling method of the same
JP6223596B2 (en) Air conditioner indoor unit
EP3540318B1 (en) Indoor unit for air conditioner, and air conditioner
WO2017208493A1 (en) Air conditioner
JP6253513B2 (en) Air conditioner indoor unit
JP2003232553A (en) Air conditioner
WO2023047716A1 (en) Heat exchanger and air-conditioning device
WO2021229794A1 (en) Air conditioner indoor unit and air conditioner
JPH10246506A (en) Indoor unit for air conditioner
JP5195042B2 (en) Air conditioning indoor unit
JP5104230B2 (en) Air conditioner
JP7378502B2 (en) air conditioner
CN111448423B (en) Air conditioner
CN208238049U (en) Dehumidifier
WO2020121615A1 (en) Indoor unit and air conditioner
WO2020183606A1 (en) Air conditioner
JPH0783458A (en) Indoor device for air conditioner
JP2002206795A (en) Indoor machine for air conditioner
JPWO2019116838A1 (en) Heat exchange unit and air conditioner equipped with the same
JP2001330309A (en) Air conditioner
JP4911118B2 (en) Air conditioning indoor unit
WO2020195153A1 (en) Air conditioner
JP5195135B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063692.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872474

Country of ref document: EP

Effective date: 20240429