WO2023047642A1 - アクチュエータ及び義足 - Google Patents

アクチュエータ及び義足 Download PDF

Info

Publication number
WO2023047642A1
WO2023047642A1 PCT/JP2022/010846 JP2022010846W WO2023047642A1 WO 2023047642 A1 WO2023047642 A1 WO 2023047642A1 JP 2022010846 W JP2022010846 W JP 2022010846W WO 2023047642 A1 WO2023047642 A1 WO 2023047642A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaf spring
extension
torque
support member
bending
Prior art date
Application number
PCT/JP2022/010846
Other languages
English (en)
French (fr)
Inventor
謙 遠藤
隆介 森田
雅人 田中
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023549340A priority Critical patent/JPWO2023047642A1/ja
Publication of WO2023047642A1 publication Critical patent/WO2023047642A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present disclosure relates to actuators and prosthetic legs, and more particularly to actuators and prosthetic legs using leaf springs.
  • This technology has been developed in view of this situation, and proposes an actuator and a prosthetic leg that can downsize the device.
  • An actuator includes a U-shaped bent portion and a first extension portion extending from the bent portion, wherein the end of the first extension portion on the bent portion side is a plate spring that is cantilever-supported at a first end portion that is a portion, and that is capable of bending and deforming in a plate thickness direction according to the torque transmitted by the first extension portion; and a first support member that supports a portion of the first extension in the bending direction when torque transmitted in the first direction by the extension is greater than a predetermined value.
  • a second aspect of the prosthesis of the present disclosure connects a thigh member, a calf member, the thigh member and the calf member, and applies a torque to one of the thigh member and the calf member.
  • One end portion of the extension portion on the bent portion side is cantilevered, and the extension portion transmits torque so that the plate is bent in response to the torque.
  • a plate spring that is flexibly deformable in a thickness direction, and a support member that supports a portion of the extension portion in the bending direction when the torque transmitted by the extension portion is greater than a predetermined value.
  • the thigh side member and the crus side member are connected, and torque is transmitted to one of the thigh side member and the crus side member, whereby the thigh side member and the crus side member are connected to each other.
  • the torque transmitted by the extension of the leaf spring is greater than a predetermined value, a portion of the extension is supported on the bending direction side. be done.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of a prosthetic leg according to an embodiment of the present disclosure
  • FIG. It is a perspective view of the thigh side member of the artificial leg according to the same embodiment. It is a perspective view of the thigh side member of the artificial leg according to the same embodiment. It is a cross-sectional view of the thigh side member of the prosthetic leg according to the same embodiment.
  • FIG. 4 is an explanatory diagram for explaining power and signal transmission paths in the prosthetic leg according to the same embodiment; FIG.
  • FIG. 5 is an explanatory diagram showing deformation of a leaf spring in a state where a portion of the leaf spring on one end side is not in contact with a deformation guide; 7 is a shear force diagram for the leaf spring in the state shown in FIG. 6; FIG. FIG. 7 is a bending moment diagram for the leaf spring in the state shown in FIG. 6; FIG. 10 is an explanatory diagram for explaining the relationship between the deflection angle ⁇ and the distance s; FIG. 10 is an explanatory diagram showing how the leaf spring is deformed in a state where the one end portion of the leaf spring is in contact with the deformation guide; FIG.
  • FIG. 4 is an explanatory diagram showing an example of the relationship between the other end bending angle ⁇ L of the leaf spring and the load change rate;
  • FIG. 4 is an explanatory diagram showing an example of a relationship between a load P applied to a leaf spring and a load change rate;
  • 1 is a schematic diagram showing a first embodiment of an actuator according to an embodiment of the present disclosure;
  • FIG. 10 is a schematic diagram showing an example of the state of the actuator when one end of the leaf spring is relatively stopped with respect to the rotating body and when the leaf spring is rotating;
  • FIG. 4 is a schematic diagram showing a second embodiment of a torque sensor according to an embodiment of the present disclosure;
  • a prosthetic leg according to an embodiment of the present disclosure Outline of this technology 2-1. Deformation of leaf spring 2-2. 2. Mechanical properties of leaf spring; First Embodiment of Actuator 4 . Second Embodiment of Actuator 5 . Modification 6. others
  • FIG. 1 Prosthetic leg according to embodiment of the present disclosure> First, a prosthetic leg 101 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
  • FIG. 1 Prosthetic leg according to embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing an example of the schematic configuration of the prosthetic leg 101.
  • FIG. 1 is a schematic diagram showing an example of the schematic configuration of the prosthetic leg 101.
  • the prosthetic leg 101 is worn by the wearer, the user, and used to support the weight of the user.
  • the prosthetic leg 101 includes a thigh side member 111 and a lower leg side member 112 .
  • the thigh side member 111 includes a body portion 121 and a knee joint 122 .
  • the crus side member 112 includes an extension portion 131 and a ground portion 132 .
  • the body part 121 has a substantially columnar shape.
  • a connecting portion 121a at the upper end of the main body portion 121 is connected to a socket member (not shown) that accommodates a part of the user to which the artificial leg 101 is to be attached.
  • the connecting portion 121a is positioned vertically above the thigh side member 111, and the socket member opens vertically upward.
  • An internal space is formed inside the body portion 121 .
  • Various members are accommodated in the internal space of the body portion 121, as will be described later.
  • the knee joint 122 is connected to the body portion 121 so as to be relatively rotatable with respect to the body portion 121 .
  • the rotation direction of the knee joint 122 is guided by the body portion 121 .
  • the knee joint 122 is connected to the body portion 121 so as to be rotatable around the central axis of the body portion 121 .
  • the extending portion 131 of the crus side member 112 is a substantially cylindrical member, and its upper end is connected to the connecting portion 122a of the knee joint 122 .
  • the grounding portion 132 has a shape bent at a substantially right angle, the portion extending in the vertical direction is connected to the lower end side of the extension portion 131, and the portion extending in the horizontal direction contacts the floor.
  • the extension part 131 and the contact part 132 rotate about the central axis of the body part 121 as the knee joint 122 of the thigh member 111 rotates about the central axis of the body part 121 . That is, the crus side member 112 is relatively rotatable with respect to the thigh side member 111 .
  • FIG. FIG. 2 is a perspective view of the thigh member 111.
  • FIG. FIG. 3 is a perspective view of the thigh member 111 viewed from the side opposite to FIG. 4 is a cross-sectional view of the thigh member 111.
  • FIG. FIG. 5 is an explanatory diagram for explaining power and signal transmission paths in the thigh member 111. As shown in FIG. In FIG. 5, the solid line arrows and broken line arrows indicate the power and signal transmission paths, respectively.
  • an internal space is formed inside the body portion 121 .
  • a portion of the knee joint 122 (hereinafter referred to as a housing portion 122b) and the torque sensor 155 are housed in the internal space of the main body portion 121 .
  • a connection portion 122a of the knee joint 122 protrudes from the right side of the body portion 121 in the figure.
  • An internal space is formed inside the accommodating portion 122b of the knee joint 122.
  • a drive motor 151 , an output shaft 152 and a gear box 153 are housed in the internal space of the knee joint 122 .
  • a frameless motor for example, is used for the drive motor 151 .
  • the lower surface of the drive motor 151 in the drawing is fixed to the lower surface of the accommodating portion 122b of the knee joint 122 in the drawing.
  • a shaft with a hollow structure (hollow shaft) is used. That is, a hollow portion 152a is provided inside the output shaft 152 so as to penetrate therethrough in the axial direction.
  • the output shaft 152 is attached to the drive motor 151 so that the rotation axis substantially coincides with the central axis of the drive motor 151 .
  • a lower end portion of the output shaft 152 in the drawing is inserted into a bearing 157 .
  • the upper end of the output shaft 152 in the figure is inserted into the gearbox 153 and the bearing 158 .
  • the output shaft 152 extends horizontally in the figure, and the horizontally extended portion is inserted into the bearing 159 .
  • a harmonic gear is used for the gear box 153, for example.
  • the gearbox 153 is arranged such that its central axis substantially coincides with the central axis of the drive motor 151 . Therefore, the rotation axis of the output shaft 152 substantially coincides with the central axis of the gearbox 153 .
  • a shaft with a hollow structure (hollow shaft) is used for the output shaft 154. That is, a hollow portion (not shown) is provided inside the output shaft 154 so as to penetrate therethrough in the axial direction.
  • the lower end of the output shaft 154 in the drawing is connected to the gearbox 153 so that the rotation axis coincides with the central axis of the gearbox 153 . Therefore, the rotation axis of the output shaft 154 substantially coincides with the rotation axis of the output shaft 152 .
  • the output shaft 154 is inserted into an annular connection member 156 and its upper end is inserted into the communication hole 155 a of the torque sensor 155 .
  • the communication hole portion 155 a communicates from one surface to the other surface along the central axis of the torque sensor 155 at the central portion of the torque sensor 155 .
  • the rotation axis of the output shaft 154 substantially coincides with the central axis of the communication hole portion 155a.
  • the hollow portion 152a of the output shaft 152 and the hollow portion of the output shaft 154 overlap in the axial direction. That is, the hollow portion of output shaft 152 and the hollow portion of output shaft 154 are connected in the axial direction.
  • connection of the body portion 121 in the vertical direction in the drawing becomes possible.
  • the magnets of the encoder can be arranged in the hollow portion 152 a of the output shaft 152 and the hollow portion of the output shaft 154 .
  • the thigh side member 111 can be miniaturized.
  • the cable is housed inside the thigh member 111 without being exposed to the outside, it is possible to prevent disconnection of the cable and increase the degree of freedom in design, for example.
  • the torque sensor 155 is arranged above the housing portion 122b of the knee joint 122 in the drawing. As will be described later, the torque sensor 155 is provided with a leaf spring extending left and right in the figure, and the end of the leaf spring is connected to the body part 121 .
  • the connecting member 156 is arranged at substantially the same height as the upper surface of the accommodating portion 122b of the knee joint 122 in the drawing, and is inserted into the bearing 160. As shown in FIG. The connecting member 156 connects the output shaft 154 and the lower surface of the torque sensor 155 in the figure. As a result, the torque sensor 155 becomes rotatable integrally with the output shaft 154 of the gear box 153 .
  • the lower end of the accommodation portion 122b of the knee joint 122 in the figure is inserted into the bearing 161.
  • the upper end of the accommodation portion 122 b of the knee joint 122 in the drawing is inserted into the bearing 162 .
  • the torque generated by the drive motor 151 rotating the output shaft 152 is transmitted to the gear box 153 .
  • Gearbox 153 converts the torque transmitted from drive motor 151 at a predetermined reduction ratio, and transmits the torque to torque sensor 155 via output shaft 154 .
  • the torque transmitted to the torque sensor 155 is transmitted to the body portion 121 as an object on the output side via the leaf spring of the torque sensor 155 .
  • the body portion 121 rotates about the output shaft 154 relative to the knee joint 122 .
  • the thigh side member 111 rotates relatively to the crus side member 112 connected to the knee joint 122 .
  • the knee of the prosthetic leg 101 is driven by the main body 121, the knee joint 122, the drive motor 151, the output shaft 152, the gearbox 153, the output shaft 154, the torque sensor 155, the connecting member 156, the bearings 157 to 162, and the like.
  • An actuator is configured to cause
  • a displacement sensor 181 in FIG. 5 detects the amount of displacement of the leaf spring of the torque sensor 155 and outputs the detection result to the control device 182 .
  • the control device 182 controls driving of the drive motor 151 based on the detection result of the displacement sensor 181 . Specifically, the control device 182 calculates the load applied to the leaf spring based on the measured value of the displacement amount of the leaf spring corresponding to the detection result. Then, the control device 182 calculates the torque actually transmitted to the main body portion 121 via the leaf spring based on the calculated value of the load. Based on the calculated torque value, the control device 182 controls the driving of the drive motor 151 so that the torque transmitted to the body portion 121 approaches the target value.
  • FIG. 1 In the following, in a system composed of a plate spring 201 whose one end portion 201a is cantilevered and a deformation guide 202 capable of supporting a part of the plate spring in the bending direction, the other end portion 201b of the plate spring 201 is Deformation of the leaf spring 201 when a load P is applied in the plate thickness direction will be described.
  • the leaf spring 201 is flexurally deformable in the plate thickness direction according to the load P. As shown in FIG.
  • the deformation guide 202 is provided close to the portion of the leaf spring 201 on the side of the one end 201a in the plate thickness direction of the leaf spring 201, and when the load P is larger than a predetermined value, the deformation guide 202 deforms the one end of the leaf spring 201.
  • the portion on the side of the portion 201a is supported on the bending direction side.
  • FIGS. 6 and 10 such leaf springs 201 and deformation guides 202 are schematically shown by cross-sectional views of cross sections orthogonal to the width direction of the leaf springs 201.
  • FIG. 6 and 10 schematically show the neutral axis of the leaf spring 201 as the shape of the leaf spring 201.
  • FIG. Specifically, the two-dot chain line indicates the deflection curve indicating the neutral axis of the leaf spring 201 when bending deformation occurs, and the solid line indicates the neutral axis of the leaf spring 201 when no bending deformation occurs.
  • the cross-sectional shape of the leaf spring 201 is rectangular. Let D be the thickness of the plate spring 201, I be the moment of inertia of area, E be the Young's modulus, and L be the length in the longitudinal direction.
  • the deformation guide 202 is provided to prevent the leaf spring 201 from being damaged by the load P applied thereto. Specifically, the deformation guide 202 is provided to prevent the leaf spring 201 from being plastically deformed by the load P. As shown in FIG. The relationship between the bending moment M applied to the leaf spring 201 and the radius of curvature ⁇ of the neutral axis of the leaf spring 201 is represented by the following equation (1).
  • the strain in the longitudinal direction that occurs in the plate spring 201 is maximized at the ends in the plate thickness direction, and the strain ⁇ at the ends in the plate thickness direction is expressed by the following equation (2).
  • the dimensions of the deformation guide 202 are such that a strain larger than a predetermined allowable strain corresponding to the upper limit ⁇ max 201 can be set.
  • the allowable strain can be set, for example, to a value obtained by dividing the strain upper limit ⁇ max by a safety factor n ( ⁇ 1).
  • n safety factor 1
  • the allowable strain is generated in the leaf spring 201, the bending moment applied to the leaf spring 201 has the upper limit value Mmax , and the curvature radius of the leaf spring 201 has the lower limit value ⁇ min . Therefore, the following equation (3) is derived from equation (2), which shows the relationship between the strain upper limit ⁇ max and the bending moment upper limit M max .
  • equation (4) is derived by transforming equation (3).
  • the deformation guide 202 has, for example, a semicircular cross-sectional shape and extends in the width direction of the leaf spring 201, as shown in FIGS.
  • the radius of the deformation guide 202 can be set to the lower limit ⁇ min of the radius of curvature calculated based on Equation (6).
  • the bending moment applied to the leaf spring 201 by the load P is maximized at the cantilevered one end 201a among the positions on the leaf spring 201, as will be described later. Therefore, the radius of curvature of the leaf spring 201 is the smallest at the one end 201a among the positions on the leaf spring 201 .
  • the radius of curvature of the one end 201a is equal to or greater than the lower limit ⁇ min . Therefore, in such a case, as shown in FIG. 6, the portion of the plate spring 201 on the side of the one end portion 201a is not in contact with the outer peripheral portion of the deformation guide 202. As shown in FIG. Here, considering the process in which the load P increases from a relatively small value, when the bending moment applied to the one end 201a of the leaf spring 201 reaches the upper limit value Mmax , the radius of curvature of the one end 201a is A lower limit ⁇ min is reached.
  • the portion of the leaf spring 201 on the one end 201a side contacts the outer peripheral portion of the deformation guide 202 while the curvature radius is maintained at the lower limit value ⁇ min .
  • the portion of the plate spring 201 on the side of the one end portion 201a is supported by the deformation guide 202 on the bending direction side. Therefore, it is possible to prevent deformation of the leaf spring 201 such that the radius of curvature becomes smaller than the lower limit value ⁇ min . Therefore, it is possible to prevent the plate spring 201 from being plastically deformed.
  • the portion of the leaf spring 201 on the one end 201a side does not contact the outer peripheral portion of the deformation guide 202 .
  • the portion of the leaf spring 201 on the side of the one end 201a contacts the outer peripheral portion of the deformation guide 202 and is supported by the deformation guide 202 on the bending direction side.
  • the predetermined value is, for example, the value of the load P when the bending moment applied to the one end portion 201a of the leaf spring 201 reaches the upper limit value Mmax in the process of increasing the load P from a relatively small value. can be equivalent.
  • FIG. 6 shows deformation of the leaf spring 201 in a state where the portion of the leaf spring 201 on the side of the one end 201a is not in contact with the deformation guide 202.
  • FIG. 7 is a shear force diagram called SFD (Sheer Force Diagram) for the leaf spring 201 in the state shown in FIG.
  • SFD Sheer Force Diagram
  • FIG. 7 shows the relationship between the distance s in the longitudinal direction from the one end 201a of the leaf spring 201 and the applied shear force.
  • the shear force applied to the leaf spring 201 has the same value at positions corresponding to each distance s.
  • the shear force applied to the leaf spring 201 has a value equal to the load P at the position corresponding to each distance s.
  • FIG. 8 is a bending moment diagram called BMD (Bending Moment Diagram) for the leaf spring 201 in the state shown in FIG.
  • BMD Bending Moment Diagram
  • FIG. 8 shows the relationship between the distance s in the longitudinal direction from the one end 201a of the leaf spring 201 and the applied bending moment.
  • the rate of change of the bending moment in the longitudinal direction matches the shear force. Therefore, the bending moment represented by BMD in FIG. 8 and the shear force represented by SFD in FIG. 7 have such a relationship.
  • the applied load P is less than or equal to a predetermined value
  • the absolute value of the bending moment applied to the leaf spring 201 is directed from the other end 201b toward the one end 201a. increases as In the BMD in FIGS. 8 and 13, the bending moment values are expressed in consideration of the positive and negative directions. expressed as
  • the bending moment M of the leaf spring 201 at each distance s is expressed by the following formula (7) based on the balance of moments in the virtual cross section corresponding to each distance s.
  • the absolute value of the bending moment applied to the leaf spring 201 is 0 at the other end 201b and PL at the one end 201a, as shown by BMD in FIG.
  • the bending moment applied to the leaf spring 201 is maximized at the cantilevered one end 201a among the positions of the leaf spring 201 .
  • maxM(s) such a bending moment at the one end portion 201a is also referred to as maxM(s).
  • the radius of curvature of the leaf spring 201 is the smallest at the one end 201a among the positions on the leaf spring 201 .
  • a curvature radius at the one end portion 201a is also referred to as min ⁇ (s).
  • the radius of curvature min ⁇ (s) at the one end portion 201a is greater than or equal to the lower limit value ⁇ min as described above, so the following formula (8) holds.
  • the bending moment maxM(s) at the one end portion 201a becomes equal to or less than the upper limit value Mmax , as described above. Furthermore, according to equation (7), the bending moment maxM(s) at the one end 201a is PL. Therefore, the following formula (9) holds.
  • equation (10) is derived by transforming equation (5).
  • FIG. 9 is an explanatory diagram for explaining the relationship between the deflection angle ⁇ and the distance s.
  • FIG. 9 schematically shows a deflection curve D11 indicating the neutral axis of the leaf spring 201 when bending deformation occurs, and a straight line D12 indicating the neutral axis of the leaf spring 201 when bending deformation does not occur. ing.
  • ⁇ and ⁇ +d ⁇ be the deflection angles of points C11 and C12, which are separated from each other by a minute distance ds on the deflection curve D11, respectively.
  • the deflection angle at each point on the deflection curve D11 is the angle between the tangent to the deflection curve D11 at each point and the straight line D12.
  • be the radius of curvature of the arc between the points C11 and C12, and point C13 be the center of curvature.
  • the angle between the straight line connecting the points C13 and C11 and the straight line orthogonal to the straight line D12 is ⁇ .
  • the angle formed by the straight line connecting the points C13 and C12 and the straight line orthogonal to the straight line D12 is ⁇ +d ⁇ . Therefore, the angle between the straight line connecting the points C13 and C11 and the straight line connecting the points C13 and C12 is d ⁇ .
  • d ⁇ is a minute angle
  • the minute distance ds corresponding to the length of the arc between the points C11 and C12 is the distance between the straight line connecting the points C13 and C11 and It is obtained by multiplying d ⁇ , which is the angle formed with the straight line connecting , by the radius of curvature ⁇ . Therefore, the following formula (12) is established.
  • equation (15) is derived by substituting equation (13) into equation (14).
  • the portion of the leaf spring 201 on the one end 201a side is not in contact with the deformation guide 202 when the load P is equal to or less than EI/L ⁇ min .
  • the other end portion deflection angle ⁇ L which is the deflection angle of the other end portion 201b, is expressed by Equation (16).
  • FIG. 10 shows deformation of the leaf spring 201 in a state where the portion of the leaf spring 201 on the one end 201a side is in contact with the deformation guide 202 .
  • the portion where the distance s in the longitudinal direction from the one end portion 201a is between 0 and Lt is in contact with the deformation guide 202.
  • a point C22 is located on the flexure curve indicated by the chain double-dashed line at a distance Lt from the one end 201a in the longitudinal direction.
  • the point C22 corresponds to the point on the neutral axis of the leaf spring 201 at the end opposite to the one end 201a of the portion of the leaf spring 201 in contact with the deformation guide 202 .
  • the portion of the leaf spring 201 closer to the other end 201b than the point C22 can correspond to a virtual leaf spring in which the point C22 is cantilevered.
  • FIG. 12 is the SFD for leaf spring 201 in the state shown in FIG.
  • the shearing force applied to the leaf spring 201 becomes 0 at the portion on the one end 201a side.
  • the portion where the distance s is between 0 and Lt is supported by the deformation guide 202, so the shear force in that portion is zero. Therefore, specifically, the shear force applied to the leaf spring 201 becomes 0 in the portion where the distance s is between 0 and Lt , and becomes equal to the load P in the portion where the distance s is between Lt and L. equal value.
  • FIG. 13 is the BMD of the leaf spring 201 in the state shown in FIG.
  • the rate of change of the bending moment in the longitudinal direction matches the shear force. Therefore, the bending moment represented by BMD in FIG. 13 and the shear force represented by SFD in FIG. 12 have such a relationship.
  • the absolute value of the bending moment applied to the leaf spring 201 reaches the upper limit value Mmax at the portion on the one end portion 201a side.
  • the radius of curvature of the portion where the distance s is between 0 and Lt is the lower limit value ⁇ min . becomes the upper limit value M max .
  • the absolute value of the bending moment applied to the leaf spring 201 increases from the other end portion 201b side toward the one end portion 201a side in the portion where the distance s is from Lt to L, and when the distance s is from 0 to L In the portion up to t , the upper limit M max is reached.
  • the upper limit value M max is expressed by the following equation (17) based on the moment balance in the virtual cross section at the position where the distance s is L t .
  • point C23 be the center point of the semicircle representing the cross section of the deformation guide 202
  • point C21 be the point on the neutral axis of the plate spring 201 for the one end 201a
  • point C23. and point C21 and a straight line connecting point C23 and point C22.
  • Lt which corresponds to the length of the arc between points C21 and C22
  • ⁇ t is the angle formed with the connecting straight line
  • ⁇ min which is the radius of the deformation guide 202 . Therefore, the following formula (19) holds.
  • the bending angle of the leaf spring 201 at the point C22 is ⁇ t as shown in FIG. Therefore, the virtual leaf spring in which the point C22 shown in FIG. ⁇ t extends in a tilted direction. Therefore, as shown in FIG. 11, the bending angle at the other end portion 201b of the virtual leaf spring can be obtained by subtracting ⁇ t from the other end bending angle ⁇ L of the leaf spring 201 shown in FIG. corresponds to the value obtained.
  • the deflection angle ( ⁇ L ⁇ t ) of the virtual leaf spring at the other end 201b is obtained by converting the integration interval for the distance s on the right side of Equation (15) into the interval from L t to L. can be expressed by the formula obtained by the following formula (20).
  • equation (21) is derived by substituting equation (7) into equation (20) and arranging it.
  • equation (22) is derived by substituting equation (17) into equation (21).
  • equation (23) is derived by simultaneously solving equations (5) and (22) and eliminating the upper limit value Mmax .
  • equation (24) is derived.
  • equation (26) is derived by simultaneously solving equations (5) and (25) and eliminating the upper limit value Mmax .
  • the radius of the deformation guide 202 is set to 180 [mm], which is the lower limit ⁇ min shown in Equation (28).
  • a predetermined value corresponding to the load P is EI/L ⁇ min .
  • the predetermined value is 1.85 [N].
  • FIG. 14 is an explanatory diagram showing an example of the relationship between the other end bending angle ⁇ L of the leaf spring 201 and the load P applied to the leaf spring 201.
  • FIG. 14 shows the relationship between the other end deflection angle ⁇ L and the load P defined by equations (16) and (26).
  • equation (16) the corresponding other end deflection angle ⁇ L can be calculated for each load P of 1.85 [N] or less.
  • equation (26) the corresponding other end bending angle ⁇ L can be calculated for each load P greater than 1.85 [N]. The results calculated in this manner are shown in FIG.
  • FIG. 15 is an explanatory diagram showing an example of the relationship between the bending angle ⁇ L of the other end portion of the leaf spring 201 and the rigidity.
  • the rigidity of the leaf spring 201 indicates the degree of resistance to deformation of the leaf spring 201 with respect to the load P, and can be calculated based on the relationship between the bending angle ⁇ L of the other end portion and the load P shown in FIG. Specifically, the stiffness for each of the other end deflection angles ⁇ L is determined based on the relationship between the other end deflection angle ⁇ L and the load P shown in FIG. It can be calculated by differentiating with respect to L. The results calculated in this way are shown in FIG.
  • the leaf spring 201 has a radius of curvature at the one end 201a that is less than the lower limit ⁇ min . It can be transformed to become smaller. This can cause plastic deformation in the leaf spring 201 .
  • the deformation guide 202 is provided for the leaf spring 201, so that when the load P exceeds 1.85 [N], the one end 201a of the leaf spring 201 is deformed.
  • the side portion is supported on the bending direction side by the deformation guide 202 .
  • FIG. 15 shows that the rigidity of the leaf spring 201 is relatively high when the other end bending angle ⁇ L , which correlates with the load P, is relatively large. Specifically, when the load P and the other end deflection angle ⁇ L are relatively large, the rigidity of the leaf spring 201 increases as the load P and the other end deflection angle ⁇ L increase. Therefore, even when the load P exceeds 1.85 [N], the leaf spring 201 can be elastically deformed by a displacement amount corresponding to each load P, as shown in FIG. Therefore, it is possible to prevent the plate spring 201 from being plastically deformed.
  • the load change rate indicates the degree of change in the load P when the bending angle ⁇ L of the other end portion fluctuates.
  • the load change rate is the change rate of the load P before and after the change when the other end bending angle ⁇ L changes by 0.1°. Therefore, the load change rate is related to the measurement accuracy when the load P applied to the leaf spring 201 is measured using the measured value of the other end bending angle ⁇ L as the displacement amount of the leaf spring 201. .
  • the lower the load change rate the higher the measurement accuracy.
  • the higher the load change rate the lower the measurement accuracy.
  • FIG. 16 is an explanatory diagram showing an example of the relationship between the bending angle ⁇ L of the other end portion of the leaf spring 201 and the load change rate.
  • the load change rate for each other end bending angle ⁇ L can be calculated based on the relationship between the other end bending angle ⁇ L and the load P shown in FIG. The results calculated in this manner are shown in FIG.
  • FIG. 17 is an explanatory diagram showing an example of the relationship between the load P applied to the leaf spring 201 and the load change rate.
  • the load change rate for each load P can be calculated based on the relationship between the other end bending angle ⁇ L and the load P shown in FIG. The results calculated in this way are shown in FIG.
  • FIGS. 6 and 10 when the load P is 1.85 [N] or less, the portion of the plate spring 201 on the side of the one end 201a does not come into contact with the outer peripheral surface of the deformation guide 202. , is not supported by the deformation guide 202 . Thus, when the load P is relatively small, it is possible to ensure that the plate spring 201 has low rigidity.
  • FIG. 15 shows that the rigidity of the leaf spring 201 is relatively low when the other end deflection angle ⁇ L , which correlates with the load P, is relatively small.
  • the lower the rigidity of the leaf spring 201 the lower the load change rate.
  • the rigidity of the leaf spring 201 is relatively low, so the load change rate is relatively low.
  • FIG. 16 shows that the load change rate is relatively low when the other end deflection angle ⁇ L , which correlates with the load P, is relatively small.
  • FIG. 17 also shows that the load change rate is relatively low when the load P is relatively small. Since the load P is 0 [N] when the other end deflection angle ⁇ L is 0 [°], the load P and the other end deflection angle ⁇ L takes a value close to 0, the load change rate can take a relatively large value.
  • the load change rate is relatively low. Therefore, when the load P applied to the leaf spring 201 is measured using the measured value of the other end bending angle ⁇ L as the displacement amount of the leaf spring 201, a state of high measurement accuracy can be ensured.
  • the mechanical properties of the leaf spring 201 shown in FIGS. 16 and 17 define the relationship between the load change rate and the other end bending angle ⁇ L and the relationship between the load change rate and the load P, respectively.
  • the range of the other end deflection angle ⁇ L corresponding to the range where the load change rate is less than 10% is the range from 1[°] to 8.5[°].
  • the range of the load P corresponding to the range where the load change rate is less than 10% is the range from 0.4 [N] to 8.8 [N].
  • the mechanical properties of the leaf spring 201 depend on the set values of the specifications of the leaf spring 201 .
  • the range of the other end deflection angle ⁇ L and the load P corresponding to the range of the load change rate corresponding to the desired measurement accuracy can be set appropriately.
  • the mechanical properties of the leaf spring 201 also depend on the cross-sectional shape of the deformation guide 202 . Therefore, by appropriately setting the cross-sectional shape of the deformation guide 202, the mechanical properties of the leaf spring 201 can be set appropriately.
  • Actuator 301 which is a first embodiment of an actuator applicable to the artificial leg 101 described above with reference to FIGS. 1 to 5, will be described.
  • Actuator 301 is an actuator similar to the actuator disclosed in Patent Document 1 mentioned above.
  • FIG. 18 is a schematic diagram showing part of the first embodiment of the actuator 301.
  • FIG. FIG. 19A is a schematic diagram showing an example of the state of the actuator 301 when the one end 321a of the leaf spring 321 is relatively stopped with respect to the rotating body 312.
  • FIG. 19B is a schematic diagram showing an example of the state of the actuator 301 when the one end 321a of the leaf spring 321 is relatively rotated with respect to the rotating body 312.
  • FIG. 19A is a schematic diagram showing an example of the state of the actuator 301 when the one end 321a of the leaf spring 321 is relatively stopped with respect to the rotating body 312.
  • FIG. 19B is a schematic diagram showing an example of the state of the actuator 301 when the one end 321a of the leaf spring 321 is relatively rotated with respect to the rotating body 312.
  • the actuator 301 has a torque sensor 311 and a rotating body 312 .
  • the torque sensor 311 includes a leaf spring 321 that transmits torque and a support member 322 that supports a portion of the leaf spring 321 .
  • the rotating body 312 is a member connected to an object on the output side, and can form part of the body portion 121 of the thigh side member 111 of the artificial leg 101, for example. As shown in FIG. 19, one end 321a of the leaf spring 321 is configured to be relatively rotatable with respect to the rotating body 312, so that torque is transmitted to the rotating body 312 via the leaf spring 321. Realized.
  • the actuator 301 transmits torque output from the drive motor 151, for example.
  • the torque output from the drive motor 151 is input to the leaf spring 321 of the torque sensor 311 .
  • the torque is then transmitted to the rotating body 312 by the leaf spring 321 .
  • the leaf spring 321 transmits torque output from the driving motor 151 to the rotating body 312 .
  • the rotating body 312 is connected to an object on the output side, and can be configured so that the torque output from the actuator 301 is transmitted to the object.
  • the rotating body 312 is rotatably provided in synchronization with the body portion 121 of the thigh side member 111 as an object on the output side. Therefore, when the torque is transmitted to the rotating body 312 via the leaf spring 321, the body portion 121 of the thigh side member 111 including the rotating body 312 as a component rotates relative to the knee joint 122 and the lower leg side member 112. Rotation is realized.
  • One end 321a of the leaf spring 321 is cantilevered. Specifically, one end 321 a of the leaf spring 321 is cantilevered by being fixed to the output shaft 154 of the gear box 153 .
  • the torque sensor 311 has, for example, a substantially disc shape, and a communication hole 311a is provided in the central portion of the torque sensor 311 and communicates from one surface to the other surface along the central axis. is provided.
  • One end portion 321a of the plate spring 321 is fixed to the output shaft 154, for example, in a state in which the output shaft 154 of the gearbox 153 is inserted through the communication hole portion 311a. As a result, the one end portion 321 a of the plate spring 321 can rotate integrally with the output shaft 154 of the gear box 153 .
  • the rotation axis of the output shaft 154 of the gearbox 153 may substantially coincide with the central axis of the communication hole portion 311a.
  • one end portion 321a of the plate spring 321 is rotatable around the central axis of the communication hole portion 311a.
  • the output shaft 154 of the gear box 153 is rotatable in synchronization with the output shaft 152 of the drive motor 151 . Therefore, one end 321 a of the plate spring 321 is rotatable in synchronization with the output shaft 152 of the drive motor 151 .
  • a plurality of leaf springs 321 are provided at intervals along the rotation direction of the one end portion 321a.
  • eight leaf springs 321 are provided at regular intervals along the rotation direction of the one end portion 321a. More specifically, as shown in FIG. 18, each of the eight leaf springs 321 extends along the radial direction of the communication hole portion 311a and is provided at equal intervals along the circumferential direction.
  • the leaf spring 321 is arranged such that the width direction of the leaf spring 321 and the axial direction of the communication hole portion 311a substantially match.
  • the plate spring 321 is arranged so that the plate thickness direction of the plate spring 321 and the circumferential direction of the communication hole portion 311a substantially match.
  • the support member 322 is a member for supporting part of the leaf spring 321 .
  • the support member 322 has a flat plate shape, and is arranged so that the width direction of the support member 322 and the plate thickness direction of the plate spring 321 substantially match. Also, the plate thickness of the support member 322 and the width of the plate spring 321 may substantially match.
  • the support member 322 has a facing surface 322b that faces the leaf spring 321 in the thickness direction of the leaf spring 321. The facing surface 322b receives torque transmitted by the leaf spring 321 as described later. is greater than a predetermined value, it abuts against a portion of the leaf spring 321 .
  • a plurality of support members 322 are provided at intervals along the rotation direction of one end portion 321a of the leaf spring 321, and are positioned between two leaf springs 321 adjacent to each other in the rotation direction of the one end portion 321a. .
  • the plate springs 321 and the support members 322 are alternately arranged along the circumferential direction of the torque sensor 311 as shown in FIG. 18 .
  • a communicating hole 311a can be formed by the center side portion of the torque sensor 311 for each of the plate spring 321 and the support member 322 arranged in this way.
  • the support member 322 and one end 321a of the leaf spring 321 are restricted from moving relative to each other. Therefore, the support member 322 is rotatable integrally with the one end portion 321a of the leaf spring 321 .
  • a through hole 322 a for attaching the output shaft 154 of the gear box 153 to the torque sensor 311 is formed on the communication hole portion 311 a side of the support member 322 .
  • a member such as a screw for connecting the support member 322 to the connection member 156 may be inserted through the through hole 322a.
  • the support member 322 and one end 321a of the plate spring 321 are fixed to the output shaft 154 of the gearbox 153 by using the through hole 322a.
  • the rotating body 312 is relatively rotatable with respect to the one end portion 321a of the plate spring 321.
  • the rotating body 312 is opposed to the plurality of supporting members 322 in the thickness direction of the supporting members 322, and has an annular disk-shaped base portion 312a and a base portion 312a. and a protruding portion 312b provided along the outer peripheral portion of the base portion 312a and protruding toward the support member 322 from the base portion 312a.
  • the base portion 312a is provided with projections 312c projecting toward the support members 322 at positions corresponding to the support members 322.
  • a through hole 322c extending along the circumferential direction of the communication hole portion 311a is formed in the portion of the torque sensor 311 on the outer peripheral side of each of the support members 322, and the projection portion 312c is formed in the through hole 322c. is inserted.
  • the through hole 322c and the protrusion 312c can function as a guide that defines the rotation direction of the rotating body 312.
  • a side surface 322d on the outer peripheral side of the torque sensor 311 of each support member 322 contacts the inner peripheral surface 312f of the projecting portion 312b.
  • the side surface 322 d of the support member 322 and the inner peripheral surface 312 f of the projecting portion 312 b can also function as guides that define the rotation direction of the rotating body 312 .
  • the rotating direction of the rotating body 312 may substantially coincide with the circumferential direction of the communication hole portion 311a.
  • the rotating body 312 may be rotatable around the rotating shaft of the one end 321 a of the leaf spring 321 .
  • each member constituting the actuator 301 can be made rotatable around a common rotation axis, so that the actuator 301 can be more effectively miniaturized.
  • Groove portions 312d are formed in the projecting portion 312b at positions corresponding to the plate springs 321 along the radial direction of the communication hole portion 311a.
  • the groove portion 312d has a width larger than the plate thickness of the plate spring 321, and the portion of the plate spring 321 on the side of the other end portion 321b is fitted into the groove portion 312d.
  • a pin 312e extending in the width direction of the leaf spring 321 is provided on each of the surfaces of the groove 312d facing the width direction, and a pair of pins are provided on the other end 321b side of the leaf spring 321. 312e.
  • the leaf spring 321 is supported in the plate thickness direction by the pair of pins 312e. Therefore, the other end portion 321b of the leaf spring 321 is rotatable integrally with the rotating body 312 .
  • the leaf spring 321 transmits torque output from the drive motor 151 to the rotating body 312 .
  • One end portion 321 a of the leaf spring 321 is rotatable in synchronization with the output shaft 152 of the drive motor 151 .
  • the other end portion 321b of the leaf spring 321 is rotatable integrally with the rotating body 312.
  • One end portion 321 a of the leaf spring 321 is configured to be relatively rotatable with respect to the rotating body 312 . Therefore, when torque is input from the drive motor 151 to the one end 321a of the leaf spring 321, the one end 321a of the leaf spring 321 rotates relative to the other end 321b as shown in FIG.
  • the leaf spring 321 is flexurally deformed in the plate thickness direction.
  • a load corresponding to the restoring force of the leaf spring 321 is applied from the other end 321b of the leaf spring 321 to the pin 312e of the rotating body 312 .
  • torque is transmitted to the rotating body 312 via the plate spring 321 .
  • the leaf spring 321 can be flexurally deformed in the plate thickness direction according to the torque.
  • one end 321a of the leaf spring 321 is cantilevered as described above. Further, as shown in FIG. 19, when the leaf spring 321 is flexurally deformed in the plate thickness direction according to the torque by transmitting the torque, the other end portion 321b of the leaf spring 321 has a rotating portion. A reaction force F from the pin 312e of the moving body 312 is applied as a load in the plate thickness direction. The reaction force F has a magnitude corresponding to the degree of bending deformation of the leaf spring 321 .
  • the deformation of the leaf spring 321 can be determined by the deformation of the other end of the leaf spring 201 whose one end 201a is cantilevered as described with reference to FIGS.
  • the deformation of the leaf spring 201 when the load P is applied to the portion 201b in the plate thickness direction can be considered as well.
  • the reaction force F as a load applied from the pin 312e of the rotating body 312 to the other end portion 321b of the leaf spring 321 is applied to the other end portion 201b of the leaf spring 201 described with reference to FIGS. It corresponds to the load P applied.
  • the reaction force F has a correlation with the torque transmitted by the leaf spring 321 .
  • the support member 322 supports a portion of the leaf spring 321 in the bending direction when the torque transmitted by the leaf spring 321 is greater than a predetermined value. Specifically, when the torque transmitted by the leaf spring 321 is greater than a predetermined value, the opposing surface 322b of the support member 322 contacts a portion of the leaf spring 321 . As a result, a part of the leaf spring 321 is supported by the support member 322 on the bending direction side.
  • the predetermined value is such that, in the process of increasing the transmitted torque from a relatively small value, the bending moment applied to the one end portion 321a of the leaf spring 321 causes strain in the elastic region of the material forming the leaf spring 321. can correspond to the value of torque when reaching a bending moment corresponding to a predetermined allowable strain according to the upper limit of .
  • the support member 322 is rotatable integrally with the one end portion 321a of the plate spring 321, as described above. Therefore, the relationship between the support member 322 and the leaf spring 321 according to this embodiment can be considered in the same way as the relationship between the deformation guide 202 and the leaf spring 201 in the system described with reference to FIGS. .
  • the support member 322 is provided, for example, in close proximity to a portion of the leaf spring 321 on the side of the one end 321a in the thickness direction of the leaf spring 321, and when the torque transmitted by the leaf spring 321 is larger than a predetermined value, the leaf A portion of the spring 321 on the one end 321a side may be supported on the bending direction side.
  • the shape of the facing surface 322b may be set based on the lower limit ⁇ min of the radius of curvature represented by Equation (6).
  • the cross-sectional curve of the facing surface 322b in the cross section perpendicular to the width direction of the leaf spring 321 may be an arc having a curvature radius of the lower limit ⁇ min .
  • the cross-sectional curve of the opposing surface 322b in the cross section perpendicular to the width direction of the leaf spring 321 is a part of the deflection curve of the leaf spring 321 on the one end 321a side when the transmitted torque is a predetermined value.
  • the lower limit value ⁇ min can be calculated based on each specification of the leaf spring 321 .
  • the support member 322 for the leaf spring 321 when the torque transmitted by the leaf spring 321 is greater than a predetermined value, a portion of the leaf spring 321 is supported by the support member 322. supported on the flexural side by As a result, even when the transmitted torque exceeds a predetermined value, it is possible to prevent deformation of the leaf spring 321 such that the radius of curvature becomes smaller than the lower limit value ⁇ min . In this way, when the transmitted torque is relatively large, it is possible to ensure that the plate spring 321 has high rigidity. Therefore, it is possible to prevent the leaf spring 321 from being plastically deformed. Therefore, the size of the actuator 301 can be reduced while ensuring the strength of the leaf spring 321 . Therefore, the device including the actuator 301 can be miniaturized.
  • the torque transmitted by the leaf spring 321 is equal to or less than a predetermined value, part of the leaf spring 321 does not abut against the facing surface 322b of the support member 322. Not supported by member 322 .
  • the plate spring 321 has low rigidity.
  • the displacement amount of the leaf spring 321 can be detected by the displacement sensor 181 as described above. Specifically, as the amount of displacement of the plate spring 321, the displacement sensor 181 can detect the other end bending angle ⁇ L , which is the bending angle of the other end 321b. Then, the reaction force F applied to the other end portion 321b of the leaf spring 321 is controlled by the control device 182 based on the measured value of the other end bending angle ⁇ L corresponding to the detection result obtained by the displacement sensor 181. can be calculated. Also, the lower the load change rate, the higher the measurement accuracy. Therefore, according to the present embodiment, when the torque transmitted by the leaf spring 321 is relatively small, the measurement accuracy is high when measuring the reaction force F applied to the other end portion 321b of the leaf spring 321. can be ensured.
  • the mechanical properties of the leaf spring 321 depend on the set values of the specifications of the leaf spring 321 .
  • the relationship between the load change rate and the reaction force F and the relationship between the load change rate and the other end deflection angle ⁇ L in the leaf spring 321 depend on the set values of the specifications of the leaf spring 321 . Therefore, by appropriately setting each specification of the leaf spring 321, the range of the other end deflection angle ⁇ L and the reaction force F corresponding to the range of the load change rate corresponding to the desired measurement accuracy can be set appropriately. can be done.
  • the longitudinal length L, plate thickness D, width W, Young's modulus E, strain upper limit ⁇ max , and safety factor n of the leaf spring 321 can correspond to the specifications of the leaf spring 321 .
  • the mechanical properties of the plate spring 321 also depend on the shape of the facing surface 322b of the support member 322. As shown in FIG. Therefore, by appropriately setting the shape of the facing surface 322b of the support member 322, the mechanical properties of the leaf spring 321 can be set appropriately.
  • the actuator 301 is composed of a plate spring 321, a support member 322, and a rotating body 312, and has a relatively simple configuration. Therefore, it is possible to more effectively reduce the size and weight of the device including the actuator 301 .
  • the plate spring 321 is made of spring steel, for example.
  • each of the support member 322 and the rotating body 312 may be made of resin.
  • each of the support member 322 and the rotating body 312 can be made of nylon, PP (polypropylene), or the like.
  • a plurality of leaf springs 321 are provided at intervals along the rotation direction of the one end portion 321a, for example.
  • the bending moment applied to each leaf spring 321 can be reduced compared to the case where the number of leaf springs 321 provided in the actuator 301 is one. Therefore, it is possible to more effectively prevent the leaf spring 321 from being plastically deformed. Further, by appropriately setting the number of leaf springs 321 provided in the actuator 301, the mechanical characteristics of each leaf spring 321 can be appropriately set.
  • the support members 322 are, for example, provided in plurality along the rotation direction of the one end portion 321a of the leaf spring 321 at intervals, and two plates adjacent to each other in the rotation direction of the one end portion 321a are provided. Located between springs 321 .
  • the plurality of plate springs 321 and the plurality of support members 322 can be configured to be symmetrical about a plane including their rotation axes. Therefore, even if the direction of the torque transmitted by the actuator 301 is reversed, the support of the leaf spring 321 by the support member 322 can provide the same action and effect as before the reverse.
  • FIG. 20 is a configuration of a torque sensor 155 applicable to the actuator 301 described above with reference to FIGS. 18 and 19 and applicable to the prosthetic leg 101 described above with reference to FIGS. 1-5. It is a schematic diagram showing an example of. Note that the illustration of the rotating body 312 is omitted here.
  • the torque sensor 155 includes four leaf springs 401 instead of the leaf spring 321, and four support members 402 and 403 instead of the support member 322. Prepare.
  • a communication hole portion 155a is formed in the center of the torque sensor 155 in the same manner as the communication hole portion 311a of the torque sensor 311 in FIG.
  • the output shaft 154 of the gear box 153 is inserted through the communication hole portion 155a.
  • the rotation axis of the output shaft 154 of the gearbox 153 substantially coincides with the central axis of the communication hole portion 155a.
  • the plate spring 401 has a shape in which the central portion in the extending direction of the plate-like member is bent in the plate thickness direction into a U shape. That is, the tip of the bent portion 401a of the leaf spring 401 is bent to be rounded. Extension portions 401b1 and 401b2 linearly extend from both ends of the bent portion 401a. The extending portion 401b1 and the extending portion 401b2 are oriented obliquely to each other.
  • the leaf spring 401 is arranged such that the width direction of the leaf spring 401 and the axial direction of the communication hole portion 155a substantially match.
  • the plate spring 401 is arranged such that the plate thickness direction of the plate spring 401 and the circumferential direction of the communication hole portion 155a substantially match.
  • the extending portions 401b1 and 401b2 of each leaf spring 401 extend along the radial direction of the communication hole portion 155a and are provided at regular intervals along the circumferential direction.
  • the support member 402 and the support member 403 have substantially the same flat plate shape as the support member 322 in FIG.
  • the support member 402 and the support member 403 are arranged so that the width direction of the support member 402 and the support member 403 and the plate thickness direction of the plate spring 401 substantially match.
  • the plate thickness of the support members 402 and 403 and the width of the leaf spring 401 may substantially match.
  • each leaf spring 401 is fitted to the end portion of the support member 402 on the communication hole portion 155a side. Thereby, the position of the leaf spring 401 is fixed and stabilized.
  • a support member 402 is arranged between the extension portion 401b1 and the extension portion 401b2 of the same leaf spring 401. As shown in FIG.
  • a support member 403 is arranged between two leaf springs 401 adjacent to each other in the rotational direction of the bent portion 401a. As a result, the leaf spring 401 and the support member 402 are sandwiched between the two adjacent support members 403 . In other words, the support member 403 is sandwiched between two adjacent leaf springs 401 and support members 402 .
  • One end portion 401c1 which is the end portion of the extended portion 401b1 of the leaf spring 401 on the bent portion 401a side, is sandwiched between the support members 402 and 403 and fixed.
  • One end portion 401c2 of the extension portion 401b2 of the plate spring 401 on the bent portion 401a side is sandwiched between the support members 402 and 403 and fixed.
  • a through hole 402 a for attaching the output shaft 154 of the gear box 153 to the torque sensor 155 via the connecting member 156 is formed on the communicating hole portion 155 a side of each supporting member 402 .
  • a member such as a screw for connecting the support member 402 to the connection member 156 can be inserted through the through hole 402a.
  • a through hole 403 a for attaching the output shaft 154 of the gear box 153 to the torque sensor 155 via the connecting member 156 is formed on the communicating hole portion 155 a side of each supporting member 403 .
  • a member such as a screw for connecting the support member 402 to the connection member 156 may be inserted through the through hole 403a.
  • Each support member 402 and support member 403 is fixed to the output shaft 154 of the gearbox 153 by attaching each support member 402 and support member 403 to the connection member 156 via the through hole 402a and the through hole 403a. be. Thereby, each plate spring 401 fixed by each support member 402 and support member 403 is fixed to the output shaft 154 . As a result, one end portion 401c1 of the extension portion 401b1 and one end portion 401c2 of the extension portion 401b2 of each plate spring 401 are cantilevered with respect to the output shaft 154 .
  • a portion of the extension portion 401b1 of each leaf spring 401 on the other end portion 401d1 side and a portion of the extension portion 401b2 on the other end portion 401d2 side are respectively inserted into the groove portions 312d of the rotating body 312 to form a pair of pins 312e. is inserted between As a result, the extension portion 401b1 of each leaf spring 401 on the other end 401d1 side and the extension portion 401b2 on the other end 401d2 side are supported in the plate thickness direction by the pair of pins 312e. . Therefore, the portion of the extension portion 401b1 of each leaf spring 401 on the other end portion 401d1 side and the other end portion 401d2 of the extension portion 401b2 are rotatable integrally with the rotating body 312 .
  • the support member 402 has a facing surface 402b facing the extending portion 401b1 or the extending portion 401b2 of the plate spring 401 in the thickness direction of the extending portion 401b1 or the extending portion 401b2. Similar to the facing surface 322b of the support member 322 in FIG. 18, the facing surface 402b is configured such that when the torque transmitted by the extending portion 401b1 or the extending portion 401b2 is greater than a predetermined value, the extending portion 401b1 or the extending portion 401b1 401b2, and supports a part of the extension part 401b1 or the extension part 401b2.
  • the support member 403 has a facing surface 403b facing the extending portion 401b1 or the extending portion 401b2 of the plate spring 401 in the thickness direction of the extending portion 401b1 or the extending portion 401b2. Similar to the facing surface 322b of the support member 322 in FIG. 18, the facing surface 403b is designed so that when the torque transmitted by the extending portion 401b1 or the extending portion 401b2 is greater than a predetermined value, the extending portion 401b1 or the extending portion 401b1 401b2, and supports a part of the extension part 401b1 or the extension part 401b2.
  • the extension portion 401b1 When the torque transmitted clockwise by the extension portion 401b1 is greater than a predetermined value, the extension portion 401b1 is supported by the facing surface 403b of the supporting member 403 adjacent in the counterclockwise direction. When the torque transmitted counterclockwise by the extension 401b1 is greater than a predetermined value, the extension 401b1 is supported by the facing surface 402b of the support member 402 adjacent in the clockwise direction. When the torque transmitted clockwise by the extension 401b2 is greater than a predetermined value, the extension 401b2 is supported by the facing surface 402b of the adjacent support member 402 in the counterclockwise direction. When the torque transmitted counterclockwise by the extension 401b2 is greater than a predetermined value, the extension 401b2 is supported by the facing surface 403b of the support member 403 adjacent in the clockwise direction.
  • a through hole 402c extending along the circumferential direction of the communication hole portion 155a is bored in the portion of the torque sensor 155 of each support member 402 on the outer peripheral side.
  • the protrusion 312c of the rotating body 312 is inserted through the through hole 402c.
  • the through hole 402c and the protrusion 312c can function as a guide that defines the rotation direction of the rotating body 312.
  • the outer peripheral side surface 402 d of the torque sensor 155 of each support member 402 contacts the inner peripheral surface 312 f of the projecting portion 312 b of the rotating body 312 .
  • the side surface 402 d of the support member 402 and the inner peripheral surface 312 f of the projecting portion 312 b can also function as guides that define the rotation direction of the rotating body 312 .
  • a through hole 403c extending along the circumferential direction of the communication hole portion 311a is bored in the portion of the torque sensor 311 of each support member 403 on the outer peripheral side.
  • the protrusion 312c of the rotating body 312 is inserted through the through hole 403c.
  • the through hole 403c and the protrusion 312c can function as a guide that defines the rotation direction of the rotating body 312.
  • the outer peripheral side surface 403 d of the torque sensor 155 of each support member 403 contacts the inner peripheral surface 312 f of the projecting portion 312 b of the rotating body 312 .
  • the side surface 403 d of the support member 403 and the inner peripheral surface 312 f of the projecting portion 312 b can also function as guides that define the rotation direction of the rotating body 312 .
  • the torque sensor 155 configured as described above realizes the same function as the torque sensor 311 in FIG. 18, and has the same actions and effects. That is, the extension portions 401b1 and 401b2 of each leaf spring 401 of the torque sensor 155 realize the same function as the leaf spring 321 in FIG. 18, and have the same action and effect. Each support member 402 and support member 403 of the torque sensor 155 realizes the same function as the support member 322 of the torque sensor 311 of FIG.
  • the device including the actuator 301 can be miniaturized.
  • a part of the extension portions 401b1 and 401b2 is the support member 402. and the opposing surface 403b of the supporting member 403, and are not supported by the supporting member 402 and the supporting member 403.
  • the transmitted torque is relatively small, it is possible to ensure that the extending portions 401b1 and 401b2 of the plate spring 401 have low rigidity. Therefore, when the transmitted torque is relatively small, the load change rates for the extension portions 401b1 and 401b2 are relatively low.
  • the lower the load change rate the more the one end portion 401c1 of the extension portion 401b1 and the extension portion 401c1 and the extension portion 401b1 of the extension portion 401b1 and the extension portion 401b1, using the measured value of the other end bending angle ⁇ L as the displacement amount of the extension portion 401b1 and the extension portion 401b2.
  • the accuracy of measurement when measuring the reaction force F applied to the one end portion 401c2 of 401b2 is improved.
  • the bent portion 401a of the leaf spring 401 is fitted to the end portion of the support member 402 on the communication hole portion 155a side. This facilitates the positioning of the leaf spring 401 and improves the stability of the position of the leaf spring 401 . For example, even when the torque sensor 155 rotates in the circumferential direction and torque is input to the leaf spring 401, the leaf spring 401 is hardly displaced. Further, the generation of frictional noise between the leaf spring 401 and the supporting members 402 and 403 due to the positional deviation of the leaf spring 401 is suppressed.
  • the one end portion 321 a side of the leaf spring 321 is only sandwiched between the two support members 322 . Therefore, in the torque sensor 311, in order to stabilize the position of the plate spring 321, for example, a member for fixing the one end portion 321a of each plate spring 321 on the outer peripheral portion of the communication hole portion 311a is required. Further, for example, when the torque sensor 311 rotates in the circumferential direction and torque is input to the leaf spring 321, the leaf spring 321 may be displaced. Furthermore, there is a possibility that frictional noise may be generated between the leaf spring 321 and the support member 322 due to the positional deviation of the leaf spring 321 .
  • the torque sensor 155 can reduce the number of leaf springs compared to the torque sensor 311, and can reduce the number of assembly man-hours.
  • the support member 402 and the support member 403 move the portion on the one end portion 401c1 side of the extension portion 401b1.
  • the supported portion is not limited to such an example.
  • the portion of the extending portion 401b1 closer to the other end 401d1 than the one end 401c1 may be supported by the supporting member 402 and the supporting member 403 .
  • a plurality of portions of the extension portion 401b1 may be supported by the support member 402 and the support member 403. FIG.
  • the portion of the extended portion 401b2 of the leaf spring 401 closer to the other end 401d2 than the one end 401c2 may be supported by the support member 402 and the support member 403.
  • a plurality of portions of the extension portion 401b2 may be supported by the support member 402 and the support member 403.
  • the actuator according to the present technology can be applied to other than the artificial leg 101 described above.
  • the actuator according to the present technology can be applied to joints of various robots.
  • the actuator according to the present technology can be applied to various types of equipment including rotating parts. ⁇ 6. Others>
  • a leaf spring supported and capable of bending and deforming in a plate thickness direction according to the torque transmitted by the first extension portion; a first supporting member that supports a portion of the first extending portion in the bending direction when torque transmitted in the first direction by the first extending portion is greater than a predetermined value; Actuator provided.
  • the leaf spring further includes a second extension portion extending obliquely from the bent portion with respect to the first extension portion, A second one end portion of the second extension portion, which is the end portion of the bending portion side, is cantilevered;
  • the second extension portion is flexurally deformable in the plate thickness direction according to the torque by transmitting the torque,
  • torque transmitted by the second extension portion in a second direction opposite to the first direction is greater than a predetermined value
  • the first support member is configured to move the second extension portion.
  • the actuator according to (1) above which is partially supported on the bending direction side.
  • the portion of the first extension portion is supported on the bending direction side, or supporting a portion of the second extending portion in the bending direction or further supporting the second supporting member when the torque transmitted in the first direction by the second extending portion is greater than a predetermined value;
  • a plurality of the leaf springs are provided at intervals along the rotation direction of the bending portion, the first support member is disposed between the first extension and the second extension of the same leaf spring; The actuator according to (3), wherein the second support member is arranged between two adjacent leaf springs.
  • the first support member is a first surface that supports a portion of the first extending portion on the bending direction side when torque transmitted in the first direction by the first extending portion is greater than a predetermined value; a second surface that supports a portion of the second extension in the bending direction when torque transmitted in the second direction by the second extension is greater than a predetermined value;
  • the actuator according to any one of (2) to (8).
  • the actuator according to any one of (2) to (9), wherein the bent portion of the leaf spring is fitted to one end of the first support member.
  • a plurality of the leaf springs are provided at intervals along the rotation direction of the bending portion, The actuator according to (2) or (3) above.
  • (13) A portion of the first extension is supported on a bending direction side when torque transmitted by the first extension in a second direction opposite to the first direction is greater than a predetermined value.
  • a thigh member (18) a thigh member; a lower leg side member; By connecting the thigh side member and the crus side member and transmitting torque to one of the thigh side member and the crus side member, one of the thigh side member and the crus side member is connected to the other. and an actuator for relatively rotating the
  • the actuator is A bending portion bent in a U shape and an extending portion extending from the bending portion, one end of the extending portion on the side of the bending portion being cantilever supported, and the extending portion a leaf spring that can be flexibly deformed in the plate thickness direction according to the torque by transmitting the torque; a support member that supports a portion of the extension on the bending direction side when torque transmitted by the extension is greater than a predetermined value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transplantation (AREA)
  • Robotics (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Springs (AREA)

Abstract

本開示は、装置を小型化することが可能なアクチュエータ及び義足を提案することができるようにするアクチュエータ及び義足に関する。 アクチュエータは、U字型に屈曲した屈曲部、及び、前記屈曲部から延びる第1の延在部を備え、前記第1の延在部の前記屈曲部側の端部である第1の一端部が片持ち支持され、前記第1の延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、前記第1の延在部によって第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第1の支持部材とを備える。本技術は、例えば、義足に適用できる。

Description

アクチュエータ及び義足
 本開示は、アクチュエータ及び義足に関し、特に、板バネを用いたアクチュエータ及び義足に関する。
 従来、板バネを弾性部材として使用したSEA(Series Elastic Actuator)を用いた義足が提案されている(例えば、特許文献1等参照)。
国際公開第2017/212708号
 ところで、ロボットに関する分野においては、特許文献1に記載のアクチュエータや義足のように、装置をより小型化することが望まれている。
 本技術は、このような状況に鑑みてなされたものであり、装置を小型化することが可能なアクチュエータ及び義足を提案する。
 本開示の第1の側面のアクチュエータは、U字型に屈曲した屈曲部、及び、前記屈曲部から延びる第1の延在部を備え、前記第1の延在部の前記屈曲部側の端部である第1の一端部が片持ち支持され、前記第1の延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、前記第1の延在部によって第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第1の支持部材とを備える。
 本開示の第1の側面においては、板バネの第1の延在部によって第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部が撓み方向側において支持される。
 本開示の第2の側面の義足は、大腿側部材と、下腿側部材と、前記大腿側部材と前記下腿側部材とを接続し、前記大腿側部材と前記下腿側部材のうち一方へトルクを伝達することにより、前記大腿側部材と前記下腿側部材のうち一方を他方に対して相対的に回動させるアクチュエータとを備え、前記アクチュエータは、U字型に屈曲した屈曲部、及び、前記屈曲部から延びる延在部を備え、前記延在部の前記屈曲部側の端部である一端部が片持ち支持され、前記延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、前記延在部によって伝達されるトルクが所定の値より大きい場合に、前記延在部の一部を撓み方向側において支持する支持部材とを備える。
 本開示の第2の側面においては、大腿側部材と下腿側部材とが接続され、前記大腿側部材と前記下腿側部材のうち一方へトルクが伝達されることにより、前記大腿側部材と前記下腿側部材のうち一方が他方に対して相対的に回動され、板バネの延在部によって伝達されるトルクが所定の値より大きい場合に、前記延在部の一部が撓み方向側において支持される。
本開示の実施形態に係る義足の概略構成の一例を示す模式図である。 同実施形態に係る義足の大腿側部材の斜視図である。 同実施形態に係る義足の大腿側部材の斜視図である。 同実施形態に係る義足の大腿側部材の断面図である。 同実施形態に係る義足における動力及び信号の伝達経路について説明するための説明図である。 板バネの一端部側の部分が変形ガイドと当接していない状態における、板バネの変形の様子を示す説明図である。 図6に示した状態における、板バネについてのせん断力図である。 図6に示した状態における、板バネについての曲げモーメント図である。 撓み角θと距離sとの関係性について説明するための説明図である。 板バネの一端部側の部分が変形ガイドと当接している状態における、板バネの変形の様子を示す説明図である。 板バネの一端部側の部分が変形ガイドと当接している状態における、板バネの他端部側の変形について説明するための説明図である。 図10に示した状態における、板バネについてのせん断力図である。 図10に示した状態における、板バネについての曲げモーメント図である。 板バネの他端部撓み角θと板バネに付加される荷重Pとの関係の一例を示す説明図である。 板バネの他端部撓み角θと剛性との関係の一例を示す説明図である。 板バネの他端部撓み角θと荷重変化率との関係の一例を示す説明図である。 板バネに付加される荷重Pと荷重変化率との関係の一例を示す説明図である。 本開示の実施形態に係るアクチュエータの第1の実施の形態を示す模式図である。 板バネの一端部が回動体に対して相対的に停止している場合及び回動している場合のアクチュエータの様子の一例を示す模式図である。 本開示の実施形態に係るトルクセンサの第2の実施の形態を示す模式図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施形態に係る義足
 2.本技術の概要
  2-1.板バネの変形
  2-2.板バネの機械的特性
 3.アクチュエータの第1の実施の形態
 4.アクチュエータの第2の実施の形態
 5.変形例
 6.その他
 <1.本開示の実施形態に係る義足>
 まず、図1乃至図5を参照して、本開示の実施形態に係る義足101について説明する。
 図1は、義足101の概略構成の一例を示す模式図である。
 義足101は、装着者であるユーザに装着され、ユーザの体重を支持するために用いられる。
 義足101は、大腿側部材111及び下腿側部材112を備える。大腿側部材111は、本体部121及び膝継手122を備える。下腿側部材112は、延在部131及び接地部132を備える。
 本体部121は、略円柱状の形状を有している。本体部121の上端の接続部121aは、義足101を取り付ける対象となるユーザの部位を収容するソケット部材(不図示)と接続される。義足101がユーザに装着されている状態で、接続部121aは、大腿側部材111において、鉛直方向の上側に位置し、上記ソケット部材は、鉛直上方に向けて開口する。本体部121の内部には、内部空間が形成される。本体部121の内部空間には、後述するように、種々の部材が収容される。
 膝継手122は、本体部121に対して相対的に回動自在となるように、本体部121に接続される。膝継手122の回動方向は、本体部121によって案内される。具体的には、膝継手122は、本体部121の中心軸まわりに回動自在となるように、本体部121に接続されている。
 下腿側部材112の延在部131は、略円柱状の部材であり、上端が膝継手122の接続部122aに接続されている。接地部132は、略直角に屈曲した形状を有しており、鉛直方向に延在する部分に延在部131の下端側が接続され、水平方向に延在する部分が床と当接する。
 延在部131と接地部132は、大腿側部材111の膝継手122が本体部121の中心軸まわりに回動することにより、本体部121の中心軸まわりに回動する。すなわち、下腿側部材112は、大腿側部材111に対して相対的に回動自在である。
 次に、図2乃至図5を参照して、大腿側部材111の構成例について説明する。図2は、大腿側部材111の斜視図である。図3は、図2と反対側の面から見た場合の大腿側部材111の斜視図である。図4は、大腿側部材111の断面図である。図5は、大腿側部材111における動力及び信号の伝達経路について説明するための説明図である。なお、図5では、実線の矢印及び破線の矢印によって、それぞれ動力及び信号の伝達経路が示されている。
 図4に示されるように、本体部121の内部には、内部空間が形成される。本体部121の内部空間には、膝継手122の一部(以下、収容部122bと称する)及びトルクセンサ155が収容される。また、膝継手122の接続部122aが、本体部121の図内の右側から突出している。
 膝継手122の収容部122bの内部には、内部空間が形成される。膝継手122の内部空間には、駆動モータ151、出力軸152、及び、ギヤボックス153が収容される。
 駆動モータ151には、例えば、フレームレスモータが用いられる。駆動モータ151の図内の下面は、膝継手122の収容部122bの図内の下面に固定される。
 出力軸152には、例えば、中空構造のシャフト(中空シャフト)が用いられる。すなわち、出力軸152の内部に軸方向に貫通する中空部152aが設けられる。出力軸152は、回転軸が駆動モータ151の中心軸と略一致するように、駆動モータ151に装着される。出力軸152の図内の下端部は、ベアリング157に挿入される。出力軸152の図内の上端部は、ギヤボックス153及びベアリング158に挿入される。駆動モータ151とギヤボックス153との間において、出力軸152は図内の水平方向に広がっており、水平方向に広がっている部分が、ベアリング159に挿入される。
 ギヤボックス153には、例えば、ハーモニックギヤが用いられる。ギヤボックス153は、中心軸が駆動モータ151の中心軸と略一致するように配置される。従って、出力軸152の回転軸は、ギヤボックス153の中心軸と略一致する。
 出力軸154には、例えば、出力軸152と同様に、中空構造のシャフト(中空シャフト)が用いられる。すなわち、出力軸154の内部に軸方向に貫通する中空部(不図示)が設けられる。出力軸154の図内の下端部は、回転軸がギヤボックス153の中心軸と一致するように、ギヤボックス153に接続される。従って、出力軸154の回転軸は、出力軸152の回転軸と略一致する。また、出力軸154は、環状の接続部材156に挿入されるとともに、上端部がトルクセンサ155の連通孔部155aに挿入される。連通孔部155aは、トルクセンサ155の中央部において、トルクセンサ155の中心軸に沿って、一方の面から他方の面に連通する。出力軸154の回転軸は、連通孔部155aの中心軸と略一致する。
 出力軸152の中空部152aと出力軸154の中空部は、軸方向において重なる。すなわち、出力軸152の中空部と出力軸154の中空部とが、軸方向において連結される。これにより、例えば、出力軸152の中空部152aと出力軸154の中空部内にケーブルを通すことにより、本体部121の図内の上下方向の接続が可能になる。また、例えば、出力軸152の中空部152aと出力軸154の中空部内に、エンコーダの磁石を配置することが可能になる。
 これにより、大腿側部材111を小型化することができる。また、ケーブルが、大腿側部材111の外部に露出せずに、内部に収容されるため、例えば、ケーブルの断線を防止したり、設計の自由度を高めたりすることができる。
 トルクセンサ155は、図内において、膝継手122の収容部122bの上に配置されている。後述するように、トルクセンサ155には、図内の左右に延伸するように板バネが設けられており、板バネの端部が、本体部121に接続される。
 接続部材156は、図内において、膝継手122の収容部122bの上面と略同じ高さに配置され、ベアリング160に挿入される。接続部材156は、出力軸154とトルクセンサ155の図内の下面とを接続する。これにより、トルクセンサ155は、ギヤボックス153の出力軸154と一体となって回動自在になる。
 膝継手122の収容部122bの図内の下端は、ベアリング161に挿入される。膝継手122の収容部122bの図内の上端は、ベアリング162に挿入される。
 駆動モータ151が出力軸152を回転させることにより発生するトルクは、ギヤボックス153に伝達される。ギヤボックス153は、駆動モータ151から伝達されたトルクを、所定の減速比で変換し、出力軸154を介して、トルクセンサ155へ伝達する。トルクセンサ155に伝達されたトルクは、トルクセンサ155の板バネを介して、出力側の対象物としての本体部121に伝達される。これにより、本体部121は、出力軸154を中心にして、膝継手122に対して相対的に回動する。この結果、膝継手122に接続されている下腿側部材112に対して、大腿側部材111が相対的に回動する。
 このように、本体部121、膝継手122、駆動モータ151、出力軸152、ギヤボックス153、出力軸154、トルクセンサ155、接続部材156、ベアリング157乃至ベアリング162等により、義足101の膝を駆動させるアクチュエータが構成される。
 図5の変位センサ181は、トルクセンサ155の板バネの変位量を検出し、検出結果を制御装置182へ出力する。
 制御装置182は、変位センサ181の検出結果に基づいて、駆動モータ151の駆動を制御する。具体的には、制御装置182は、当該検出結果に相当する板バネの変位量の測定値に基づいて、板バネに付加された荷重を算出する。そして、制御装置182は、当該荷重の算出値に基づいて、板バネを介して本体部121へ実際に伝達されているトルクを算出する。そして、制御装置182は、当該トルクの算出値に基づいて、本体部121へ伝達されるトルクが目標値に近づくように、駆動モータ151の駆動を制御する。
 <2.本技術の概要>
 次に、図6乃至図17を参照して、本開示の実施形態に係るアクチュエータの詳細についての説明に先立って、本技術の概要について説明する。具体的には、後述するアクチュエータにおける板バネの変形及び機械的特性についての理解を容易にするための事項について説明する。
  [2-1.板バネの変形]
 まず、図6乃至図13を参照して、板バネ201の変形について説明する。以下では、一端部201aが片持ち支持される板バネ201と、当該板バネの一部を撓み方向側において支持可能な変形ガイド202と、からなる系において、板バネ201の他端部201bに対して板厚方向に荷重Pが付加されたときの板バネ201の変形について説明する。板バネ201は、荷重Pに応じて板厚方向に撓み変形可能である。また、変形ガイド202は、板バネ201の一端部201a側の部分に対して板バネ201の板厚方向に近接して設けられ、荷重Pが所定の値より大きい場合に、板バネ201の一端部201a側の部分を撓み方向側において支持する。
 図6及び図10では、このような板バネ201及び変形ガイド202が、板バネ201の幅方向に直交する断面についての断面図によって模式的に示されている。また、図6及び図10では、板バネ201の形状として、板バネ201の中立軸が模式的に示されている。具体的には、撓み変形が生じている場合における板バネ201の中立軸を示す撓み曲線が二点鎖線によって示され、撓み変形が生じていない場合における板バネ201の中立軸が実線によって示されている。なお、板バネ201の横断面形状は、長方形である。また、板バネ201の板厚をDとし、断面二次モーメントをIとし、ヤング率をEとし、長手方向の長さをLとする。
   (変形ガイド)
 まず、変形ガイド202について、説明する。変形ガイド202は、板バネ201が、付加される荷重Pによって、破損することを防止するために設けられる。具体的には、変形ガイド202は、荷重Pによって、板バネ201に塑性変形が生じることを防止するために設けられる。板バネ201に付与される曲げモーメントMと、板バネ201の中立軸の曲率半径ρとの関係は、以下の式(1)によって表される。
Figure JPOXMLDOC01-appb-M000001
 また、板バネ201に生じる長手方向の歪みは、板厚方向の端部において、最大となり、当該板厚方向の端部における歪みεは、以下の式(2)によって表される。
Figure JPOXMLDOC01-appb-M000002
 変形ガイド202の寸法は、例えば、板バネ201を構成する材料の弾性域における歪みの上限値がεmaxである場合において、当該上限値εmaxに応じた所定の許容歪みより大きな歪みが板バネ201に生じないように、設定され得る。許容歪みは、例えば、歪みの上限値εmaxに安全率n(≧1)を除して得られる値に設定され得る。許容歪みが板バネ201に生じるときに、板バネ201に付与される曲げモーメントは上限値Mmaxをとり、板バネ201の曲率半径は下限値ρminをとる。ゆえに、式(2)から、歪みの上限値εmaxと曲げモーメントの上限値Mmaxとの関係性を示す以下の式(3)が導出される。
Figure JPOXMLDOC01-appb-M000003
 また、式(3)を変形することにより、以下の式(4)が導出される。
Figure JPOXMLDOC01-appb-M000004
 また、式(1)から、曲率半径の下限値ρminと曲げモーメントの上限値Mmaxとの関係性を示す以下の式(5)が導出される。
Figure JPOXMLDOC01-appb-M000005
 また、式(5)に式(4)を代入することにより、歪みの上限値εmaxと曲率半径の下限値ρminとの関係性を示す以下の式(6)が導出される。
Figure JPOXMLDOC01-appb-M000006
 変形ガイド202は、例えば、図6及び図10に示したように、半円形状の横断面形状を有し、板バネ201の幅方向に延在する。変形ガイド202の半径は、具体的には、式(6)に基づいて算出される曲率半径の下限値ρminに設定され得る。ここで、荷重Pによって板バネ201へ付与される曲げモーメントは、後述するように、板バネ201における各位置のうち、片持ち支持される一端部201aにおいて最大となる。ゆえに、板バネ201の曲率半径は、板バネ201における各位置のうち、一端部201aにおいて最小となる。
 板バネ201の一端部201aに付与される曲げモーメントが上限値Mmax以下になる程度に荷重Pが小さい場合には、一端部201aにおける曲率半径は、下限値ρmin以上となる。ゆえに、このような場合には、図6に示すように、板バネ201の一端部201a側の部分は、変形ガイド202の外周部と当接していない。ここで、荷重Pが比較的小さい値から上昇する過程について考えると、板バネ201の一端部201aに付与される曲げモーメントが上限値Mmaxに達したときに、一端部201aにおける曲率半径は、下限値ρminに達する。さらに荷重Pが上昇した場合、板バネ201の一端部201a側の部分は、曲率半径が下限値ρminに維持された状態で、変形ガイド202の外周部と当接する。これにより、板バネ201の一端部201a側の部分は、変形ガイド202によって撓み方向側において支持される。ゆえに、曲率半径が下限値ρminより小さくなるような板バネ201の変形を防止することができる。よって、板バネ201に塑性変形が生じることを防止することができる。
 このように、荷重Pが所定の値以下である場合には、板バネ201の一端部201a側の部分は、変形ガイド202の外周部と当接していない。一方、荷重Pが所定の値より大きい場合には、板バネ201の一端部201a側の部分は、変形ガイド202の外周部と当接し、変形ガイド202によって撓み方向側において支持される。当該所定の値は、例えば、荷重Pを比較的小さい値から上昇させていく過程において、板バネ201の一端部201aに付与される曲げモーメントが上限値Mmaxに達するときの荷重Pの値に相当し得る。
   (付加される荷重が所定の値以下である場合における板バネの変形)
 続いて、図6乃至図9を参照して、付加される荷重Pが所定の値以下である場合の板バネ201の変形について説明する。荷重Pが所定の値以下である場合には板バネ201の一端部201a側の部分は、変形ガイド202と当接していない。図6は、板バネ201の一端部201a側の部分が変形ガイド202と当接していない状態における、板バネ201の変形の様子が示されている。
 図7は、図6に示した状態における、板バネ201についてのSFD(Sheer Force Diagram)と称されるせん断力図である。図7におけるSFDでは、板バネ201における、一端部201aからの長手方向についての距離sと、付加されるせん断力との関係が示されている。図7に示したように、付加される荷重Pが所定の値以下である場合には、板バネ201に付与されるせん断力は、各距離sに対応する位置において同一の値となる。具体的には、板バネ201に付与されるせん断力は、各距離sに対応する位置において荷重Pと等しい値となる。
 図8は、図6に示した状態における、板バネ201についてのBMD(Bending Moment Diagram)と称される曲げモーメント図である。図8におけるBMDでは、板バネ201における、一端部201aからの長手方向についての距離sと、付加される曲げモーメントとの関係が示されている。なお、板バネ201において、曲げモーメントの長手方向についての変化率は、せん断力と一致する。ゆえに、図8におけるBMDによって表される曲げモーメントと、図7におけるSFDによって表されるせん断力とは、このような関係性を有する。図8に示したように、付加される荷重Pが所定の値以下である場合には、板バネ201に付与される曲げモーメントの絶対値は、他端部201b側から一端部201a側へ向かうにつれて増大する。なお、図8及び図13におけるBMDでは、曲げモーメントの値が、正負の向きを考慮して表現されているが、以下の説明では、曲げモーメントの値を、正負の向きを考慮せず絶対値として表現する。
 ここで、板バネ201の各距離sにおける曲げモーメントMは、各距離sに対応する仮想断面におけるモーメントのつり合いに基づいて、以下の式(7)によって表される。
Figure JPOXMLDOC01-appb-M000007
 式(7)によれば、板バネ201に付与される曲げモーメントの絶対値は、図8におけるBMDに示したように、他端部201bにおいて0をとり、一端部201aにおいてPLをとる。このように、板バネ201に付与される曲げモーメントは、板バネ201における各位置のうち、片持ち支持される一端部201aにおいて最大となる。以下では、このような一端部201aにおける曲げモーメントを、maxM(s)とも称する。
 また、板バネ201の曲率半径は、板バネ201における各位置のうち、一端部201aにおいて最小となる。以下では、このような一端部201aにおける曲率半径を、minρ(s)とも称する。荷重Pが所定の値以下である場合には、上述したように、一端部201aにおける曲率半径minρ(s)は、下限値ρmin以上となるので、以下の式(8)が成立する。
Figure JPOXMLDOC01-appb-M000008
 また、荷重Pが所定の値以下である場合には、上述したように、一端部201aにおける曲げモーメントmaxM(s)は、上限値Mmax以下となる。さらに、式(7)によれば、一端部201aにおける曲げモーメントmaxM(s)は、PLである。ゆえに、以下の式(9)が成立する。
Figure JPOXMLDOC01-appb-M000009
 ここで、式(5)を変形することにより、以下の式(10)が導出される。
Figure JPOXMLDOC01-appb-M000010
 式(10)を式(9)に代入して整理することによって、以下の式(11)が導出される。
Figure JPOXMLDOC01-appb-M000011
 式(11)によれば、荷重PがEI/L・ρmin以下である場合において、一端部201aにおける曲率半径minρ(s)は下限値ρmin以上となるので、板バネ201の一端部201a側の部分は変形ガイド202と当接していない。ゆえに、荷重PがEI/L・ρmin以下である場合に、板バネ201は、図6に示した状態となる。
 ここで、板バネ201における撓み角θと一端部201aからの長手方向についての距離sとの関係性について説明する。図9は、撓み角θと距離sとの関係性について説明するための説明図である。図9では、撓み変形が生じている場合における板バネ201の中立軸を示す撓み曲線D11と、撓み変形が生じていない場合における板バネ201の中立軸を示す直線D12とが模式的に示されている。図9に示すように、撓み曲線D11上において、互いに微小距離dsを隔てて位置する点C11及び点C12についての撓み角を、それぞれθ及びθ+dθとする。なお、撓み曲線D11上の各点における撓み角は、当該各点における撓み曲線D11の接線と直線D12とのなす角である。また、点C11と点C12との間の円弧についての曲率半径をρとし、曲率中心を点C13とする。
 この場合、図9に示したように、点C13と点C11とを結ぶ直線と、直線D12に直交する直線とのなす角は、θとなる。また、点C13と点C12とを結ぶ直線と、直線D12に直交する直線とのなす角の角度は、θ+dθとなる。ゆえに、点C13と点C11とを結ぶ直線と、点C13と点C12とを結ぶ直線とのなす角の角度は、dθとなる。ここで、dθは、微小角度であるので、点C11と点C12との間の円弧の長さに相当する微小距離dsは、点C13と点C11とを結ぶ直線と、点C13と点C12とを結ぶ直線とのなす角の角度であるdθに曲率半径ρを乗じることによって得られる。よって以下の式(12)が成立する。
Figure JPOXMLDOC01-appb-M000012
 また、式(1)及び式(12)を連立して解き、ρを消去することにより、以下の式(13)が導出される。
Figure JPOXMLDOC01-appb-M000013
 ここで、他端部201bにおける撓み角である他端部撓み角θは、撓み角θを距離sについて0からLまで積分することによって得られる値に相当するので、以下の式(14)が成立する。
Figure JPOXMLDOC01-appb-M000014
 ここで、式(14)に式(13)を代入することにより、以下の式(15)が導出される。
Figure JPOXMLDOC01-appb-M000015
 ここで、式(15)に式(7)を代入して整理することにより、以下の式(16)が導出される。
Figure JPOXMLDOC01-appb-M000016
 以上説明したように、荷重PがEI/L・ρmin以下である場合において、板バネ201の一端部201a側の部分は変形ガイド202と当接していない。このような場合において、他端部201bにおける撓み角である他端部撓み角θは、式(16)によって表される。
   (付加される荷重が所定の値より大きい場合における板バネの変形)
 続いて、図10乃至図13を参照して、付加される荷重Pが所定の値より大きい場合の板バネ201の変形について説明する。荷重Pが所定の値より大きい場合には、板バネ201の一端部201a側の部分は、変形ガイド202と当接している。図10は、板バネ201の一端部201a側の部分が変形ガイド202と当接している状態における、板バネ201の変形の様子が示されている。
 図10に示したように、板バネ201の一端部201a側において、一端部201aからの長手方向についての距離sが0からLまでの間の部分が、変形ガイド202と当接している部分とする。また、図10に示したように、二点鎖線によって示した撓み曲線において、長手方向について一端部201aと距離Lを隔てて位置する点を点C22とする。具体的には、点C22は、板バネ201の変形ガイド202と当接している部分における一端部201aと逆側の端部についての、板バネ201の中立軸上の点に相当する。この場合、図11に示したように、板バネ201において点C22より他端部201b側の部分は、点C22が片持ち支持される仮想的な板バネに相当し得る。
 図12は、図10に示した状態における、板バネ201についてのSFDである。図12に示したように、付加される荷重Pが所定の値より大きい場合には、板バネ201に付与されるせん断力は、一端部201a側の部分において、0となる。板バネ201の一端部201a側において、距離sが0からLまでの間の部分は、変形ガイド202によって支持されているので、当該部分におけるせん断力は0となる。ゆえに、板バネ201に付与されるせん断力は、具体的には、距離sが0からLまでの間の部分において、0となり、距離sがLからLまでの部分において、荷重Pと等しい値となる。
 図13は、図10に示した状態における、板バネ201についてのBMDである。なお、板バネ201において、上述したように、曲げモーメントの長手方向についての変化率は、せん断力と一致する。ゆえに、図13におけるBMDによって表される曲げモーメントと、図12におけるSFDによって表されるせん断力とは、このような関係性を有する。図13に示したように、板バネ201に付与される曲げモーメントの絶対値は、一端部201a側の部分において、上限値Mmaxとなる。具体的には、板バネ201の一端部201a側において、距離sが0からLまでの間の部分についての曲率半径は、下限値ρminとなるので、当該部分において、曲げモーメントの絶対値は、上限値Mmaxとなる。ゆえに、板バネ201に付与される曲げモーメントの絶対値は、距離sがLからLまでの部分において、他端部201b側から一端部201a側へ向かうにつれて増大し、距離sが0からLまでの間の部分において、上限値Mmaxとなる。
 ここで、上限値Mmaxは、距離sがLである位置についての仮想断面におけるモーメントのつり合いに基づいて、以下の式(17)によって表される。
Figure JPOXMLDOC01-appb-M000017
 また、式(17)を変形することによって、以下の式(18)が導出される。
Figure JPOXMLDOC01-appb-M000018
 ここで、図10に示したように、変形ガイド202の横断面を表す半円の中心点を点C23とし、一端部201aについての板バネ201の中立軸上の点を点C21とし、点C23と点C21とを結ぶ直線と、点C23と点C22とを結ぶ直線とのなす角の角度をθとする。ここで、θは、微小角度であるので、点C21と点C22との間の円弧の長さに相当するLは、点C23と点C21を結ぶ直線と、点C23と点C22とを結ぶ直線とのなす角の角度であるθに変形ガイド202の半径である下限値ρminを乗じることによって得られる。よって以下の式(19)が成立する。
Figure JPOXMLDOC01-appb-M000019
 ここで、板バネ201の点C22における撓み角は、図10に示したように、θである。ゆえに、図11に示す点C22が片持ち支持される仮想的な板バネは、当該仮想的な板バネとしての撓み変形が生じていない場合に、板バネ201の長手方向に対して撓み方向にθ傾斜した方向に延在する。よって、図11に示したように、仮想的な板バネについての他端部201bにおける撓み角は、図10に示す板バネ201についての他端部撓み角θからθを減算することによって得られる値に相当する。
 ここで、仮想的な板バネについての他端部201bにおける撓み角(θ-θ)は、式(15)における右辺の距離sについての積分区間をLからLまでの区間へ変換することによって得られる式によって表現され得るので、以下の式(20)が成立する。
Figure JPOXMLDOC01-appb-M000020
 また、式(20)に式(7)を代入して整理することにより、以下の式(21)が導出される。
Figure JPOXMLDOC01-appb-M000021
 また、式(21)に式(17)を代入することにより、以下の式(22)が導出される。
Figure JPOXMLDOC01-appb-M000022
 また、式(5)及び式(22)を連立して解き、上限値Mmaxを消去することにより、以下の式(23)が導出される。
Figure JPOXMLDOC01-appb-M000023
 また、式(19)を式(23)に代入して整理することにより、以下の式(24)が導出される。
Figure JPOXMLDOC01-appb-M000024
 また、式(18)及び式(24)を連立して解き、Lを消去することにより、以下の式(25)が導出される。
Figure JPOXMLDOC01-appb-M000025
 また、式(5)及び式(25)を連立して解き、上限値Mmaxを消去することにより、以下の式(26)が導出される。
Figure JPOXMLDOC01-appb-M000026
 以上説明したように、荷重PがEI/L・ρminより大きい場合において、板バネ201の一端部201a側の部分は変形ガイド202と当接している。このような場合において、他端部201bにおける撓み角である他端部撓み角θは、式(26)によって表される。
  [2-2.板バネの機械的特性]
 続いて、図14乃至図17を参照して、板バネ201の機械的特性について説明する。以下では、一例として、板バネ201の各諸元について、長手方向の長さLを30[mm]とし、板厚Dを0.6[mm]とし、幅Wを3[mm]とし、ヤング率Eを200[GPa]とし、歪みの上限値εmaxを2.5×10-3とし、安全率nを1.5とした場合について、説明する。
 板バネ201の各諸元を上記のように設定した場合、板バネ201の断面二次モーメントIは、以下の式(27)により表される。
Figure JPOXMLDOC01-appb-M000027
 また、曲率半径の下限値ρminは、以下の式(28)により表される。
Figure JPOXMLDOC01-appb-M000028
 ゆえに、変形ガイド202の半径は、式(28)に示した下限値ρminである180[mm]に設定される。
 荷重Pが比較的小さな値から上昇する過程において、板バネ201の一部が変形ガイド202と当接していない状態から板バネ201の一部が変形ガイド202と当接している状態へ切り替わる際の荷重Pに相当する所定の値は、EI/L・ρminである。板バネ201の各諸元を上記のように設定した場合、当該所定の値は、1.85[N]となる。
 図14は、板バネ201の他端部撓み角θと板バネ201に付加される荷重Pとの関係の一例を示す説明図である。図14では、式(16)及び式(26)によって規定される他端部撓み角θと荷重Pとの関係が示されている。具体的には、式(16)を用いることによって、1.85[N]以下の荷重Pの各々について、対応する他端部撓み角θが算出され得る。また、式(26)を用いることによって、1.85[N]より大きい荷重Pの各々について、対応する他端部撓み角θが算出され得る。このように算出された結果が図14に示されている。
 図15は、板バネ201の他端部撓み角θと剛性との関係の一例を示す説明図である。板バネ201の剛性は、荷重Pに対する板バネ201の変形しにくさの程度を示し、図14に示した他端部撓み角θと荷重Pとの関係に基づいて、算出され得る。具体的には、他端部撓み角θの各々についての剛性は、図14に示した他端部撓み角θと荷重Pとの関係に基づいて、荷重Pを他端部撓み角θにより微分することによって、算出され得る。このように算出された結果が図15に示されている。
 仮に、板バネ201に対して変形ガイド202が設けられないとすると、荷重Pが1.85[N]を超えた場合に、板バネ201は、一端部201aにおける曲率半径が下限値ρminより小さくなるように、変形し得る。これにより、板バネ201に塑性変形が生じ得る。
 一方、図6及び図10に示した系では、板バネ201に対して変形ガイド202が設けられることによって、荷重Pが1.85[N]を超えた場合に、板バネ201の一端部201a側の部分が、変形ガイド202によって撓み方向側において支持される。これにより、荷重Pが1.85[N]を超えた場合であっても、曲率半径が下限値ρminより小さくなるような板バネ201の変形を防止することができる。
 このように、荷重Pが比較的大きい場合に、板バネ201の剛性が高い状態を確保することができる。図15では、荷重Pと相関を有する他端部撓み角θが比較的大きい場合において、板バネ201の剛性が比較的高くなっていることが示されている。板バネ201の剛性は、具体的には、荷重P及び他端部撓み角θが比較的大きい場合において、荷重P及び他端部撓み角θが大きくなるにつれて増大する。ゆえに、板バネ201は、図14に示したように、荷重Pが1.85[N]を超えた場合であっても、各荷重Pに対応する変位量で弾性変形することができる。よって、板バネ201に塑性変形が生じることを防止することができる。
 ここで、板バネ201に関する荷重変化率について説明する。荷重変化率は、他端部撓み角θが変動した場合における荷重Pの変化の度合いを示す。具体的には、荷重変化率は、他端部撓み角θが0.1°だけ変動した場合における、当該変動の前後での荷重Pの変化率である。ゆえに、荷重変化率は、板バネ201の変位量としての他端部撓み角θの測定値を利用して板バネ201に付加される荷重Pを測定する場合における測定精度と関連性を有する。具体的には、荷重変化率が低いほど、当該測定精度は高い。一方、荷重変化率が高いほど、当該測定精度は低い。
 図16は、板バネ201の他端部撓み角θと荷重変化率との関係の一例を示す説明図である。他端部撓み角θの各々についての荷重変化率は、図14に示した他端部撓み角θと荷重Pとの関係に基づいて、算出され得る。このように算出された結果が図16に示されている。
 図17は、板バネ201に付加される荷重Pと荷重変化率との関係の一例を示す説明図である。荷重Pの各々についての荷重変化率は、図14に示した他端部撓み角θと荷重Pとの関係に基づいて、算出され得る。このように算出された結果が図17に示されている。
 図6及び図10に示した系では、荷重Pが1.85[N]以下である場合には、板バネ201の一端部201a側の部分は、変形ガイド202の外周面と当接しないので、変形ガイド202によって支持されない。これにより、荷重Pが比較的小さい場合には、板バネ201の剛性が低い状態を確保することができる。図15では、荷重Pと相関を有する他端部撓み角θが比較的小さい場合において、板バネ201の剛性が比較的低くなっていることが示されている。
 ここで、板バネ201の剛性が低いほど、荷重変化率は低い。図6及び図10に示した系では、荷重P及び他端部撓み角θが比較的小さい場合には、板バネ201の剛性が比較的低くなるので、荷重変化率は比較的低くなる。図16では、荷重Pと相関を有する他端部撓み角θが比較的小さい場合において、荷重変化率が比較的低くなっていることが示されている。また、図17では、荷重Pが比較的小さい場合において、荷重変化率が比較的低くなっていることが示されている。なお、他端部撓み角θが0[°]であるときの荷重Pは0[N]となるので、図16及び図17に示したように、荷重P及び他端部撓み角θが0の近傍の値をとるときには、荷重変化率は比較的大きな値をとり得る。
 このように、荷重Pが比較的小さい場合には、荷重変化率は比較的低くなる。ゆえに、板バネ201の変位量としての他端部撓み角θの測定値を利用して板バネ201に付加される荷重Pを測定する場合における測定精度が高い状態を確保することができる。
 図16及び図17に示した板バネ201の機械的特性は、荷重変化率と他端部撓み角θの関係及び荷重変化率と荷重Pの関係をそれぞれ規定する。具体的には、図16によれば、荷重変化率が10%を下回る範囲に対応する他端部撓み角θの範囲は、1[°]から8.5[°]までの範囲である。また、図17によれば、荷重変化率が10%を下回る範囲に対応する荷重Pの範囲は、0.4[N]から8.8[N]までの範囲である。ここで、板バネ201の機械的特性は、板バネ201の各諸元の設定値に依存する。ゆえに、板バネ201の各諸元を適宜設定することにより、所望の測定精度に対応当する荷重変化率の範囲に対応する他端部撓み角θ及び荷重Pの範囲を適切に設定することができる。また、板バネ201の機械的特性は、変形ガイド202の横断面形状にも依存する。ゆえに、変形ガイド202の横断面形状を適宜設定することによっても、板バネ201の機械的特性を適切に設定することができる。
 <3.アクチュエータの第1の実施の形態>
 次に、図18及び図19を参照して、図1乃至図5を参照して上述した義足101に適用可能なアクチュエータの第1の実施の形態であるアクチュエータ301について説明する。アクチュエータ301は、上述した特許文献1に開示されているアクチュエータと同様のアクチュエータである。
 図18は、アクチュエータ301の第1の実施の形態の一部を示す模式図である。図19のAは、板バネ321の一端部321aが回動体312に対して相対的に停止している場合のアクチュエータ301の様子の一例を示す模式図である。図19のBは、板バネ321の一端部321aが回動体312に対して相対的に回動している場合についての、アクチュエータ301の様子の一例を示す模式図である。
 アクチュエータ301は、トルクセンサ311及び回動体312を備える。トルクセンサ311は、トルクを伝達する板バネ321、及び、板バネ321の一部を支持するための支持部材322を備える。回動体312は、出力側の対象物と接続される部材であり、例えば、義足101の大腿側部材111の本体部121の一部を構成し得る。図19に示したように、板バネ321の一端部321aが回動体312に対して相対的に回動自在に構成されることによって、板バネ321を介した回動体312へのトルクの伝達が実現される。
 アクチュエータ301は、例えば、駆動モータ151から出力されたトルクを伝達する。具体的には、駆動モータ151から出力されたトルクは、トルクセンサ311の板バネ321へ入力される。そして、当該トルクは、板バネ321によって、回動体312へ伝達される。このように、板バネ321は、駆動モータ151から出力されたトルクを回動体312へ伝達する。回動体312は、出力側の対象物と接続されており、アクチュエータ301から出力されるトルクが当該対象物へ伝達されるように構成され得る。
 具体的には、アクチュエータ301が義足101に適用される場合、回動体312は、出力側の対象物としての大腿側部材111の本体部121と同期して回動自在に設けられる。ゆえに、トルクが板バネ321を介して回動体312へ伝達されることによって、回動体312を構成要素として含む大腿側部材111の本体部121による、膝継手122及び下腿側部材112に対する相対的な回動が実現される。
 板バネ321は、一端部321aが片持ち支持される。具体的には、板バネ321の一端部321aは、ギヤボックス153の出力軸154に対して固定されることによって、片持ち支持される。図18に示したように、トルクセンサ311は、例えば、略円板形状を有し、トルクセンサ311の中央部には中心軸に沿って一方の面から他方の面へ連通する連通孔部311aが設けられる。板バネ321の一端部321aは、例えば、ギヤボックス153の出力軸154が当該連通孔部311aに挿通された状態で、出力軸154に対して固定される。これにより、板バネ321の一端部321aは、ギヤボックス153の出力軸154と一体に回動自在となる。
 ギヤボックス153の出力軸154の回転軸は、連通孔部311aの中心軸と略一致してもよい。この場合、板バネ321の一端部321aは、連通孔部311aの中心軸まわりに回動自在である。また、ギヤボックス153の出力軸154は、駆動モータ151の出力軸152と同期して回動自在である。ゆえに、板バネ321の一端部321aは、駆動モータ151の出力軸152と同期して回動自在である。
 板バネ321は、例えば、一端部321aの回動方向に沿って間隔を空けて複数設けられる。具体的には、板バネ321は、一端部321aの回動方向に沿って等間隔に8個設けられる。より具体的には、8個の板バネ321の各々は、図18に示したように、連通孔部311aの径方向に沿って延在し、周方向に沿って等間隔に設けられる。板バネ321は、板バネ321の幅方向と連通孔部311aの軸方向とが略一致するように、配設される。換言すると、板バネ321は、板バネ321の板厚方向と連通孔部311aの周方向とが略一致するように、配設される。
 支持部材322は、板バネ321の一部を支持するための部材である。支持部材322は、例えば、図18に示したように、平板形状を有し、支持部材322の幅方向と板バネ321の板厚方向が略一致するように、配設される。また、支持部材322の板厚と、板バネ321の幅とは略一致してもよい。支持部材322は、板バネ321に対して、板バネ321の板厚方向に対向する対向面322bを有しており、当該対向面322bは、後述するように、板バネ321によって伝達されるトルクが所定の値より大きい場合に、板バネ321の一部と当接する。
 支持部材322は、例えば、板バネ321の一端部321aの回動方向に沿って間隔を空けて複数設けられ、一端部321aの回動方向に隣接する2個の板バネ321の間に位置する。具体的には、トルクセンサ311において、図18に示したように、板バネ321及び支持部材322は、トルクセンサ311の周方向に沿って互いに交互に配設される。このように配設された板バネ321及び支持部材322の各々についての、トルクセンサ311における中央側の部分によって、図18に示したように、連通孔部311aが形成され得る。
 支持部材322及び板バネ321の一端部321aは、互いに相対的な移動が規制されている。ゆえに、支持部材322は、板バネ321の一端部321aと一体に回動自在である。具体的には、支持部材322の連通孔部311a側には、ギヤボックス153の出力軸154をトルクセンサ311に取り付けるための貫通穴322aが穿孔されている。貫通穴322aには、例えば、支持部材322を接続部材156に接続するためのネジ等の部材が挿通され得る。支持部材322及び板バネ321の一端部321aは、当該貫通穴322aを利用することによって、ギヤボックス153の出力軸154に対して固定される。
 回動体312は、板バネ321の一端部321aに対して相対的に回動自在である。回動体312は、例えば、図18に示したように、複数の支持部材322に対して、支持部材322の板厚方向に対向し、環状の円板形状を有するベース部312aと、ベース部312aの外周部に沿って設けられ、ベース部312aより支持部材322側へ突設された突設部312bと、を備える。
 ベース部312aには、各支持部材322に対応する位置に、支持部材322側へ突出する突起部312cが設けられる。支持部材322の各々についての、トルクセンサ311における外周側の部分には、連通孔部311aの周方向に沿って延在する貫通穴322cが穿孔されており、当該貫通穴322cに突起部312cが挿通される。貫通穴322c及び突起部312cは、回動体312の回動方向を規定するガイドとしての機能を有し得る。また、支持部材322の各々についての、トルクセンサ311における外周側の側面322dは、突設部312bの内周面312fと当接する。支持部材322の側面322d及び突設部312bの内周面312fもまた、回動体312の回動方向を規定するガイドとしての機能を有し得る。
 回動体312の回動方向は、連通孔部311aの周方向と略一致してもよい。換言すると、回動体312は、板バネ321の一端部321aの回動軸まわりに回動自在であってもよい。これにより、アクチュエータ301を構成する各部材を共通する回転軸まわりに回動可能とすることができるので、アクチュエータ301をより効果的に小型化することができる。
 突設部312bには、各板バネ321に対応する位置に、連通孔部311aの径方向に沿って溝部312dが形成される。溝部312dは、板バネ321の板厚より大きい幅を有しており、板バネ321の他端部321b側の部分が当該溝部312dに挿嵌される。具体的には、溝部312dにおける幅方向に対向する面の各々には、板バネ321の幅方向に延在するピン312eが設けられ、板バネ321の他端部321b側の部分は一対のピン312eの間に挿嵌される。これにより、一対のピン312eによって板バネ321が板厚方向に支持される。ゆえに、板バネ321の他端部321bは、回動体312と一体に回動自在である。
 上述したように、板バネ321は、駆動モータ151から出力されたトルクを回動体312へ伝達する。また、板バネ321の一端部321aは、駆動モータ151の出力軸152と同期して回動自在である。また、板バネ321の他端部321bは、回動体312と一体に回動自在である。また、板バネ321の一端部321aは、回動体312に対して相対的に回動自在に構成される。ゆえに、駆動モータ151から板バネ321の一端部321aにトルクが入力された場合、図19に示したように、板バネ321の一端部321aが他端部321bに対して相対的に回動することによって、板バネ321が板厚方向に撓み変形する。そして、板バネ321の他端部321bから回動体312のピン312eに対して、板バネ321の復元力に相当する荷重が付加される。これにより、板バネ321を介して回動体312へトルクが伝達される。このように、板バネ321は、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能である。
 ここで、板バネ321は、上述したように、一端部321aが片持ち支持されている。また、図19に示したように、板バネ321が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形している場合、板バネ321の他端部321bには、回動体312のピン312eからの反力Fが荷重として板厚方向に付加される。反力Fは、板バネ321の撓み変形の程度に応じた大きさである。ゆえに、板バネ321の一端部321aを固定して考えると、板バネ321の変形について、図6乃至図17を参照して説明した、一端部201aが片持ち支持された板バネ201の他端部201bに対して板厚方向に荷重Pが付加されたときの板バネ201の変形と同様に考えることができる。なお、回動体312のピン312eから板バネ321の他端部321bに付加される荷重としての反力Fは、図6乃至図17を参照して説明した、板バネ201の他端部201bに付加される荷重Pに相当する。また、反力Fは、板バネ321によって伝達されるトルクと相関を有する。
 本実施形態に係る支持部材322は、板バネ321によって伝達されるトルクが所定の値より大きい場合に、板バネ321の一部を撓み方向側において支持する。具体的には、板バネ321によって伝達されるトルクが所定の値より大きい場合に、支持部材322の対向面322bが板バネ321の一部と当接する。これにより、板バネ321の一部が撓み方向側において、支持部材322によって、支持される。当該所定の値は、伝達されるトルクを比較的小さい値から上昇させていく過程において、板バネ321の一端部321aに付与される曲げモーメントが、板バネ321を構成する材料の弾性域における歪みの上限値に応じた所定の許容歪みに対応する曲げモーメントに達するときのトルクの値に相当し得る。
 ここで、支持部材322は、上述したように、板バネ321の一端部321aと一体に回動自在である。ゆえに、本実施形態に係る支持部材322と板バネ321との関係について、図6乃至図17を参照して説明した系における、変形ガイド202と板バネ201との関係と同様に考えることができる。支持部材322は、例えば、板バネ321の一端部321a側の部分と板バネ321の板厚方向に近接して設けられ、板バネ321によって伝達されるトルクが所定の値より大きい場合に、板バネ321の一端部321a側の部分を撓み方向側において支持してもよい。
 また、対向面322bの形状は、式(6)によって表される曲率半径の下限値ρminに基づいて設定されてもよい。具体的には、対向面322bの、板バネ321の幅方向に直交する断面における断面曲線は、曲率半径が下限値ρminである円弧であってもよい。また、対向面322bの、板バネ321の幅方向に直交する断面における断面曲線は、伝達されるトルクが所定の値である場合における板バネ321の撓み曲線のうちの一端部321a側の一部であってもよい。なお、下限値ρminは、板バネ321の各諸元に基づいて算出され得る。
 本実施形態によれば、板バネ321に対して支持部材322が設けられことによって、板バネ321によって伝達されるトルクが所定の値より大きい場合に、板バネ321の一部が、支持部材322によって撓み方向側において支持される。これにより、伝達されるトルクが所定の値を超えた場合であっても、曲率半径が下限値ρminより小さくなるような板バネ321の変形を防止することができる。このように、伝達されるトルクが比較的大きい場合に、板バネ321の剛性が高い状態を確保することができる。従って、板バネ321に塑性変形が生じることを防止することができる。ゆえに、板バネ321の強度を確保しつつ、アクチュエータ301を小型化することができる。よって、アクチュエータ301を含む装置を小型化することができる。
 また、本実施形態によれば、板バネ321によって伝達されるトルクが所定の値以下である場合には、板バネ321の一部は、支持部材322の対向面322bと当接しないので、支持部材322によって支持されない。これにより、伝達されるトルクが比較的小さい場合には、板バネ321の剛性が低い状態を確保することができる。ここで、板バネ321の剛性が低いほど、他端部撓み角θが変動した場合における他端部321bに付加される反力Fの変化の度合いを示す荷重変化率は低い。ゆえに、伝達されるトルクが比較的小さい場合には、板バネ321についての荷重変化率は比較的低くなる。
 ここで、板バネ321の変位量は、上述したように、変位センサ181によって検出され得る。具体的には、板バネ321の変位量として、他端部321bにおける撓み角である他端部撓み角θが変位センサ181によって検出され得る。そして、板バネ321の他端部321bに付加された反力Fが、変位センサ181により得られた検出結果に相当する他端部撓み角θの測定値に基づいて、制御装置182によって、算出され得る。また、荷重変化率が低いほど、当該測定精度は高い。ゆえに、本実施形態によれば、板バネ321によって伝達されるトルクが比較的小さい場合には、板バネ321の他端部321bに付加された反力Fを測定する場合における測定精度が高い状態を確保することができる。
 また、板バネ321の機械的特性は、板バネ321の各諸元の設定値に依存する。具体的には、板バネ321における、荷重変化率と反力Fの関係及び荷重変化率と他端部撓み角θの関係は、板バネ321の各諸元の設定値に依存する。ゆえに、板バネ321の各諸元を適宜設定することにより、所望の測定精度に相当する荷重変化率の範囲に対応する他端部撓み角θ及び反力Fの範囲を適切に設定することができる。なお、板バネ321についての長手方向の長さL、板厚D、幅W、ヤング率E、歪みの上限値εmax、及び安全率nが、板バネ321の諸元に該当し得る。また、板バネ321の機械的特性は、支持部材322の対向面322bの形状にも依存する。ゆえに、支持部材322の対向面322bの形状を適宜設定することによっても、板バネ321の機械的特性を適切に設定することができる。
 また、アクチュエータ301は、板バネ321、支持部材322、及び、回動体312によって構成されており、比較的単純な構成を有する。ゆえに、アクチュエータ301を含む装置をより効果的に小型化及び軽量化することができる。
 板バネ321は、例えば、バネ鋼によって構成される。また、支持部材322及び回動体312の各々は、樹脂によって構成されてもよい。具体的には、支持部材322及び回動体312の各々は、ナイロン又はPP(ポリプロピレン)等によって構成され得る。このように、支持部材322又は回動体312が樹脂によって構成されることによって、装置を軽量化することができる。
 上述したように、板バネ321は、例えば、一端部321aの回動方向に沿って間隔を空けて複数設けられる。これにより、アクチュエータ301に設けられる板バネ321の個数が1個である場合と比較して、各板バネ321に付与される曲げモーメントを低減することができる。ゆえに、板バネ321に塑性変形が生じることをより効果的に防止することができる。また、アクチュエータ301に設けられる板バネ321の数を適宜設定することにより、各板バネ321の機械的特性を適切に設定することができる。
 また、上述したように、支持部材322は、例えば、板バネ321の一端部321aの回動方向に沿って間隔を空けて複数設けられ、一端部321aの回動方向に隣接する2個の板バネ321の間に位置する。これにより、複数の板バネ321及び複数の支持部材322を、それらの回転軸を含む平面について対称となるように、構成することができる。ゆえに、アクチュエータ301によって伝達されるトルクの方向が逆転した場合であっても、支持部材322による板バネ321の支持について、逆転する前と同様の作用及び効果を奏することができる。
 <4.アクチュエータの第2の実施の形態>
 次に、図20を参照して、図1乃至図5を参照して上述した義足101に適用可能なアクチュエータの第2の実施の形態について説明する。なお、第2の実施の形態では、第1の実施の形態と比較して、トルクセンサの構成が異なる。従って、ここでは、主にトルクセンサの構成の違いについて説明する。
 図20は、図18及び図19を参照して上述したアクチュエータ301に適用可能なトルクセンサ155であって、図1乃至図5を参照して上述した義足101に適用可能なトルクセンサ155の構成の一例を示す模式図である。なお、ここでは、回動体312の図示を省略している。
 トルクセンサ155は、図18のトルクセンサ311と比較して、板バネ321の代わりに4個の板バネ401を備え、支持部材322の代わりに、それぞれ4個の支持部材402及び支持部材403を備える。
 トルクセンサ155の中央には、図18のトルクセンサ311の連通孔部311aと同様に、連通孔部155aが形成される。連通孔部155aには、ギヤボックス153の出力軸154が挿通される。ギヤボックス153の出力軸154の回転軸は、連通孔部155aの中心軸と略一致する。
 板バネ401は、板状の部材の延伸方向の中央部が板厚方向にU字型に屈曲した形状を有している。すなわち、板バネ401の屈曲部401aの先端が、丸みを帯びるように屈曲している。屈曲部401aの両端からは、延在部401b1及び延在部401b2が直線状に延びている。延在部401b1と延在部401b2は、互いに斜め方向を向いている。
 板バネ401は、屈曲部401aが連通孔部155aに向けられ、屈曲部401aの回動方向(=連通孔部155aの周方向)に沿って間隔を空けて複数設けられる。具体的には、板バネ401は、屈曲部401aの回動方向に沿って、等間隔に4個設けられる。板バネ401は、板バネ401の幅方向と連通孔部155aの軸方向とが略一致するように、配設される。換言すると、板バネ401は、板バネ401の板厚方向と連通孔部155aの周方向とが略一致するように、配設される。各板バネ401の延在部401b1及び延在部401b2は、連通孔部155aの径方向に沿って延在し、周方向に沿って等間隔に設けられる。
 支持部材402及び支持部材403は、図18の支持部材322とほぼ同様の平板形状を有している。支持部材402及び支持部材403は、支持部材402及び支持部材403の幅方向と、板バネ401の板厚方向が略一致するように、配設される。支持部材402及び支持部材403の板厚と、板バネ401の幅とは略一致してもよい。
 各板バネ401の屈曲部401aは、支持部材402の連通孔部155a側の端部に嵌合される。これにより、板バネ401の位置が固定され、安定する。また、同じ板バネ401の延在部401b1と延在部401b2との間に、支持部材402が配置される。
 また、屈曲部401aの回動方向に隣接する2個の板バネ401の間に支持部材403が配置される。これにより、板バネ401及び支持部材402が、隣接する2個の支持部材403により挟まれる。換言すれば、支持部材403が、隣接する2組の板バネ401及び支持部材402により挟まれる。また、板バネ401の延在部401b1の屈曲部401a側の端部である一端部401c1が、支持部材402と支持部材403により挟まれ、固定される。板バネ401の延在部401b2の屈曲部401a側の端部である一端部401c2が、支持部材402と支持部材403により挟まれ、固定される。
 各支持部材402の連通孔部155a側には、接続部材156を介してギヤボックス153の出力軸154をトルクセンサ155に取り付けるための貫通穴402aが穿孔されている。貫通穴402aには、例えば、支持部材402を接続部材156に接続するためのネジ等の部材が挿通され得る。
 各支持部材403の連通孔部155a側には、接続部材156を介してギヤボックス153の出力軸154をトルクセンサ155に取り付けるための貫通穴403aが穿孔されている。貫通穴403aには、例えば、支持部材402を接続部材156に接続するためのネジ等の部材が挿通され得る。
 貫通穴402a及び貫通穴403aを介して、各支持部材402及び支持部材403を接続部材156に取り付けることにより、各支持部材402及び支持部材403が、ギヤボックス153の出力軸154に対して固定される。これにより、各支持部材402及び支持部材403により固定されている各板バネ401が、出力軸154に対して固定される。その結果、各板バネ401の延在部401b1の一端部401c1及び延在部401b2の一端部401c2が、出力軸154に対して片持ち支持される。
 各板バネ401の延在部401b1の他端部401d1側の部分、及び、延在部401b2の他端部401d2側の部分が、それぞれ回動体312の溝部312dに挿嵌され、一対のピン312eの間に挿嵌される。これにより、各板バネ401の延在部401b1の他端部401d1側の部分、及び、延在部401b2の他端部401d2側の部分が、それぞれ一対のピン312eによって板厚方向に支持される。ゆえに、各板バネ401の延在部401b1の他端部401d1側の部分、及び、延在部401b2の他端部401d2は、回動体312と一体に回動自在となる。
 支持部材402は、板バネ401の延在部401b1又は延在部401b2に対して、延在部401b1又は延在部401b2の板厚方向に対向する対向面402bを有している。対向面402bは、図18の支持部材322の対向面322bと同様に、延在部401b1又は延在部401b2によって伝達されるトルクが所定の値より大きい場合に、延在部401b1又は延在部401b2の一部と当接し、延在部401b1又は延在部401b2の一部を支持する。
 支持部材403は、板バネ401の延在部401b1又は延在部401b2に対して、延在部401b1又は延在部401b2の板厚方向に対向する対向面403bを有している。対向面403bは、図18の支持部材322の対向面322bと同様に、延在部401b1又は延在部401b2によって伝達されるトルクが所定の値より大きい場合に、延在部401b1又は延在部401b2の一部と当接し、延在部401b1又は延在部401b2の一部を支持する。
 なお、延在部401b1によって時計回りに伝達されるトルクが所定の値より大きい場合、延在部401b1は、反時計回りの方向に隣接する支持部材403の対向面403bにより支持される。延在部401b1によって反時計回りに伝達されるトルクが所定の値より大きい場合、延在部401b1は、時計回りの方向に隣接する支持部材402の対向面402bにより支持される。延在部401b2によって時計回りに伝達されるトルクが所定の値より大きい場合、延在部401b2は、反時計回りの方向に隣接する支持部材402の対向面402bにより支持される。延在部401b2によって反時計回りに伝達されるトルクが所定の値より大きい場合、延在部401b2は、時計回りの方向に隣接する支持部材403の対向面403bにより支持される。
 各支持部材402のトルクセンサ155における外周側の部分には、連通孔部155aの周方向に沿って延在する貫通穴402cが穿孔されている。貫通穴402cには、図18の支持部材322の貫通穴322cと同様に、回動体312の突起部312cが挿通される。貫通穴402c及び突起部312cは、回動体312の回動方向を規定するガイドとしての機能を有し得る。また、各支持部材402のトルクセンサ155における外周側の側面402dは、回動体312の突設部312bの内周面312fと当接する。支持部材402の側面402d及び突設部312bの内周面312fもまた、回動体312の回動方向を規定するガイドとしての機能を有し得る。
 各支持部材403のトルクセンサ311における外周側の部分には、連通孔部311aの周方向に沿って延在する貫通穴403cが穿孔されている。貫通穴403cには、図18の支持部材322の貫通穴322cと同様に、回動体312の突起部312cが挿通される。貫通穴403c及び突起部312cは、回動体312の回動方向を規定するガイドとしての機能を有し得る。また、各支持部材403のトルクセンサ155における外周側の側面403dは、回動体312の突設部312bの内周面312fと当接する。支持部材403の側面403d及び突設部312bの内周面312fもまた、回動体312の回動方向を規定するガイドとしての機能を有し得る。
 以上のように構成されるトルクセンサ155は、図18のトルクセンサ311と同様の機能を実現し、同様の作用及び効果を奏する。すなわち、トルクセンサ155の各板バネ401の延在部401b1及び延在部401b2は、図18の板バネ321と同様の機能を実現し、同様の作用及び効果を奏する。トルクセンサ155の各支持部材402及び支持部材403は、図18のトルクセンサ311の支持部材322と同様の機能を実現し、支持部材322と同様の作用及び効果を奏する。
 例えば、板バネ401の延在部401b1及び延在部401b2によって伝達されるトルクが所定の値より大きい場合に、延在部401b1及び延在部401b2の一部が、支持部材402及び支持部材403によって撓み方向側において支持される。ゆえに、伝達されるトルクが比較的大きい場合に、板バネ401の剛性が高い状態を確保することができる。従って、板バネ401に塑性変形が生じることを防止することができる。ゆえに、板バネ401の強度を確保しつつ、アクチュエータ301を小型化することができる。よって、アクチュエータ301を含む装置を小型化することができる。
 また、例えば、板バネ401の延在部401b1及び延在部401b2によって伝達されるトルクが所定の値以下である場合には、延在部401b1及び延在部401b2の一部は、支持部材402の対向面402b及び支持部材403の対向面403bと当接せず、支持部材402及び支持部材403によって支持されない。これにより、伝達されるトルクが比較的小さい場合には、板バネ401の延在部401b1及び延在部401b2の剛性が低い状態を確保することができる。ゆえに、伝達されるトルクが比較的小さい場合には、延在部401b1及び延在部401b2についての荷重変化率は比較的低くなる。また、荷重変化率が低いほど、延在部401b1及び延在部401b2の変位量としての他端部撓み角θの測定値を利用して、延在部401b1の一端部401c1及び延在部401b2の一端部401c2に付加される反力Fを測定する場合における測定精度が高くなる。
 加えて、トルクセンサ155においては、上述したように、板バネ401の屈曲部401aが、支持部材402の連通孔部155a側の端部に嵌合される。これにより、板バネ401の位置決めが容易になり、かつ、板バネ401の位置の安定性が向上する。例えば、トルクセンサ155が周方向に回動し、板バネ401にトルクが入力された場合にも、板バネ401の位置ずれは、ほとんど発生しない。また、板バネ401の位置ずれによる板バネ401と支持部材402及び支持部材403との間の摩擦音の発生が抑制される。
 一方、トルクセンサ311においては、板バネ321の一端部321a側が、2個の支持部材322の間に挟まれているのみである。従って、トルクセンサ311においては、板バネ321の位置を安定させるために、例えば、連通孔部311aの外周部で各板バネ321の一端部321aを固定するための部材が必要になる。また、例えば、トルクセンサ311が周方向に回動し、板バネ321にトルクが入力された場合に、板バネ321の位置ずれが発生するおそれがある。さらに、板バネ321の位置ずれによる板バネ321と支持部材322との間の摩擦音が発生するおそれがある。
 また、トルクセンサ155は、トルクセンサ311と比較して、板バネの数を削減することができ、組立て工数を削減することができる。
 <5.変形例>
 なお、以上の説明では、支持部材402及び支持部材403が、板バネ401の延在部401b1によって伝達されるトルクが所定の値より大きい場合に、延在部401b1の一端部401c1側の部分を撓み方向側において支持する例について説明したが、支持される部分は、係る例に限定されない。例えば、延在部401b1の一端部401c1より他端部401d1側の部分が、支持部材402及び支持部材403によって支持されてもよい。また、延在部401b1における複数の部分が、支持部材402及び支持部材403によって支持されてもよい。
 同様に、例えば、板バネ401の延在部401b2の一端部401c2より他端部401d2側の部分が、支持部材402及び支持部材403によって支持されてもよい。また、延在部401b2における複数の部分が、支持部材402及び支持部材403によって支持されてもよい。
 以上の説明では、アクチュエータ301により大腿側部材111の本体部121にトルクを伝達し、大腿側部材111を下腿側部材112に対して相対的に回動させる例を示した。これに対して、例えば、アクチュエータ301により大腿側部材111の膝継手122にトルクを伝達し、膝継手122に接続された下腿側部材112を、大腿側部材111に対して相対的に回動させるようにすることも可能である。
 本技術に係るアクチュエータは、上述した義足101以外にも適用することが可能である。例えば、本技術に係るアクチュエータは、各種のロボットの関節部に適用することが可能である。また、例えば、本技術に係るアクチュエータは、回動部を含む各種の機器に適用することが可能である。
 <6.その他>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲は係る例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 U字型に屈曲した屈曲部、及び、前記屈曲部から延びる第1の延在部を備え、前記第1の延在部の前記屈曲部側の端部である第1の一端部が片持ち支持され、前記第1の延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、
 前記第1の延在部によって第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第1の支持部材と
 を備えるアクチュエータ。
(2)
 前記板バネは、前記屈曲部から前記第1の延在部に対して斜め方向に延びる第2の延在部をさらに備え、
 前記第2の延在部の前記屈曲部側の端部である第2の一端部が片持ち支持され、
 前記第2の延在部は、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能であり、
 前記第1の支持部材は、前記第2の延在部によって前記第1の方向と反対の第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第2の延在部の一部を撓み方向側において支持する
 前記(1)に記載のアクチュエータ。
(3)
 前記第1の延在部によって前記第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持するか、又は、前記第2の延在部によって前記第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第2の延在部の一部を撓み方向側において支持するか第2の支持部材を
 さらに備える前記(2)に記載のアクチュエータ。
(4)
 前記板バネは、前記屈曲部の回動方向に沿って間隔を空けて複数設けられ、
 前記第1の支持部材は、同じ前記板バネの前記第1の延在部と前記第2の延在部との間に配置され、
 前記第2の支持部材は、隣接する2個の前記板バネの間に配置される
 前記(3)に記載のアクチュエータ。
(5)
 前記板バネ、前記第1の支持部材、及び、前記第2の支持部材が前記屈曲部の回動方向に沿って配置された中央部に連通孔部が形成される
 前記(4)に記載のアクチュエータ。
(6)
 前記連通孔部に挿入され、前記第1の延在部及び前記第2の延在部にトルクを伝達する中空構造の第1の出力軸を
 さらに備える前記(5)に記載のアクチュエータ。
(7)
 駆動モータと、
 前記駆動モータのトルクを出力する中空構造の第2の出力軸と、
 前記第2の出力軸により伝達されるトルクを所定の減速比で変換するギヤと
 をさらに備え、
 前記第1の出力軸は、前記ギヤから出力されるトルクを前記第1の延在部及び前記第2の延在部に伝達する
 前記(6)に記載のアクチュエータ。
(8)
 前記第1の出力軸の回転軸と前記第2の出力軸の回転軸とが略一致し、
 前記第1の出力軸の中空部と前記第2の出力軸の中空部とが軸方向において重なる
 前記(7)に記載のアクチュエータ。
(9)
 前記第1の支持部材は、
  前記第1の延在部によって前記第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第1の面と、
  前記第2の延在部によって前記第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第2の延在部の一部を撓み方向側において支持する第2の面と
 を備える
 前記(2)乃至(8)のいずれかに記載のアクチュエータ。
(10)
 前記板バネの前記屈曲部は、前記第1の支持部材の一端に嵌合される
 前記(2)乃至(9)のいずれかに記載のアクチュエータ。
(11)
 前記板バネは、前記屈曲部の回動方向に沿って間隔を空けて複数設けられる、
 前記(2)又は(3)に記載のアクチュエータ。
(12)
 前記板バネは、前記屈曲部の回動方向に沿って等間隔に4個設けられる
 前記(11)に記載のアクチュエータ。
(13)
 前記第1の延在部によって前記第1の方向と反対の第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第2の支持部材を
 さらに備える前記(1)又は(2)に記載のアクチュエータ。
(14)
 前記第1の支持部材と前記第2の支持部材とが、前記第1の延在部の前記第1の一端部を挟む
 前記(13)に記載のアクチュエータ。
(15)
 前記第1の延在部の一端部に対して相対的に回動自在な回動体を
 さらに備え、
 前記第1の延在部は、駆動モータから出力されたトルクを前記回動体へ伝達し、
 前記第1の延在部の一端部は、前記駆動モータの出力軸と同期して回動自在であり、
 前記第1の延在部の他端部は、前記回動体と一体に回動自在である
 前記(1)乃至(14)のいずれかに記載のアクチュエータ。
(16)
 前記第1の支持部材は、前記第1の延在部の前記一端部と一体に回動自在である
 前記(15)に記載のアクチュエータ。
(17)
 前記回動体は、前記第1の延在部の前記一端部の回動軸まわりに回動自在である
 前記(15)又は(16)に記載のアクチュエータ。
(18)
 大腿側部材と、
 下腿側部材と、
 前記大腿側部材と前記下腿側部材とを接続し、前記大腿側部材と前記下腿側部材のうち一方へトルクを伝達することにより、前記大腿側部材と前記下腿側部材のうち一方を他方に対して相対的に回動させるアクチュエータと
 を備え、
 前記アクチュエータは、
  U字型に屈曲した屈曲部、及び、前記屈曲部から延びる延在部を備え、前記延在部の前記屈曲部側の端部である一端部が片持ち支持され、前記延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、
  前記延在部によって伝達されるトルクが所定の値より大きい場合に、前記延在部の一部を撓み方向側において支持する支持部材と
 を備える
 義足。
 101 義足, 111 大腿側部材, 112 下腿側部材, 121 本体部, 121a 接続部, 122 膝継手, 122a 接続部, 122b 収容部, 131 延在部, 132 接地部, 151 駆動モータ, 152 出力軸, 152a 中空部, 153 ギヤボックス, 154 出力軸, 155 トルクセンサ, 156 接続部材, 157乃至162 ベアリング, 181 変位センサ, 182 制御装置, 301 アクチュエータ, 312 回動体, 312a ベース部, 312b 突設部, 312c 突起部, 312d 溝部, 312e ピン, 312f 内周面, 401 板バネ, 401a 屈曲部, 401b1,401b2 延在部, 401c1,401c2 一端部, 401d1,401d2 他端部 402 支持部材, 402a 貫通穴, 402b 対向面, 402c 貫通穴, 402d 側面, 403 支持部材, 403a 貫通穴, 403b 対向面, 403c 貫通穴, 403d 側面

Claims (18)

  1.  U字型に屈曲した屈曲部、及び、前記屈曲部から延びる第1の延在部を備え、前記第1の延在部の前記屈曲部側の端部である第1の一端部が片持ち支持され、前記第1の延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、
     前記第1の延在部によって第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第1の支持部材と
     を備えるアクチュエータ。
  2.  前記板バネは、前記屈曲部から前記第1の延在部に対して斜め方向に延びる第2の延在部をさらに備え、
     前記第2の延在部の前記屈曲部側の端部である第2の一端部が片持ち支持され、
     前記第2の延在部は、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能であり、
     前記第1の支持部材は、前記第2の延在部によって前記第1の方向と反対の第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第2の延在部の一部を撓み方向側において支持する
     請求項1に記載のアクチュエータ。
  3.  前記第1の延在部によって前記第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持するか、又は、前記第2の延在部によって前記第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第2の延在部の一部を撓み方向側において支持するか第2の支持部材を
     さらに備える請求項2に記載のアクチュエータ。
  4.  前記板バネは、前記屈曲部の回動方向に沿って間隔を空けて複数設けられ、
     前記第1の支持部材は、同じ前記板バネの前記第1の延在部と前記第2の延在部との間に配置され、
     前記第2の支持部材は、隣接する2個の前記板バネの間に配置される
     請求項3に記載のアクチュエータ。
  5.  前記板バネ、前記第1の支持部材、及び、前記第2の支持部材が前記屈曲部の回動方向に沿って配置された中央部に連通孔部が形成される
     請求項4に記載のアクチュエータ。
  6.  前記連通孔部に挿入され、前記第1の延在部及び前記第2の延在部にトルクを伝達する中空構造の第1の出力軸を
     さらに備える請求項5に記載のアクチュエータ。
  7.  駆動モータと、
     前記駆動モータのトルクを出力する中空構造の第2の出力軸と、
     前記第2の出力軸により伝達されるトルクを所定の減速比で変換するギヤと
     をさらに備え、
     前記第1の出力軸は、前記ギヤから出力されるトルクを前記第1の延在部及び前記第2の延在部に伝達する
     請求項6に記載のアクチュエータ。
  8.  前記第1の出力軸の回転軸と前記第2の出力軸の回転軸とが略一致し、
     前記第1の出力軸の中空部と前記第2の出力軸の中空部とが軸方向において重なる
     請求項7に記載のアクチュエータ。
  9.  前記第1の支持部材は、
      前記第1の延在部によって前記第1の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第1の面と、
      前記第2の延在部によって前記第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第2の延在部の一部を撓み方向側において支持する第2の面と
     を備える
     請求項2に記載のアクチュエータ。
  10.  前記板バネの前記屈曲部は、前記第1の支持部材の一端に嵌合される
     請求項2に記載のアクチュエータ。
  11.  前記板バネは、前記屈曲部の回動方向に沿って間隔を空けて複数設けられる、
     請求項2に記載のアクチュエータ。
  12.  前記板バネは、前記屈曲部の回動方向に沿って等間隔に4個設けられる
     請求項11に記載のアクチュエータ。
  13.  前記第1の延在部によって前記第1の方向と反対の第2の方向に伝達されるトルクが所定の値より大きい場合に、前記第1の延在部の一部を撓み方向側において支持する第2の支持部材を
     さらに備える請求項1に記載のアクチュエータ。
  14.  前記第1の支持部材と前記第2の支持部材とが、前記第1の延在部の前記第1の一端部を挟む
     請求項13に記載のアクチュエータ。
  15.  前記第1の延在部の一端部に対して相対的に回動自在な回動体を
     さらに備え、
     前記第1の延在部は、駆動モータから出力されたトルクを前記回動体へ伝達し、
     前記第1の延在部の一端部は、前記駆動モータの出力軸と同期して回動自在であり、
     前記第1の延在部の他端部は、前記回動体と一体に回動自在である
     請求項1に記載のアクチュエータ。
  16.  前記第1の支持部材は、前記第1の延在部の前記一端部と一体に回動自在である
     請求項15に記載のアクチュエータ。
  17.  前記回動体は、前記第1の延在部の前記一端部の回動軸まわりに回動自在である
     請求項15に記載のアクチュエータ。
  18.  大腿側部材と、
     下腿側部材と、
     前記大腿側部材と前記下腿側部材とを接続し、前記大腿側部材と前記下腿側部材のうち一方へトルクを伝達することにより、前記大腿側部材と前記下腿側部材のうち一方を他方に対して相対的に回動させるアクチュエータと
     を備え、
     前記アクチュエータは、
      U字型に屈曲した屈曲部、及び、前記屈曲部から延びる延在部を備え、前記延在部の前記屈曲部側の端部である一端部が片持ち支持され、前記延在部が、トルクを伝達することによって、当該トルクに応じて板厚方向に撓み変形可能な板バネと、
      前記延在部によって伝達されるトルクが所定の値より大きい場合に、前記延在部の一部を撓み方向側において支持する支持部材と
     を備える
     義足。
PCT/JP2022/010846 2021-09-27 2022-03-11 アクチュエータ及び義足 WO2023047642A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023549340A JPWO2023047642A1 (ja) 2021-09-27 2022-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156632 2021-09-27
JP2021156632 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023047642A1 true WO2023047642A1 (ja) 2023-03-30

Family

ID=85720345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010846 WO2023047642A1 (ja) 2021-09-27 2022-03-11 アクチュエータ及び義足

Country Status (2)

Country Link
JP (1) JPWO2023047642A1 (ja)
WO (1) WO2023047642A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR556363A (fr) * 1921-12-28 1923-07-19 Anciens Ets Sautter Harle Accouplement élastique
JPS54133249A (en) * 1978-03-22 1979-10-16 Geislinger Co Schwingungstechn Rotary oscillation damper or oscillation damping rotary elastic clutch
JPH0610641U (ja) * 1992-07-13 1994-02-10 株式会社フコク 回転伝達緩衝装置
WO2009054161A1 (ja) * 2007-10-22 2009-04-30 Yoichiro Hamamoto 人力車両用回転伝達機構及びそれを備えた人力車両並びに自転車
WO2017212708A1 (ja) * 2016-06-07 2017-12-14 ソニー株式会社 アクチュエータ及び義足

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR556363A (fr) * 1921-12-28 1923-07-19 Anciens Ets Sautter Harle Accouplement élastique
JPS54133249A (en) * 1978-03-22 1979-10-16 Geislinger Co Schwingungstechn Rotary oscillation damper or oscillation damping rotary elastic clutch
JPH0610641U (ja) * 1992-07-13 1994-02-10 株式会社フコク 回転伝達緩衝装置
WO2009054161A1 (ja) * 2007-10-22 2009-04-30 Yoichiro Hamamoto 人力車両用回転伝達機構及びそれを備えた人力車両並びに自転車
WO2017212708A1 (ja) * 2016-06-07 2017-12-14 ソニー株式会社 アクチュエータ及び義足

Also Published As

Publication number Publication date
JPWO2023047642A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
US11819467B2 (en) Actuator for physical therapy
EP2828043B1 (en) High density actuator having a harmonic drive and a torque limiting assembly
US8821338B2 (en) Elastic rotary actuator
JP4783434B2 (ja) 関節機構及び関節装置
US20120286629A1 (en) Modular rotational electric actuator
US10239213B1 (en) Flexure assembly for force/torque sensing
Nam et al. Compliant actuation of parallel-type variable stiffness actuator based on antagonistic actuation
US5955801A (en) Microfabricated microengine with constant rotation rate
Lee et al. A pan–tilt orienting mechanism with parallel axes of flexural actuation
US6337547B1 (en) Linking element with screw jack and its use for an industrial robot arm
WO2023047642A1 (ja) アクチュエータ及び義足
EP3924637A1 (en) Nonlinear spring mechanism for actuation systems and its design method
Torres-Jara et al. A simple and scalable force actuator
JP6950687B2 (ja) 義足
EP4003663B1 (en) A tendon tension sensing apparatus and a clutch mechanism for a mechanical effector device
JP7164137B2 (ja) 可変剛性弾性体及びこれを有するアクチュエーターモジュール
RU2721040C1 (ru) Соединительный компонент для передачи крутящей нагрузки с упругой реакцией
CN115875408A (zh) 减速器
Zhou et al. Design of a compact rotary series elastic actuator with nonlinear stiffness for lower limb exoskeletons
KR102490441B1 (ko) 탄성 감속 구동기 및 이를 구비하는 착용형 보조장치
WO2014201374A1 (en) Cam driven compliant torque sensor
JP7482450B2 (ja) トルクリミッター
WO2023277799A2 (en) Reconfigurable rotary series elastic actuator
CN216895503U (zh) 双向多分支平面涡卷扭簧
US20240151297A1 (en) Drive power transmitting mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549340

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18693673

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872401

Country of ref document: EP

Kind code of ref document: A1