WO2023047488A1 - 投影基板及び眼鏡型端末 - Google Patents
投影基板及び眼鏡型端末 Download PDFInfo
- Publication number
- WO2023047488A1 WO2023047488A1 PCT/JP2021/034799 JP2021034799W WO2023047488A1 WO 2023047488 A1 WO2023047488 A1 WO 2023047488A1 JP 2021034799 W JP2021034799 W JP 2021034799W WO 2023047488 A1 WO2023047488 A1 WO 2023047488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projection
- region
- light
- incident
- area
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 101
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 9
- 239000003086 colorant Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1086—Beam splitting or combining systems operating by diffraction only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Definitions
- the present invention relates to a projection board and a glasses-type terminal.
- the present invention has been made in view of these points, and it is an object of the present invention to reduce variations in brightness of a projected image that a user observes with a simple configuration.
- the incident area has a diffraction grating in which a plurality of first grooves are formed with a first period
- the branch area has a diffraction grating in which a plurality of second grooves are formed with a second period.
- an emission region having a diffraction grating in which a plurality of third grooves are formed with a third period, and the incidence region receives projection light for projecting the image light and receives the incident projection light.
- Waveguide is directed toward the branched region, the branched region is arranged in the traveling direction of the incident projection light, has a plurality of first divided regions with different depths of the second grooves, and the incident A portion of the projection light incident from the region is guided toward an emission region, and the emission region guides at least a portion of the projection light incident from the branch region to emit the image from the second surface.
- a projection substrate is provided that emits as light.
- the branched region has three or more of the first divided regions, and the depth of the second groove provided in one first divided region is greater than that of the one first divided region.
- the depth may be greater than the depth of the second groove provided in the first divided area near the incidence area.
- a rate of change in the depth of the second grooves of two adjacent first divided regions among the plurality of first divided regions may increase with increasing distance from the incident region.
- the branching region has a first reflecting region that reflects at least part of the light that has passed through the plurality of first segmented regions back to the plurality of first segmented regions, and the plurality of first segmented regions comprise: At least part of the light reflected by the first reflective area may be guided to the emitting area.
- the incidence area guides the projection light to the branch area so as to have a divergence angle centering on the first direction in the plane of the projection substrate, and the branch area diverges toward the branch area as it separates from the incidence area. It may have a shape extending away from the first direction, which is the direction in which the projection light travels, through the incident region, and may be provided in the region through which the projection light passes.
- the third period of the plurality of third grooves provided in the emission region may be different from the second period of the plurality of second grooves in the branch region.
- the emission area may be arranged in the traveling direction of the projection light incident from the branch area, and may have a plurality of second divided areas with different depths of the third grooves.
- the output region has two or more of the second divided regions, and the depth of the third groove provided in one second divided region is greater than that of the one second divided region.
- the depth may be greater than the depth of the third groove provided in the second divided area near the branch area.
- the emission area has a second reflection area that reflects at least part of the light that has passed through the plurality of second division areas back to the plurality of second division areas, and the plurality of second division areas are: At least part of the light reflected by the second reflective area may be emitted from the second surface as the image light.
- the first period of the plurality of first grooves in the incident area may be the same period as the third period of the plurality of third grooves in the emission area.
- the spectacles-type terminal worn by a user is provided as at least one of a lens for the right eye and a lens for the left eye of the user.
- the projection substrate according to any one of claims 1 to 10, wherein the image light is projected onto the second surface while transmitting at least part of the light to the user's eye. and a projection unit provided in the frame for projecting the image light onto the emission area and irradiating the incident area of the projection substrate with the projection light. provide a terminal.
- a plurality of the projection substrates are fixed to the frame, and the projection unit irradiates the incident regions provided on the plurality of the projection substrates with the projection light of different wavelengths, respectively.
- the emission regions respectively provided on the projection substrate overlap at least partially in a plan view, and a plurality of image light beams corresponding to the projection light beams respectively irradiated from the projection unit to the plurality of incidence regions are projected. from the second surface of the projection substrate to the eyes of the user, respectively.
- FIG. 1 shows a configuration example of a glasses-type terminal 10 according to this embodiment.
- 4 shows an outline of an optical path of projection light in the glasses-type terminal 10 according to the present embodiment.
- 4 shows an outline of an optical path of projection light on a projection substrate 100 according to the present embodiment.
- An example of projection light emitted to the projection substrate 100 by the projection unit 120 according to the present embodiment and image light emitted from the projection substrate 100 is shown.
- 1 shows a configuration example of a projection substrate 100 according to this embodiment. 4 shows a modified example of the glasses-type terminal 10 according to the present embodiment.
- FIG. 1 shows a configuration example of a glasses-type terminal 10 according to this embodiment.
- the three axes orthogonal to each other are the X-axis, the Y-axis, and the Z-axis.
- the glasses-type terminal 10 is, for example, a wearable device worn by a user.
- the spectacles-type terminal 10 projects image light onto a display area provided on the projection substrate 100 while allowing the user to observe the scenery through the spectacles.
- the glasses-type terminal 10 includes a projection board 100 , a frame 110 and a projection section 120 .
- the projection substrate 100 projects the image light onto the second surface while transmitting at least part of the light incident from the first surface to the user's eyes.
- the first surface of the projection board 100 is the surface facing away from the user when the user wears the spectacles-type terminal 10 .
- the second surface of the projection board 100 is the surface facing the user when the user wears the spectacles-type terminal 10 .
- FIG. 1 shows an example in which the first and second surfaces of the projection substrate 100 are arranged substantially parallel to the XY plane.
- the projection substrate 100 is, for example, a glass substrate on which a diffraction grating that functions as a waveguide is formed. The projection substrate 100 will be described later.
- the frame 110 fixes the projection substrate 100.
- the frame 110 is provided with the projection substrate 100 as at least one of the lens for the right eye and the lens for the left eye of the user.
- FIG. 1 shows an example in which a frame 110 is provided with a projection substrate 100a as a lens for the user's right eye and a projection substrate 100b as a lens for the left eye of the user.
- the frame 110 may be provided with one projection substrate 100 as a lens for the user's right eye or left eye. Also, the frame 110 may be provided with one projection substrate 100 as a binocular lens for the user. In this case, the frame 110 may have the shape of goggles.
- the frame 110 has parts such as temples and straps so that the user can wear the spectacles-type terminal 10 .
- the projection unit 120 is provided on the frame 110 and irradiates the projection substrate 100 with projection light for projecting image light onto the projection substrate 100 .
- the frame 110 is provided with one or a plurality of such projection units 120 .
- FIG. 1 shows an example in which the frame 110 is provided with a projection unit 120a for irradiating the projection substrate 100a with the projection light L1 and a projection unit 120b for irradiating the projection substrate 100b with the projection light L2.
- the projection unit 120 may be provided at a portion of the frame 110 where the projection substrate 100 is fixed, or may be provided at a temple of the frame 110 or the like. It is desirable that the projection unit 120 be provided so as to be integrated with the frame 110 .
- the projection unit 120 irradiates the projection substrate 100 with projection light including, for example, one wavelength to allow the user to observe a monochromatic image.
- the projection unit 120 may irradiate the projection substrate 100 with projection light including multiple wavelengths to allow the user to observe an image including multiple colors.
- FIG. 2 schematically shows the optical path of projection light in the glasses-type terminal 10 according to this embodiment.
- the projection unit 120 irradiates projection light onto an incident area 210 provided on the projection substrate 100 .
- the incident area 210 guides projection light into the substrate of the projection substrate 100 .
- the projection substrate 100 emits the projection light guided within the substrate from the emission region 230 as image light.
- the incident area 210 and the emitting area 230 will be described later.
- FIG. 3 schematically shows the optical path of projection light on the projection substrate 100 according to this embodiment.
- the projection substrate 100 has an incident area 210, a branch area 220, and an exit area 230, which will be described later.
- the projection light L enters the incident area 210, passes through the branch area 220, and exits from the exit area 230 as the image light P.
- the branching region 220 guides the projection light L piece by piece to the exit region 230 as the projection light L travels away from the entrance region 210 .
- the emission area 230 also emits part of the projection light L as part of the image light P as the projection light L travels away from the branch area 220 .
- the projection substrate 100 emits the projection light L incident on the incident area 210 from the emitting area 230 as the image light P.
- the branch region 220 guides the projection light L to the emission region 230 at a constant rate in the entire region of the branch region 220 .
- the amount of the projection light L decreases. It can be different.
- the emission area 230 emits the projection light L as the image light P at a constant rate in the entire area of the emission area 230 .
- the amount of the projection light L decreases.
- the intensity may vary depending on the For example, the brightness may gradually decrease from the upper left pixel to the lower right pixel of the image projected by the emission area 230 .
- the projection substrate 100 according to this embodiment reduces such variations in brightness.
- FIG. 4 shows an example of projection light L that the projection unit 120 irradiates the projection substrate 100 and image light P emitted from the projection substrate 100 according to the present embodiment.
- the projection unit 120 irradiates the projection light L toward the second surface of the projection substrate 100 located in the +Z direction, for example.
- the projection light L corresponds to an image to be viewed by the user. For example, when a screen or the like is installed on a surface substantially parallel to the XY plane and the projection light L is projected, the image M1 to be viewed by the user is projected onto the screen. is displayed.
- the image shown to the user is, for example, an AR (Augmented Reality) image or a VR (Virtual Reality) image created by a processor of the projection unit 120 .
- the projection unit 120 irradiates, as the projection light L, a plurality of light rays that form the image M1 on a plane substantially parallel to the XY plane.
- the projection unit 120 projects a substantially rectangular image M1 with the X-axis direction as the longitudinal direction on a plane substantially parallel to the XY plane.
- the projection unit 120 projects a substantially rectangular image M1 with the X-axis direction as the longitudinal direction on a plane substantially parallel to the XY plane.
- five light rays among the plurality of light rays emitted by the projection unit 120 are shown as input light rays 20 .
- the light ray corresponding to the upper left pixel of the image is the first input light ray 20a
- the light ray corresponding to the lower left pixel of the image is the second input light ray 20b
- the light ray corresponding to the center pixel of the image is the third input light ray 20c
- the light ray corresponding to the upper right pixel of the image is the fourth input light ray 20d
- the light ray corresponding to the lower right pixel of the image is the fifth input light ray 20e.
- the projection unit 120 for example, irradiates the incident area 210 of the projection substrate 100 with such projection light L so as to create an erect virtual image at infinity or at a predetermined position.
- the projection light that has entered the incident region 210 passes through the branch region 220 and is emitted as image light P from the emission region 230 .
- the image light P is emitted from the emission area 230 and enters the user's eyes at a distance d from the projection substrate 100 .
- the image light P forms an image M2 on the retina of the user's eye.
- the image light P includes a plurality of ray bundles forming an image M2.
- output ray bundles 30 five ray bundles out of a plurality of ray bundles that are emitted from the circular area C of the emission area 230 of the projection substrate 100 and form an image at a predetermined position are shown as output ray bundles 30 .
- the ray bundle that forms an image as the lower right pixel of the image is the first output ray bundle 30a
- the ray bundle that forms the upper right pixel as the second output ray bundle 30b is formed as the central pixel of the image.
- the ray bundle is a third output ray bundle 30c, the ray bundle forming an image as the lower left pixel of the image is a fourth output ray bundle 30d, and the ray bundle forming an image as the upper left pixel is a fifth output ray bundle 30e.
- Each ray bundle corresponds to each of the plurality of input rays 20 incident from the projection unit 120 .
- the first output ray bundle 30a corresponds to the first input ray 20a
- the first input ray 20a is branched multiple times and multiple times from the incident area 210 to the output area 230 of the projection substrate 100. Includes multiple rays generated by diffraction, etc.
- a second output ray bundle 30b feeds a second input ray 20b
- a third output ray bundle 30c feeds a third input ray 20c
- a fourth output ray bundle 30d feeds a fourth input ray 20d
- a fifth output ray bundle 30e correspond to the fifth input beam 20e, respectively.
- the image M2 formed by the image light P emitted from the emission area 230 formed on the retina of the user's eye corresponds to the image M1 projected by the projection light L emitted by the projection unit 120 .
- the user wearing the glasses-type terminal 10 can feel as if the image M2 is projected onto the second surface of the projection board 100 superimposed on the scenery seen through the projection board 100 .
- the emission area 230 functions as a display area for displaying the image M2 corresponding to the image M1 projected by the projection light L.
- the image M2 observed by the user shows an example in which the image M1 projected by the projection light L is inverted vertically and horizontally.
- the image M1 projected by the projection light L may be a still image, or alternatively may be a moving image.
- the projection substrate 100 that emits the image light P corresponding to the incident projection light L as described above will be described.
- FIG. 5 shows a configuration example of the projection substrate 100 according to this embodiment.
- FIG. 3 shows an example in which the first and second surfaces of the projection substrate 100 are arranged substantially parallel to the XY plane.
- the projection substrate 100 is a substrate for projecting image light on the second surface while transmitting at least part of the light incident from the first surface to the second surface on the opposite side of the first surface.
- the projection substrate 100 is, for example, a glass substrate.
- the projection substrate 100 comprises an incident area 210 , a branch area 220 and an exit area 230 .
- the incident region 210 receives projection light for projecting image light and guides the incident projection light toward the branch region 220 .
- FIG. 5 shows an example in which the incidence area 210 has a circular shape in a plane substantially parallel to the XY plane, but the invention is not limited to this.
- the incident region 210 only needs to guide the projection light to the branching region 220, and may have an elliptical, polygonal, trapezoidal, or other shape.
- the incident region 210 has a diffraction grating in which a plurality of first grooves 212 are formed with a first period.
- the plurality of first grooves 212 function as a diffraction grating by being arranged in the same direction on the upper surface of the projection substrate 100 with predetermined groove widths and intervals.
- the incident area 210 has a reflective or transmissive diffraction grating, and guides projection light toward the branch area 220 by reflective or transmissive diffraction.
- the first period of the plurality of first grooves 212 ranges from about 10 nm to about 10 ⁇ m, for example.
- the first period is preferably in the range of approximately 100 nm to approximately 1 ⁇ m. More preferably, the first period ranges from about 200 nm to about 800 nm.
- the depth of the plurality of first grooves 212 ranges from about 1 nm to about 10 ⁇ m.
- the depth of the plurality of first grooves 212 is preferably in the range of approximately 50 nm to approximately 800 nm.
- the fill factor of the plurality of first grooves 212 ranges from about 0.1 to about 0.9.
- the fill factor of the plurality of first grooves 212 is preferably in the range of about 0.3 to about 0.7.
- the fill factor is a value obtained by dividing the distance between two adjacent first grooves 212 by the first period.
- the distance between two adjacent first grooves 212 may be called a line
- the width of the first grooves 212 may be called a space
- the first period may be called a pitch.
- the pitch is the sum of the line and the space
- the fill factor is the line divided by the pitch.
- the plurality of first grooves 212 are arranged, for example, in the direction from the incidence area 210 toward the branching area 220 .
- the traveling direction of projection light from the incident region 210 toward the branching region 220 is defined as a first direction.
- FIG. 5 shows an example in which the first direction is a direction substantially parallel to the X-axis direction, and first grooves 212 extending in a direction substantially parallel to the Y-axis direction are arranged in the first direction. Since the projection light is incident on the incident region 210 while converging, the incident region 210 guides the projection light to the branch region 220 so as to have a divergence angle centered on the first direction in the plane of the projection substrate 100. .
- the branching region 220 guides part of the projection light that has entered from the incident region 210 toward the emitting region 230 .
- the branch region 220 is provided in a region through which projection light passes, on a plane substantially parallel to the XY plane.
- the branching region 220 has a reflective diffraction grating and guides the projection light toward the output region 230 by reflective diffraction.
- the branch region 220 has, for example, a rectangular shape with the first direction as its longitudinal direction.
- the branch region 220 passes through the incidence region 210 and spreads away from the first direction, which is the direction in which the projection light travels, as it moves away from the incident region 210. It is preferable to have The branch region 220 has, for example, a trapezoidal, fan-shaped, or other shape on a plane substantially parallel to the XY plane.
- FIG. 5 shows an example where the bifurcation region 220 has a trapezoidal shape.
- the branch region 220 having such a shape can be formed corresponding to the region in which the projection light travels while spreading in the XY plane, and can guide the projection light efficiently.
- the branch region 220 has a diffraction grating in which a plurality of second grooves 222 are formed with a second period.
- the plurality of second grooves 222 function as a diffraction grating by being arranged in the same direction on the upper surface of the projection substrate 100 with predetermined groove widths and intervals.
- the branching region 220 functions, for example, as a reflective diffraction grating and guides projection light to the emission region 230 .
- the second period of the plurality of second grooves 222 is a period different from the first period of the plurality of first grooves 212 . As for the second period, it is desirable to select an appropriate period to guide the projection light to the emission area 230 .
- the second period ranges, for example, from about 10 nm to about 10 ⁇ m.
- the second period is preferably in the range of about 50 nm to 1 ⁇ m. More preferably, the second period ranges from about 100 nm to 700 nm.
- the depth of the plurality of second grooves 222 ranges from about 1 nm to about 10 ⁇ m.
- the depth of the plurality of second grooves 222 is preferably in the range of approximately 5 nm to approximately 800 nm.
- the fill factor of the plurality of second grooves 222 ranges from about 0.1 to about 0.9.
- the fill factor of the plurality of second grooves 222 is preferably in the range of about 0.2 to about 0.85.
- the plurality of second grooves 222 are arranged in a predetermined direction, for example.
- the direction from the branch region 220 to the emission region 230 is the second direction, and the angle formed by the first direction and the second direction is the first angle.
- the plurality of second grooves 222 are formed in a direction that is inclined in the second direction by half the first angle with respect to the first direction.
- the second direction is substantially parallel to the Y-axis direction
- the first angle is substantially 90 degrees
- the plurality of second grooves 222 are substantially 45 degrees with respect to the first direction.
- the branched region 220 has a plurality of first divided regions 224 arranged in the traveling direction of the incident projection light.
- the second grooves 222 formed in the plurality of first divided regions 224 have different depths.
- the second grooves 222 are formed such that the ratio of the light guided to the emission region 230 to the input projection light differs for each first division region 224 .
- the branch area 220 preferably has three or more first divided areas 224 .
- the branch region 220 is divided into a plurality of first divided regions 224, and by varying the light amount of the projection light guided to the emission region 230 for each first divided region 224, the distance from the incident region 210 is reduced. While guiding the projection light with different intensities to the emission region 230, the distribution of the amount of light in the direction perpendicular to the traveling direction of the projection light is adjusted to be substantially constant.
- the depth of the second groove 222 provided in one first divided region 224 is closer to the incidence region 210 than the one first divided region 224.
- the second groove provided in the first divided region 224 A second groove portion 222 is formed so as to be deeper than the depth of 222 .
- the rate of change in the depth of the second grooves 222 of two adjacent first divided regions 224 among the plurality of first divided regions 224 may increase as the distance from the incident region 210 increases.
- the first divided region 224a closest to the incident region 210 is configured to guide the incident projection light to the emission region 230 in an amount of approximately 1/4. It is assumed that the depth of two grooves 222a is formed. In this case, the remaining approximately 3/4 of the light amount of the projection light incident on the first divided region 224a closest to the incident region 210 is incident on the adjacent first divided region 224b.
- the depth of the second groove portion 222b is formed so that the first divided region 224b, which is the second closest to the incident region 210, guides light of approximately 1 ⁇ 3 of the incident projection light to the emitting region 230.
- the depth of the second groove portion 222b of the first divided region 224b that is second closest to the incident region 210 is 4/3 times as large as that of the first divided region 224a that is closest to the incident region 210.
- the depth of the second groove portion 222a is formed to be greater than the depth of the second groove portion 222a so as to be guided to the emission region 230.
- Such a first divided region 224 b guides to the emission region 230 the light amount of approximately 1/4 of the light amount of the projection light incident on the first divided region 224 a closest to the incident region 210 .
- the remaining approximately half of the light amount of the projection light incident on the first divided region 224a closest to the incident region 210 is incident on the adjacent first divided region 224c.
- the depth of the second groove portion 222c is formed so that the first divided region 224c, which is the third closest to the incident region 210, guides light of approximately half the amount of incident projection light to the output region 230.
- the depth of the second groove portion 222c of the first divided region 224c that is third closest to the incident region 210 is 3/2 times the light amount of the first divided region 224b that is second closest to the incident region 210.
- the depth is formed to be greater than the depth of the second groove portion 222b so as to guide the light to the emission region 230. As shown in FIG.
- the rate of change in the depth of the second grooves 222 of two adjacent first divided regions 224 among the three first divided regions 224 is formed to increase with increasing distance from the incident region 210 . Then, the first divided region 224c that is the third closest to the incident region 210 guides to the output region 230 the light of approximately 1/4 the light amount of the projection light that has entered the first divided region 224a that is closest to the incident region 210. It will be.
- the branching region 220 sets the light amount of the projection light guided to the emission region 230 to a predetermined value for each of the first divided regions 224, so that each of the first divided regions 224 It can be seen that the projection light can be guided to the emission regions 230 while the light amount of the projection light guided to the corresponding emission regions 230 is made to have a substantially constant distribution.
- the branching region 220 may further have a first reflecting region 226 at the furthest position from the incidence region 210 .
- FIG. 5 shows an example in which the branch region 220 has three first division regions 224 and first reflection regions 226 .
- the first reflective area 226 reflects at least part of the light that has passed through the plurality of first divided areas 224 back to the plurality of first divided areas 224 .
- the first reflective region 226 has a second groove 222 with a depth greater than the depth of the second groove 222 of the adjacent first divided region 224 .
- the depth of the second grooves 222 of the first reflection region 226 is approximately three times or more the largest depth of the second grooves 222 of the plurality of first divided regions 224 . More preferably, the depth of the second groove 222 of the first reflective region 226 is approximately ten times or more the largest depth of the second grooves 222 of the plurality of first divided regions 224 . Note that the second grooves 222 of the first reflective area 226 may be arranged in the first direction.
- the plurality of first division regions 224 guide at least part of the light reflected by the first reflection regions 226 to the emission region 230 . This allows the branch region 220 to guide more projection light to the emission region 230 .
- the depth of the second grooves 222 of the plurality of first divided regions 224 is determined by the amount of projected light guided to the emission region 230 by each of the first divided regions 224, including the light reflected by the first reflection regions 226. may be determined to be substantially constant.
- the emission region 230 guides at least part of the projection light incident from the branch region 220 and emits it from the second surface of the projection substrate 100 as image light.
- FIG. 5 shows an example in which the emission region 230 has a rectangular shape with the X-axis direction as the longitudinal direction on a plane substantially parallel to the XY plane, but the invention is not limited to this.
- the emission area 230 may have a shape such as a rectangle, a square, or a trapezoid whose longitudinal direction is the Y-axis direction, as long as it can guide projection light and emit it as image light.
- the emission region 230 has a diffraction grating in which a plurality of third grooves 232 are formed with a third period.
- the plurality of third grooves 232 function as a diffraction grating by being arranged in the same direction on the upper surface of the projection substrate 100 with predetermined groove widths and intervals.
- the exit area 230 has a reflective or transmissive diffraction grating to guide the image light towards the user's eyes by reflective or transmissive diffraction.
- the third period of the plurality of third grooves 232 provided in the emission region 230 is a period different from the second period of the plurality of second grooves 222 in the branch region 220 .
- the third period of the plurality of third grooves 232 of the emission area 230 may be the same period as the first period of the plurality of first grooves 212 of the incidence area 210 . In this manner, by matching the period of the diffraction gratings provided in the region where the projection light is incident and the region where the image light is emitted, it is possible to reduce distortion or the like that occurs in the image observed by the user.
- the third period is, for example, in the range from about 10 nm to about 10 ⁇ m.
- the third period preferably ranges from about 100 nm to about 1 ⁇ m. More preferably, the third period ranges from about 200 nm to about 800 nm.
- the depth of the plurality of third grooves 232 ranges from approximately 1 nm to approximately 10 ⁇ m.
- the depth of the plurality of third grooves 232 is preferably in the range of approximately 5 nm to approximately 800 nm.
- the fill factor of the plurality of third grooves 232 ranges from about 0.1 to about 0.9.
- the fill factor of the plurality of third grooves 232 is preferably in the range of about 0.2 to about 0.85.
- the plurality of third grooves 232 are arranged in the second direction from the branch region 220 toward the emission region 230, for example.
- FIG. 5 shows an example in which the third grooves 232 extending in the first direction are arranged in the second direction.
- the emission area 230 has a plurality of second divided areas 234 arranged in the traveling direction of the projection light incident from the branch area 220, similarly to the branch area 220.
- the third grooves 232 formed in the plurality of second divided regions 234 have different depths. In other words, the third grooves 232 are formed so that the ratio of light emitted as image light to the input projection light differs for each of the second divided regions 234 in the emission region 230 .
- the emission area 230 preferably has two or more second divided areas 234 .
- the depth of the third groove portion 232 provided in one second divided region 234 is the depth of the third groove portion provided in the second divided region 234 closer to the branch region 220 than the one second divided region 234. 232 depth.
- the rate of change in the depth of the third grooves 232 of two adjacent second divided regions 234 increases with increasing distance from the branch region 220. good too.
- the emission area 230 is divided into a plurality of second divided areas 234, and the amount of light emitted as image light is made different for each of the second divided areas 234.
- the emission region 230 guides the projection light as image light in the same manner as the plurality of first divided regions 224 of the branch region 220, and when an observer observes the image light as an image, the light intensity of the entire image is reduced. distribution can be adjusted to be substantially constant.
- the emission region 230 may further have a second reflective region 236 at the furthest position from the branching region 220 .
- FIG. 5 shows an example in which the emission area 230 has two second split areas 234 and a second reflection area 236 .
- the second reflective region 236 reflects at least part of the light that has passed through the plurality of second divided regions 234 back to the plurality of second divided regions 234 .
- the second reflective region 236 has a third groove 232 with a depth greater than the depth of the third groove 232 of the adjacent second divided region 234 .
- the depth of the third groove 232 of the second reflection region 236 is approximately three times or more as large as the depth of the third grooves 232 of the plurality of second divided regions 234 . It is more desirable that the depth of the third groove 232 of the second reflection region 236 is approximately ten times or more the largest depth of the third grooves 232 of the plurality of second divided regions 234 .
- the plurality of second divided areas 234 allow at least part of the light reflected by the second reflective areas 236 to be reflected from the second surface of the projection substrate 100 as image light. emitted as As a result, the emission area 230 can emit more projection light as image light, similarly to the branch area 220 .
- the depth of the third grooves 232 of the plurality of second divided regions 234 is such that the amount of light emitted from each second divided region 234 as image light including reflected light from the second reflecting regions 236 is substantially constant. It may be decided to let
- the projection substrate 100 splits the projection light incident on the incident region 210 at different ratios for each of the plurality of first split regions 224 of the splitting region 220 , and as image light.
- the projection substrate 100 can reduce variations in brightness of the projection image that the user observes.
- the projection substrate 100 emits the image light at a different rate for each of the plurality of second divided areas 234 in the emission area 230, thereby further reducing variations in image brightness.
- Such a projection substrate 100 can be realized by forming diffraction gratings corresponding to the incident area 210, branching area 220, and exit area 230 on the first or second surface of a glass substrate or the like.
- the groove forming the diffraction grating is made of resist, resin, or the like, for example. Therefore, the projection substrate 100 according to the present embodiment is a substrate that can be easily produced by forming grooves with a predetermined period and depth for each region without incorporating a complicated optical system.
- ⁇ Another example of the glasses-type terminal 10> An example of the spectacles-type terminal 10 in which the projection substrate 100 described above is provided on the frame 110 and the projection unit 120 irradiates the incident area 210 of the projection substrate 100 with projection light has already been described, but it is not limited to this. do not have.
- a plurality of projection boards 100 may be fixed to the frame 110 of the glasses-type terminal 10 .
- the spectacles-type terminal 10 as described above will be described below.
- FIG. 6 shows a modified example of the glasses-type terminal 10 according to this embodiment.
- the same reference numerals are assigned to the operations that are substantially the same as those of the spectacles-type terminal 10 according to the present embodiment shown in FIG. 1, and the description thereof is omitted.
- the appearance of the spectacles-type terminal 10 of the modified example may be substantially the same as that of the spectacles-type terminal 10 shown in FIG.
- a plurality of projection boards 100 are fixed to the frame 110 of the glasses-type terminal 10 of the modified example.
- the plurality of projection substrates 100 are fixed to the frame 110 so that the emission areas 230 provided on each of the plurality of projection substrates 100 at least partially overlap each other in plan view substantially parallel to the XY plane.
- three projection substrates 100R, 100G, and 100B are fixed to the frame 110 of the glasses-type terminal 10, and the emission regions 230R, 230G, and 230B of the three projection substrates 100 are shown. are overlapped in plan view on the XY plane.
- the projection unit 120 irradiates the incident regions 210 provided on each of the plurality of projection substrates 100 with projection light of different wavelengths. Accordingly, the emission areas 230 provided on the plurality of projection substrates 100 respectively emit image light corresponding to the projection light emitted from the projection unit 120 to the plurality of incidence areas 210 respectively onto the second surfaces of the plurality of projection substrates 100 . to the user's eye, respectively.
- FIG. 6 shows an example in which the projection unit 120 irradiates three projection light beams corresponding to the three primary colors of RGB, red, green, and blue, for forming an image onto the incident regions 210 of the three projection substrates 100, respectively. Then, the three projection substrates 100 superimpose three image lights corresponding to the three primary colors of RGB and emit them to the user's eyes. This allows the user to observe an image with, for example, 2n colors.
- n is a positive integer such as 4, 8, 16, 24, and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
複数の第1溝部が第1周期で形成されている回折格子を有する入射領域と、複数の第2溝部が第2周期で形成されている回折格子を有する分岐領域と、複数の第3溝部が第3周期で形成されている回折格子を有する出射領域とを備え、入射領域は、入射した投影光を分岐領域に向けて導波し、分岐領域は、第2溝部の深さが異なる複数の第1分割領域を有し、入射領域から入射した投影光の一部を出射領域に向けて導波し、出射領域は、分岐領域から入射した投影光の少なくとも一部を導波して第2面から画像光として出射する、投影基板。
Description
本発明は、投影基板及び眼鏡型端末に関する。
従来、ウェーブガイド等を含む光学系を用いて2次元画像をユーザに観察させるように表示する眼鏡型のデバイス、ヘッドマウントディスプレイ等が知られている(例えば、特許文献1を参照)。
このような装置は、限られた空間に光学系を組み込むので、光学系が複雑になってしまうことがあった。また、簡便な光学系にすると、表示領域に投影する画像の輝度にバラツキが生じてしまうことがあった。
そこで、本発明はこれらの点に鑑みてなされたものであり、簡便な構成でユーザに観察させる投影画像の輝度のバラツキを低減できるようにすることを目的とする。
本発明の第1の態様においては、第1面から入射した光の少なくとも一部を前記第1面の反対側の第2面へと透過させつつ、前記第2面に画像光を投影させるための投影基板であって、複数の第1溝部が第1周期で形成されている回折格子を有する入射領域と、複数の第2溝部が第2周期で形成されている回折格子を有する分岐領域と、複数の第3溝部が第3周期で形成されている回折格子を有する出射領域とを備え、前記入射領域は、前記画像光を投影させるための投影光が入射し、入射した前記投影光を前記分岐領域に向けて導波し、前記分岐領域は、入射した前記投影光の進行方向に配列されており、前記第2溝部の深さが異なる複数の第1分割領域を有し、前記入射領域から入射した前記投影光の一部を出射領域に向けて導波し、前記出射領域は、前記分岐領域から入射した前記投影光の少なくとも一部を導波して前記第2面から前記画像光として出射する、投影基板を提供する。
前記分岐領域は、3つ以上の前記第1分割領域を有しており、一の第1分割領域に設けられている前記第2溝部の深さは、前記一の第1分割領域よりも前記入射領域に近い前記第1分割領域に設けられている前記第2溝部の深さよりも大きくてもよい。
複数の前記第1分割領域のうち隣接する2つの前記第1分割領域の前記第2溝部の深さの変化率は、前記入射領域から離れるほど大きくてもよい。
前記分岐領域は、複数の前記第1分割領域を通過した光の少なくとも一部を再び複数の前記第1分割領域へと反射する第1反射領域を有し、複数の前記第1分割領域は、前記第1反射領域が反射した光の少なくとも一部を前記出射領域へと導波してもよい。
前記入射領域は、当該投影基板の面内において第1方向を中心として広がり角を有するように前記投影光を前記分岐領域へと導波し、前記分岐領域は、前記入射領域から離れるにつれて、前記入射領域を通り前記投影光の進行方向である前記第1方向から離れるように広がる形状を有し、前記投影光が通過する領域に設けられていてもよい。
前記出射領域に設けられている複数の前記第3溝部の前記第3周期は、前記分岐領域の複数の前記第2溝部の前記第2周期とは異なっていてもよい。
前記出射領域は、前記分岐領域から入射した前記投影光の進行方向に配列されており、前記第3溝部の深さが異なる複数の第2分割領域を有してもよい。
前記出射領域は、2つ以上の前記第2分割領域を有しており、一の第2分割領域に設けられている前記第3溝部の深さは、前記一の第2分割領域よりも前記分岐領域に近い前記第2分割領域に設けられている前記第3溝部の深さよりも大きくてもよい。
前記出射領域は、複数の前記第2分割領域を通過した光の少なくとも一部を再び複数の前記第2分割領域へと反射する第2反射領域を有し、複数の前記第2分割領域は、前記第2反射領域が反射した光の少なくとも一部を前記第2面から前記画像光として出射してもよい。
前記入射領域の複数の第1溝部の第1周期は、前記出射領域の複数の前記第3溝部の前記第3周期と同一の周期であってもよい。
本発明の第2の態様においては、ユーザが装着する眼鏡型端末であって、前記ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方として設けられており、前記第1面から入射する少なくとも一部の光を前記ユーザの眼へと透過させつつ、前記第2面に前記画像光を投影させる、請求項1から10のいずれか一項に記載の前記投影基板と、前記投影基板を固定しているフレームと、前記フレームに設けられており、前記出射領域に前記画像光を投影させるための前記投影光を前記投影基板の前記入射領域に照射する投影部とを備える、眼鏡型端末を提供する。
前記フレームには、複数の前記投影基板が固定されており、前記投影部は、複数の前記投影基板のそれぞれに設けられている前記入射領域に異なる波長の前記投影光をそれぞれ照射し、複数の前記投影基板にそれぞれ設けられている前記出射領域は、平面視で少なくとも一部が重なっており、前記投影部から複数の前記入射領域にそれぞれ照射された前記投影光に対応する前記画像光を複数の前記投影基板の前記第2面から前記ユーザの眼へとそれぞれ出射してもよい。
本発明によれば、簡便な構成でユーザに観察させる投影画像の輝度のバラツキを低減できるという効果を奏する。
<眼鏡型端末10の構成例>
図1は、本実施形態に係る眼鏡型端末10の構成例を示す。本実施例において、互いに直交する3つの軸をX軸、Y軸、及びZ軸とする。眼鏡型端末10は、ユーザが装着する、例えば、ウェアラブルデバイスである。眼鏡型端末10は、眼鏡越しの景色をユーザに観察させつつ、投影基板100に設けられている表示領域に画像光を投影する。眼鏡型端末10は、投影基板100と、フレーム110と、投影部120とを備える。
図1は、本実施形態に係る眼鏡型端末10の構成例を示す。本実施例において、互いに直交する3つの軸をX軸、Y軸、及びZ軸とする。眼鏡型端末10は、ユーザが装着する、例えば、ウェアラブルデバイスである。眼鏡型端末10は、眼鏡越しの景色をユーザに観察させつつ、投影基板100に設けられている表示領域に画像光を投影する。眼鏡型端末10は、投影基板100と、フレーム110と、投影部120とを備える。
投影基板100は、第1面から入射する少なくとも一部の光をユーザの眼へと透過させつつ、第2面に前記画像光を投影させる。ここで、投影基板100の第1面は、眼鏡型端末10をユーザが装着した状態でユーザとは反対側を向く面である。また、投影基板100の第2面は、眼鏡型端末10をユーザが装着した状態でユーザを向く面である。図1は、投影基板100の第1面及び第2面がXY平面と略平行に配置されている例を示す。投影基板100は、例えば、ガラス基板にウェーブガイドとして機能する回折格子が形成されている基板である。投影基板100については後述する。
フレーム110は、投影基板100を固定している。フレーム110には、ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方として投影基板100が設けられている。図1は、フレーム110にユーザの右眼用のレンズとして投影基板100aが設けられており、左眼用レンズとして投影基板100bが設けられている例を示す。
これに代えて、フレーム110は、ユーザの右眼用のレンズ又は左眼用レンズとして1つの投影基板100が設けられていてもよい。また、フレーム110は、ユーザの両眼用レンズとして1つの投影基板100が設けられていてもよい。この場合、フレーム110は、ゴーグルの形状を有してもよい。フレーム110は、ユーザが当該眼鏡型端末10を装着できるように、テンプル、ストラップ等の部位を有する。
投影部120は、フレーム110に設けられており、投影基板100に画像光を投影させるための投影光を投影基板100に向けて照射する。フレーム110には、このような投影部120が1又は複数設けられている。図1は、投影基板100aに投影光L1を照射するための投影部120aと、投影基板100bに投影光L2を照射するための投影部120bとがフレーム110に設けられている例を示す。
投影部120は、フレーム110の投影基板100を固定している部位に設けられていてもよく、フレーム110のテンプル等に設けられていてもよい。投影部120は、フレーム110と一体になるように設けられていることが望ましい。投影部120は、例えば、1つの波長を含む投影光を投影基板100に照射して、ユーザに単色の画像を観察させる。また、投影部120は、複数の波長を含む投影光を投影基板100に照射して、ユーザに複数の色を含む画像を観察させてもよい。
図2は、本実施形態に係る眼鏡型端末10における投影光の光路の概略を示す。投影部120は、投影基板100に設けられている入射領域210に投影光を照射する。入射領域210は、投影基板100の基板内に投影光を導波する。そして、投影基板100は、基板内を導波された投影光を出射領域230から画像光として出射する。なお、入射領域210及び出射領域230については後述する。
図3は、本実施形態に係る投影基板100における投影光の光路の概略を示す。後述するが、投影基板100は、入射領域210、分岐領域220、及び出射領域230を有する。投影光Lは、入射領域210に入射し、分岐領域220を経て出射領域230から画像光Pとして出射する。分岐領域220は、投影光Lが入射領域210から離れて進行するにつれて、投影光Lを一部ずつ出射領域230に導波する。
同様に、出射領域230も、投影光Lが分岐領域220から離れて進行するにつれて、投影光Lの一部ずつの光を画像光Pの一部として出射する。これにより、投影基板100は、入射領域210に入射した投影光Lを出射領域230から画像光Pとして出射する。
ここで、分岐領域220が、分岐領域220の領域全体において一定の割合で投影光Lを出射領域230に導波する例を考える。この場合、投影光Lが入射領域210から離れて進行するにつれて投影光Lの光量が減少するので、分岐領域220から出射領域230に入射する投影光Lは、入射領域210からの距離によって強度が異なってしまうことがある。
同様に、出射領域230が、出射領域230の領域全体において一定の割合で投影光Lを画像光Pとして出射する例を考える。この場合、投影光Lが分岐領域220から離れて進行するにつれて投影光Lの光量が減少するので、出射領域230から出射する画像光Pは、入射領域210からの距離及び出射領域230からの距離によって強度が異なってしまうことがある。例えば、出射領域230が投影する画像の左上の画素から右下の画素に向けて、輝度が徐々に低減してしまうことがある。本実施形態に係る投影基板100は、このような輝度のバラツキを低減させるものである。
<投影光と画像光の一例>
図4は、本実施形態に係る投影部120が投影基板100に照射する投影光Lと、投影基板100が出射する画像光Pの一例を示す。投影部120は、例えば、+Z方向に位置する投影基板100の第2面に向けて投影光Lを照射する。投影光Lは、ユーザに見せる画像に対応しており、例えば、XY平面と略平行な面にスクリーン等を設置して投影光Lを投影させた場合、当該スクリーンにはユーザに観察させる画像M1が表示される。ユーザに見せる画像は、例えば投影部120が有するプロセッサが作成するAR(Augmented Reality)画像又はVR(Virtual Reality)画像である。このように、投影部120は、XY平面と略平行な面に画像M1を形成する複数の光線を投影光Lとして照射する。
図4は、本実施形態に係る投影部120が投影基板100に照射する投影光Lと、投影基板100が出射する画像光Pの一例を示す。投影部120は、例えば、+Z方向に位置する投影基板100の第2面に向けて投影光Lを照射する。投影光Lは、ユーザに見せる画像に対応しており、例えば、XY平面と略平行な面にスクリーン等を設置して投影光Lを投影させた場合、当該スクリーンにはユーザに観察させる画像M1が表示される。ユーザに見せる画像は、例えば投影部120が有するプロセッサが作成するAR(Augmented Reality)画像又はVR(Virtual Reality)画像である。このように、投影部120は、XY平面と略平行な面に画像M1を形成する複数の光線を投影光Lとして照射する。
本実施形態において、投影部120が、XY平面と略平行な面においてX軸方向を長手方向とした略長方形の画像M1を投影する例を説明する。また、図4において、投影部120が照射する複数の光線のうち5つの光線を入力光線20として示す。例えば、画像の左上の画素に対応する光線を第1入力光線20a、画像の左下の画素に対応する光線を第2入力光線20b、画像の中央の画素に対応する光線を第3入力光線20c、画像の右上の画素に対応する光線を第4入力光線20d、画像の右下の画素に対応する光線を第5入力光線20eとする。
投影部120は、例えば、このような投影光Lを無限遠または所定の位置に正立虚像を作る様に投影基板100の入射領域210に照射する。入射領域210に入射した投影光は、分岐領域220を経て出射領域230から画像光Pとして出射される。画像光Pは、出射領域230から出射され、投影基板100から距離dだけ離れたユーザの眼に入射する。そして、画像光Pは、ユーザの眼の網膜で画像M2として結像する。このように、画像光Pは、画像M2として結像する複数の光線束を含む。
図4において、投影基板100の出射領域230の円形領域Cから照射され、所定の位置で結像する複数の光線束のうち5つの光線束を出力光線束30として示す。例えば、画像の右下の画素として結像する光線束を第1出力光線束30a、画像の右上の画素として結像する光線束を第2出力光線束30b、画像の中央の画素として結像する光線束を第3出力光線束30c、画像の左下の画素として結像する光線束を第4出力光線束30d、画像の左上の画素として結像する光線束を第5出力光線束30eとする。
それぞれの光線束は、投影部120から入射した複数の入力光線20のそれぞれに対応する。例えば、第1出力光線束30aは、第1入力光線20aに対応しており、第1入力光線20aが投影基板100の入射領域210から出射領域230までの間に複数回の分岐及び複数回の回折等によって発生した複数の光線を含む。同様に、第2出力光線束30bは第2入力光線20bに、第3出力光線束30cは第3入力光線20cに、第4出力光線束30dは第4入力光線20dに、第5出力光線束30eは第5入力光線20eに、それぞれ対応する。
言い換えると、出射領域230から出射される画像光Pがユーザの眼の網膜で結像した画像M2は、投影部120が照射した投影光Lが投影する画像M1に対応する。これにより、眼鏡型端末10を装着したユーザは、投影基板100越しに見る風景に重ねて、投影基板100の第2面に画像M2が投影されているように感じることができる。言い換えると、出射領域230は、投影光Lが投影する画像M1に対応する画像M2を表示させる表示領域として機能する。
図4において、ユーザが観測する画像M2は、投影光Lが投影する画像M1を上下及び左右に反転した画像となる例を示す。なお、投影光Lが投影する画像M1は、静止画であってもよく、これに代えて、動画であってもよい。以上のように、入射した投影光Lに対応する画像光Pを出射する投影基板100について次に説明する。
<投影基板100の構成例>
図5は、本実施形態に係る投影基板100の構成例を示す。図3は、投影基板100の第1面及び第2面がXY平面と略平行に配置されている例を示す。投影基板100は、第1面から入射した光の少なくとも一部を第1面の反対側の第2面へと透過させつつ、第2面に画像光を投影させるための基板である。投影基板100は、一例として、ガラス基板である。投影基板100は、入射領域210と、分岐領域220と、出射領域230とを備える。
図5は、本実施形態に係る投影基板100の構成例を示す。図3は、投影基板100の第1面及び第2面がXY平面と略平行に配置されている例を示す。投影基板100は、第1面から入射した光の少なくとも一部を第1面の反対側の第2面へと透過させつつ、第2面に画像光を投影させるための基板である。投影基板100は、一例として、ガラス基板である。投影基板100は、入射領域210と、分岐領域220と、出射領域230とを備える。
<入射領域210の例>
入射領域210は、画像光を投影させるための投影光が入射し、入射した投影光を分岐領域220に向けて導波する。図5は、入射領域210がXY平面と略平行な面において、円形の形状を有する例を示すが、これに限定されることはない。入射領域210は、投影光を分岐領域220へと導波できればよく、楕円形、多角形、台形等の形状を有してよい。
入射領域210は、画像光を投影させるための投影光が入射し、入射した投影光を分岐領域220に向けて導波する。図5は、入射領域210がXY平面と略平行な面において、円形の形状を有する例を示すが、これに限定されることはない。入射領域210は、投影光を分岐領域220へと導波できればよく、楕円形、多角形、台形等の形状を有してよい。
入射領域210は、複数の第1溝部212が第1周期で形成されている回折格子を有する。言い換えると、複数の第1溝部212は、予め定められた溝の幅及び間隔で投影基板100の上面に同一方向に配列されていることにより、回折格子として機能する。入射領域210は、反射型又は透過型の回折格子を有し、反射型回折又は透過型回折によって分岐領域220の方向に投影光を導く。
複数の第1溝部212の第1周期は、例えば、10nm程度から10μm程度の範囲である。第1周期は、100nm程度から1μm程度の範囲であることが好ましい。第1周期は、200nm程度から800nm程度の範囲であることがより好ましい。複数の第1溝部212の深さは、1nm程度から10μm程度の範囲である。複数の第1溝部212の深さは、50nm程度から800nm程度の範囲であることが好ましい。
複数の第1溝部212のフィルファクターは、0.1程度から0.9程度の範囲である。複数の第1溝部212のフィルファクターは、0.3程度から0.7程度の範囲であることが好ましい。ここで、フィルファクターは、隣接する2つの第1溝部212の間の距離を第1周期で割った値である。なお、隣接する2つの第1溝部212の間の距離をライン、第1溝部212の幅をスペース、第1周期をピッチと呼ぶことがあり、この場合、ピッチはラインとスペースの和であり、フィルファクターは、ラインをピッチで割った値である。
複数の第1溝部212は、例えば、入射領域210から分岐領域220に向かう方向に配列されている。ここで、入射領域210から分岐領域220に向かう投影光の進行方向を第1方向とする。図5は、第1方向がX軸方向と略平行な方向であり、Y軸方向と略平行な方向に延伸する第1溝部212が第1方向に配列されている例を示す。投影光は、収束しつつ入射領域210に入射するので、入射領域210は、投影基板100の面内において第1方向を中心として広がり角を有するように投影光を分岐領域220へと導波する。
<分岐領域220の例>
分岐領域220は、入射領域210から入射した投影光の一部を出射領域230に向けて導波する。分岐領域220は、XY平面と略平行な面において、投影光が通過する領域に設けられている。分岐領域220は、反射型の回折格子を有し、反射型回折によって出射領域230の方向へと投影光を導く。分岐領域220は、例えば、第1方向を長手方向とした長方形の形状を有する。
分岐領域220は、入射領域210から入射した投影光の一部を出射領域230に向けて導波する。分岐領域220は、XY平面と略平行な面において、投影光が通過する領域に設けられている。分岐領域220は、反射型の回折格子を有し、反射型回折によって出射領域230の方向へと投影光を導く。分岐領域220は、例えば、第1方向を長手方向とした長方形の形状を有する。
なお、投影光は第1方向を中心に広がりながら進行するので、分岐領域220は、入射領域210から離れるにつれて、入射領域210を通り投影光の進行方向である第1方向から離れるように広がる形状を有していることが好ましい。分岐領域220は、例えば、XY平面と略平行な面において、台形、扇型等の形状を有する。図5は、分岐領域220が台形の形状を有する例を示す。このような形状の分岐領域220は、投影光がXY平面において広がりながら進行する領域に対応して形成することができ、投影光を効率的に導波することができる。
分岐領域220は、複数の第2溝部222が第2周期で形成されている回折格子を有する。言い換えると、複数の第2溝部222は、予め定められた溝の幅及び間隔で投影基板100の上面に同一方向に配列されていることにより、回折格子として機能する。分岐領域220は、例えば、反射型の回折格子として機能し、投影光を出射領域230へと導く。
複数の第2溝部222の第2周期は、複数の第1溝部212の第1周期とは異なる周期である。第2周期は、投影光を出射領域230へと導くために適切な周期が選択されることが望ましい。第2周期は、例えば、10nm程度から10μm程度の範囲である。第2周期は、50nm程度から1μmの範囲であることが好ましい。第2周期は、100nm程度から700nmの範囲であることがより好ましい。複数の第2溝部222の深さは、1nm程度から10μm程度の範囲である。複数の第2溝部222の深さは、5nm程度から800nm程度の範囲であることが好ましい。複数の第2溝部222のフィルファクターは、0.1程度から0.9程度の範囲である。複数の第2溝部222のフィルファクターは、0.2程度から0.85程度の範囲であることが好ましい。
複数の第2溝部222は、例えば、予め定められた方向に配列されている。例えば、分岐領域220から出射領域230に向かう方向を第2方向とし、第1方向と第2方向とがなす角を第1角度とする。この場合、複数の第2溝部222は、第1方向に対して第1角度の1/2の角度だけ第2方向に傾斜する方向に形成されている。図5は、第2方向がY軸方向と略平行な方向であり、第1角度が略90度であり、複数の第2溝部222が第1方向に対して略45度だけ第2方向に傾斜した方向に配列している例を示す。
分岐領域220は、入射した投影光の進行方向に配列されている複数の第1分割領域224を有する。複数の第1分割領域224に形成されている第2溝部222は、それぞれ深さが異なる。言い換えると、分岐領域220において、入力した投影光のうち出射領域230へと導波される光の割合が第1分割領域224毎に異なるように、第2溝部222が形成されている。
分岐領域220は、3つ以上の第1分割領域224を有することが望ましい。このように、分岐領域220は、複数の第1分割領域224に分割され、出射領域230に導波する投影光の光量を第1分割領域224毎に異ならせることにより、入射領域210からの距離によって強度が異なる投影光を出射領域230に導波しつつ、投影光の進行方向に対して垂直な方向の光量の分布を略一定に調節する。
例えば、一の第1分割領域224に設けられている第2溝部222の深さが、一の第1分割領域224よりも入射領域210に近い第1分割領域224に設けられている第2溝部222の深さよりも大きくなるように第2溝部222が形成されている。この場合、複数の第1分割領域224のうち隣接する2つの第1分割領域224の第2溝部222の深さの変化率は、入射領域210から離れるほど大きくてもよい。
一例として、図5に示すように、3つの第1分割領域224を有する分岐領域220を考える。ここで、3つの第1分割領域224のうち最も入射領域210に近い第1分割領域224aは、入射した投影光の略1/4の光量の光を出射領域230に導波するように、第2溝部222aの深さが形成されているとする。この場合、最も入射領域210に近い第1分割領域224aに入射した投影光の残りの略3/4の光量は、隣接する第1分割領域224bに入射する。
入射領域210に2番目に近い第1分割領域224bは、入射した投影光の略1/3の光量の光を出射領域230に導波するように、第2溝部222bの深さが形成されているとする。言い換えると、入射領域210に2番目に近い第1分割領域224bの第2溝部222bの深さは、入射領域210に最も近い第1分割領域224aと比較して4/3倍の光量の光を出射領域230に導波するように、第2溝部222aの深さよりも大きく形成されている。このような第1分割領域224bは、入射領域210に最も近い第1分割領域224aに入射した投影光の略1/4の光量の光を出射領域230に導波することになる。
そして、最も入射領域210に近い第1分割領域224aに入射した投影光の残りの略1/2の光量は、隣接する第1分割領域224cに入射する。入射領域210に3番目に近い第1分割領域224cは、入射した投影光の略1/2の光量の光を出射領域230に導波するように、第2溝部222cの深さが形成されているとする。言い換えると、入射領域210に3番目に近い第1分割領域224cの第2溝部222cの深さは、入射領域210に2番目に近い第1分割領域224bと比較して3/2倍の光量の光を出射領域230に導波するように、第2溝部222bの深さよりも大きく形成されている。
また、3つの第1分割領域224のうち隣接する2つの第1分割領域224の第2溝部222の深さの変化率は、入射領域210から離れるほど大きくなるように形成されている。そして、入射領域210に3番目に近い第1分割領域224cは、入射領域210に最も近い第1分割領域224aに入射した投影光の略1/4の光量の光を出射領域230に導波することになる。以上の例のように、分岐領域220は、出射領域230に導波する投影光の光量を第1分割領域224毎に異ならせて所定の値にすることにより、それぞれの第1分割領域224に対応する出射領域230へと導波する投影光の光量をほぼ一定の分布にしつつ、投影光を出射領域230に導波できることがわかる。
なお、分岐領域220は、入射領域210から最も遠い位置に、第1反射領域226を更に有してもよい。図5は、分岐領域220が3つの第1分割領域224と第1反射領域226とを有する例を示す。第1反射領域226は、複数の第1分割領域224を通過した光の少なくとも一部を再び複数の第1分割領域224へと反射する。第1反射領域226は、隣接する第1分割領域224の第2溝部222の深さよりも大きい深さの第2溝部222を有する。
例えば、第1反射領域226の第2溝部222の深さは、複数の第1分割領域224の第2溝部222のうち最も大きい深さの略3倍以上の深さを有することが望ましい。第1反射領域226の第2溝部222の深さは、複数の第1分割領域224の第2溝部222のうち最も大きい深さの略10倍以上の深さを有することがより望ましい。なお、第1反射領域226の第2溝部222は、第1方向に配列されていてもよい。
分岐領域220がこのような第1反射領域226を有することにより、複数の第1分割領域224は、第1反射領域226が反射した光の少なくとも一部を出射領域230へと導波する。これにより、分岐領域220は、より多くの投影光を出射領域230へと導波することができる。なお、複数の第1分割領域224の第2溝部222の深さは、それぞれの第1分割領域224が第1反射領域226による反射光を含めて出射領域230へと導波する投影光の光量を略一定にさせるように決められていてもよい。
<出射領域230の例>
出射領域230は、分岐領域220から入射した投影光の少なくとも一部を導波して投影基板100の第2面から画像光として出射する。図5は、出射領域230がXY平面と略平行な面において、X軸方向を長手方向とした長方形の形状を有する例を示すが、これに限定されることはない。出射領域230は、投影光を導波して画像光として出射できればよく、例えば、Y軸方向を長手方向とした長方形、正方形、台形等の形状を有してよい。
出射領域230は、分岐領域220から入射した投影光の少なくとも一部を導波して投影基板100の第2面から画像光として出射する。図5は、出射領域230がXY平面と略平行な面において、X軸方向を長手方向とした長方形の形状を有する例を示すが、これに限定されることはない。出射領域230は、投影光を導波して画像光として出射できればよく、例えば、Y軸方向を長手方向とした長方形、正方形、台形等の形状を有してよい。
出射領域230は、複数の第3溝部232が第3周期で形成されている回折格子を有する。言い換えると、複数の第3溝部232は、予め定められた溝の幅及び間隔で投影基板100の上面に同一方向に配列されていることにより、回折格子として機能する。出射領域230は、反射型又は透過型の回折格子を有し、反射型回折又は透過型回折によってユーザの眼の方向に画像光を導く。
出射領域230に設けられている複数の第3溝部232の第3周期は、分岐領域220の複数の第2溝部222の第2周期とは異なる周期である。出射領域230の複数の第3溝部232の第3周期は、入射領域210の複数の第1溝部212の第1周期と同一の周期であってもよい。このように、投影光が入射する領域と画像光を出射する領域とに設けられている回折格子の周期を一致させることで、ユーザが観察する画像に発生する歪み等を低減できる。
第3周期は、例えば、10nm程度から10μm程度の範囲である。第3周期は、100nm程度から1μm程度の範囲であることが好ましい。第3周期は、200nm程度から800nm程度の範囲であることがより好ましい。複数の第3溝部232の深さは、1nm程度から10μm程度の範囲である。複数の第3溝部232の深さは、5nm程度から800nm程度の範囲であることが好ましい。複数の第3溝部232のフィルファクターは、0.1程度から0.9程度の範囲である。複数の第3溝部232のフィルファクターは、0.2程度から0.85程度の範囲であることが好ましい。
複数の第3溝部232は、例えば、分岐領域220から出射領域230に向かう第2方向に配列されている。図5は、第1方向に延伸する第3溝部232が第2方向に配列している例を示す。
出射領域230は、分岐領域220と同様に、分岐領域220から入射した投影光の進行方向に配列されている複数の第2分割領域234を有する。複数の第2分割領域234に形成されている第3溝部232は、それぞれ深さが異なる。言い換えると、出射領域230において、入力した投影光のうち画像光として出射する光の割合が第2分割領域234毎に異なるように、第3溝部232が形成されている。
出射領域230は、2つ以上の第2分割領域234を有することが望ましい。例えば、一の第2分割領域234に設けられている第3溝部232の深さは、一の第2分割領域234よりも分岐領域220に近い第2分割領域234に設けられている第3溝部232の深さよりも大きく形成されている。また、出射領域230が3つ以上の第2分割領域234を有する場合、隣接する2つの第2分割領域234の第3溝部232の深さの変化率は、分岐領域220から離れるほど大きくしてもよい。
以上のように、出射領域230は、複数の第2分割領域234に分割され、画像光として出射する光の光量を第2分割領域234毎に異ならせる。これにより、出射領域230は、分岐領域220の複数の第1分割領域224と同様に、投影光を画像光として導波しつつ、観測者が画像光を画像として観測した場合に画像全体の光量の分布を略一定に調節できる。
出射領域230は、分岐領域220から最も遠い位置に、第2反射領域236を更に有してもよい。図5は、出射領域230が2つの第2分割領域234と第2反射領域236とを有する例を示す。第2反射領域236は、複数の第2分割領域234を通過した光の少なくとも一部を再び複数の第2分割領域234へと反射する。第2反射領域236は、隣接する第2分割領域234の第3溝部232の深さよりも大きい深さの第3溝部232を有する。
例えば、第2反射領域236の第3溝部232の深さは、複数の第2分割領域234の第3溝部232のうち最も大きい深さの略3倍以上の深さを有することが望ましい。第2反射領域236の第3溝部232の深さは、複数の第2分割領域234の第3溝部232のうち最も大きい深さの略10倍以上の深さを有することがより望ましい。
出射領域230がこのような第2反射領域236を有することにより、複数の第2分割領域234は、第2反射領域236が反射した光の少なくとも一部を投影基板100の第2面から画像光として出射する。これにより、出射領域230は、分岐領域220と同様に、より多くの投影光を画像光として出射することができる。なお、複数の第2分割領域234の第3溝部232の深さは、それぞれの第2分割領域234が第2反射領域236による反射光を含めて画像光として出射する光の光量を略一定にさせるように決められてもよい。
以上のように、本実施形態に係る投影基板100は、入射領域210に入射する投影光を分岐領域220の複数の第1分割領域224毎に異なる割合で投影光を分岐させつつ、出射領域230から画像光として出射する。これにより、投影基板100は、ユーザに観察させる投影画像の輝度のバラツキを低減できる。また、投影基板100は、出射領域230においても、複数の第2分割領域234毎に異なる割合で画像光を出射することで、画像の輝度のバラツキを更に低減できる。
このような投影基板100は、ガラス基板等の第1面又は第2面に、入射領域210、分岐領域220、及び出射領域230に対応する回折格子を形成することで実現できる。なお、回折格子を形成する溝部は、例えば、レジスト、樹脂等である。したがって、本実施形態に係る投影基板100は、複雑な光学系を組み込むことなく、予め定められた周期、深さの溝部を領域毎に形成することで簡便に生産できる基板である。
<眼鏡型端末10の他の例>
以上の投影基板100がフレーム110に設けられており、投影部120が投影光を投影基板100の入射領域210に照射する眼鏡型端末10の例を既に説明したが、これに限定されることはない。例えば、眼鏡型端末10のフレーム110には、複数の投影基板100が固定されていてもよい。このような眼鏡型端末10について次に説明する。
以上の投影基板100がフレーム110に設けられており、投影部120が投影光を投影基板100の入射領域210に照射する眼鏡型端末10の例を既に説明したが、これに限定されることはない。例えば、眼鏡型端末10のフレーム110には、複数の投影基板100が固定されていてもよい。このような眼鏡型端末10について次に説明する。
図6は、本実施形態に係る眼鏡型端末10の変形例を示す。変形例の眼鏡型端末10において、図1に示された本実施形態に係る眼鏡型端末10の動作と略同一のものには同一の符号を付け、説明を省略する。変形例の眼鏡型端末10の外観は、図1に示された眼鏡型端末10とほとんど変わらない外観でよい。
変形例の眼鏡型端末10のフレーム110には、複数の投影基板100が固定されている。この場合、複数の投影基板100にそれぞれ設けられている出射領域230がXY平面と略平行な平面視で少なくとも一部が重なるように、複数の投影基板100がフレーム110に固定されている。図6は、眼鏡型端末10のフレーム110に3つの投影基板100R、投影基板100G、及び投影基板100Bが固定されており、3つの投影基板100の出射領域230R、出射領域230G、及び出射領域230BがXY平面における平面視で重なっている例を示す。
投影部120は、複数の投影基板100のそれぞれに設けられている入射領域210に異なる波長の投影光をそれぞれ照射する。これにより、複数の投影基板100にそれぞれ設けられている出射領域230は、投影部120から複数の入射領域210にそれぞれ照射された投影光に対応する画像光を複数の投影基板100の第2面からユーザの眼へとそれぞれ出射する。
このような眼鏡型端末10を装着したユーザは、異なる波長の画像光が重畳された画像を観察することになるので、混色の色を有する画像を観察することができる。図6は、投影部120が画像を形成する赤、緑、及び青といったRGBの三原色に対応する3つの投影光を3つの投影基板100の入射領域210にそれぞれ照射する例を示す。そして、3つの投影基板100は、RGBの三原色に対応する3つの画像光を重畳してユーザの眼へと出射する。これにより、ユーザは、例えば、2nの複数の色を有する画像を観察することができる。ここで、nは、4、8、16、24等の正の整数である。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。
10 眼鏡型端末
20 入力光線
30 出力光線束
100 投影基板
110 フレーム
120 投影部
210 入射領域
212 第1溝部
220 分岐領域
222 第2溝部
224 第1分割領域
226 第1反射領域
230 出射領域
232 第3溝部
234 第2分割領域
236 第2反射領域
20 入力光線
30 出力光線束
100 投影基板
110 フレーム
120 投影部
210 入射領域
212 第1溝部
220 分岐領域
222 第2溝部
224 第1分割領域
226 第1反射領域
230 出射領域
232 第3溝部
234 第2分割領域
236 第2反射領域
Claims (12)
- 第1面から入射した光の少なくとも一部を前記第1面の反対側の第2面へと透過させつつ、前記第2面に画像光を投影させるための投影基板であって、
複数の第1溝部が第1周期で形成されている回折格子を有する入射領域と、
複数の第2溝部が第2周期で形成されている回折格子を有する分岐領域と、
複数の第3溝部が第3周期で形成されている回折格子を有する出射領域と
を備え、
前記入射領域は、前記画像光を投影させるための投影光が入射し、入射した前記投影光を前記分岐領域に向けて導波し、
前記分岐領域は、
入射した前記投影光の進行方向に配列されており、前記第2溝部の深さが異なる複数の第1分割領域を有し、
前記入射領域から入射した前記投影光の一部を出射領域に向けて導波し、
前記出射領域は、前記分岐領域から入射した前記投影光の少なくとも一部を導波して前記第2面から前記画像光として出射する、
投影基板。 - 前記分岐領域は、3つ以上の前記第1分割領域を有しており、一の第1分割領域に設けられている前記第2溝部の深さは、前記一の第1分割領域よりも前記入射領域に近い前記第1分割領域に設けられている前記第2溝部の深さよりも大きい、
請求項1に記載の投影基板。 - 複数の前記第1分割領域のうち隣接する2つの前記第1分割領域の前記第2溝部の深さの変化率は、前記入射領域から離れるほど大きい、
請求項2に記載の投影基板。 - 前記分岐領域は、複数の前記第1分割領域を通過した光の少なくとも一部を再び複数の前記第1分割領域へと反射する第1反射領域を有し、
複数の前記第1分割領域は、前記第1反射領域が反射した光の少なくとも一部を前記出射領域へと導波する、
請求項1から3のいずれか一項に記載の投影基板。 - 前記入射領域は、当該投影基板の面内において第1方向を中心として広がり角を有するように前記投影光を前記分岐領域へと導波し、
前記分岐領域は、前記入射領域から離れるにつれて、前記入射領域を通り前記投影光の進行方向である前記第1方向から離れるように広がる形状を有し、前記投影光が通過する領域に設けられている、
請求項1から4のいずれか一項に記載の投影基板。 - 前記出射領域に設けられている複数の前記第3溝部の前記第3周期は、前記分岐領域の複数の前記第2溝部の前記第2周期とは異なる、
請求項1から5のいずれか一項に記載の投影基板。 - 前記出射領域は、前記分岐領域から入射した前記投影光の進行方向に配列されており、前記第3溝部の深さが異なる複数の第2分割領域を有する、
請求項6に記載の投影基板。 - 前記出射領域は、2つ以上の前記第2分割領域を有しており、一の第2分割領域に設けられている前記第3溝部の深さは、前記一の第2分割領域よりも前記分岐領域に近い前記第2分割領域に設けられている前記第3溝部の深さよりも大きい、
請求項7に記載の投影基板。 - 前記出射領域は、複数の前記第2分割領域を通過した光の少なくとも一部を再び複数の前記第2分割領域へと反射する第2反射領域を有し、
複数の前記第2分割領域は、前記第2反射領域が反射した光の少なくとも一部を前記第2面から前記画像光として出射する、
請求項7又は8に記載の投影基板。 - 前記入射領域の複数の第1溝部の第1周期は、前記出射領域の複数の前記第3溝部の前記第3周期と同一の周期である、
請求項1から9のいずれか一項に記載の投影基板。 - ユーザが装着する眼鏡型端末であって、
前記ユーザの右眼用のレンズ及び左眼用レンズのうち少なくとも一方として設けられており、前記第1面から入射する少なくとも一部の光を前記ユーザの眼へと透過させつつ、前記第2面に前記画像光を投影させる、請求項1から10のいずれか一項に記載の前記投影基板と、
前記投影基板を固定しているフレームと、
前記フレームに設けられており、前記出射領域に前記画像光を投影させるための前記投影光を前記投影基板の前記入射領域に照射する投影部と
を備える、眼鏡型端末。 - 前記フレームには、複数の前記投影基板が固定されており、
前記投影部は、複数の前記投影基板のそれぞれに設けられている前記入射領域に異なる波長の前記投影光をそれぞれ照射し、
複数の前記投影基板にそれぞれ設けられている前記出射領域は、平面視で少なくとも一部が重なっており、前記投影部から複数の前記入射領域にそれぞれ照射された前記投影光に対応する前記画像光を複数の前記投影基板の前記第2面から前記ユーザの眼へとそれぞれ出射する、
請求項11に記載の眼鏡型端末。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023549218A JPWO2023047488A1 (ja) | 2021-09-22 | 2021-09-22 | |
CN202180102525.4A CN118215876A (zh) | 2021-09-22 | 2021-09-22 | 投影基板以及眼镜型终端 |
PCT/JP2021/034799 WO2023047488A1 (ja) | 2021-09-22 | 2021-09-22 | 投影基板及び眼鏡型端末 |
US18/613,024 US20240231110A1 (en) | 2021-09-22 | 2024-03-21 | Projection substrate and smart glasses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/034799 WO2023047488A1 (ja) | 2021-09-22 | 2021-09-22 | 投影基板及び眼鏡型端末 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/613,024 Continuation US20240231110A1 (en) | 2021-09-22 | 2024-03-21 | Projection substrate and smart glasses |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023047488A1 true WO2023047488A1 (ja) | 2023-03-30 |
Family
ID=85720287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/034799 WO2023047488A1 (ja) | 2021-09-22 | 2021-09-22 | 投影基板及び眼鏡型端末 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240231110A1 (ja) |
JP (1) | JPWO2023047488A1 (ja) |
CN (1) | CN118215876A (ja) |
WO (1) | WO2023047488A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210283991A1 (en) * | 2018-11-29 | 2021-09-16 | Denso Corporation | Control device for vehicle-mounted cooling system, and vehicle-mounted cooling system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014142386A (ja) * | 2013-01-22 | 2014-08-07 | Seiko Epson Corp | 光学デバイス及び画像表示装置 |
JP2015049376A (ja) * | 2013-09-02 | 2015-03-16 | セイコーエプソン株式会社 | 光学デバイス及び画像表示装置 |
JP2017146447A (ja) * | 2016-02-17 | 2017-08-24 | 株式会社リコー | ライトガイド及び虚像表示装置 |
WO2018198587A1 (ja) * | 2017-04-28 | 2018-11-01 | ソニー株式会社 | 光学装置、画像表示装置及び表示装置 |
US20190250406A1 (en) * | 2018-02-15 | 2019-08-15 | Hitachi, Ltd. | Imageguide for head mounted display |
JP2019531508A (ja) * | 2016-10-05 | 2019-10-31 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 不均一回折格子の加工 |
-
2021
- 2021-09-22 WO PCT/JP2021/034799 patent/WO2023047488A1/ja active Application Filing
- 2021-09-22 CN CN202180102525.4A patent/CN118215876A/zh active Pending
- 2021-09-22 JP JP2023549218A patent/JPWO2023047488A1/ja active Pending
-
2024
- 2024-03-21 US US18/613,024 patent/US20240231110A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014142386A (ja) * | 2013-01-22 | 2014-08-07 | Seiko Epson Corp | 光学デバイス及び画像表示装置 |
JP2015049376A (ja) * | 2013-09-02 | 2015-03-16 | セイコーエプソン株式会社 | 光学デバイス及び画像表示装置 |
JP2017146447A (ja) * | 2016-02-17 | 2017-08-24 | 株式会社リコー | ライトガイド及び虚像表示装置 |
JP2019531508A (ja) * | 2016-10-05 | 2019-10-31 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 不均一回折格子の加工 |
WO2018198587A1 (ja) * | 2017-04-28 | 2018-11-01 | ソニー株式会社 | 光学装置、画像表示装置及び表示装置 |
US20190250406A1 (en) * | 2018-02-15 | 2019-08-15 | Hitachi, Ltd. | Imageguide for head mounted display |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210283991A1 (en) * | 2018-11-29 | 2021-09-16 | Denso Corporation | Control device for vehicle-mounted cooling system, and vehicle-mounted cooling system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023047488A1 (ja) | 2023-03-30 |
CN118215876A (zh) | 2024-06-18 |
US20240231110A1 (en) | 2024-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102594052B1 (ko) | 넓은 시야를 갖는 도파관 투사기를 위한 방법 및 시스템 | |
CN110709772B (zh) | 用于照射空间光调制器的方法、设备和系统 | |
JP6171740B2 (ja) | 光学デバイス及び画像表示装置 | |
US10133077B2 (en) | Luminous flux diameter enlarging element and display apparatus | |
US20170160548A1 (en) | Imaging using multiple different narrow bands of light having respective different emission peaks | |
US11199713B2 (en) | Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light | |
KR20160052334A (ko) | 허상 표시 장치 | |
US20170315356A1 (en) | Waveguides of near-eye display devices for suppressing ghost images | |
US20230341696A1 (en) | Optical structure for augmented reality display | |
US20240231110A1 (en) | Projection substrate and smart glasses | |
RU2592147C2 (ru) | Устройство задней подсветки и его варианты осуществления | |
CN107924655B (zh) | 光器件和光系统 | |
US10330843B2 (en) | Wide angle imaging directional backlights | |
WO2020179470A1 (ja) | 画像表示装置 | |
WO2023203663A1 (ja) | 投影基板及び眼鏡型端末 | |
WO2023203597A1 (ja) | 投影基板及び基板製造方法 | |
US12111470B2 (en) | Optical system and mixed reality device | |
CN112180594A (zh) | 一种全息波导显示装置 | |
WO2024033969A1 (ja) | 投影光学系及び眼鏡型端末 | |
WO2023203600A1 (ja) | 投影基板及び投影基板の製造方法 | |
WO2024033968A1 (ja) | 投影光学系及び眼鏡型端末 | |
JP2006003673A (ja) | 光導波路装置、光源装置、及び光情報処理装置 | |
KR20240060729A (ko) | 증강 현실 또는 가상 현실 디스플레이를 위한 광학 조립체 | |
CN117642575A (zh) | 具有基于波导的泰伯照明器的显示设备 | |
CN117642576A (zh) | 具有平板波导部分的波导照明器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21958365 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549218 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180102525.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2024) |