WO2023046209A1 - 正交信号发生器及其方法、移相器及其方法以及放大装置 - Google Patents

正交信号发生器及其方法、移相器及其方法以及放大装置 Download PDF

Info

Publication number
WO2023046209A1
WO2023046209A1 PCT/CN2022/121854 CN2022121854W WO2023046209A1 WO 2023046209 A1 WO2023046209 A1 WO 2023046209A1 CN 2022121854 W CN2022121854 W CN 2022121854W WO 2023046209 A1 WO2023046209 A1 WO 2023046209A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
phase
signal
stage
phase shift
Prior art date
Application number
PCT/CN2022/121854
Other languages
English (en)
French (fr)
Inventor
彭洋洋
李平
李阳
Original Assignee
广州慧智微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州慧智微电子股份有限公司 filed Critical 广州慧智微电子股份有限公司
Publication of WO2023046209A1 publication Critical patent/WO2023046209A1/zh
Priority to US18/479,105 priority Critical patent/US20240030958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/20Two-port phase shifters providing an adjustable phase shift
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/21Networks for phase shifting providing two or more phase shifted output signals, e.g. n-phase output

Definitions

  • the present disclosure relates to but is not limited to a quadrature signal generator and its method, a phase shifter and its method, and an amplifying device.
  • the quadrature signal generator in the phase shifter since the bandwidth of the quadrature signal generator in the phase shifter is not wide enough, the quadrature signal cannot be generated in a wide bandwidth, thereby limiting the bandwidth of the entire phase shifter.
  • embodiments of the present disclosure provide a quadrature signal generator and its method, a phase shifter and its method, and an amplifying device.
  • an embodiment of the present disclosure provides a quadrature signal generator, including: a first-stage phase-shifting circuit and a second-stage phase-shifting circuit;
  • the output end of the first-stage phase-shifting circuit is connected to the input end of the second-stage phase-shifting circuit, the impedance of the first-stage phase-shifting circuit can be adjusted based on the frequency of the first input signal, and the first stage
  • the stage phase shifting circuit is used to perform a phase shift of a first phase shift angle on the first input signal, and generate a first phase shift angle signal;
  • the impedance of the second-stage phase-shifting circuit can be adjusted based on the frequency of the second input signal, and the second-stage phase-shifting circuit is used to perform a second phase-shifting angle on the phase-shifted second input signal. shift, and output the quadrature signal corresponding to the frequency.
  • the sum of the second phase shift angle and the first phase shift angle is equal to 90 degrees.
  • the first-stage phase-shifting circuit includes a first resistance sub-circuit and a first capacitance sub-circuit; and/or the second-stage phase-shifting circuit includes a second resistance sub-circuit and a second capacitance sub-circuit circuit;
  • the first-stage phase-shifting circuit is configured to adjust the equivalent capacitance of the first capacitance subcircuit and/or the equivalent resistance of the first resistance subcircuit based on the frequency of the first input signal;
  • the second-stage phase-shifting circuit is configured to adjust the equivalent capacitance of the second capacitance sub-circuit and/or the equivalent resistance of the second resistance sub-circuit based on the frequency of the second input signal.
  • the first resistance sub-circuit and/or the first capacitance sub-circuit includes a first impedance adjustment circuit, the first impedance adjustment circuit has a plurality of first switches, and the first impedance The adjustment circuit performs impedance adjustment through the first switch;
  • the second resistance sub-circuit and/or the second capacitance sub-circuit includes a second impedance adjustment circuit, the second impedance adjustment circuit has a plurality of second switches, and the second impedance adjustment circuit passes The second switch performs impedance adjustment.
  • the first-stage phase-shifting circuit is configured to generate the first phase-shifting angle signal based on a first delay constant, and the first delay constant is the first capacitance sub-circuit the product of the equivalent capacitance and the equivalent resistance of the first resistance sub-circuit;
  • the second-stage phase-shifting circuit configured to generate the quadrature signal corresponding to the frequency based on a second delay constant, the second delay constant being the equivalent capacitance of the second capacitance sub-circuit and the product of the equivalent resistance of the second resistance sub-circuit.
  • the quadrature signal generator includes a multi-stage phase shift circuit, and the sum of phase shift angles of each stage of the multi-stage phase shift circuit is 90 degrees.
  • phase shift angles of all stages are the same, or the phase shift angles of all stages are partly the same, or the phase shift angles of all stages are different.
  • the signal input by the quadrature signal generator is a differential signal.
  • an embodiment of the present disclosure provides a phase shifter, including: an adder, a controller, and the quadrature signal generator described in any one of the above;
  • the output terminals of the controller are respectively connected to the input terminals of the quadrature signal generator and the first input terminal of the adder, and the controller is used to generate a first control signal based on the frequency of the input radio frequency signal, based on the target
  • the phase shift angle generates a second control signal; the first control signal is used to control the quadrature signal generator; the second control signal is used to control the adder;
  • the output terminal of the quadrature signal generator is connected to the second input terminal of the adder, and the quadrature signal generator is used to generate a quadrature signal of a corresponding frequency based on the first control signal.
  • an embodiment of the present disclosure provides an amplifying device, including: an amplifying circuit and the above-mentioned phase shifter, and the phase shifter includes an adder, a controller, and a quadrature signal generator; wherein,
  • the output terminal of the phase shifter is connected with the input terminal of the amplification circuit.
  • a method for generating a quadrature signal is applied to the quadrature signal generator described in any one of the above, and the method includes:
  • the first-stage phase shifting circuit adjusts its own circuit impedance based on the frequency of the first input signal, and performs a phase shift of a first phase shift angle on the first input signal, and outputs a first phase shift angle signal;
  • the second-stage phase shifting circuit adjusts its own circuit impedance based on the frequency of the second input signal, and performs a phase shift of a second phase shift angle on the phase-shifted second input signal, and outputs the corresponding frequency of the quadrature signal.
  • a phase shifting method is applied to the phase shifter described above, and the method includes:
  • the first control signal is used to control a quadrature signal generator
  • the second control signal is used to control the adder
  • the adder is controlled to perform vector synthesis on the quadrature signals based on the second control signal, so that the adder outputs a first in-phase quadrature signal.
  • the quadrature signal generator includes a first-stage phase-shifting circuit and a second-stage phase-shifting circuit;
  • the first control signal includes a first input signal for controlling the first-stage phase-shifting circuit and a second-type sub-control signal for controlling the second-stage phase-shifting circuit;
  • the frequency of the signal generates the first control signal, comprising:
  • the controlling the quadrature signal generator based on the first control signal so that the quadrature signal generator generates a quadrature signal of a corresponding frequency includes:
  • the second-stage phase-shifting circuit is controlled based on the second-type sub-control signal, so that the second-stage phase-shifting circuit outputs a quadrature signal of a corresponding frequency.
  • the phase shifter with the above quadrature signal generator has the Different impedances, therefore, enable a larger bandwidth of the quadrature signal generator, thereby increasing the bandwidth of the overall phase shifter.
  • Fig. 1 is the composition circuit diagram of active phase shifter in the related art
  • FIG. 2 is a schematic diagram of the composition and structure of an orthogonal signal generator provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another phase shifter provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another phase shifter provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another phase shifter provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an implementation flow of a phase shifting method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an implementation flow of another phase shifting method provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an implementation flow of another phase shifting method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of another phase shifting method provided by an embodiment of the present disclosure.
  • FIG. 10 is a circuit diagram of an active phase shifter provided by an embodiment of the present disclosure.
  • the term "comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion, so that a method or device comprising a series of elements not only includes the explicitly stated elements, but also include other elements not explicitly listed, or also include elements inherent in implementing the method or apparatus.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional related elements (such as steps in the method or A unit in an apparatus, for example, a unit may be part of a circuit, part of a processor, part of a program or software, etc.).
  • Phase shifters are devices used to generate multiphase signals and are widely used in radio frequency systems. Phase shifters are mainly divided into active phase shifters and passive phase shifters. Among them, the characteristics of the active phase shifter are: small area, flexible and controllable, and can generate gain, but the linearity is limited. The characteristics of passive phase shifters are: stable phase, high linearity, but large area and loss.
  • FIG. 1 is a composition circuit diagram of an active phase shifter in the related art.
  • the active filter includes an interstage matching network (Inter stage Matching Network, IMN) 101, a quadrature generator (Poly Phase Filter, PPF) 102, analog adder 103, wherein, the equal-amplitude differential radio frequency signal is input to the input terminal of IMN 101, and the IMN 101 performs network matching on the input equal-amplitude differential radio frequency signal, and the equal-amplitude value after network matching
  • the differential radio frequency signal is input to the PPF 102, and four quadrature signals (two positive output terminals I+, Q+ and two negative output terminals I-, Q-) with the same amplitude and a phase interval of 90 degrees are generated by the PPF 102, and the four
  • the quadrature signals with the same amplitude and 90-degree phase interval are input to the analog adder 103, and the analog adder 103 performs vector synthesis on four quadrature signals with the same amplitude and 90-degree phase
  • the quadrature signal cannot be generated in a wide bandwidth, thereby limiting the bandwidth of the entire phase shifter.
  • the quadrature signal generator includes: a first-stage phase shift circuit 301 and a second-stage phase shift circuit 302 .
  • the output end of the first-stage phase-shifting circuit 301 is connected with the input end of the second-stage phase-shifting circuit 302.
  • the impedance of the first-stage phase-shifting circuit 301 can be adjusted based on the frequency of the first input signal.
  • the first-stage phase-shifting circuit 301 It is used to perform the phase shift of the first phase shift angle on the first input signal, and generate the first phase shift angle signal; the impedance of the second stage phase shift circuit 302 can be adjusted based on the frequency of the second input signal, and the second stage shift
  • the phase circuit 302 is used for performing a phase shift by a second phase shift angle on the second input signal after being phase shifted by the first stage phase shift circuit 301, and outputting a quadrature signal of a corresponding frequency.
  • both the first input signal and the second input signal may be radio frequency signals.
  • the quadrature signal generator can perform impedance adjustment based on the frequency of the input signal (the first input signal or the second input signal), so that the phase shifter with the quadrature signal generator mentioned above is When the input signal is phase-shifted, it has different impedances. Therefore, the quadrature signal generator can have a larger bandwidth, thereby increasing the bandwidth of the entire phase shifter.
  • the signal input by the quadrature signal generator is a differential signal.
  • the input signal is a differential signal.
  • the input signal can be a single-ended signal, that is, it becomes quadrature through PPF, and the adder does not need to perform differential processing, and the quadrature signal is directly amplified and then superimposed. .
  • phase shifter includes: a quadrature signal generator and an adder connected in sequence.
  • the adder is used for vector synthesis of the quadrature signals output by the quadrature signal generator.
  • an amplifier assembly is also provided in an embodiment, and the amplifier assembly includes: a phase shifter and an amplification circuit connected in sequence.
  • the amplifying circuit is used for amplifying the power of the input signal after phase shifting by the phase shifter.
  • the phase shifter further includes a controller.
  • the controller 304 is connected with the quadrature signal generator and the adder respectively, and the controller 304 is used to generate a first control signal based on the frequency of the input signal, and generate a second control signal based on the target phase shift angle; the first control signal is used to control the quadrature Cross signal generator; the second control signal is used to control the adder.
  • the controller 304 is respectively connected to the first-stage phase-shifting circuit 301 and the second-stage phase-shifting circuit 302, and the controller 304 is used to generate a first-stage signal for controlling the first-stage phase-shifting circuit 301 based on the frequency of the input signal.
  • a type of sub-control signal and a second type of sub-control signal for controlling the second-stage phase shifting circuit 302 are respectively connected to the first-stage phase-shifting circuit 301 and the second-stage phase-shifting circuit 302, and the controller 304 is used to generate a first-stage signal for controlling the first-stage phase-shifting circuit 301 based on the frequency of the input signal.
  • a type of sub-control signal and a second type of sub-control signal for controlling the second-stage phase shifting circuit 302 the first signal includes a first-type sub-control signal and a second-type sub-control signal, wherein the first-type sub-control signal and the second-type sub-control signal can be the same signal or different signals.
  • the first-stage phase-shifting circuit 301 is used to adjust the impedance in response to the first type of sub-control signal to generate the first phase-shifting angle signal; the output end of the second-stage phase-shifting circuit 302 is connected to the adder 303 for responding to the second
  • the sub-control signal adjusts the impedance and outputs a quadrature signal corresponding to the frequency.
  • the adder is used for performing vector synthesis on the quadrature signals based on the second control signal.
  • phase shifter can adjust the impedance of the quadrature signal generator based on the frequency of the input radio frequency signal, so that the phase shifter has different impedances when phase shifting different frequencies, therefore,
  • the quadrature signal generator can be made to have a larger bandwidth, thereby increasing the bandwidth of the entire phase shifter.
  • the controller 304 may be an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a digital signal processor (Digital Signal Processor, DSP), a digital signal processing device (Digital Signal Processing Device, DSPD ), programmable logic device (Programmable Logic Device, PLD), FPGA, central processing unit (Central Processing Unit, CPU), controller, microcontroller, microprocessor at least one.
  • the controller 304 may generate a first control signal for controlling the differential adder and a second control signal for controlling the amplifying circuit corresponding to the preset phase shift angle.
  • the preset phase shift angle may be determined according to an application scenario of the phase shifter. For example, in some application scenarios, the phase shifter needs to be shifted by 30° (degrees), and the corresponding preset phase shift angle is 30°.
  • both the quadrature signal generator and the differential adder may include switch tubes.
  • both the first control signal and the second control signal may be switching signals for turning on or turning off the switching tube.
  • the first control signal and the second control signal may both be +12V (volt) voltage control signals or 0V voltage control signals.
  • the quadrature signal generated by the quadrature signal generator can be four quadrature signals with the same amplitude and a phase interval of 90 degrees (the two positive output terminals I+, Q+ and two negative output terminals I-, Q-); the quadrature signal generator can be capable of generating four quadrature signals with the same amplitude and a phase interval of 90 degrees (two positive output terminals I+, Q+ and two negative output terminals Any generator of I-, Q-).
  • the quadrature signal generator can be a two-order RC filter.
  • the sum of the second phase shift angle and the first phase shift angle is equal to 90 degrees.
  • the quadrature signal generator is generally implemented with at least two stages of phase shifting circuits. Wherein, the phase shifting angle of each stage of the phase shifting circuit is less than 90°, and the sum of the phase shifting angles of each stage is 90°.
  • the quadrature signal generator includes a multi-stage phase-shifting circuit, and the sum of the phase-shifting angles of each stage of the multi-stage phase-shifting circuit is 90 degrees.
  • the phase shift angles at all levels are the same, or the phase shift angles at all levels are partially the same, or the phase shift angles at all levels are different.
  • the first type of sub-control signal can be jointly determined according to the frequency of the input radio frequency signal and the phase-shift angle of the first-stage phase-shifting circuit, and is used to control the switching tubes in the first-stage phase-shifting circuit Turn on or off to adjust its own circuit impedance, so that the first-stage phase-shifting circuit performs phase shifting of the input signal at the same angle under input RF signals of different frequencies, that is, generates the first phase-shifting angle signal with a constant angle .
  • the phase shift angle calculation of the first stage phase shift circuit refer to the formula (1):
  • ⁇ 1 represents the phase shift angle of the first-stage phase-shift circuit
  • f represents the frequency of the input RF signal
  • R1*C1 represents the delay constant of the first-stage phase-shift circuit
  • R1 represents the first-stage phase-shift circuit connected across The equivalent resistance between the input end of the first stage phase shifting circuit and the corresponding output end; equivalent capacitance.
  • R1*C1 needs to be adjusted according to the change of f when ⁇ 1 remains unchanged.
  • the second type of sub-control signal can be jointly determined according to the frequency of the input radio frequency signal and the phase-shift angle of the second-stage phase-shifting circuit, and is used to control the switching tubes in the second-stage phase-shifting circuit Turn on or off to adjust its own circuit impedance, so that the second-stage phase-shifting circuit performs phase-shifting at the same angle to the input signal after the phase-shifting by the first phase-shifting circuit under input RF signals of different frequencies, that is, to generate Quadrature signal with constant angle.
  • ⁇ 2 represents the phase-shift angle of the second-stage phase-shift circuit
  • f represents the frequency of the input RF signal
  • R2*C2 represents the delay constant of the second-stage phase-shift circuit
  • R2 represents the second-stage phase-shift circuit connected across The equivalent resistance between the input end of the second stage phase shifting circuit and the corresponding output end; equivalent capacitance.
  • the impedance-adjusted second-stage phase-shifting circuit can be used to shift the input first phase-shifting angle signal by a second phase-shifting angle, and output a quadrature signal corresponding to the frequency; the second phase-shifting The sum of the phase angle and the first phase shift angle is equal to 90 degrees.
  • the first-stage phase-shifting circuit of the quadrature signal generator adjusts its own circuit impedance in response to the first type of sub-control signal to generate the first phase-shifting angle signal; the second-stage phase-shifting circuit responds to the first The second type of sub-control signal adjusts its own circuit impedance, and outputs a quadrature signal corresponding to the frequency.
  • the two-stage phase shifting circuit adjusts the impedance at different frequencies to increase the bandwidth of the phase shifter.
  • the first-stage phase-shifting circuit includes a first resistance sub-circuit and a first capacitance sub-circuit; and/or the second-stage phase-shifting circuit includes a second resistance sub-circuit and a second capacitance sub-circuit;
  • the first-stage phase-shifting circuit is used to adjust the equivalent capacitance value of the first capacitance sub-circuit and/or the equivalent resistance value of the first resistance sub-circuit based on the frequency of the input signal;
  • the second-stage phase-shifting circuit is used for adjusting the equivalent capacitance value based on the frequency of the input signal Adjusting the equivalent capacitance of the second capacitance sub-circuit and/or the equivalent resistance of the second resistance sub-circuit.
  • FIG. 4 is a schematic diagram of the composition and structure of another phase shifter provided by an embodiment of the present disclosure. As shown in FIG.
  • the first-stage phase-shifting circuit is configured to generate a first phase-shifting angle signal based on a first delay constant, where the first delay constant is the equivalent capacitance of the first capacitor sub-circuit and the first The product of the equivalent resistance value of the resistance sub-circuit; and/or the second-stage phase-shifting circuit, which is used to generate the quadrature signal of the corresponding frequency based on the second delay constant, and the second delay constant is equal to that of the second capacitance sub-circuit The product of the effective capacitance value and the equivalent resistance value of the second resistor sub-circuit.
  • the controller 404 is configured to generate a first type of sub-circuit for controlling the product of the equivalent capacitance of the first capacitance sub-circuit 4012 and the equivalent resistance of the first resistance sub-circuit 4011 based on the frequency of the input radio frequency signal The control signal and the second type of sub-control signal used to control the product of the equivalent capacitance of the second capacitance sub-circuit 4022 and the equivalent resistance of the second resistance sub-circuit 4021 .
  • the first-stage phase-shifting circuit 401 is configured to make the product of the equivalent capacitance of the first capacitance sub-circuit 4012 and the equivalent resistance of the first resistance sub-circuit 4011 be the first delay constant in response to the first type of sub-control signal, A differential signal of a first phase-shifted angle is generated.
  • the second-stage phase-shifting circuit 402 is used to respond to the second type of sub-control signal so that the product of the equivalent capacitance of the second capacitor sub-circuit 4022 and the equivalent resistance of the second resistance sub-circuit 4021 is the second delay constant , output the quadrature signal corresponding to the frequency.
  • the first resistance sub-circuit means including the first resistor and other circuits for impedance adjustment; the first capacitance sub-circuit means including the first capacitor and other circuits for capacitance adjustment; the second resistance sub-circuit means including The second resistor and other circuits for impedance adjustment; the second capacitor sub-circuit includes the second capacitor and other circuits for capacitance adjustment.
  • the equivalent resistance value of the first resistance sub-circuit and the equivalent capacitance value of the first capacitance sub-circuit can be respectively R1 and C1 in the formula (1); the equivalent resistance value of the second resistance sub-circuit and The equivalent capacitance values of the second capacitance sub-circuit may be R2 and C2 in formula (2) respectively.
  • the product of the equivalent capacitance of the first capacitance sub-circuit 4012 and the equivalent resistance of the first resistance sub-circuit 4011 is the delay constant of the first-stage phase shifting circuit in formula (1) R1*C1; the product of the equivalent capacitance value of the second capacitance sub-circuit 4022 and the equivalent resistance value of the second resistance sub-circuit 4021 can be the delay constant R2*C2 of the second stage phase shifting circuit in the formula (2) .
  • phase shift angle of the first stage phase shift circuit under the condition that the phase shift angle of the first stage phase shift circuit remains unchanged, the product of the equivalent capacitance of the first capacitance sub-circuit 4012 and the equivalent resistance of the first resistance sub-circuit 4011 is equal to the first
  • the phase shift angle of the stage phase shift circuit is inversely proportional; under the condition that the phase shift angle of the second stage phase shift circuit is constant, the equivalent capacitance of the second capacitor sub-circuit 4022 and the equivalent resistance of the second resistor sub-circuit 4021
  • the product of the values is inversely proportional to the phase shift angle of the second stage phase shift circuit.
  • the first delay constant represents the product of R1 and C1 corresponding to the frequency of the input radio frequency signal under the condition that the phase shift angle of the first stage phase shift circuit is constant in the formula (1);
  • the second delay constant represents the product of R2 and C2 corresponding to the frequency of the input radio frequency signal in formula (2) under the condition that the phase shift angle of the second-stage phase shift circuit remains unchanged.
  • the equivalent capacitance of the first capacitor sub-circuit and the equivalent resistance of the first resistance sub-circuit in the first-stage phase shifting circuit The product of the value is adjusted to the first delay constant, based on the second type of sub-control signal generated according to the frequency of the input radio frequency signal, the equivalent capacitance and the second resistance sub-circuit of the second capacitance sub-circuit in the second-stage phase shifting circuit.
  • the product of the equivalent resistance of the circuit is adjusted to the second delay constant, so that the quadrature signal generator generates quadrature signals of corresponding frequencies to meet the bandwidth requirement.
  • the first-stage phase-shifting circuit is configured to adjust the equivalent capacitance of the first capacitor sub-circuit and/or the equivalent resistance of the first resistance sub-circuit in response to the first type of sub-control signal , so that the product of the equivalent capacitance of the first capacitance subcircuit and the equivalent resistance of the first resistance subcircuit is a first delay constant, and a first phase shift angle signal is generated;
  • the second-stage phase-shifting circuit is used to adjust the equivalent capacitance value of the second capacitance subcircuit and/or the equivalent resistance value of the second resistance subcircuit in response to the second type of sub-control signal, so that the second capacitance subcircuit
  • the product of the equivalent capacitance and the equivalent resistance of the second resistor sub-circuit is the second delay constant, and an quadrature signal corresponding to the frequency is output.
  • the first resistance sub-circuit and/or the first capacitance sub-circuit includes a first impedance adjustment circuit, the first impedance adjustment circuit has a plurality of first switches, and the first impedance adjustment circuit performs Impedance adjustment; and/or, the second resistance sub-circuit and/or the second capacitance sub-circuit includes a second impedance adjustment circuit, the second impedance adjustment circuit has a plurality of second switches, and the second impedance adjustment circuit performs impedance adjustment through the second switch adjust.
  • FIG. 5 is a schematic diagram of the composition and structure of another phase shifter provided by an embodiment of the present disclosure. As shown in FIG. An impedance adjustment circuit 5013 ; the second resistance sub-circuit 5021 or the second capacitance sub-circuit 5022 includes the second impedance adjustment circuit 5023 .
  • the first impedance adjustment circuit 5013 has a plurality of first switches, and the first impedance adjustment circuit performs impedance adjustment through the first switches;
  • the second impedance adjustment circuit 5023 has a plurality of second switches, and the second impedance adjustment circuit performs impedance adjustment through the second switches. adjust.
  • the output terminal of the first-stage phase shifting circuit 501 is connected to the second input end of the second-stage phase-shifting circuit 502, and the first-stage phase-shifting circuit 501 is used to switch on or off the first impedance in response to the first type of sub-control signal Adjust the first switch in the circuit 5013 to change the equivalent capacitance of the first capacitance sub-circuit 5012 or the equivalent resistance of the first resistance sub-circuit 5011, so that the equivalent capacitance of the first capacitance sub-circuit 5012 and the first resistance
  • the product of the equivalent resistance values of the sub-circuit 5011 is the first delay constant, which generates the first phase shift angle signal.
  • the output terminal of the second-stage phase-shifting circuit 502 is connected to the differential adder 503, and is used to switch on or off the second switch in the second impedance adjustment circuit 5023 in response to the second type sub-control signal, and change the second capacitance sub-circuit
  • the equivalent capacitance value of 5022 or the equivalent resistance value of the second resistance sub-circuit 5021 so that the product of the equivalent capacitance value of the second capacitance sub-circuit 5022 and the equivalent resistance value of the second resistance sub-circuit 5021 is the second delay constant , to output a quadrature signal corresponding to the frequency; wherein, both the first delay constant and the second delay constant are determined according to the frequency of the input radio frequency signal.
  • both the first impedance adjusting circuit 5013 and the second impedance adjusting circuit 5023 may include adjusting resistors or adjusting capacitors.
  • the first impedance adjustment circuit 5013 and the second impedance adjustment circuit 5023 may be connected in parallel with the first resistance in the first resistance sub-circuit 5011 or the second resistance in the second resistance sub-circuit 5021 including A circuit for adjusting resistance;
  • the first impedance adjusting circuit 5013 and the second impedance adjusting circuit 5023 can each be a parallel circuit formed by connecting at least two adjusting resistors in parallel, or a single adjusting resistor connected in parallel with the first resistor or the second resistor;
  • the first impedance adjustment circuit 5013 and the second impedance adjustment circuit 5023 may be connected in parallel with the first capacitor in the first capacitor sub-circuit 5012 or the second capacitor in the second capacitor sub-circuit 5022 Includes circuitry to adjust capacitance.
  • both the first impedance adjustment circuit 5013 and the second impedance adjustment circuit 5023 may include a switch tube connected in series with the adjustment resistor or the adjustment capacitor.
  • the switching tube represents a semiconductor device that can be used for switching.
  • the switch tube may be a triode, or a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSET).
  • MOSET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the first-stage phase shifting circuit turns on or off the first impedance adjustment circuit in response to the first type of sub-control signal, and changes the equivalent capacitance of the first capacitance sub-circuit or the first resistance sub-circuit, etc.
  • the product of the equivalent capacitance value of the first capacitance sub-circuit and the equivalent resistance value of the first resistance sub-circuit is the first delay constant, the first phase-shifting angle signal is generated, and the second-stage phase-shifting circuit responds
  • the equivalent capacitance value of the second capacitance sub-circuit or the equivalent resistance value of the second resistance sub-circuit is changed, so that the equivalent capacitance of the second capacitance sub-circuit
  • the product of the capacitance value and the equivalent resistance value of the second resistor sub-circuit is the second delay constant, and the quadrature signal corresponding to the frequency is output. Therefore, the phase shift angles of the first-stage phase shifting circuit and the second-stage phase shifting circuit in the quadrature signal generator are constant at different frequencies, and the working bandwidth of the quadrature signal generator can be widened.
  • the embodiments of the present disclosure provide a phase shifting method, which can be applied to a multi-phase phase shifter, as shown in FIG. 6 , the method includes:
  • Step S601 The controller generates a first control signal based on the frequency of the input radio frequency signal, and generates a second control signal based on the target phase shift angle; the first control signal is used to control the quadrature signal generator; the second control signal is used to control the adder.
  • Step S602 The quadrature signal generator generates a quadrature signal of a corresponding frequency based on the first control signal.
  • Step S603 The adder performs vector synthesis on the quadrature signals based on the second control signal.
  • FIG. 7 is a schematic diagram of an implementation flow of another phase shifting method provided by an embodiment of the present disclosure. As shown in FIG. 7 , the flow includes:
  • Step S701 The controller generates a first control signal based on the frequency of the input radio frequency signal, and generates a second control signal based on the target phase shift angle; the second control signal is used to control the adder; the quadrature signal generator includes a first stage phase shifting circuit and second stage phase shifting circuit; the first control signal includes a first type sub-control signal for controlling the first stage phase shifting circuit and a sub-control signal for controlling the second stage phase shifting circuit The second type of sub-control signal.
  • Step S702 the first-stage phase-shifting circuit adjusts its own circuit impedance in response to the first-type sub-control signal, and generates a first phase-shifting angle signal.
  • Step S703 the second-stage phase-shifting circuit adjusts its own circuit impedance in response to the second-type sub-control signal, and outputs the quadrature signal at a corresponding frequency.
  • Step S704 The adder performs vector synthesis on the quadrature signals based on the second control signal.
  • FIG. 8 is a schematic diagram of an implementation flow of another phase shifting method provided by an embodiment of the present disclosure. As shown in FIG. 8 , the flow includes:
  • Step S801 Obtain the frequency of the input radio frequency signal in real time.
  • Step S802 Generate a first control signal based on the frequency of the input radio frequency signal; the first control signal is used to control the quadrature signal generator.
  • Step S803 Obtain a preset phase shift angle.
  • Step S804 Generate a second control signal based on the preset phase shift angle; the second control signal is used to control the adder.
  • Step S805 Control the quadrature signal generator based on the first control signal, so that the quadrature signal generator generates a quadrature signal of a corresponding frequency.
  • Step S806 Control the differential adder to perform vector synthesis on the quadrature signals based on the second control signal, so that the differential adder outputs a first in-phase quadrature signal.
  • FIG. 9 is a schematic flow diagram of another multi-phase phase shifting method provided by an embodiment of the present disclosure. As shown in FIG. 9 , the process should be applicable to a controller in a multi-phase phase shifter, and the process includes:
  • Step S901 Obtain the frequency of the input radio frequency signal in real time.
  • Step S902 Determine the product of the frequency of the input radio frequency signal and the phase shift angle of the first stage phase shift circuit as the first product.
  • Step S903 Determine a first delay constant of the first-stage phase shifting circuit based on the first product.
  • Step S904 Generate the first type of sub-control signal based on the first delay constant.
  • Step S905 Determine the product of the frequency of the input radio frequency signal and the phase shift angle of the second stage phase shift circuit as a second product.
  • Step S906 Determine a second delay constant of the second-stage phase shifting circuit based on the second product.
  • Step S907 Generate the second type of sub-control signal based on the second delay constant.
  • Step S908 Obtain a preset phase shift angle.
  • Step S909 Generate a second control signal based on the preset phase shift angle; the second control signal is used to control the amplifying circuit.
  • Step S910 Control the first-stage phase-shifting circuit based on the first-type sub-control signal, so that the first-stage phase-shifting circuit outputs a first phase-shifting angle signal.
  • Step S911 Control the second-stage phase-shifting circuit based on the second-type sub-control signal, so that the second-stage phase-shifting circuit outputs a quadrature signal of a corresponding frequency.
  • Step S912 Control the differential adder to perform vector synthesis on the quadrature signals based on the second control signal, so that the differential adder outputs a first in-phase quadrature signal.
  • Fig. 10 is a composition circuit diagram of the active phase shifter provided by the embodiment of the present disclosure.
  • the active filter includes an interstage matching network 1001, PPF 1002, analog adder 1003, transformer TF3 1004, The twelfth capacitor C12, the differential amplifier sub-circuit 1005, the thirteenth capacitor C13, the transformer TF4 1006, and the fourteenth capacitor C14, wherein, the equal-amplitude differential radio frequency signal is input to the input terminal of the IMN 1001, and the IMN 1001 pairs the input equal-amplitude
  • the network matching is performed on the differential radio frequency signal, and the equal-amplitude differential radio frequency signal after network matching is input to PPF 1002, and four quadrature signals with the same amplitude and 90° phase interval are generated through PPF 1002 (two positive output terminals I+, Q+ and two negative output terminals I-, Q-), and four quadrature signals with the same amplitude and a phase interval of 90 degrees are input to the analog adder 1003, and the analog adder 1003 responds
  • the isolated first in-phase quadrature signal is output.
  • the phase quadrature signal is sent to the differential amplifier sub-circuit 1005; power amplification is performed by the differential amplifier sub-circuit 1005, and the first in-phase quadrature signal after output isolation and power amplification is isolated by TF4 1006, and the second in-phase quadrature signal is output.
  • C12 is connected between the two input terminals of the differential amplifier sub-circuit 1005 to remove electromagnetic interference
  • C13 and C14 are respectively connected between the two input terminals and the two output terminals of the transformer TF4 1006 to use It is used to remove the electromagnetic interference generated by the transformer TF4 1006.
  • IMN 1001 includes a third inductance L3 and a fourth inductance L4, and L3 and L4 are respectively connected in series with the first input end and the second input end of PPF 1002;
  • PPF 1002 is a two-order RC filter;
  • analog adder 1003 includes sequentially connected The quadrature path selection unit 1003', the variable gain amplifier 1003" and the adder 1003"'.
  • the two-stage RC filter includes eight resistors R9 to R16 and eight variable-value capacitors C15 to C22, wherein the series branch formed by series connection of R9 and R10 is connected to the second stage of the two-stage RC filter.
  • the series branch formed by series connection of R11 and R12 is connected between the first input terminal and the second output terminal (Q+) of the two-stage RC filter; R13 and R14
  • the series branch formed in series is connected between the second input terminal and the third output terminal (1-) of the two-stage RC filter; the series branch formed by R15 and R16 connected in series is connected to the second-order RC filter
  • C15 is connected across the two ends of R11, the positive pole of C15 is connected to the first input terminal; the negative pole of C16 is connected to the second output terminal, and the positive pole of C16 is connected to the second output terminal.
  • the positive pole is connected to the common node of R9 and R10; the positive pole of C17 is connected to the first input terminal, the negative pole of C17 is connected to the common node of R13 and R14; the negative pole of C18 is connected to the third output terminal, and the positive pole of C18 is connected to On the common node of R11 and R12; C19 is connected across both ends of R15, the positive pole of C19 is connected to the second input terminal; the negative pole of C20 is connected to the fourth output terminal, and the positive pole of C20 is connected to the public of R14 and R14 node; the positive pole of C21 is connected to the second input terminal, the negative pole of C21 is connected to the common node of R9 and R10; the negative pole of C22 is connected to the first output terminal, and the positive pole of C22 is connected to the common node of R15 and R16 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

一种正交信号发生器及其方法、移相器及其方法以及放大装置,其中一种正交信号发生器包括:第一级移相电路(301)和第二级移相电路(302);第一级移相电路(301)的输出端与第二级移相电路(302)的输入端连接,第一级移相电路(301)的阻抗可基于第一输入信号的频率进行调节,第一级移相电路(301)用于对第一输入信号进行第一移相角度的相移,并生成第一移相角度信号;第二级移相电路(302)的阻抗可基于第二输入信号的频率进行调节,第二级移相电路(302)用于对移相后的第二输入信号进行第二移相角度的相移,并输出对应频率的正交信号。

Description

正交信号发生器及其方法、移相器及其方法以及放大装置
相关申请的交叉引用
本公开基于申请号为202111133966.9、申请日为2021年9月27、申请名称为“一种多相位移相器和多相位移相方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本公开。
技术领域
本公开涉及但不限于一种正交信号发生器及其方法、移相器及其方法以及放大装置。
背景技术
相关技术中,由于移相器中的正交信号产生器带宽不够宽,不能在宽的带宽下产生正交信号,从而限制了整个移相器的带宽。
发明内容
有鉴于此,本公开实施例提供正交信号发生器及其方法、移相器及其方法以及放大装置。
第一方面,本公开实施例提供了一种正交信号发生器,包括:第一级移相电路和第二级移相电路;
所述第一级移相电路的输出端与所述第二级移相电路的输入端连接,所述第一级移相电路的阻抗可基于第一输入信号的频率进行调节,所述第一级移相电路用于对所述第一输入信号进行第一移相角度的相移,并生成第一移相角度信号;
所述第二级移相电路的阻抗可基于第二输入信号的频率进行调节,所述第二级移相电路用于对移相后的所述第二输入信号进行第二移相角度的相移,并输出对应频率的所述正交信号。
在一种实施方式中,所述第二移相角度和所述第一移相角度之和等于90度。
在一种实施方式中,所述第一级移相电路包括第一电阻子电路和第一电容子电路;及/或所述第二级移相电路包括第二电阻子电路和第二电容子电路;
所述第一级移相电路用于基于所述第一输入信号的频率调整所述第一电容子电路的等效容值及/或所述第一电阻子电路的等效阻值;
所述第二级移相电路用于基于所述第二输入信号的频率调整所述第二电容子电路的等效容值及/或所述第二电阻子电路的等效阻值。
在一种实施方式中,所述第一电阻子电路及/或所述第一电容子电路包括第一阻抗调节电路,所述第一阻抗调节电路具有多个第一开关,所述第一阻抗调节电路通过所述第一开关进行阻抗调节;
及/或,所述第二电阻子电路及/或所述第二电容子电路包括第二阻抗调节电路,所述第二阻抗调节电路具有多个第二开关,所述第二阻抗调节电路通过所述第二开关进行 阻抗调节。
在一种实施方式中,所述第一级移相电路,用于基于第一延时常数生成所述第一移相角度信号,所述第一延时常数为所述第一电容子电路的等效容值和所述第一电阻子电路的等效阻值的乘积;
及/或所述第二级移相电路,用于基于第二延时常数生成对应频率的所述正交信号,所述第二延时常数为所述第二电容子电路的等效容值和所述第二电阻子电路的等效阻值的乘积。
在一种实施方式中,所述正交信号发生器包括多级移相电路,多级移相电路的各级移相角度之和为90度。
在一种实施方式中,各级移相角度均相同,或者各级移相角度部分相同,或者各级移相角度均相异。
在一种实施方式中,所述正交信号发生器输入的信号为差分信号。
第二方面,本公开实施例提供了一种移相器,包括:加法器、控制器和上述任一项所述的正交信号发生器;
所述控制器的输出端分别与所述正交信号发生器的输入端、所述加法器的第一输入端连接,所述控制器用于基于输入射频信号的频率生成第一控制信号,基于目标移相角度生成第二控制信号;所述第一控制信号用于控制所述正交信号发生器;所述第二控制信号用于控制所述加法器;
所述正交信号发生器的输出端与所述加法器的第二输入端连接,所述正交信号发生器用于基于所述第一控制信号产生对应频率的正交信号。
第三方面,本公开实施例提供了一种放大装置,包括:放大电路和上述所述的移相器,且所述移相器包括加法器、控制器和正交信号发生器;其中,
所述移相器的输出端与所述放大电路的输入端连接。
第四方面,一种正交信号的发生方法,应用于上述任一项所述的正交信号发生器,所述方法包括:
第一级移相电路基于第一输入信号的频率调整其自身的电路阻抗,并对所述第一输入信号进行第一相移角度的相移,输出第一移相角度信号;
所述第二级移相电路基于第二输入信号的频率调整其自身的电路阻抗,并对移相后的所述第二输入信号进行第二相移角度的相移,输出对应频率的所述正交信号。
第五方面,一种移相方法,应用于上述所述的移相器,所述方法包括:
实时获取输入射频信号的频率;
基于所述输入射频信号的频率生成第一控制信号;所述第一控制信号用于控制正交信号发生器;
获取预设移相角度;
基于预设移相角度生成第二控制信号;所述第二控制信号用于控制加法器;
基于所述第一控制信号控制所述正交信号发生器,使得所述正交信号发生器产生对 应频率的正交信号;
基于所述第二控制信号控制加法器对所述正交信号进行矢量合成,使得所述加法器输出第一同相正交信号。
在一种实施方式中,所述正交信号发生器包括第一级移相电路和第二级移相电路;
所述第一控制信号包括用于控制所述第一级移相电路的第一输入信号和用于控制所述第二级移相电路的第二类子控制信号;所述基于所述输入射频信号的频率生成第一控制信号,包括:
将所述输入射频信号的频率与所述第一级移相电路的移相角度的乘积确定为第一乘积;
基于所述第一乘积确定所述第一级移相电路的第一延时常数;
基于所述第一延时常数生成所述第一输入信号;
将所述输入射频信号的频率与所述第二级移相电路的移相角度的乘积确定为第二乘积;
基于所述第二乘积确定所述第二级移相电路的第二延时常数;
基于所述第二延时常数生成所述第二类子控制信号;
对应地,所述基于所述第一控制信号控制所述正交信号发生器,使得所述正交信号发生器产生对应频率的正交信号,包括:
基于所述第一输入信号控制所述第一级移相电路,使得所述第一级移相电路输出第一移相角度信号;
基于所述第二类子控制信号控制所述第二级移相电路,使得所述第二级移相电路输出对应频率的正交信号。
在本公开实施例中,由于正交信号发生器基于输入信号的频率可进行阻抗调节,以使具有上述正交信号发生器的移相器在对不同频率的输入信号进行移相时,其具有不同的阻抗,因此,能够令正交信号发生器具有更大的带宽,从而增加了整个移相器的带宽。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1为相关技术中有源移相器的组成电路图;
图2为本公开实施例提供的一种正交信号发生器的组成结构示意图;
图3为本公开实施例提供的又一种移相器的组成结构示意图;
图4为本公开实施例提供的再一种移相器的组成结构示意图;
图5为本公开实施例提供的还一种移相器的组成结构示意图;
图6为本公开实施例提供的一种移相方法的实现流程示意图;
图7为本公开实施例提供的另一种移相方法的实现流程示意图;
图8为本公开实施例提供的再一种移相方法的实现流程示意图;
图9为本公开实施例提供的又一种移相方法的实现流程示意图;
图10为本公开实施例提供的有源移相器的组成电路图。
具体实施方式
以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所提供的实施例仅仅用以解释本公开,并不用于限定本公开。另外,以下所提供的实施例是用于实施本公开的部分实施例,而非提供实施本公开的全部实施例,在不冲突的情况下,本公开实施例记载的技术方案可以任意组合的方式实施。
需要说明的是,在本公开实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的方法或者装置中还存在另外的相关要素(例如方法中的步骤或者装置中的单元,例如的单元可以是部分电路、部分处理器、部分程序或软件等等)。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,U和/或W,可以表示:单独存在U,同时存在U和W,单独存在W这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括U、W、V中的至少一种,可以表示包括从U、W和V构成的集合中选择的任意一个或多个元素。
移相器是用于产生多相位信号的器件,在射频系统中应用广泛。移相器主要分为有源移相器及无源移相器。其中,有源移相器特点是:面积小,灵活可控,可以产生增益,但线性度受限。无源移相器的特点是:相位稳定,线性度高,但面积大,有损耗。
图1为相关技术中有源移相器的组成电路图,如图1所示,有源滤波器包括依次连接的级间匹配网络(Inter stage Matching Network,IMN)101、正交发生器(Poly Phase Filter,PPF)102、模拟加法器103,其中,等幅值差分射频信号输入IMN 101的输入端,IMN 101对输入的等幅值差分射频信号进行网络匹配,并将网络匹配后的等幅值差分射频信号输入PPF 102,通过PPF 102生成四个幅度相同且相位间距90度的正交信号(两个正输出端I+、Q+和两个负输出端I-、Q-),并将四个幅度相同且相位间距90度的正交信号输入模拟加法器103,模拟加法器103响应来自外部的控制信号对四个幅度相同且相位间距90度的正交信号进行矢量合成,输出等相移的射频信号给TF1 104,经TF1104进行隔离和第一次功率变换,输出第一功率信号给放大器105;经放大器105进行第二次功率变换,输出第二功率信号给TF2 106,TF2 106对第二功率信号进行隔离和第三次功率变换,输出变换后的等相移射频信号。
相关技术中,由于正交发生器带宽受限,不能在较宽的带宽下产生正交信号,进而 限制了整个移相器的带宽。
基于上述技问题,本公开实施例提供了一种正交信号发生器,如图2所示,正交信号发生器包括:第一级移相电路301和第二级移相电路302。第一级移相电路301的输出端与第二级移相电路302的输入端连接,第一级移相电路301的阻抗可基于第一输入信号的频率进行调节,第一级移相电路301用于对第一输入信号进行第一移相角度的相移,并生成第一移相角度信号;第二级移相电路302的阻抗可基于第二输入信号的频率进行调节,第二级移相电路302用于对通过第一级移相电路301移相后的第二输入信号进行第二移相角度的相移,并输出对应频率的正交信号。
其中,第一输入信号和第二输入信号均可以是射频信号。
本公开实施例中,由于正交信号发生器基于输入信号(第一输入信号或第二输入信号)的频率可进行阻抗调节,以使具有上述正交信号发生器的移相器在对不同频率的输入信号进行移相时,其具有不同的阻抗,因此,能够令正交信号发生器具有更大的带宽,从而增加了整个移相器的带宽。
在一些可能的实施方式中,正交信号发生器输入的信号为差分信号。
本公开实施例中,输入信号为差分信号,在其他实施例中,输入的信号可以为单端信号,即通过PPF变成正交、加法器无需进行差分处理,直接正交信号放大然后进行叠加。
本公开实施例还提供了一种移相器,如图3所示,移相器包括:依次连接的正交信号发生器、加法器。加法器用于对正交信号发生器输出的正交信号进行矢量合成。
请继续参考图3,一实施例中还提供了一种放大器组件,放大器组件包括:依次连接的移相器和放大电路。其中,放大电路用于对移相器移相后的输入信号进行功率放大。
请继续参考图3,一些实施例中,移相器还包括控制器。控制器304分别与正交信号发生器、加法器连接,控制器304用于基于输入信号的频率生成第一控制信号,基于目标移相角度生成第二控制信号;第一控制信号用于控制正交信号发生器;第二控制信号用于控制加法器。
具体地,控制器304分别与第一级移相电路301、第二级移相电路302相连接,控制器304用于基于输入信号的频率生成用于控制第一级移相电路301的第一类子控制信号和用于控制第二级移相电路302的第二类子控制信号。即第一信号包括第一类子控信号、第二类子控信号,其中,第一类子控制信号与第二类子控制信号即可为同一信号,也可为不同信号。
第一级移相电路301用于响应于第一类子控制信号调整阻抗,生成第一移相角度信号;第二级移相电路302的输出端与加法器303连接,用于响应于第二类子控制信号调整阻抗,输出对应频率的正交信号。
加法器用于基于第二控制信号对正交信号进行矢量合成。
本公开实施例中,由于移相器基于输入射频信号的频率可对正交信号发生器的阻抗进行调节,以使移相器在对不同频率进行移相时,其具有不同的阻抗,因此,能够令正 交信号发生器具有更大的带宽,从而增加了整个移相器的带宽。
在一种可能的实施方式中,控制器304可以是特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、FPGA、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。控制器304可以生成与预设移相角度对应的控制差分加法器的第一控制信号和控制放大电路的第二控制信号。预设移相角度可以是根据移相器的应用场景所确定的。例如,在一些应用场景下,需要移相器移相30°(度),则对应的预设移相角度为30°。
可以理解的是,正交信号发生器和差分加法器可以均包括开关管。对应地,第一控制信号和第二控制信号可以均是用于开通或关断开关管的开关信号。例如,第一控制信号和第二控制信号可以是均是+12V(伏)的电压控制信号或0V的电压控制信号。
在一些可能的实施方式中,当输入信号为差分信号时,正交信号发生器产生的正交信号可以是四个幅度相同且相位间距90度的正交信号(两个正输出端I+、Q+和两个负输出端I-、Q-);正交信号发生器可以是能够生成四个幅度相同且相位间距90度的正交信号(两个正输出端I+、Q+和两个负输出端I-、Q-)的任一发生器。例如,正交信号发生器可以是两阶RC滤波器。
在一些可能的实施方式中,第二移相角度和第一移相角度之和等于90度。
可以理解的是,正交信号发生器一般选用至少两级的移相电路来实现。其中,每一级的移相电路的移相角度小于90°,各级的移相角度角度之和为90°。例如,正交信号发生器包括多级移相电路,多级移相电路的各级移相角度之和为90度。
在一些可能的实施方式中,各级移相角度均相同,或者各级移相角度部分相同,或者各级移相角度均相异。
在一种可能的实施方式中,第一类子控制信号可以根据输入射频信号的频率和第一级移相电路的移相角度共同确定,用于通过控制第一级移相电路中的开关管开通或关断来调整其自身的电路阻抗,使得第一级移相电路在不同频率的输入射频信号下对输入信号进行相同角度的移相,即,生成角度不变的第一移相角度信号。第一级移相电路的移相角度计算参见公式(1):
θ1=1/(f*R1*C1)      (1);
其中,θ1表示第一级移相电路的移相角度,f表示输入射频信号的频率,R1*C1表示第一级移相电路的延时常数;R1表示第一级移相电路中跨接在第一级移相电路的输入端与对应的输出端之间的等效电阻;C1表示第一级移相电路中跨接在第一级移相电路的输入端与相邻输出端之间的等效电容。
通过公式(1)可以看出,在θ1不变的情况下,需要根据f的变化调整R1*C1。
在一种可能的实施方式中,第二类子控制信号可以根据输入射频信号的频率和第二级移相电路的移相角度共同确定,用于通过控制第二级移相电路中的开关管开通或关断 来调整其自身的电路阻抗,使得第二级移相电路在不同频率的输入射频信号下对通过第一相移电路移相后的输入信号进行相同角度的移相,即,生成角度不变的正交信号。
第二级移相电路的移相角度计算参见公式(2):
θ2=1/(f*R2*C2)       (2);
其中,θ2表示第二级移相电路的移相角度,f表示输入射频信号的频率,R2*C2表示第二级移相电路的延时常数;R2表示第二级移相电路中跨接在第二级移相电路的输入端与对应的输出端之间的等效电阻;C2表示第二级移相电路中跨接在第二级移相电路的输入端与相邻输出端之间的等效电容。
通过公式(2)可以看出,在θ2不变的情况下,需要根据f的变化调整R2*C2。
在一种可能的实施方式中,阻抗调整后的第二级移相电路可以用于将输入的第一移相角度信号移相第二移相角度,输出对应频率的正交信号;第二移相角度和第一移相角度之和等于90度。
本公开实施例中,正交信号发生器的第一级移相电路响应于第一类子控制信号调整其自身的电路阻抗,生成第一移相角度信号;第二级移相电路响应于第二类子控制信号调整其自身的电路阻抗,输出对应频率的正交信号。如此,两级移相电路通过在不同频率下,进行阻抗调整,以增加移相器的带宽。
在一些可能的实施方式中,第一级移相电路包括第一电阻子电路和第一电容子电路;及/或第二级移相电路包括第二电阻子电路和第二电容子电路;第一级移相电路用于基于输入信号的频率调整第一电容子电路的等效容值及/或第一电阻子电路的等效阻值;第二级移相电路用于基于输入信号的频率调整第二电容子电路的等效容值及/或第二电阻子电路的等效阻值。
图4为本公开实施例提供的再一种移相器的组成结构示意图,如图4所示,与上述各实施例的区别在于,第一级移相电路401包括第一电阻子电路4011和第一电容子电路4012;第二级移相电路402包括第二电阻子电路4021和第二电容子电路4022。
在一些可能的实施方式中,第一级移相电路,用于基于第一延时常数生成第一移相角度信号,第一延时常数为第一电容子电路的等效容值和第一电阻子电路的等效阻值的乘积;及/或第二级移相电路,用于基于第二延时常数生成对应频率的正交信号,第二延时常数为第二电容子电路的等效容值和第二电阻子电路的等效阻值的乘积。
一实施例中,控制器404用于基于输入射频信号的频率生成用于控制第一电容子电路4012的等效容值和第一电阻子电路4011的等效阻值的乘积的第一类子控制信号和用于控制第二电容子电路4022的等效容值和第二电阻子电路4021的等效阻值的乘积的第二类子控制信号。
第一级移相电路401用于响应于第一类子控制信号使得第一电容子电路4012的等效容值和第一电阻子电路4011的等效阻值的乘积为第一延时常数,生成第一移相角度的差分信号。
第二级移相电路402的用于响应于第二类子控制信号使得第二电容子电路4022的 等效容值和第二电阻子电路4021的等效阻值的乘积为第二延时常数,输出对应频率的正交信号。
这里,第一电阻子电路表示包括第一电阻和用于进行阻抗调节的其它电路;第一电容子电路表示包括第一电容和用于进行容值调节的其它电路;第二电阻子电路表示包括第二电阻和用于进行阻抗调节的其它电路;第二电容子电路表示包括第二电容和用于进行容值调节的其它电路。
可以理解的是,第一电阻子电路的等效阻值和第一电容子电路的等效容值可以分别是公式(1)中的R1和C1;第二电阻子电路的等效阻值和第二电容子电路的等效容值可以分别是公式(2)中的R2和C2。
在一些可能的实施方式中,第一电容子电路4012的等效容值和第一电阻子电路4011的等效阻值的乘积为公式(1)中的第一级移相电路的延时常数R1*C1;第二电容子电路4022的等效容值和第二电阻子电路4021的等效阻值的乘积可以为公式(2)中的第二级移相电路的延时常数R2*C2。
可以理解的是,在第一级移相电路的移相角度不变的情况下,第一电容子电路4012的等效容值和第一电阻子电路4011的等效阻值的乘积与第一级移相电路的移相角度成反比;在第二级移相电路的移相角度不变的情况下,第二电容子电路4022的等效容值和第二电阻子电路4021的等效阻值的乘积与第二级移相电路的移相角度成反比。
可以理解的是,第一延时常数表示公式(1)中,在第一级移相电路的移相角度不变的情况下,输入射频信号的频率对应的R1与C1的乘积;第二延时常数表示公式(2)中,在第二级移相电路的移相角度不变的情况下,输入射频信号的频率对应的R2与C2的乘积。
本公开实施例中,基于根据输入射频信号的频率生成的第一类子控制信号将第一级移相电路中的第一电容子电路的等效容值和第一电阻子电路的等效阻值的乘积调整为第一延时常数,基于根据输入射频信号的频率生成的第二类子控制信号将第二级移相电路中的第二电容子电路的等效容值和第二电阻子电路的等效阻值的乘积调整为第二延时常数,使得正交信号发生器生成对应频率的正交信号,满足带宽需求。
在一种可能的实施方式中,第一级移相电路,用于响应于第一类子控制信号调整第一电容子电路的等效容值及/或第一电阻子电路的等效阻值,使得第一电容子电路的等效容值和第一电阻子电路的等效阻值的乘积为第一延时常数,生成第一移相角度信号;
第二级移相电路,用于响应于第二类子控制信号,调整第二电容子电路的等效容值及/或第二电阻子电路的等效阻值,使得第二电容子电路的等效容值和第二电阻子电路的等效阻值的乘积为第二延时常数,输出对应频率的正交信号。
在一些可能的实施方式中,第一电阻子电路及/或第一电容子电路包括第一阻抗调节电路,第一阻抗调节电路具有多个第一开关,第一阻抗调节电路通过第一开关进行阻抗调节;及/或,第二电阻子电路及/或第二电容子电路包括第二阻抗调节电路,第二阻抗调节电路具有多个第二开关,第二阻抗调节电路通过第二开关进行阻抗调节。
图5为本公开实施例提供的还一种移相器的组成结构示意图,如图5所示,与上述各实施例的区别在于,第一电阻子电路5011或第一电容子电路5012包括第一阻抗调节电路5013;第二电阻子电路5021或第二电容子电路5022包括第二阻抗调节电路5023。
第一阻抗调节电路5013具有多个第一开关,第一阻抗调节电路通过第一开关进行阻抗调节;第二阻抗调节电路5023具有多个第二开关,第二阻抗调节电路通过第二开关进行阻抗调节。
第一级移相电路501的输出端与第二级移相电路502的第二输入端连接,第一级移相电路501用于响应于第一类子控制信号接通或断开第一阻抗调节电路5013中的第一开关,改变第一电容子电路5012的等效容值或第一电阻子电路5011的等效阻值,使得第一电容子电路5012的等效容值和第一电阻子电路5011的等效阻值的乘积为第一延时常数,生成第一移相角度信号。
第二级移相电路502的输出端与差分加法器503连接,用于响应于第二类子控制信号接通或断开第二阻抗调节电路5023中的第二开关,改变第二电容子电路5022的等效容值或第二电阻子电路5021的等效阻值,使得第二电容子电路5022的等效容值和第二电阻子电路5021等效阻值的乘积为第二延时常数,输出对应频率的正交信号;其中,第一延时常数和第二延时常数均是根据输入射频信号的频率确定的。
可以理解的是,第一阻抗调节电路5013和第二阻抗调节电路5023均可以包括调节电阻或调节电容。在一种实施方式中,第一阻抗调节电路5013和第二阻抗调节电路5023可以是与第一电阻子电路5011中的第一电阻或第二电阻子电路5021中的第二电阻并联连接的包括调节电阻的电路;例如,第一阻抗调节电路5013和第二阻抗调节电路可5023以均是至少两个调节电阻并联形成的并联电路,或单个与第一电阻或第二电阻并联的调节电阻;在另一种实施方式中,第一阻抗调节电路5013和第二阻抗调节电路5023可以是与第一电容子电路5012中的第一电容或第二电容子电路5022中的第二电容并联连接的包括调节电容的电路。例如,第一阻抗调节电路5013和第二阻抗调节电路5023可以均是至少两个调节电容并联形成的并联电路,或单个与第一电容或第二电容并联的调整电容。
在一种实施方式中,第一阻抗调节电路5013和第二阻抗调节电路5023可以均包括与调节电阻或调节电容串联的开关管。
这里,开关管表示可以用于开关作用的半导体器件。例如,开关管可以是三极管,也可以是金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSET)。
本公开实施例中,第一级移相电路响应于第一类子控制信号接通或断开第一阻抗调节电路,改变第一电容子电路的等效容值或第一电阻子电路的等效阻值,使得第一电容子电路的等效容值和第一电阻子电路的等效阻值的乘积为第一延时常数,生成第一移相角度信号,第二级移相电路响应于第二类子控制信号接通或断开第二阻抗调节电路,改变第二电容子电路的等效容值或第二电阻子电路的等效阻值,使得第二电容子电路的等效容值和第二电阻子电路的等效阻值的乘积为第二延时常数,输出对应频率的正交信号。 从而使得正交信号发生器中的第一级移相电路和第二级移相电路的移相角度在不同频率下是不变的,可以拓宽正交信号发生器的工作带宽。
在上述实施例的基础上,本公开实施例提供了一种移相方法,可以应用于多相位移相器,如图6所示,所述方法包括:
步骤S601:控制器基于输入射频信号的频率生成第一控制信号,基于目标移相角度生成第二控制信号;所述第一控制信号用于控制正交信号发生器;所述第二控制信号用于控制加法器。
步骤S602:所述正交信号发生器基于所述第一控制信号产生对应频率的正交信号。
步骤S603:所述加法器基于所述第二控制信号对所述正交信号进行矢量合成。
图7为本公开实施例提供的另一种移相方法的实现流程示意图,如图7所示,所述流程包括:
步骤S701:控制器基于输入射频信号的频率生成第一控制信号,基于目标移相角度生成第二控制信号;所述第二控制信号用于控制加法器;所述正交信号发生器包括第一级移相电路和第二级移相电路;所述第一控制信号包括用于控制所述第一级移相电路的第一类子控制信号和用于控制所述第二级移相电路的第二类子控制信号。
步骤S702:所述第一级移相电路响应于所述第一类子控制信号调整其自身的电路阻抗,生成第一移相角度信号。
步骤S703:所述第二级移相电路响应于所述第二类子控制信号调整其自身的电路阻抗,输出对应频率的所述正交信号。
步骤S704:所述加法器基于所述第二控制信号对所述正交信号进行矢量合成。
图8为本公开实施例提供的再一种移相方法的实现流程示意图,如图8所示,所述流程包括:
步骤S801:实时获取输入射频信号的频率。
步骤S802:基于所述输入射频信号的频率生成第一控制信号;所述第一控制信号用于控制正交信号发生器。
步骤S803:获取预设移相角度。
步骤S804:基于预设移相角度生成第二控制信号;所述第二控制信号用于控制加法器。
步骤S805:基于所述第一控制信号控制所述正交信号发生器,使得所述正交信号发生器产生对应频率的正交信号。
步骤S806:基于所述第二控制信号控制差分加法器对所述正交信号进行矢量合成,使得所述差分加法器输出第一同相正交信号。
图9为本公开实施例提供的又一种多相位移相方法的实现流程示意图,如图9所示,所述流程应可以应用于多相位移相器中的控制器,所述流程包括:
步骤S901:实时获取输入射频信号的频率。
步骤S902:将所述输入射频信号的频率与所述第一级移相电路的移相角度的乘积 确定为第一乘积。
可以理解的是,根据公式(1)可知:
θ1*f=1/R1*C1      (3);
通过公式(3)可以看出,为了在f变化的情况下保证θ1固定不变,可以首先获得θ1与f的乘积,然后根据θ1与f的乘积确定R1与C1的乘积,进而对应生成第一类子控制信号。
步骤S903:基于所述第一乘积确定所述第一级移相电路的第一延时常数。
步骤S904:基于所述第一延时常数生成所述第一类子控制信号。
步骤S905:将所述输入射频信号的频率与所述第二级移相电路的移相角度的乘积确定为第二乘积。
可以理解的是,根据公式(4)可知:
θ2*f=1/R2*C2       (4);
通过公式(4)可以看出,为了在f变化的情况下保证θ2固定不变,可以首先获得θ2与f的乘积,然后根据θ2与f的乘积确定R2与C2的乘积,进而对应生成第一类子控制信号。
步骤S906:基于所述第二乘积确定所述第二级移相电路的第二延时常数。
步骤S907:基于所述第二延时常数生成所述第二类子控制信号。
步骤S908:获取预设移相角度。
步骤S909:基于预设移相角度生成第二控制信号;所述第二控制信号用于控制放大电路。
步骤S910:基于所述第一类子控制信号控制所述第一级移相电路,使得所述第一级移相电路输出第一移相角度信号。
步骤S911:基于所述第二类子控制信号控制所述第二级移相电路,使得所述第二级移相电路输出对应频率的正交信号。
步骤S912:基于所述第二控制信号控制差分加法器对所述正交信号进行矢量合成,使得所述差分加法器输出第一同相正交信号。
图10为本公开实施例提供的有源移相器的组成电路图,如图10所示,有源滤波器包括依次连接的级间匹配网络1001、PPF 1002、模拟加法器1003、变压器TF3 1004、第十二电容C12、差分放大子电路1005、第十三电容C13、变压器TF4 1006和第十四电容C14,其中,等幅值差分射频信号输入IMN 1001的输入端,IMN 1001对输入的等幅值差分射频信号进行网络匹配,并将网络匹配后的等幅值差分射频信号输入PPF 1002,通过PPF 1002生成四个幅度相同且相位间距90°的正交信号(两个正输出端I+、Q+和两个负输出端I-、Q-),并将四个幅度相同且相位间距90度的正交信号输入模拟加法器1003,模拟加法器1003响应来自外部的控制信号对四个幅度相同且相位间距90°的正交信号进行矢量合成,输出等相移的第一同相正交信号给TF3 1004,经TF3 1004对第一同相正交信号进行隔离后,输出隔离后的第一同相正交信号给差分放大子电路1005; 经差分放大子电路1005进行功率放大,输出隔离和功率放大后的第一同相正交信号经TF4 1006进行隔离,输出第二同相正交信号。
同时,C12跨接在差分放大子电路1005的两个输入端之间,用于去除电磁干扰干扰;C13和C14分别跨接在变压器TF4 1006的两个输入端和两个输出端之间,用于去除变压器TF4 1006产生的电磁干扰。
这里,IMN 1001包括第三电感L3和第四电感L4,L3和L4分别串联在PPF 1002的第一输入端和第二输入端;PPF 1002为两阶RC滤波器;模拟加法器1003包括依次连接的正交通路选择单元1003’、可变增益放大器1003”和加法器1003”’。
可以理解的是,两阶RC滤波器包括八个电阻R9至R16和八个容值可变的电容C15至C22,其中,R9和R10串联形成的串联支路连接在两阶RC滤波器的第一输入端和第一输出端(1+)之间;R11和R12串联形成的串联支路连接在两阶RC滤波器的第一输入端和第二输出端(Q+)之间;R13和R14串联形成的串联支路连接在两阶RC滤波器的第二输入端和第三输出端之间(1-)之间;R15和R16串联形成的串联支路连接在两阶RC滤波器的第二输入端和第四输出端之间(Q-)之间;C15跨接在R11的两端,C15的正极连接在第一输入端上;C16的负极连接在第二输出端上,C16的正极连接在R9与R10的公共节点上;C17的正极连接在第一输入端上,C17的负极连接在R13和R14的公共节点上;C18的负极连接在第三输出端上,C18的正极连接在R11和R12的公共节点上;C19跨接在R15的两端,C19的正极连接在第二输入端上;C20的负极连接在第四输出端上,C20的正极连接在R14与R14的公共节点上;C21的正极连接在第二输入端上,C21的负极连接在R9和R10的公共节点上;C22的负极连接在第一输出端上,C22的正极连接在R15和R16的公共节点上。
上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
本公开所提供的各方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本公开所提供的各产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本公开所提供的各方法或移相器实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
上面结合附图对本公开实施例进行了描述,但是本公开并不局限于上述的实施方式,上述的实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (13)

  1. 一种正交信号发生器,包括:第一级移相电路和第二级移相电路;
    所述第一级移相电路的输出端与所述第二级移相电路的输入端连接,所述第一级移相电路的阻抗可基于第一输入信号的频率进行调节,所述第一级移相电路用于对所述第一输入信号进行第一移相角度的相移,并生成第一移相角度信号;
    所述第二级移相电路的阻抗可基于第二输入信号的频率进行调节,所述第二级移相电路用于对移相后的所述第二输入信号进行第二移相角度的相移,并输出对应频率的所述正交信号。
  2. 根据权利要求1所述的正交信号发生器,其中,所述第二移相角度和所述第一移相角度之和等于90度。
  3. 根据权利要求1所述的正交信号发生器,其中,所述第一级移相电路包括第一电阻子电路和第一电容子电路;及/或所述第二级移相电路包括第二电阻子电路和第二电容子电路;
    所述第一级移相电路用于基于所述第一输入信号的频率调整所述第一电容子电路的等效容值及/或所述第一电阻子电路的等效阻值;
    所述第二级移相电路用于基于所述第二输入信号的频率调整所述第二电容子电路的等效容值及/或所述第二电阻子电路的等效阻值。
  4. 根据权利要求3所述的正交信号发生器,其中,所述第一电阻子电路及/或所述第一电容子电路包括第一阻抗调节电路,所述第一阻抗调节电路具有多个第一开关,所述第一阻抗调节电路通过所述第一开关进行阻抗调节;
    及/或,所述第二电阻子电路及/或所述第二电容子电路包括第二阻抗调节电路,所述第二阻抗调节电路具有多个第二开关,所述第二阻抗调节电路通过所述第二开关进行阻抗调节。
  5. 根据权利要求3所述的正交信号发生器,其中,所述第一级移相电路,用于基于第一延时常数生成所述第一移相角度信号,所述第一延时常数为所述第一电容子电路的等效容值和所述第一电阻子电路的等效阻值的乘积;
    及/或所述第二级移相电路,用于基于第二延时常数生成对应频率的所述正交信号,所述第二延时常数为所述第二电容子电路的等效容值和所述第二电阻子电路的等效阻值的乘积。
  6. 根据权利要求1所述的正交信号发生器,其中,所述正交信号发生器包括多级移相电路,多级移相电路的各级移相角度之和为90度。
  7. 根据权利要求6所述的正交信号发生器,其中,各级移相角度均相同,或者各级移相角度部分相同,或者各级移相角度均相异。
  8. 根据权利要求1至7任一项所述的正交信号发生器,其中,所述正交信号发生器输入的信号为差分信号。
  9. 一种移相器,包括:加法器、控制器和如权利要求1至8任一项所述的正交信号发生器;
    所述控制器的输出端分别与所述正交信号发生器的输入端、所述加法器的第一输入端连接,所述控制器用于基于输入射频信号的频率生成第一控制信号,基于目标移相角度生成第二控制信号;所述第一控制信号用于控制所述正交信号发生器;所述第二控制信号用于控制所述加法器;
    所述正交信号发生器的输出端与所述加法器的第二输入端连接,所述正交信号发生器用于基于所述第一控制信号产生对应频率的正交信号。
  10. 一种放大装置,包括:放大电路和如权利要求9所述的移相器,且所述移相器包括加法器、控制器和正交信号发生器;其中,
    所述移相器的输出端与所述放大电路的输入端连接。
  11. 一种正交信号的发生方法,应用于权利要求1至8任一项所述的正交信号发生器,所述方法包括:
    第一级移相电路基于第一输入信号的频率调整其自身的电路阻抗,并对所述第一输入信号进行第一相移角度的相移,输出第一移相角度信号;
    所述第二级移相电路基于第二输入信号的频率调整其自身的电路阻抗,并对移相后的所述第二输入信号进行第二相移角度的相移,输出对应频率的所述正交信号。
  12. 一种移相方法,应用于权利要求9所述的移相器,所述方法包括:
    实时获取输入射频信号的频率;
    基于所述输入射频信号的频率生成第一控制信号;所述第一控制信号用于控制正交信号发生器;
    获取预设移相角度;
    基于预设移相角度生成第二控制信号;所述第二控制信号用于控制加法器;
    基于所述第一控制信号控制所述正交信号发生器,使得所述正交信号发生器产生对应频率的正交信号;
    基于所述第二控制信号控制加法器对所述正交信号进行矢量合成,使得所述加法器输出第一同相正交信号。
  13. 根据权利要求12所述的方法,其中,所述正交信号发生器包括第一级移相电路和第二级移相电路;
    所述第一控制信号包括用于控制所述第一级移相电路的第一输入信号和用于控制所述第二级移相电路的第二类子控制信号;所述基于所述输入射频信号的频率生成第一控制信号,包括:
    将所述输入射频信号的频率与所述第一级移相电路的移相角度的乘积确定为第一乘积;
    基于所述第一乘积确定所述第一级移相电路的第一延时常数;
    基于所述第一延时常数生成所述第一输入信号;
    将所述输入射频信号的频率与所述第二级移相电路的移相角度的乘积确定为第二乘积;
    基于所述第二乘积确定所述第二级移相电路的第二延时常数;
    基于所述第二延时常数生成所述第二类子控制信号;
    对应地,所述基于所述第一控制信号控制所述正交信号发生器,使得所述正交信号发生器产生对应频率的正交信号,包括:
    基于所述第一输入信号控制所述第一级移相电路,使得所述第一级移相电路输出第一移相角度信号;
    基于所述第二类子控制信号控制所述第二级移相电路,使得所述第二级移相电路输出对应频率的正交信号。
PCT/CN2022/121854 2021-09-27 2022-09-27 正交信号发生器及其方法、移相器及其方法以及放大装置 WO2023046209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/479,105 US20240030958A1 (en) 2021-09-27 2023-10-01 Orthogonal signal generator and method thereof, phase shifter and method thereof, and amplifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111133966.9A CN113572454B (zh) 2021-09-27 2021-09-27 一种多相位移相器和多相位移相方法
CN202111133966.9 2021-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/479,105 Continuation US20240030958A1 (en) 2021-09-27 2023-10-01 Orthogonal signal generator and method thereof, phase shifter and method thereof, and amplifying device

Publications (1)

Publication Number Publication Date
WO2023046209A1 true WO2023046209A1 (zh) 2023-03-30

Family

ID=78174775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121854 WO2023046209A1 (zh) 2021-09-27 2022-09-27 正交信号发生器及其方法、移相器及其方法以及放大装置

Country Status (3)

Country Link
US (1) US20240030958A1 (zh)
CN (1) CN113572454B (zh)
WO (1) WO2023046209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU225903U1 (ru) * 2023-08-02 2024-05-13 Бюджетное учреждение высшего образования Ханты-Мансийского автономного округа - Югры "Сургутский государственный университет" Дискретный фазовращатель

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572454B (zh) * 2021-09-27 2022-01-21 广州慧智微电子有限公司 一种多相位移相器和多相位移相方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339700A (ja) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd 周波数逓倍器、及びそれを用いた周波数シンセサイザ並びに通信システム
CN101964643A (zh) * 2009-07-22 2011-02-02 中国科学院微电子研究所 一种自适应宽带正交移相电路
CN112737577A (zh) * 2020-12-21 2021-04-30 清华大学 一种正交本振信号发生器、本振链路和射频收发机
CN112787628A (zh) * 2020-12-15 2021-05-11 西安电子科技大学 一种超宽带可重构有源移相器
CN113572454A (zh) * 2021-09-27 2021-10-29 广州慧智微电子有限公司 一种多相位移相器和多相位移相方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781106B1 (fr) * 1998-07-10 2001-04-13 Commissariat Energie Atomique Modulateur vectoriel
JP4175503B2 (ja) * 2003-04-18 2008-11-05 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 歪み補償回路及び送信装置
GB2427091A (en) * 2005-06-08 2006-12-13 Zarlink Semiconductor Ltd Baseband quadrature frequency down-converter receiver having quadrature up-converter stage
CN102124659B (zh) * 2008-08-21 2014-02-26 英特赛尔美国股份有限公司 天线模块和利用该天线模块的噪声消除方法
CN103986439A (zh) * 2014-05-13 2014-08-13 西安电子科技大学 一种基于正交矢量调制的超宽带五位有源移相器
CN105207644B (zh) * 2015-09-16 2018-08-21 电子科技大学 一种基于矢量合成的片上有源移相器
US10770770B2 (en) * 2017-12-27 2020-09-08 Psemi Corporation Low loss, wide band, phase shifter utilizing transformer
CN111064441A (zh) * 2020-01-19 2020-04-24 中国电子科技集团公司第十三研究所 可变增益放大器、矢量调制移相器及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339700A (ja) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd 周波数逓倍器、及びそれを用いた周波数シンセサイザ並びに通信システム
CN101964643A (zh) * 2009-07-22 2011-02-02 中国科学院微电子研究所 一种自适应宽带正交移相电路
CN112787628A (zh) * 2020-12-15 2021-05-11 西安电子科技大学 一种超宽带可重构有源移相器
CN112737577A (zh) * 2020-12-21 2021-04-30 清华大学 一种正交本振信号发生器、本振链路和射频收发机
CN113572454A (zh) * 2021-09-27 2021-10-29 广州慧智微电子有限公司 一种多相位移相器和多相位移相方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU225903U1 (ru) * 2023-08-02 2024-05-13 Бюджетное учреждение высшего образования Ханты-Мансийского автономного округа - Югры "Сургутский государственный университет" Дискретный фазовращатель

Also Published As

Publication number Publication date
US20240030958A1 (en) 2024-01-25
CN113572454B (zh) 2022-01-21
CN113572454A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023046103A1 (zh) 一种放大器组件和相位移相方法
Minaei et al. Unity/variable-gain voltage-mode/current-mode first-order all-pass filters using single dual-X second-generation current conveyor
US9590576B2 (en) Differential amplifier
WO2023046209A1 (zh) 正交信号发生器及其方法、移相器及其方法以及放大装置
Chaturvedi et al. Current-mode first-order universal filter and its voltage-mode transformation
WO2023046109A1 (zh) 一种移相器和移相方法
Abaci et al. A new DVCC+ based second-order current-mode universal filter consisting of only grounded capacitors
Kumngern et al. Current-mode universal filter and quadrature oscillator using current controlled current follower transconductance amplifiers
Wilson et al. Rc-active networks with reduced sensitivity to amplifier gain bandwidth product
Songkla et al. Realization of electronically tunable current-mode first-order allpass filter and its application
Chen Versatile universal voltage-mode filter employing DDCCs
WO1995034953A1 (fr) Amplificateur accorde
Horng High output impedance current-mode universal first-order filter with three inputs using one DDCC
Chen Versatile voltage-mode DDCC-based universal filter
Chaturvedi et al. First-order current-mode fully cascadable all-pass frequency selective structure, its higher-order extension and tunable transformation possibilities
Jerabek et al. Experimental verification of pseudo-differential electronically controllable multifunction filter using modified current differencing/summing units
Yucehan et al. CCII-Based Voltage-Mode First-Order All-Pass Filters with Grounded Passive Components
JP6749521B2 (ja) ポリフェーズフィルタ
KR101992406B1 (ko) 아날로그 fir 필터와, 이를 이용한 광대역 실시간 시간 지연회로 및 그 방법
Alshwaikh et al. High order CMOS differential difference current conveyor universal filter using analytical synthesis technique
JP3189751B2 (ja) 周波数調整装置
TWI632776B (zh) 相位內插器
Kumar et al. Design of tunable versatile filter using operational trans-conductance amplifier
JPH0494209A (ja) 半導体装置
WO1995034951A1 (fr) Oscillateur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE