WO2023046063A1 - 基板处理装置及方法 - Google Patents

基板处理装置及方法 Download PDF

Info

Publication number
WO2023046063A1
WO2023046063A1 PCT/CN2022/120824 CN2022120824W WO2023046063A1 WO 2023046063 A1 WO2023046063 A1 WO 2023046063A1 CN 2022120824 W CN2022120824 W CN 2022120824W WO 2023046063 A1 WO2023046063 A1 WO 2023046063A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
substrate
fluid delivery
pipe
cavity
Prior art date
Application number
PCT/CN2022/120824
Other languages
English (en)
French (fr)
Inventor
王晖
贾社娜
陆寅霄
张晓燕
王文军
王俊
沈辉
王希
王坚
陈福平
韩阳
Original Assignee
盛美半导体设备(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛美半导体设备(上海)股份有限公司 filed Critical 盛美半导体设备(上海)股份有限公司
Priority to KR1020247013411A priority Critical patent/KR20240058205A/ko
Publication of WO2023046063A1 publication Critical patent/WO2023046063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68728Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of separate clamping members, e.g. clamping fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the invention belongs to the technical field of semiconductor equipment, in particular to a substrate processing device and method.
  • Integrated circuit manufacturing generally refers to substrate processing and manufacturing.
  • the substrate manufacturing process is to make the design layout into a mask, transfer the circuit graphic information on the mask to the silicon chip, and form a circuit on the silicon chip to build a complete circuit chip.
  • Integrated circuit manufacturing includes photolithography, etching, deposition, ion implantation, chemical mechanical polishing (CMP), cleaning and other links.
  • CMP chemical mechanical polishing
  • the cleaning process is to remove all kinds of contamination and impurities produced in the substrate processing and production. It is the process with the most steps in the manufacturing of integrated circuits and almost runs through the entire operation process.
  • Contamination impurities refer to any substances introduced during the manufacturing process of integrated circuits that endanger chip yield and electrical performance. Specific contamination includes particles, organic substances, metals, and natural oxide layers.
  • the wet cleaning process generally fixes the substrate on a rotatable substrate fixture. During the process, chemical liquid and deionized water are used to process the surface of the rotating substrate. After the wet etching or cleaning process is completed, the substrate is cleaned again. Dry it.
  • the traditional drying process mostly adopts nitrogen purging or isopropanol (IPA) cleaning with high-speed rotation of the substrate for drying.
  • IPA isopropanol
  • the feature size continues to shrink.
  • the fine pattern structures, sizes, depths, widths, and densities on the substrate are different, and the positions from the rotation axis are different.
  • the liquid flow and evaporation rates are also different in the patterned structure.
  • the difference in liquid flow and evaporation rate in each fine pattern structure will lead to different liquid level heights in different patterns at the same time. Under the action of liquid surface tension, it will cause uneven stress on the structure between adjacent patterns, which will eventually lead to substrate Damage problems such as collapse, adhesion, and deformation of the fine pattern structure on the chip will cause device failure, affect chip yield, and cause product scrap.
  • the present invention provides a substrate processing device and method.
  • the present invention proposes a substrate processing device and methods.
  • the substrate processing device proposed by the present invention includes:
  • a clamping mechanism configured to hold the substrate
  • a spray head mechanism including a liquid spray head configured to dispense liquid to a surface of the substrate positioned on the clamping mechanism;
  • a rotary drive mechanism configured to drive the clamping mechanism to rotate
  • the heating mechanism includes a heating plate.
  • the heating plate is arranged under the substrate.
  • the heating plate has at least two cavities along the radial direction, and each cavity is distributed on a different radius.
  • the control mechanism controls the thermal energy of the fluid in the cavity on the corresponding radius of the area , thereby increasing the local temperature of the substrate under the liquid ejection head.
  • the present invention also provides a substrate processing method, comprising:
  • the liquid spray head of the spray head mechanism distributes the liquid to the surface of the substrate.
  • the liquid spray head moves above the substrate from the center of the substrate to the edge of the substrate in the radial direction, when the liquid spray head moves to a certain area above the substrate, it sprays the liquid below the substrate.
  • the fluid with the second heat energy locally heats the same radius region on the substrate, increasing the local temperature of the substrate under the liquid jet head.
  • the substrate processing device and method provided by the present invention can dynamically and accurately control the regional heating of the substrate, accurately control the temperature of the substrate and its surface liquid, and then achieve the control of the surface tension and evaporation of the liquid on the surface of the substrate during the drying process.
  • the process purpose of speed is to avoid damage to the fine pattern structure on the surface of the substrate during the drying process.
  • FIG. 1 shows a schematic diagram of a three-dimensional structure of a substrate processing apparatus according to an embodiment of the present invention
  • Fig. 2 shows a partial enlarged view of A place in Fig. 1;
  • FIG. 3 shows a front view of a substrate processing apparatus according to an embodiment of the present invention
  • Fig. 4 shows a top view of a substrate processing apparatus according to an embodiment of the present invention
  • Fig. 5 shows B-B sectional schematic view among Fig. 4;
  • Fig. 6 shows a top view of the layout of the first chuck divided into four equal parts according to an embodiment of the present invention
  • Fig. 7 shows a bottom view of the layout of the first chuck divided into four equal parts according to an embodiment of the present invention
  • Fig. 8 shows a schematic diagram of the layout structure of the first fluid delivery channel inside the second chuck according to an embodiment of the present invention
  • Fig. 9 shows a top view of the shaft body according to an embodiment of the present invention.
  • Fig. 10 shows a schematic perspective view of the structure of the heating plate after the assembly of the first chuck and the second chuck according to an embodiment of the present invention
  • Fig. 11 shows a cross-sectional schematic view of the assembled first chuck and second chuck according to an embodiment of the present invention
  • Fig. 12 shows a top view of the layout of the first chuck divided into two equal parts according to an embodiment of the present invention
  • Fig. 13 shows a top view of the layout of the first chuck according to Embodiment 3 of the present invention
  • Figure 14a and Figure 14b show a schematic diagram of the relationship between fluid flow rate and heating area according to an embodiment of the present invention
  • FIG. 15 shows a control circuit diagram of a substrate processing method according to Embodiment 1 of the present invention.
  • FIG. 16 shows a control path diagram of a substrate processing method according to Embodiment 4 of the present invention.
  • FIG. 17 shows a control path diagram of a substrate processing method according to Embodiment 5 of the present invention.
  • FIG. 18 shows a control path diagram of a substrate processing method according to Embodiment 6 of the present invention.
  • FIG. 19 shows a control path diagram of a substrate processing method according to Embodiment 7 of the present invention.
  • Fig. 20 shows a cross-sectional schematic view of the assembled first chuck and second chuck according to Embodiment 8 of the present invention
  • Fig. 21 shows a schematic diagram of the cross-sectional structure of the assembled first chuck and the second chuck according to Embodiment 9 of the present invention
  • Fig. 22 shows a schematic structural diagram when the cooling part is a cooling pipe and is located inside the first chuck in Embodiment 9 of the present invention
  • Fig. 23 shows a schematic structural view when the cooling part is a cooling pipe and is located on the upper end surface of the first chuck in Embodiment 9 of the present invention
  • Figure 24 shows a schematic structural view of the cooling pipe in Embodiment 9 of the present invention.
  • Fig. 25 shows a schematic structural view in which the cooling part is a cooling cavity in Embodiment 9 of the present invention.
  • Fig. 26 shows a schematic structural diagram in which the cooling part is a cooling tank in Embodiment 9 of the present invention.
  • Fig. 27 shows an exemplary schematic diagram of the cooling mechanism cooling the second chuck according to an embodiment of the present invention
  • Fig. 28 shows an exemplary schematic diagram of cooling the first chuck by the cooling mechanism according to Embodiment 9 of the present invention
  • Fig. 29 shows a temperature curve change graph of preheating a substrate with a fluid reaching the first thermal energy according to an embodiment of the present invention
  • Fig. 30a to Fig. 30c disclose the schematic diagrams of temperature change curves in different regions of the substrate as the liquid nozzle moves when substrates are processed according to the substrate processing methods of Embodiment 1, Embodiment 4, and Embodiment 5 of the present invention.
  • 31a to 31c disclose the schematic diagrams of temperature variation curves in different regions of the substrate as the liquid jet head moves when the substrate is processed according to the substrate processing method of Embodiment 7 of the present invention.
  • the present invention provides a substrate processing device.
  • the substrate processing device includes: a clamping mechanism 200 , a rotation driving mechanism 300 , a heating mechanism 400 , a control mechanism and a shower head mechanism 600 .
  • the clamping mechanism 200 is used to keep the substrate 100 in a horizontal state, and includes a plurality of positioning pins 201 arranged around the substrate 100 .
  • FIG. 2 is a partial enlarged view of A in FIG. 1 , showing the positions of the substrate 100 and the positioning pins 201 in the substrate processing apparatus of this embodiment, that is, the schematic diagram of the three-dimensional structure of the substrate and the positioning pins.
  • the 6 positioning pins are arranged on the edge of the substrate 100, the top side wall of the positioning pin 201 is provided with a limit groove 2011, the bottom wall of the limit groove 2011 is used to support the substrate 100, and the side wall of the limit groove 2011 is used for clamping.
  • the cylinder (not shown) drives the action of the tension mechanism 203 to ensure that the positioning pin 201 can be far away from the substrate 100 to release the substrate 100, or close to the substrate 100 to clamp the substrate 100, so as to facilitate the fastening and positioning of the substrate 100 and Pick and place.
  • the clamping mechanism 200 also includes a support part 202, the bottom end of the positioning pin 201 is detachably connected to the support part 202, and the bottom of the support part 202 is connected with a rotation drive mechanism 300 through a transmission mechanism (not shown).
  • the transmission mechanism is a transmission belt
  • the rotation driving mechanism 300 can be selected according to actual operation requirements during actual use.
  • a servo motor is selected as the rotation driving mechanism 300 .
  • the rotation driving mechanism 300 rotates the substrate 100 around a vertical line passing through the center of the substrate 100 by driving the supporting part 202 .
  • the middle part of the supporting part 202 is provided with a through hole penetrating up and down to accommodate some non-rotating components.
  • the heating mechanism 400 includes a heating plate and a fluid delivery unit.
  • the heating plate is arranged under the substrate 100 , accommodated in the through hole opened in the middle of the supporting part 202 , and arranged parallel to the substrate 100 during operation.
  • the heating plate is a first chuck 401 and a second chuck 402 that are set in a matching manner. Blocks are arranged on the first chuck 401, and slots are arranged on the second chuck 402. During installation, the first chuck 401 The blocks of the second chuck 402 are engaged in the slots of the second chuck 402 to form a stable structure.
  • the first chuck 401 is equally divided into n equal parts according to the angle, wherein, n is an integer greater than or equal to 2.
  • the first chuck 401 defines at least two cavities 4011 along the radial direction. Each cavity 4011 is distributed on different radii along the radial direction of the first chuck 401 . The number of cavities 4011 in each equal portion is equal, and the cavities 4011 are distributed on different radii.
  • a fluid inlet hole 4012 is opened at the bottom of the cavity 4011, and a fluid outlet hole 4013 is opened at the top of the cavity, and the fluid outlet holes 4013 opened on the cavity 4011 have the same density.
  • the second chuck 402 is arranged below the first chuck 401 for fixedly supporting the first chuck 401 and connecting the first chuck 401 and the fluid delivery unit at the same time.
  • one end of the first fluid delivery channel 4021 in the second chuck 402 communicates with the fluid inlet hole 4012 at the bottom of the cavity 4011 opened in the first chuck 401, the first fluid delivery channel The other end of 4021 communicates with the fluid delivery unit.
  • the substrate 100 is rotating and the heating mechanism 400 is not rotating. After the substrate 100 rotates once, the area of the substrate 100 heated by each cavity 4011 is a ring or a circle.
  • the fluid delivery unit includes a shaft body 403 , a connector 404 , a fluid delivery pipe and a fluid delivery main pipe 406 .
  • One end of the shaft body 403 is fixedly connected to the bottom of the second chuck 402, and the second fluid delivery channel 4031 equal to the number of the cavity 4011 is arranged inside the shaft body 403, and one end of the second fluid delivery channel 4031 is connected to the second chuck 402
  • the first fluid delivery channel 4021 in the shaft body 403 is connected with the same number of openings as the second fluid delivery channel 4031.
  • Each opening is equipped with a connecting head 404, and each connecting head 404 is connected to a fluid delivery channel.
  • Tube connection, multiple fluid delivery tubes are connected to the same fluid delivery manifold 406 at the same time.
  • the control mechanism includes a switching valve 501 , a mass flow controller 502 and a heater 503 .
  • the fluid delivery pipes connected to each cavity 4011 are respectively communicated with the same fluid delivery main pipe 406 .
  • a switch valve 501 and a heater 503 are arranged on each fluid delivery pipe, and a mass flow controller 502 is arranged on the fluid delivery main pipe 406 .
  • the switching valve 501 opens or closes the fluid flowing through the fluid delivery pipe;
  • the mass flow controller 502 is configured to monitor and adjust the flow of the fluid flowing through the fluid delivery main pipe 406;
  • the heater 503 is configured to heat the fluid in the fluid delivery pipe.
  • the control mechanism controls the thermal energy of the fluid in the cavity 4011 below the substrate 100 corresponding to the liquid ejection head, thereby increasing the local temperature of the substrate 100 under the liquid ejection head.
  • the spray head mechanism 600 includes a liquid spray head configured to dispense liquid onto the surface of the substrate 100 placed on the clamping mechanism 200 .
  • the layout design of the first chuck 401 is: the first chuck 401 is divided into 4 equal parts according to the angle, that is, the first chuck 401 is divided It is four quadrants, and the first chuck 401 has 16 cavities 4011 in the radial direction, and these 16 cavities 4011 are evenly distributed in the four quadrants of the first chuck 401, and Fig. 6 is 4 equal parts
  • a top view of the layout of the evenly divided first chuck 401 .
  • FIG. 7 is a bottom view of the layout of the first chuck 401 divided into four equal parts.
  • FIG. 8 is a schematic diagram of the layout and structure of the first fluid delivery channel 4021 inside the second chuck 402 .
  • FIG. 9 is a top view of the shaft body 403 .
  • FIG. 10 shows a schematic perspective view of the structure of the heating plate after the first chuck 401 and the second chuck 402 are assembled.
  • FIG. 11 is a cross-sectional schematic diagram of the assembled first chuck 401 and second chuck 402 .
  • the device is not only suitable for drying the substrate 100 after the wet etching or cleaning process is completed, but also can be used in the etching process.
  • the embodiment of the present invention also provides a substrate processing method, please refer to FIG. 15 , which shows a schematic diagram of the relationship between the fluid control passages in the embodiment of the present invention.
  • the clamping mechanism 200 clamps the substrate 100 to maintain the horizontal setting of the substrate 100
  • the showerhead mechanism 600 is located above the substrate 100
  • the rotation driving mechanism 300 drives the support part 202 to drive the substrate 100 to pass through the vertical direction of the center of the substrate 100.
  • the line is the axis on which to rotate.
  • the liquid dispensed by the liquid spray head of the spray head mechanism 600 to the substrate 100 is dry liquid IPA.
  • the control mechanism controls the heater 503 to heat the thermal energy of the fluid flowing through the fluid delivery tube to the first thermal energy, and the fluid reaching the first thermal energy passes through each cavity
  • the fluid outlet hole 4013 of 4011 heats the substrate 100 to a first temperature
  • the first temperature is a preheating temperature
  • its function is to uniformly heat the entire substrate 100 .
  • the preferred process range is 60-70°C.
  • the first heat energy refers to the heat energy required to heat the substrate 100 to the first temperature.
  • the control mechanism controls the heater 503 to heat the area on the corresponding radius of the area.
  • the fluid in the cavity 4011 reaches the second heat energy, and the fluid reaching the second heat energy passes through the fluid outlet hole 4013 of the cavity 4011 to heat the substrate 100 in this region to the second temperature, and the second temperature is about to make the liquid jet head
  • the temperature at which the liquid distributed to the substrate 100 reaches the boiling point.
  • the second temperature is greater than or equal to the boiling point of the liquid. Taking IPA as an example, the preferred process range is 78-85°C.
  • the fluid transported into the cavity 4011 is first heated, and the fluid is transported to the second chuck 402 opened in the second chuck 402 of the heating plate through the fluid transport tube and the second fluid transport channel 4031.
  • a fluid delivery channel 4021 the fluid then enters the cavity 4011 of the first chuck 401, and then flows out of the heating plate through the fluid outlet hole 4013 opened on the top of the cavity 4011 to heat the substrate 100 above the heating plate to 70°C.
  • the control mechanism controls the heater 503 to heat the cavity 4011 that is located on the corresponding radius of the area.
  • the fluid in the fluid delivery pipe and then control the heat energy of the fluid flowing out of the fluid outlet hole 4013 of the cavity 4011 on the radius to be the second heat energy, and the fluid reaching the second heat energy passes through the fluid outlet hole 4013 of the cavity 4011 to the substrate 100 Heating was performed to 80°C.
  • the 16 cavities 4011 opened on the first chuck 401 are numbered from the center to the edge of the first chuck 401 in the order of cavities whose radii gradually increase, and the specific numbers are respectively 40111, 40112, 40113, 40114, 40115, 40116, 40117, 40118, 40119, 401110, 401111, 401112, 401113, 401114, 401115, 401116.
  • FIG. 8 for the structural schematic diagram of the corresponding second chuck 402 . 40215, 40216, 40217, 40218, 40219, 402110, 402111, 402112, 402113, 402114, 402115, 402116. Please refer to FIG.
  • FIG. 10 and FIG. 11 show perspective views of the structure of the heating plate after the first chuck 401 and the second chuck 402 are assembled.
  • the shaft body 403 is connected to 16 channels through the connector 404. , 40516 fluid delivery tube.
  • An on-off valve 501 and a heater 503 are respectively arranged on each fluid delivery pipe.
  • the multiple fluid delivery pipes are connected to the same fluid delivery main pipe 406 , and a mass flow controller 502 is arranged on the fluid delivery main pipe 406 .
  • the control mechanism controls the heater 503 on each fluid delivery tube to heat the fluid flowing through the tube so that its thermal energy reaches the first thermal energy.
  • the fluid passes through the bypass branch pipe 407 and is discharged out of the device, and the fluid that reaches the first thermal energy heats the substrate 100 to 70° C. through the fluid outlet holes 4013 of each cavity 4011 .
  • the liquid ejection head When the liquid ejection head starts to distribute liquid to the substrate 100 and simultaneously moves from the center of the substrate 100 to the edge of the substrate 100 along the radial direction of the substrate 100, when the liquid ejection head moves to a certain area above the substrate 100, the corresponding heating plate located in this area
  • the cavity number on the radius is 40111.
  • the control mechanism controls the heater 503 on the fluid delivery pipe numbered 4051 communicated with the cavity 40111 to start heating, so that the heater 503 heats the fluid flowing through the pipe to the second thermal energy.
  • the control mechanism controls the heater 503 provided on the fluid delivery pipe 4051 to start working to heat the fluid in the pipe, and before the heat energy of the fluid in the pipe reaches the second heat energy, the fluid is first discharged to the Outside the device, when the thermal energy of the fluid reaches the target thermal energy, it is transported into the cavity 40111 through the fluid delivery tube 4051 to ensure that the thermal energy of the fluid supplied by the tube to the heating plate reaches the set second thermal energy.
  • the fluid flows out of the heating plate through the fluid outlet hole 4013 opened on the cavity 40111, and flows to the substrate 100, heating the area corresponding to the radius area of the cavity 40111 corresponding to the substrate 100, so that the temperature at the corresponding position of the substrate 100 is rapidly heated to 80°C .
  • the liquid at this position on the substrate 100 vaporizes rapidly, and when the vaporization process of the liquid is fast enough, at the moment of drying, instead of being dried by the liquid, it is vaporized and dried, thereby reducing the surface tension.
  • the tension of the liquid surface is negligible for the pulling force between adjacent feature patterns. During this process, there is no pull of liquid surface tension between adjacent feature patterns, which effectively prevents the fine pattern structure on the surface of the substrate 100 from being pulled. Damaged during drying.
  • the heated fluid can be a gas, such as clean air, nitrogen, or an inert gas; it can also be a liquid.
  • the spray head mechanism 600 also includes a nitrogen spray head for nitrogen purging.
  • the etching chemical liquid or formula liquid is delivered to the surface of the rotating substrate through the nozzle mechanism, and the film on the surface of the substrate is partially etched or completely removed.
  • the etching chemical liquid or formula liquid is delivered to the surface of the rotating substrate 100 through the nozzle mechanism 600, and the film on the surface of the substrate 100 is partially etched or completely removed. Because temperature is one of the important parameters affecting the corrosion rate and uniformity, through the device of the present application and the above-mentioned processing method, the temperature of the substrate and its surface liquid can be dynamically and accurately controlled in partitions, so as to obtain good etching rate and uniformity control , Improve the processing accuracy and stability of integrated circuit wet etching process.
  • the second temperature range is 19-75°C.
  • the second temperature range is 80-200°C.
  • the second temperature range is 120-165°C.
  • This embodiment provides a substrate processing device.
  • the structure of the device is basically the same as that of the substrate processing device in Embodiment 1. The difference is that, as shown in FIG. 12 , the first chuck 401 is equally divided into 2 equal parts, the first chuck 401 has 16 cavities in the radial direction, and the upper end surface of each cavity has evenly distributed fluid outlet holes 4013, and the 16 cavities are evenly distributed in the first chuck 401 There are 8 cavities in each of the two regions, that is, there are 8 cavities in each region.
  • FIG. 12 is a top view of the layout of the first chuck 401.
  • This embodiment provides a substrate processing apparatus, the structure of which is basically the same as that of the substrate processing apparatus in Embodiment 1, the difference is that, as shown in Figure 13, the first chuck 401 is taken as a whole, directly on The first chuck 401 is provided with 16 cavities along the radial direction, and the upper end surface of each cavity is provided with evenly distributed fluid outlet holes 4013, and the 16 cavities 4011 are evenly arranged in the first chuck 401 with different radii.
  • the 16 cavities 4011 are circular in shape and arranged in concentric circles.
  • FIG. 13 is a top view of the layout of the first chuck 401 .
  • This embodiment provides a substrate processing device.
  • the structure of the device is basically the same as that of the substrate processing device in Embodiment 1. The difference is that, as shown in FIG. 16 , the fluid delivery pipe connected to each cavity An on-off valve 501, a mass flow controller 502 and a heater 503 are configured respectively, wherein the on-off valve 501 is configured to control the switching of the fluid flowing through the fluid delivery pipe; the mass flow controller 502 is configured to monitor and adjust the flow through The flow rate of the fluid in each fluid delivery tube; the heater 503 is configured to heat the fluid in the fluid delivery tube.
  • the flow rate of the fluid can be adjusted by controlling the mass flow controller 502, and then the heating of the substrate 100 by the fluid can be controlled. It is also possible to control the heater 503 to heat the fluid in the fluid delivery pipe to adjust the temperature of the fluid, thereby controlling the purpose of the fluid heating the substrate 100 .
  • the mass flow controller 502 can be controlled and adjusted separately, the heater 503 can be controlled separately, or the mass flow controller 502 and the heater 503 can be adjusted simultaneously.
  • a variety of control schemes can be adapted to a variety of situations, more convenient, efficient, adjustable, controllable and more precise.
  • the substrate processing method corresponding to this embodiment is basically the same as that of Embodiment 1.
  • the thermal energy of the fluid in each fluid delivery pipe is controlled by the control mechanism controlling the mass flow controller to adjust the fluid flow in the cavity on the corresponding radius of the area and/or by controlling the heater to adjust the fluid flow in the cavity.
  • the area corresponds to the thermal energy of the fluid in the cavity on the radius, and then controls the thermal energy of the fluid in the cavity 4011 below the substrate 100 corresponding to the liquid ejection head, so that the thermal energy of the fluid ejected from the fluid outlet hole 4013 on the cavity 4011 reaches the first Second thermal energy, the fluid with the second thermal energy heats the substrate 100 to a second temperature.
  • the control mechanism controls the cavities 4011 arranged from the center of the substrate 100 to the edge of the substrate 100 along the radial direction of the substrate 100.
  • the flow rate of the fluid inside is gradually increased to ensure faster heating of the substrate 100 in the corresponding region, so that the local temperature of the substrate 100 can be rapidly raised to the second temperature.
  • the control mechanism adjusts the mass flow controller 502 according to the actual heating area and uniformity of the substrate 100.
  • the flow rate of the fluid can achieve the above purpose and effect.
  • Figure 14a and Figure 14b show the flow velocity of the jet and the trajectory of the fluid jet flowing out of the fluid outlet hole 4013.
  • the velocity of the fluid flowing out changes the magnitude of the ⁇ angle, and the 2 ⁇ angle is the apex angle of the cone formed by the trajectory boundary of the fluid jet.
  • the larger the flow rate the smaller the ⁇ angle.
  • the cavity 4011 corresponds to the smaller heating area of the substrate 100; the smaller the flow rate, the larger the ⁇ angle.
  • the cavity 4011 corresponds to the heating of the substrate 100 The larger the area.
  • the ⁇ angle When the ⁇ angle is larger, it indicates that the fluid ejected through the fluid outlet hole 4013 has a larger heating area of the substrate 100, and can heat the region of the substrate 100 corresponding to the cavity 4011 while heating the region of the substrate 100 corresponding to the adjacent cavity. Perform preheating. Therefore, when it is necessary to heat the area of the substrate 100 corresponding to the adjacent cavity, the time taken for the substrate 100 to reach the required temperature will be reduced and the efficiency will be higher.
  • This embodiment provides a substrate processing apparatus, the structure of which is basically the same as that of the substrate processing apparatus in Embodiment 1. The difference is that, as shown in Figure 17, the fluid delivery pipes connected to each cavity are respectively connected with a first fluid delivery branch pipe and a second fluid delivery branch pipe, a switching valve 501a is installed on the first fluid delivery branch pipe, and the second fluid delivery branch pipe An on-off valve 501b is installed in the delivery branch pipe.
  • the first fluid delivery branch pipe is connected to the first fluid delivery main pipe 4061
  • the second fluid delivery branch pipe is connected to the second fluid delivery main pipe 4062 .
  • a mass flow controller 502 a and a heater 503 a are provided on the first fluid delivery main pipe 4061
  • a mass flow controller 502 b and a heater 503 b are provided on the second fluid delivery main pipe 4062 .
  • the switch valves 501a, 501b are configured to open or close the fluid flowing through the respective fluid delivery branch pipes; the mass flow controllers 502a, 502b are configured to monitor and adjust the flow through the first fluid delivery main pipe 4061, the second fluid delivery pipe The flow rate of the fluid in the manifold 4062; the heaters 503a and 503b are configured to heat the fluid in the first fluid delivery manifold 4061 and the second fluid delivery manifold 4062.
  • the first fluid delivery main pipe 4061 is connected with a bypass branch pipe 407a
  • the second fluid delivery main pipe 4062 is connected with a bypass branch pipe 407b.
  • the substrate processing method corresponding to this embodiment is basically the same as that of Embodiment 1.
  • the fluid delivery main pipe is set as two main pipes 4061, 4062, and each fluid delivery pipe is connected with two fluid delivery branch pipes, and the two fluid delivery branch pipes are connected with the two fluid delivery main pipes 4061, 4061, 4062 is connected.
  • control mechanism controls the heating mechanism 400 to heat the substrate 100, it first controls all the on-off valves 501a on the first fluid delivery branch pipes connected to the first fluid delivery main pipe 4061 to open, and controls the heater 503a to heat the first fluid flowing through it.
  • the fluid in the main pipe 4061 is delivered, and the fluid flows through the fluid outlet 4013 of each cavity through the first fluid delivery branch pipe and various fluid delivery pipes to preheat the entire substrate 100 to a first temperature.
  • the fluid is discharged out of the device through the bypass branch pipe 407a.
  • the switches located on the radius of the corresponding heating plate in this area are connected.
  • the switch valve 501a on the first fluid delivery branch pipe connected to the fluid delivery pipe is closed, and at the same time, the switch valve 501b on the second fluid delivery branch pipe is opened to control the flow of the second fluid connected to the cavity below the substrate 100 corresponding to the position of the liquid nozzle.
  • the fluid in the delivery manifold 4062 is heated, and the fluid passes through the cavity fluid outlet 4013 to heat the corresponding region of the substrate 100 to a second temperature. Before the heat energy of the fluid in the second fluid delivery main pipe 4062 reaches the second heat energy, the fluid is discharged to the outside of the device through the bypass branch pipe 407b.
  • the first fluid delivery main pipe 4061 can preheat the whole substrate 100, so that the substrate 100 can be stably kept warm, and the second fluid
  • the delivery manifold 4062 has already heated the fluid in the second fluid delivery manifold 4062 to have the second thermal energy before delivering the fluid to each fluid delivery tube.
  • the heating control is more precise and the work efficiency is higher.
  • This embodiment provides a substrate processing apparatus, the structure of which is basically the same as that of the substrate processing apparatus in Embodiment 5. The difference is that, as shown in FIG. 18 , the fluid delivery pipes connected to each cavity are respectively connected with a first fluid delivery branch pipe, a second fluid delivery branch pipe, and a third fluid delivery branch pipe.
  • An on-off valve 501a is installed on the first fluid delivery branch pipe
  • an on-off valve 501b is installed on the second fluid delivery branch pipe
  • an on-off valve 501c is installed on the third fluid delivery branch pipe.
  • the first fluid delivery branch pipe is connected to the first fluid delivery main pipe 4061
  • the second fluid delivery branch pipe is connected to the second fluid delivery main pipe 4062
  • the third fluid delivery branch pipe is connected to the third fluid delivery main pipe 4063 .
  • the first fluid delivery main pipe 4061 is connected with a bypass branch pipe 407a
  • the second fluid delivery main pipe 4062 is connected with a bypass branch pipe 407b.
  • a mass flow controller 502a, 502b, 502c is respectively installed on the first, second, and third fluid delivery main pipes 4061, 4062, 4063.
  • a heater 503a, 503b is respectively installed on the first and second fluid delivery main pipes 4061, 4062.
  • the switch valves 501a, 501b, 501c are configured to open or close the fluid flowing through their respective fluid delivery branch pipes; the mass flow controllers 502a, 502b, 502c are configured to monitor and adjust the fluid flowing through each fluid delivery main pipe 4061, The flow rate of the fluid in 4062, 4063; the heaters 503a, 503b are configured to heat the fluid in the first and second fluid delivery manifolds 4061, 4062.
  • the heating plate After the substrate 100 is removed from the clamping mechanism 200, the heating plate needs to be cooled so as to proceed with the next substrate process. At this time, close the switch valves 501a, 501b provided on the first fluid delivery branch pipes connected to the first and second fluid delivery main pipes 4061, 4062, and the second fluid delivery branch pipes, and open the first fluid delivery main pipe 4063.
  • the on-off valve 501c provided on the three fluid delivery branch pipes enables the low-temperature fluid to be delivered to each cavity of the heating plate, and the heating plate is rapidly cooled to speed up the cooling speed of the heating plate and improve the process efficiency.
  • the cryogenic fluid here is a fluid whose temperature is lower than normal temperature.
  • the low-temperature fluid flows out from the fluid outlet hole 4013 of the heating plate, overflows and flows around the clamping mechanism 200, and cools down the temperature of the clamping mechanism 200 while cooling the heating plate.
  • the fluid in the first fluid delivery main pipe 4061 and the second fluid delivery main pipe 4062 is discharged to the outside of the device through the bypass branch pipes 407a and 407b.
  • the fluid that can quickly switch to the required thermal energy can precisely control the temperature of the substrate 100 in the region.
  • This embodiment provides a substrate processing apparatus, the structure of which is basically the same as that of the substrate processing apparatus in Embodiment 1. The difference is that, as shown in FIG. 19 , the fluid delivery pipes connected to each cavity are respectively connected with a first fluid delivery branch pipe, a second fluid delivery branch pipe, and a third fluid delivery branch pipe.
  • An on-off valve 501a is installed on the first fluid delivery branch pipe
  • an on-off valve 501b is installed on the second fluid delivery branch pipe
  • an on-off valve 501c is installed on the third fluid delivery branch pipe.
  • the first fluid delivery branch pipe is connected to the first fluid delivery main pipe 4061
  • the second fluid delivery branch pipe is connected to the second fluid delivery main pipe 4062
  • the third fluid delivery branch pipe is connected to the third fluid delivery main pipe 4063 .
  • a mass flow controller 502a, 502b, 502c and a heater 503a, 503b, 503c are installed on the first, second, and third fluid delivery main pipes 4061, 4062, 4063.
  • the switching valves 501a, 501b, 501c are configured to open or close the fluid flowing through the respective fluid delivery branch pipes.
  • Mass flow controllers 502a, 502b, 502c are configured to monitor and regulate the flow of fluid passing through each fluid delivery manifold 4061, 4062, 4063; heaters 503a, 503b, 503c are configured to heat each fluid delivery manifold 4061, 4062, 4063 inner fluid.
  • the first fluid delivery main pipe 4061 is connected with a bypass branch pipe 407a
  • the second fluid delivery main pipe 4062 is connected with a bypass branch pipe 407b
  • the third fluid delivery main pipe 4063 is connected with a bypass branch pipe 407c.
  • the substrate processing method corresponding to this embodiment is basically the same as that of Embodiment 1.
  • the fluid delivery main pipe is set as a three-way main pipe, and each fluid delivery pipe is connected with three fluid delivery branch pipes, and the three fluid delivery branch pipes are respectively connected with the three fluid delivery main pipes.
  • control mechanism 500 controls the heating mechanism 400 to heat the substrate 100
  • control mechanism controls the heater 503a to heat the fluid flowing through the first fluid delivery main pipe 4061, and the heated fluid passes through the fluid outlet hole 4013 of each cavity to the substrate. 100 is heated to a first temperature.
  • the cavity located on the radius of the heating plate corresponding to the area is relatively
  • the switch valves 501a and 501c on the first fluid delivery branch connected to the connected fluid delivery tube are closed, and at the same time, the switch valve 501b on the second fluid delivery branch connected to the fluid delivery tube connected to the cavity is opened, and the opening is gradually
  • the switch valve 501c on the third fluid delivery branch pipe connected to the fluid delivery pipe connected to the cavity adjacent to the cavity in the radial direction away from the center of the heating plate controls the flow through the cavity below the substrate 100 corresponding to the position of the liquid nozzle.
  • the fluid in the connected second fluid delivery main pipe 4062 heats the substrate 100 in the corresponding region of the cavity to the second temperature through the fluid outlet hole 4013 opened in the cavity; at the same time, the fluid in the third fluid delivery main pipe 4063 The fluid reaching the third heat energy passes through the fluid outlet holes 4013 opened in the cavities adjacent to the cavity to reheat the corresponding area of the substrate 100 to the third temperature.
  • the 3rd temperature is the temperature of preheating again, and the 3rd temperature is higher than the 1st temperature, lower than the 2nd temperature, the 3rd temperature in the present embodiment is set to be less than the temperature of liquid boiling point, for IPA as example, preferred process
  • the range is 70-78°C.
  • the thermal energy of the fluid in the three-way fluid delivery main pipe 4061, 4062, 4063 is different, and the fluids in the three-way fluid delivery main pipe 4061, 4062, 4063 are all inside the fluid delivery main pipe. It has been heated.
  • the fluid is delivered to each fluid delivery pipe, it is not necessary to reheat in the fluid delivery pipe, so as to avoid the occurrence of the situation that affects the precise control of the temperature of the target area, and the first fluid delivery main pipe 4061 supplies the heat preservation fluid to the substrate 100. Play the purpose of preheating.
  • the third fluid delivery main pipe 4063 supplies a temperature higher than that of the fluid delivered by the first fluid delivery main pipe 4061 to reheat the substrate 100
  • the second fluid delivery main pipe 4062 supplies a temperature that enables the liquid distributed by the nozzle to reach a temperature near the boiling point
  • the fluid is used to rapidly heat the substrate 100 after the liquid is dispensed, so as to achieve the purpose of rapid drying.
  • the re-preheating fluid in the third channel is supplied to the cavity adjacent to the cavity below the substrate 100 corresponding to the liquid jet head in a radial direction gradually away from the center of the heating disk.
  • the liquid ejection head moves above the substrate 100 corresponding to the cavity 40111 , the substrate 100 is driven to rotate by the rotation driving mechanism 300 , and the liquid ejection head distributes liquid to the annular or circular area.
  • the area corresponding to the liquid dispensed by the liquid ejection head is a circular area; when the cavity 40111 is arc-shaped, the area corresponding to the liquid dispensed by the liquid ejection head is an annular area.
  • the opening and closing of the switch valve on the fluid delivery branch pipe connected with the cavity 40111 is that the switch valve 501a on the first fluid delivery branch pipe connected with the first fluid delivery main pipe 4061 is closed, and the second fluid delivery main pipe 4062 is connected.
  • the switch valve 501b on the second fluid delivery branch pipe is opened, the cavity 40111 is supplied with the fluid of the second temperature, and the switch valve 501c on the third fluid delivery branch pipe connected to the third fluid delivery main pipe 4063 is closed.
  • the opening and closing conditions of the switch valves on the fluid delivery branch pipes connected to the cavity 40112 adjacent to the cavity 40111 are as follows: the switch on the first fluid delivery branch pipe connected to the first fluid delivery main pipe 4061 The valve 501a is closed, the switch valve 501b on the second fluid delivery branch pipe connected to the second fluid delivery main pipe 4062 is closed, the switch valve 501c on the third fluid delivery branch pipe connected to the third fluid delivery main pipe 4063 is opened, and the cavity 40112 is supplied with The fluid of the third thermal energy.
  • the opening and closing conditions of the switch valve on the fluid delivery branch pipe connected to the cavity 40112 are: the first fluid delivery branch pipe connected to the first fluid delivery main pipe 4061
  • the on-off valve 501a on the top is closed
  • the on-off valve 501b on the second fluid delivery branch pipe connected with the second fluid delivery main pipe 4062 is opened
  • the cavity 40112 is supplied with the fluid with the second heat energy
  • the first fluid with the third fluid delivery main pipe 40631 is connected
  • the switching valve 501c on the delivery branch pipe is closed, and at the same time, in the radial direction gradually away from the center of the heating plate, the cavity 40113 adjacent to the cavity 40112 is supplied with the fluid with the third thermal energy, and so on until the nozzle Move to the edge of the substrate 100 to complete heating and drying.
  • the fluid delivery main pipe can be set as four main pipes, five main pipes, etc. according to the actual situation, so as to meet the target requirement of more precise control of the drying temperature of the substrate 100 .
  • each fluid delivery pipe is respectively connected to four fluid delivery branch pipes, and a switching valve is installed on each fluid delivery branch pipe.
  • the opening and closing conditions of the switching valve on the fluid delivery branch pipe connected to the cavity 40111 are as follows: the first fluid connected to the first fluid delivery main pipe
  • the switch valve on the delivery branch pipe is closed, the switch valve on the second fluid delivery branch pipe connected to the second fluid delivery main pipe is opened, the cavity 40111 is supplied with the fluid with the second heat energy, and the third fluid delivery branch pipe connected to the third fluid delivery main pipe
  • the on-off valve on the fourth fluid delivery main pipe is closed, and the on-off valve on the fourth fluid delivery branch pipe connected to the fourth fluid delivery main pipe is closed; at the same time, in the radial direction gradually away from the center of the heating plate, the cavity 40112 adjacent to the cavity 40111
  • the opening and closing conditions of the switch valves on the connected four-way fluid delivery branch pipes are as follows: the switch valve on the first fluid delivery branch pipe connected to the first fluid delivery main pipe is closed, and the switch valve on the second fluid delivery branch pipe connected to the
  • the switch valve is closed, the switch valve on the third fluid delivery branch pipe connected to the third fluid delivery main pipe is opened, the cavity 40112 is supplied with the fluid with the third heat energy, the switch valve on the fourth fluid delivery branch pipe connected to the fourth fluid delivery main pipe
  • the opening and closing conditions of the switching valves on the four-way fluid delivery branch pipes connected to the cavity 40113 adjacent to the cavity 40112 are: the first fluid delivery The switching valve on the first fluid delivery branch pipe connected to the main pipe is closed, the switching valve on the second fluid delivery branch pipe connected to the second fluid delivery main pipe is closed, and the switching valve on the third fluid delivery branch pipe connected to the third fluid delivery main pipe is closed.
  • the switch valve on the fourth fluid delivery branch pipe connected with the fourth fluid delivery main pipe is opened, and the cavity 40113 is supplied with the fluid having the fourth thermal energy.
  • the first temperature is the heat preservation temperature
  • the second temperature is about the temperature at which the liquid dispensed by the liquid nozzle to the substrate 100 reaches the boiling point
  • the third temperature and the fourth temperature are preheating temperatures
  • the third temperature and the fourth temperature The temperatures can be the same temperature or different temperatures, but both the third temperature and the fourth temperature need to be higher than the first temperature and lower than the second temperature.
  • the purpose of setting the preheating temperature lower than the boiling point is to ensure that the liquid in this area is in a non-boiling state before the liquid nozzle reaches this area.
  • a substrate processing method includes: holding the substrate on a clamping mechanism; driving the clamping mechanism to drive the substrate to rotate; distributing liquid to the surface of the substrate through the liquid nozzle of the nozzle mechanism, and the liquid nozzle is above the substrate from the center of the substrate to the substrate in a radial direction During the edge movement, when the liquid nozzle moves to a certain area above the substrate, the same radius area on the substrate is locally heated by spraying a fluid with the second thermal energy under the substrate to increase the local temperature of the substrate under the liquid nozzle .
  • the method further includes: spraying the fluid with the first thermal energy to the entire bottom of the substrate to preheat the entire substrate.
  • the fluid is gas or liquid.
  • the area with the same radius on the substrate is locally heated to increase the local temperature of the substrate under the liquid ejection head.
  • the temperature of the heating plate is lowered by introducing low-temperature fluid.
  • FIG. 20 shows the first card of the embodiment of the present invention Schematic diagram of the cross-sectional structure after the disk and the second chuck are assembled.
  • a heating element 408 is provided between the first chuck 401 and the second chuck 402 , and the heating element 408 is used to heat the fluid in the cavity 4011 and simultaneously heat the entire first chuck 401 .
  • the number of heating elements 408 can be one or more.
  • the installation position of the heating element 408 and the structure of the heating element 408 can be set according to actual needs.
  • the case where the number of the heating element 408 is one is mainly described.
  • the heating element 408 is a plate-shaped structure, and the heating element 408 is provided with a communication hole 4081 communicating with the first fluid delivery channel 4021 and the fluid inlet hole 4012 .
  • the fluid when the fluid flows to the cavity 4011 on the first chuck 401 through the second fluid delivery channel 4031 inside the shaft body 403 and the first fluid delivery channel 4021 inside the second chuck 402, the fluid will flow Through the communication hole 4081 provided on the heating element 408 and the fluid inlet hole 4012 provided on the first chuck 401, it enters the cavity 4011, and the heating element 408 directly heats the fluid in the cavity 4011.
  • the fluid in the plate structure The position where the heating element 408 is in direct contact with the first chuck 401 directly heats the whole of the first chuck 401 through heat radiation, so that the temperature of the first chuck 401 rises at the same time, and then when the substrate 100 is preheated, it can be more quickly to achieve the effect of preheating.
  • the fluid when the fluid enters the second fluid delivery channel 4031 inside the shaft body 403 through the fluid delivery tube of each branch, it flows through the first fluid delivery channel 4021 inside the second chuck 402 and the first fluid delivery channel 4021 of the first chuck 401.
  • the fluid inlet hole 4012 reaches the cavity 4011, because each component is in a normal temperature state, and the heat energy contained in the fluid is relatively high, the temperature of the fluid will be higher than that of the components flowing through, so the fluid will convect with the components flowing through Heat exchange, transferring heat to various components, so that the heat energy contained in the fluid itself is reduced, resulting in insufficient heat energy of the fluid flowing out of the cavity 4011 .
  • the temperature at the corresponding position of the substrate 100 cannot be quickly heated to the target temperature, which will affect the effect of vaporization and drying of the liquid on the substrate 100, and the adjacent feature patterns may still be affected by the liquid. Due to the pulling of the surface tension, the characteristic pattern may be damaged, which affects the yield rate of the substrate 100 process.
  • a heating element 408 is provided between the first chuck 401 and the second chuck 402.
  • the fluid enters the second fluid delivery channel 4031 inside the shaft body 403 through each fluid delivery tube After flowing through the first fluid delivery channel 4021 inside the second chuck 402, it will flow through the fluid inlet hole 4012 on the first chuck 401 and enter the cavity 4011, and the heating element 408 will heat the fluid inside the cavity 4011, Increase the thermal energy of the fluid, so that the thermal energy of the fluid can be increased again to meet the requirement of quickly heating the temperature at the corresponding position of the substrate 100 to the target temperature, and flow out of the heating plate to the substrate 100 through the fluid outlet hole 4013 opened on the cavity 4011, and the substrate 100 is heated Heat up quickly.
  • the heating element 408 provided can have the effect of reheating the fluid, further ensuring that the temperature at the corresponding position of the substrate 100 is quickly heated to the target temperature, and ensuring that the vaporization process of the liquid at this position on the substrate 100 is fast enough, adjacent There is no pulling of the surface tension of the liquid between the characteristic patterns and the characteristic patterns, thereby effectively preventing the fine pattern structure on the surface of the substrate 100 from being damaged during the drying process.
  • the substrate processing method corresponding to this embodiment is basically the same as that of Embodiment 1.
  • the control mechanism controls the heater 503 to heat the fluid during the process
  • the heating element 408 is turned on at the same time, and the heating temperature of the heating element 408 is preset.
  • the heating temperature of the heating element 408 can be adjusted according to the actual process. It is required to be set, which is not limited in the present invention.
  • the heating temperature of the heating element 408 in the embodiment of the present invention is set to 80° C. to prepare for convective heating of the fluid that is about to reach the cavity 4011 opened inside the first chuck 401 .
  • FIG. 21 shows the first card of the embodiment of the present invention Schematic diagram of the cross-sectional structure after the disk and the second chuck are assembled.
  • the substrate processing apparatus further includes a cooling mechanism.
  • the cooling mechanism includes a cooling part arranged on the first chuck 401.
  • the actual selection of the cooling part includes but is not limited to: cooling grooves, cooling chambers, cooling pipes, and various cooling parts. combination of forms. The specific type can be selected according to the actual process requirements.
  • the cooling part is configured to reduce the temperature of the first chuck 401 or the second chuck 402, so as to avoid damage to the next substrate 100 due to the high temperature of the first chuck 401 or the second chuck 402 after the current process operation is completed.
  • the RCA process (chemical standard process) has an impact.
  • the ways in which the cooling unit is set include but are not limited to the following ways:
  • the cooling part 701 is a cooling pipe.
  • FIG. 22 shows a schematic structural view of the cooling part in the embodiment of the present invention when the cooling part is a cooling pipe and is located inside the first chuck.
  • the cooling part 701 is embedded inside the first chuck 401 .
  • a receiving chamber is respectively defined on the periphery of each cavity 4011 of the first chuck 401 , and the cooling unit 701 is built into the provided receiving chamber.
  • the cooling part 701 is a cooling pipe.
  • FIG. 23 shows a schematic structural view of the cooling part in the embodiment of the present invention when the cooling part is a cooling pipe and is located on the upper end surface of the first chuck.
  • the cooling part 701 is disposed on the upper surface of the first chuck 401 , and a cooling part 701 is correspondingly disposed above each cavity 4011 .
  • a receiving groove is provided on the upper surface of the first chuck 401, and the cooling unit 701 is built into the provided receiving groove.
  • a sealing layer 410 is provided on the upper surface of the first chuck 401.
  • the sealing layer 410 is fixedly connected with the first chuck 401 to seal the opening end of the containing groove.
  • the number and shape of the cooling parts 701 can be selected according to actual needs.
  • the cooling pipes provided in the corresponding areas of several cavities 4011 are the same cooling pipe. Please refer to FIG. 24 for the specific structure.
  • FIG. 24 shows a schematic structural diagram of the cooling pipe in the embodiment of the present invention. As shown in Figure 24, the cooling pipe is a disk-shaped structure.
  • FIG. 25 shows a schematic structural diagram of a cooling cavity in an embodiment of the present invention in which the cooling part is used.
  • the cooling part 701 is a cooling cavity
  • the cooling cavity is opened inside the first chuck 401 . It can be understood that this mode is the first mode without the cooling pipe, and the cooling cavity is directly used as the implementation mode of the cooling part 701 .
  • FIG. 26 shows a schematic structural diagram of the cooling part in the embodiment of the present invention being a cooling groove.
  • the cooling groove is opened on the upper end surface of the first chuck 401, and similarly, a sealing layer 410 is provided on the upper end surface of the first chuck 401, and the sealing layer 410 is connected to the first chuck 401.
  • a chuck 401 is fixedly connected to seal the open end of the cooling tank. It can be understood that this mode is the second mode without the cooling pipe, and the cooling tank is directly used as the implementation mode of the cooling part 701 .
  • the first chuck 401 is covered with a protective layer, and the sealing layer 410 provided on the upper surface of the first chuck 401 can also serve as the protective layer.
  • the sealing layer 410 is made of a material with good corrosion resistance, high temperature resistance and heat insulation performance, such as Teflon dragon.
  • Teflon dragon can prevent the chemical liquid from corroding the first chuck 401 during the process.
  • the protective layer simultaneously seals the upper end surface and the side surface of the sealing layer 410 and the outer surface of the first chuck 401.
  • Teflon material with good corrosion resistance, high temperature resistance and heat insulation performance is still used as the protective layer.
  • Teflon material with good corrosion resistance, high temperature resistance and heat insulation performance is used as the protective layer.
  • a protective layer is provided to help keep the heat inside the heating plate.
  • the third and fourth methods are selected as the cooling part, which saves the design of the cooling pipe, and directly designs the cooling groove and the cooling cavity on the first chuck 401, which is simpler and saves cost during device preparation.
  • the second method above can be used, that is, the cooling part 701 is directly embedded in the second chuck 402 as a cooling pipe, or the third method is directly embedded in the second chuck 402.
  • a cavity is provided in the second chuck 402, and the cavity is designed as the cooling part 701.
  • the design of directly opening the cavity in the second chuck 402 as the cooling cavity is selected. Way.
  • FIG. 27 shows an exemplary schematic diagram of cooling the second chuck by the cooling mechanism according to an embodiment of the present invention.
  • FIG. 28 shows an exemplary schematic diagram of cooling the first chuck by the cooling mechanism according to an embodiment of the present invention.
  • the third fluid delivery channel 4032 provided inside the shaft body 403 is connected; the liquid outlet of the cooling part 701 is connected with the cooling liquid outlet 4023 provided on the second chuck 402, and the cooling liquid outlet 4023 is connected with the first fluid delivery channel provided inside the shaft body 403.
  • the four fluid delivery channels 4033 are connected, and the bottom of the shaft body 403 is provided with a connection head 4041 connected with the third fluid delivery channel 4032 and a connection head 4042 connected with the fourth fluid delivery channel 4033 .
  • the liquid inlet of the cooling part 701 is connected with a delivery pipe, and the delivery pipe passes through the cooling liquid inlet 4022 opened on the second chuck 402 and the third fluid delivery channel 4032 opened inside the shaft body 403 to reach the outside and connect
  • the head 4041 is connected;
  • the liquid outlet of the cooling part 701 is connected with a delivery pipe, and the delivery pipe runs through the coolant outlet 4023 opened on the second chuck 402 and the fourth fluid delivery channel 4033 opened inside the shaft body 403 to reach the outside and the connecting head 4042 are connected.
  • connection head 4041 connected to the third fluid delivery channel 4032 communicates with at least one liquid inlet pipe for delivering liquid into the cooling part 701.
  • the liquid inlet pipe 40222 and the number of liquid inlet pipes connected to the connection head 4041 for delivering liquid into the cooling part 701 can be selected according to requirements.
  • a cooler 402221 for cooling the liquid flowing through the liquid inlet pipe is arranged on the liquid inlet pipe for delivering the liquid into the cooling part 701 .
  • the connector 4042 connected to the fourth fluid delivery channel 4033 communicates with at least one drain pipe for discharging the liquid in the cooling part 701. Drain tube 40224 for liquid discharge.
  • a switch valve is arranged on the liquid inlet pipe 40222 and the liquid discharge pipe 40224 respectively, and the switch valve is configured to open or close the liquid flowing through the liquid inlet pipe 40222 and the liquid discharge pipe 40224 .
  • an on-off valve 4043 is arranged on the inlet pipe 40222
  • an on-off valve 4046 is arranged on the outlet pipe 40224 .
  • connection head 4041 connected to the third fluid delivery channel 4032 communicates with at least one air intake pipe for delivering gas to the cooling part 701.
  • the intake pipe 40221 for transporting gas in 701, the number of intake pipes for transporting gas into the cooling part 701 can be selected according to actual needs.
  • the connection head 4042 connected to the fourth fluid delivery channel 4033 communicates with at least one exhaust pipe for exhausting the gas in the cooling part 701. Gas exhaust pipe 40223.
  • the intake pipe 40221 and the exhaust pipe 40223 are also respectively equipped with a switching valve for opening or closing the gas flowing through the intake pipe 40221 and the exhaust pipe 40223 .
  • an on-off valve 4044 is arranged on the intake pipe 40221
  • an on-off valve 4045 is arranged on the exhaust pipe 40223 .
  • the manufacturing material of the first chuck 401 is metal.
  • the manufacturing material of the first chuck 401 in this embodiment includes but not limited to Hastelloy, aluminum alloy, and nickel-based alloy; at the same time
  • the first chuck 401 is made of metal material, it has the characteristics of good thermal conductivity and fast heat dissipation performance.
  • the heat insulation performance is good and the corrosion-resistant sealing layer 410 can prevent the first chuck 401 from dissipating heat too quickly during the process. , affecting the heating effect of the fluid on the substrate 100 .
  • the second chuck 402 is made of non-metal material.
  • the second chuck 402 is made of high temperature and corrosion resistant plastic.
  • the second chuck 402 is made of materials including but not limited to PEEK , Teflon. According to the characteristics of different materials with different thermal conductivity and thermal expansion coefficient, the first chuck 401 is made of metal material with high thermal conductivity and low thermal expansion coefficient, and the second chuck 402 is made of non-metal with low thermal conductivity.
  • the temperature of the first chuck 401 is too high, which will easily affect the drying of the next substrate 100. It has better cooling effect.
  • the material of the first chuck 401 is non-metallic.
  • the material of the first chuck 401 in this embodiment is made of high-temperature and corrosion-resistant plastics.
  • the implementation of the present invention The manufacturing material of the first chuck 401 in the example includes but not limited to PEEK and Teflon.
  • the manufacturing material of the second chuck 402 is metal.
  • the manufacturing material of the second chuck 402 in this embodiment is selected from aluminum alloy, Hastelloy alloy, nickel-based alloy and the like.
  • the first chuck 401 in the embodiment of the present invention is made of non-metal with low thermal conductivity, so as to ensure that when the fluid passes through the first chuck 401, the heat loss is small , at the same time, to avoid the impact on the RCA process (chemical standard process) of the next substrate 100 caused by the temperature of the first chuck 401 being too high after the current process operation is completed.
  • the second chuck 402 is made of metal with a low coefficient of thermal expansion, so as to ensure that the second chuck 402 is not easily deformed when the thermal fluid passes through the second chuck 402 .
  • the first chuck 401 and the second chuck 402 support each other, and the low thermal expansion coefficient of the second chuck 402 also supports the first chuck 401 to prevent deformation of the first chuck 401 .
  • a heat insulating layer 409 is provided between the second chuck 402 and the heating element 408 .
  • the heat of the heating element 408 is insulated from the second chuck 402 , so as to achieve the effect of using more heat for heating the fluid inside the cavity 4011 .
  • the second chuck 402 is coated with an anti-corrosion layer to prevent the chemical solution and the process environment in the process from causing corrosion to the second chuck 402 made of metal materials. occurs, protect the machine.
  • the anti-corrosion layer in this embodiment is Teflon coating.
  • the substrate processing method corresponding to this embodiment is basically the same as that of Embodiment 8. The difference is that the control mechanism in this embodiment is also configured to control the cooling mechanism to cool down the first chuck 401 or the second chuck 402 .
  • the control mechanism opens the liquid inlet pipe 40222 and the liquid outlet pipe 40224 connected to the liquid inlet of the cooling part 701 and the liquid outlet of the cooling part 701. valves 4043 and 4046; control the cooler 402221 to cool the temperature of the liquid flowing through the liquid inlet pipe 40222 to a low temperature.
  • the low temperature in the embodiment of the present invention refers to a temperature range below 20°C.
  • the third fluid delivery channel 4032, the cooling liquid inlet 4022 and the liquid inlet of the cooling part 701 enter the inside of the cooling part 701, and the first chuck 401 or the second chuck 402 is cooled, and then the liquid is discharged from the cooling part 701 mouth, coolant outlet 4023, and the fourth fluid delivery channel 4033 opened inside the shaft body 403 to flow out of the cooling part 701, to be discharged through the liquid discharge pipe 40224 connected to the liquid outlet of the cooling part 701, and to enter the low-temperature liquid
  • the time is T1 time, the overall temperature of the first chuck 401 or the second chuck 402 is lowered to normal temperature, and then, the flow connected to the liquid inlet port of the cooler 402221 and the cooling part 701 and the liquid outlet port of the cooling part 701 is closed. Through the valves 4043, 4046 on the liquid inlet pipe 40222 and the liquid discharge pipe 40224 of the liquid.
  • the control mechanism opens the inlet pipe 40221 and the exhaust pipe 40223 connected to the liquid inlet of the cooling part 701 and the liquid outlet of the cooling part 701 to flow through the gas
  • the first chuck 401 or the second chuck 402 After processing the cooling mechanism for the time T1 and the time T2, the first chuck 401 or the second chuck 402 quickly returns to the normal temperature state, and at the same time, the environment inside the cooling unit 701 also returns to the dry state.
  • the rotation speed of the substrate 100 is set to 1100rpm
  • the flow rate of the fluid reaching the first heat energy is 280L
  • the temperature of the fluid reaching the first heat energy is 80°C.
  • FIG. 29 shows the temperature curve change graph of preheating the substrate with the fluid reaching the first thermal energy according to the embodiment of the present invention. As shown in FIG. 29 , through simulation experiments, the temperature on the surface of the substrate 100 can reach 70° C. from a normal temperature within 15 seconds.
  • the drying fluid is still IPA as an example, and the substrate 100 is dried by the method of Embodiment 1, Embodiment 4, and Embodiment 5.
  • the number of one of the cavities 4011 on the first chuck 401 is defined as R, and then the first chuck 401 is adjacent to the side of the center of the first chuck 401 in the radial direction with the number R.
  • the cavity 4011 is numbered R-1, the cavity 4011 adjacent to the edge of the first chuck 401 is numbered R+1, and the cavity 4011 adjacent to the cavity 4011 numbered R+1
  • the number is R+2.
  • R is a positive integer greater than or equal to 1. When R is equal to 1, it means that the liquid ejection head is located at the center of the substrate 100 .
  • the control mechanism controls the heater 503 to heat the thermal energy of the fluid flowing through the fluid delivery tube to the first thermal energy, and the fluid reaching the first thermal energy passes through each cavity
  • the fluid outlet hole 4013 of 4011 heats the substrate 100 to the first temperature
  • the first temperature is the preheating temperature
  • the preheating temperature in this embodiment is 70°C, combined with the experimental data results shown in Figure 29, it can be seen that in Within 15 seconds, the surface of the substrate 100 reaches 70° C. from the normal temperature state, and the preheating of the substrate 100 is completed.
  • the control mechanism controls the heater 503 to heat the liquid on the corresponding radius of the area.
  • the fluid in the cavity 4011 numbered R-1 reaches the second thermal energy, and the fluid that reaches the second thermal energy passes through the fluid outlet hole 4013 of the cavity 4011 to heat the substrate 100 in this area to the second temperature, the second step of the process
  • the temperature is 82°C, and the temperature of the substrate 100 in this region shows a rapid increase from 70°C to 82°C.
  • the cavity 4011 away from the numbered R-1 in the radial direction for example, the temperature of the cavity numbered R, R+1, and R+2 is still Keep it in the state where the preheating is completed, that is, 70°C.
  • the control mechanism When the liquid jet head moves to the next area of a certain area in the radial direction above the substrate 100, that is, when the liquid jet head moves to the area above the substrate 100 corresponding to the cavity 4011 numbered R, the control mechanism also controls the heater 503 Heat the fluid in the cavity 4011 numbered R located on the corresponding radius of the area to the second heat energy, and the fluid reaching the second heat energy passes through the fluid outlet hole 4013 of the cavity 4011 to heat the substrate 100 in the area to the second heat energy.
  • temperature, the second temperature of the process is 82°C, and the temperature of the substrate 100 in this region is rapidly increased from 70°C to 82°C, and so on, until the entire surface of the substrate 100 is processed.
  • the drying fluid is still IPA as an example.
  • the substrate 100 is dried by the substrate processing method of Embodiment 7, please refer to FIG. 19 and FIG. 31a to FIG. 31c. A schematic diagram of temperature change curves in different regions of the substrate as the liquid jet head moves when the substrate is processed by the substrate processing method according to Embodiment 7 of the present invention is shown.
  • the control mechanism controls the heater 503a to heat the fluid flowing through the first fluid delivery main pipe 4061, and the heated fluid passes through the fluid outlet hole 4013 of each cavity to heat the substrate 100 to the first temperature, that is, 70°C, and the substrate 100 is completed. of preheating.
  • the on-off valve 501a on the first fluid delivery branch pipe connected to the fluid delivery pipe connected to the cavity 4011 numbered R-1 on the radius of the heating plate, the switch valve 501c on the third fluid delivery branch pipe is closed, and at the same time, the cavity
  • the switch valve 501b on the second fluid delivery branch pipe connected to the connected fluid delivery pipe is opened, and at the same time, the fluid communicated with the cavity 4011 numbered R adjacent to the cavity in the radial direction gradually away from the center of the heating plate
  • the on-off valve 501c on the third fluid delivery branch pipe connected to the delivery pipe is opened, the on-off valve 501a on the first fluid delivery branch pipe, and the on-off valve 501b on the second fluid delivery branch pipe are closed, so as to control the liquid flowing under the substrate 100 corresponding to the location of the liquid nozzle.
  • the fluid in the second fluid delivery manifold 4062 connected to the cavity is heated to the second temperature through the fluid outlet hole 4013 opened in the cavity 4011 numbered R-1, That is, 82°C, during this process, the temperature change curve of the substrate 100 region corresponding to the cavity 4011 numbered R-1 is shown in Figure 31a; at the same time, the fluid that reaches the third heat energy in the third fluid delivery main pipe 4063 passes through this numbered
  • the fluid outlet hole 4013 set up by the cavity 4011 numbered R adjacent to the cavity 4011 of R-1 reheats the corresponding area of the substrate 100 to the third temperature, that is, 78°C, and the number is R during this process.
  • the temperature change curve of the region of the substrate 100 corresponding to the cavity 4011 is shown in FIG. 31b.
  • the temperature state numbered R is far away from the cavity 4011 numbered R-1 in the radial direction and then preheated to 78°C; numbers R+1, The temperature of the cavity numbered R+2 is still maintained at the preheated state, that is, 70°C.
  • the control mechanism When the liquid jet head continues to move to the next area of a certain area in the radial direction above the substrate 100, that is, when the liquid jet head moves to the area above the substrate 100 corresponding to the cavity 4011 numbered R, the control mechanism also controls the The switch valve 501a on the first fluid delivery branch pipe connected to the cavity 4011 of R and the switch valve 501c on the third fluid delivery branch pipe are closed, and the fluid delivery pipe connection connected to the cavity numbered R is opened.
  • the switch valve 501b on the second fluid delivery branch pipe allows the fluid that reaches the second heat energy to pass through the fluid outlet hole 4013 of the cavity 4011 to heat the substrate 100 in this area to the second temperature, and the second temperature of the process is 82°C , the temperature of the substrate 100 in this region shows a rapid increase from 78°C to 82°C; at this time, the region of the substrate 100 corresponding to the cavity 4011 numbered R+1 is in the state of being preheated to the third temperature, ie 78°C .
  • the switch valve 501a on the first fluid delivery branch connected to the fluid delivery pipe connected to the cavity 4011 numbered R+1, and the switch valve 501c on the third fluid delivery branch are in the closed state, and the second fluid delivery The switching valve 501b on the branch pipe is in an open state, and the temperature of the substrate 100 in this area shows a rapid increase from 70°C to 78°C.
  • R is a positive integer greater than or equal to 1. When R is equal to 1, it means that the liquid ejection head is located at the center of the substrate 100.
  • a cavity 4011 closest to the center of the substrate 100 can be preheated again, or directly heated.
  • the second temperature is used for processing, because the central area of the substrate 100 is relatively small, and the difference between the results of the two processing methods is also small, which basically does not affect the process results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

本发明提出基板处理装置及方法,涉及半导体设备技术领域,包括:夹持机构,喷头机构,旋转驱动机构,加热机构,控制机构。加热机构包括设置在基板下方的加热盘,加热盘沿径向方向开设至少两个空腔,每个空腔分布在不同半径上,在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,控制机构控制位于该区域对应半径上的空腔内的流体的热能,进而提高液体喷头下方基板的局部温度。本装置可以分区动态精确控制基板区域加热,实现干燥工艺过程中对基板表面液体的表面张力和蒸发速度的精确控制,避免干燥过程中基板表面的精细图案结构被损坏。

Description

基板处理装置及方法 技术领域
本发明属于半导体设备技术领域,特别涉及基板处理装置及方法。
背景技术
集成电路制造,一般指基板加工制造,基板制造环节是将设计版图制成光罩,将光罩上的电路图形信息转移至硅片上,在硅片裸片上形成电路从而构建完整的电路芯片的过程。集成电路制造包括光刻、刻蚀、沉积、离子注入、化学机械抛光(CMP)、清洗等环节。其中清洗环节是为了去除基板加工生产中产生的各种沾污杂质,是集成电路制造中步骤最多的工艺,几乎贯穿整个作业流程。沾污杂质是指集成电路制造过程中引入的任何危害芯片成品率及电学性能的物质,具体的沾污包括颗粒、有机物、金属和自然氧化层等。
半导体清洗技术主要分为湿法清洗工艺和干法清洗工艺两种工艺路线。湿法清洗工艺一般将基板固定于可旋转的基板夹具上,工艺过程中使用化学药液和去离子水对旋转的基板表面进行工艺处理,在湿法刻蚀或清洗工艺结束后,再对基板进行干燥处理。
传统的干燥工艺大多采用氮气吹扫或者异丙醇(IPA)清洗配合基板高速旋转的方式进行干燥。然而,随着集成电路先进工艺技术的发展,特征尺寸不断微缩,在干燥过程中,基板上各处精细图案结构、尺寸、深宽、密度不同,距离旋转轴心的位置不同,附着在基板表面图案结构中液体流动和蒸发速率也不相同。各个精细图案结构中液体流动和蒸发速率的不同将导致同一时刻下不同图案内的液面高度不同,在液体表面张力的作用下,将造成相邻图案间的结构受力不均匀,最终导致基板上的精细图案结构倒塌、粘连、变形等损伤问题,进而造成器件失效,影响芯片良率,造成产品报废。
为了避免基板表面的精细图案结构在干燥过程中被损坏,干燥工艺过程中对基板表面的异丙醇(IPA)或其它干燥配方药液的表面张力和蒸发速度的精确控制尤为重要。为此本发明提出基板处理装置及方法。
发明内容
为了避免基板表面的精细图案结构在干燥过程中被损坏,提高干燥工艺过程中对基板表面的异丙醇或其它干燥配方药液的表面张力和蒸发速度的精确控制,本发明提出了基板处理装置及方法。
本发明提出的基板处理装置,包括:
控制机构;
夹持机构,被配置为保持基板;
喷头机构,包括液体喷头,液体喷头被配置为将液体分配至置于夹持机构上的基板表面;
旋转驱动机构,被配置为驱动夹持机构旋转;
加热机构,包括加热盘,加热盘设置在基板下方,加热盘沿径向方向开设至少两个空腔,每个空腔分布在不同半径上,空腔底部开设有流体进孔,空腔顶部开设有流体出孔,流体进孔与流体输送管连接;
在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,控制机构控制位于该区域对应半径上的空腔内的流体的热能,进而提高液体喷头下方基板的局部温度。
本发明还提供一种基板处理方法,包括:
将基板保持在夹持机构上;
驱动夹持机构带动基板旋转;
通过喷头机构的液体喷头向基板表面分配液体,液体喷头在基板上方从基板中心沿径向方向向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,通过对基板下方喷射具有第二热能的流体的方式对基板上相同半径区域进行局部加热,提高液体喷头下方基板的局部温度。
综上所述,本发明提供的基板处理装置及方法,可以分区动态精确控制基板区域加热,精确控制基板及其表面液体的温度,进而达到控制干燥过程中基板表面各处的液体表面张力和蒸发速度的工艺目的,从而避免干燥过程中基板表面的精细图案结构被损坏。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在 说明书以及附图中所指出的结构来实现和获得。
附图概述
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明实施例的基板处理装置的立体结构示意图;
图2示出了图1中的A处局部放大图;
图3示出了根据本发明实施例的基板处理装置的主视图;
图4示出了根据本发明实施例的基板处理装置的俯视图;
图5示出了图4中B-B截面示意图;
图6示出了根据本发明实施例的4等份均分第一卡盘的布局方式俯视图;
图7示出了根据本发明实施例的4等份均分第一卡盘的布局方式仰视图;
图8示出了根据本发明实施例的第二卡盘内部第一流体输送通道布局结构示意图;
图9示出了根据本发明实施例的轴体俯视图;
图10示出了根据本发明实施例的第一卡盘与第二卡盘装配完成后的加热盘结构透视示意图;
图11示出了根据本发明实施例的第一卡盘与第二卡盘装配完成后的横截面结构示意图;
图12示出了根据本发明实施例的2等份均分第一卡盘的布局方式俯视图;
图13示出了根据本发明实施例3中的第一卡盘的布局方式俯视图;
图14a和图14b示出了根据本发明实施例的流体流速与加热面积关系示意图;
图15示出了根据本发明实施例1的基板处理方法控制通路图;
图16示出了根据本发明实施例4的基板处理方法控制通路图;
图17示出了根据本发明实施例5的基板处理方法控制通路图;
图18示出了根据本发明实施例6的基板处理方法控制通路图;
图19示出了根据本发明实施例7的基板处理方法控制通路图;
图20示出了根据本发明实施例8的第一卡盘与第二卡盘装配完成后的横截面结构示意图;
图21示出了根据本发明实施例9的第一卡盘与第二卡盘装配完成后的横截面结构示意图;
图22示出了本发明实施例9中冷却部为冷却管且位于第一卡盘内部时的结构示意图;
图23示出了本发明实施例9中冷却部为冷却管且位于第一卡盘上端面时的结构示意图;
图24示出了本发明实施例9中冷却管的结构示意图;
图25示出了本发明实施例9中冷却部为冷却腔的结构示意图;
图26示出了本发明实施例9中冷却部为冷却槽的结构示意图;
图27示出了根据本发明实施例的冷却机构冷却第二卡盘的示例性示意图;
图28示出了根据本发明实施例9中冷却机构冷却第一卡盘的示例性示意图;
图29示出了根据本发明实施例中利用达到第一热能的流体对基板进行预加热处理的温度曲线变化图;
图30a至图30c揭示了根据本发明实施例1、实施例4、实施例5的基板处理方法处理基板时,随着液体喷头的移动,基板不同区域的温度变化曲线示意图;以及
图31a至图31c揭示了根据本发明实施例7的基板处理方法处理基板时,随着液体喷头的移动,基板不同区域的温度变化曲线示意图。
本发明的较佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参考图1至图5以及图15至图19,本发明提出了一种基板处理装置。 基板处理装置包括:夹持机构200、旋转驱动机构300、加热机构400、控制机构及喷头机构600。夹持机构200用于将基板100保持为水平状态,包括多个围绕基板100设置的定位销201。请参照图2,图2为图1中的A处局部放大图,示出了基板100和定位销201在本实施例的基板处理装置中的位置,即基板与定位销的立体结构示意图。6个定位销设置在基板100边缘,定位销201的顶部侧壁上开设限位凹槽2011,限位凹槽2011的底壁用于支撑基板100,限位凹槽2011的侧壁用于夹持基板100,气缸(未图示)驱动张紧机构203的动作以保证定位销201能够远离基板100以释放基板100,或靠近基板100以夹持基板100,便于基板100的紧固限位以及取放。夹持机构200还包括支撑部202,定位销201的底端可拆卸连接于支撑部202,支撑部202底部通过传动机构(未图示)连接有旋转驱动机构300,示例性的,本实施例中,传动机构为传动带,旋转驱动机构300在实际使用的过程中可以根据实际作业要求选择。示例性的,本实施例选择伺服电机作为旋转驱动机构300。旋转驱动机构300通过驱动支撑部202使基板100以穿过基板100中心的铅垂线为轴进行旋转,支撑部202的中部开设有上下贯通的通孔,以容纳一些不旋转的部件。
加热机构400,包括加热盘和流体输送单元。加热盘设置在基板100下方,容纳于支撑部202中部开设的通孔内,在作业过程中与基板100平行设置。加热盘为匹配设置的第一卡盘401和第二卡盘402,第一卡盘401上设置卡块,第二卡盘402上设置卡槽,在安装的过程中,第一卡盘401上的卡块卡合于第二卡盘402上的卡槽内,形成稳定结构。第一卡盘401按角度被均分为n个等份,其中,n为大于或等于2的整数。第一卡盘401在沿径向方向上开设至少两个空腔4011。每个空腔4011分布在第一卡盘401沿径向方向不同的半径上。每个等份内的空腔4011数量相等,且空腔4011分布于不同的半径上。空腔4011底部开设有流体进孔4012,空腔顶部开设有流体出孔4013,空腔4011上所开设的流体出孔4013的密度相同。第二卡盘402设置于第一卡盘401的下方,用于固定支撑第一卡盘401,同时连接第一卡盘401与流体输送单元,第二卡盘402内部开设有与空腔4011数量相等的第一流体输送通道4021,第二卡盘402内的第一流体输送通道4021的一端与第一卡盘401内开设的空腔4011底部的流体进孔4012相连通,第一流体输送通道4021的另一端与流体输送单元 相连通。工艺过程中,基板100是旋转的,加热机构400不旋转,当基板100旋转一周后,每一个空腔4011加热的基板100区域为一个圆环或圆形。
请参照图5、图15,流体输送单元包括轴体403、连接头404、流体输送管以及流体输送总管406。轴体403的一端与第二卡盘402的底部固定连接,轴体403内部设置与空腔4011数量相等的第二流体输送通道4031,且第二流体输送通道4031的一端与第二卡盘402内的第一流体输送通道4021连通,轴体403侧壁上开设有与第二流体输送通道4031相等数量的开口,每个开口上分别安装有连接头404,每个连接头404与一个流体输送管连接,多个流体输送管同时连接于同一个流体输送总管406。
控制机构包括开关阀门501、质量流量控制器502及加热器503。与每一空腔4011相连接的流体输送管分别连通于同一路流体输送总管406。每一流体输送管上分别配置一开关阀门501、一加热器503,流体输送总管406上配置一质量流量控制器502。其中,开关阀门501打开或关断流经流体输送管的流体;质量流量控制器502被配置为监控调节流经流体输送总管406内流体的流量;加热器503被配置为加热流体输送管内流体。控制机构控制液体喷头对应的基板100下方的空腔4011内的流体的热能,进而提高液体喷头下方基板100的局部温度。
喷头机构600包括液体喷头,被配置为将液体分配至置于夹持机构200上的基板100表面。
请参照图6至图11,在本发明实施例中,第一卡盘401的布局设计为:按角度将第一卡盘401均分为4个等份,即,将第一卡盘401分为四个象限,且第一卡盘401在沿径向方向上开设16个空腔4011,此16个空腔4011均匀分布于第一卡盘401的四个象限内,图6为4等份均分的第一卡盘401的布局方式俯视图。图7为4等份均分的第一卡盘401的布局方式仰视图。图8为第二卡盘402内部第一流体输送通道4021布局结构示意图。图9为轴体403的俯视图。图10示出了第一卡盘401与第二卡盘402装配完成后的加热盘结构透视示意图。图11为第一卡盘401与第二卡盘402装配完成后的横截面结构示意图。
本装置不仅适应于基板100于湿法刻蚀或清洗工艺结束后的对基板100进 行干燥处理,在刻蚀工艺中也可以使用。
本发明实施例还提供了一种基板处理方法,请参照图15,图15示出了本发明实施例中的流体控制通路关系示意图。工作时,夹持机构200夹持基板100,保持基板100的水平设置,喷头机构600位于基板100的上方,旋转驱动机构300通过驱动支撑部202进而驱动基板100以穿过基板100中心的铅垂线为轴进行旋转。在本实施例中,喷头机构600的液体喷头向基板100分配的液体为干燥液体IPA。当液体喷头移动到基板100中心的正上方,向基板100表面分配液体之前,控制机构控制加热器503加热流经流体输送管内的流体热能至第一热能,达到第一热能的流体通过每一空腔4011的流体出孔4013对基板100进行加热至第一温度,第一温度为预加热的温度,其作用为将基板100整体均匀加热。以IPA为例,较佳的工艺范围为60-70℃。第一热能是指能够将基板100加热至第一温度所需的热能。
在液体喷头沿基板100的径向方向由基板100的中心向基板100的边缘移动过程中,当液体喷头移动至基板100上方的某一区域,控制机构控制加热器503加热位于该区域对应半径上的空腔4011内的流体至第二热能,达到第二热能的流体通过该空腔4011的流体出孔4013对该区域的基板100进行加热至第二温度,第二温度为约为使液体喷头向基板100分配的液体达到沸点的温度,在本实施例中,第二温度大于或等于液体沸点的温度,以IPA为例,较佳的工艺范围为78-85℃。
示例性的,在液体喷头进行分配液体之前先将输送至空腔4011内的流体加热,流体通过流体输送管及第二流体输送通道4031传输至加热盘的第二卡盘402内所开设的第一流体输送通道4021,流体进而进入第一卡盘401的空腔4011内,然后通过空腔4011顶部开设的流体出孔4013流出加热盘,对加热盘上方的基板100进行加热至70℃。
当液体喷头向基板100表面分配液体时,随着液体喷头的移动,当液体喷头移动至基板100上方的某一区域,控制机构控制加热器503加热位于该区域对应半径上的空腔4011所连通的流体输送管内的流体,进而控制该半径上的空腔4011的流体出孔4013流出的流体的热能为第二热能,达到第二热能的流体通过该空腔4011的流体出孔4013对基板100进行加热至80℃。
更具体的,请参照图7,对第一卡盘401上开设的16个空腔4011从第一卡盘401的中心向边缘,以半径逐渐增大的空腔顺序进行编号,具体编号分别为40111、40112、40113、40114、40115、40116、40117、40118、40119、401110、401111、401112、401113、401114、401115、401116。与之对应的第二卡盘402的结构示意图请参照图8,第二卡盘402内部设置的与空腔4011相连通的第一流体输送通道4021的编号分别为40211、40212、40213、40214、40215、40216、40217、40218、40219、402110、402111、402112、402113、402114、402115、402116。请参照图9,轴体403内部开设有对应数量的第二流体输送通道4031,编号分别为40311、40312、40313、40314、40315、40316、40317、40318、40319、403110、403111、403112、403113、403114、403115、403116。请参照图10及图11,均示出了第一卡盘401和第二卡盘402装配完成后的加热盘结构透视图。请参照图5及图15,轴体403通过连接头404连接16路编号分别为4051、4052、4053、4054、4055、4056、4057、4058、4059、40510、40511、40512、40513、40514、40515、40516的流体输送管。每一流体输送管上分别配置一个开关阀门501和一个加热器503。多路流体输送管连通于同一路流体输送总管406,流体输送总管406上配置一个质量流量控制器502。
在液体喷头开始给基板100分配液体之前,控制机构控制每一流体输送管上的加热器503加热流经该管内的流体,使其热能达到第一热能。在流体的热能未达到第一热能之前,流体经过旁路支管407排出装置外,达到第一热能的流体通过每一空腔4011的流体出孔4013对基板100进行加热至70℃。
在液体喷头开始给基板100分配液体,同时沿基板100的径向方向由基板100的中心向基板100的边缘移动过程中,当液体喷头移动到基板100上方某一区域,位于该区域对应加热盘的半径上的空腔编号为40111控制机构控制与空腔40111连通的编号为4051的流体输送管上的加热器503开始加热,使加热器503将流经该管内的流体加热至第二热能。具体为,控制机构控制流体输送管4051上设置的加热器503开始工作,对该管内的流体进行加热,在该管内的流体热能未达到第二热能前,先将流体通过旁路支管407排出至装置外部,等流体的热能达到目标热能时,再通过流体输送管4051输送至空腔40111内,以保证该管向加热盘供给的流体热能达到设定的第二热能。流体通过空腔 40111上所开设的流体出孔4013流出加热盘,流向基板100,对空腔40111所在半径区域对应基板100的区域进行加热,使基板100对应位置处的温度被快速加热至80℃。基板100上该位置处的液体快速汽化,当液体汽化的过程足够快,在干燥的瞬间,不是被液体干燥,而是汽化干燥,从而减小表面张力。液面的张力对于相邻的特征图案之间的拉力可以忽略不计,在此过程中,相邻的特征图案与特征图案之间没有液体表面张力的拉扯,有效避免基板100表面的精细图案结构在干燥过程中被损坏。
加热的流体可以为气体,例如洁净空气、氮气或惰性气体;也可以为液体。
当本装置用于IPA干燥时,喷头机构600还包括一个氮气喷头,用于氮气吹扫。
当本装置在湿法刻蚀工艺中使用时,通过喷头机构将蚀刻化学液或配方药液输送到旋转的基板表面,对基板表面薄膜进行部分腐蚀或完全去除。
湿法刻蚀工艺,一般通过喷头机构600将蚀刻化学液或配方药液输送到旋转的基板100表面,对基板100表面薄膜进行部分腐蚀或完全去除。因为,温度是影响腐蚀速率和均匀性的重要参数之一,通过本申请的装置以及上述的处理方法可以实现分区动态精确控制基板和其表面液体的温度,进而获得良好的蚀刻速率和均匀性控制,提高集成电路湿法刻蚀工艺加工精度和稳定性。
其中,当蚀刻化学液包括但不限于氢氟酸、氨水、盐酸、硫酸、双氧水、氢氟酸硝酸混合液、氢氟酸氟化铵混合液、氨水双氧水和纯水混合液、盐酸双氧水和纯水混合液等时,第二温度范围为19-75℃。
当蚀刻化学液包括但不限于硫酸双氧水混合液时,第二温度范围为80-200℃。
当蚀刻化学液包括但不限于磷酸时,第二温度范围为120~165℃。
实施例2
本实施例提供了一种基板处理装置,该装置的结构与实施例1中的基板处理装置的结构基本相同,不同的是,如图12所示,第一卡盘401按角度被均分为2个等份,第一卡盘401在沿径向方向上开设16个空腔,每个空腔的上端面开设均匀分布的流体出孔4013,16个空腔均匀分布于第一卡盘401的两 个区域内,即每个区域内均有8个空腔,图12为该种第一卡盘401布局方式的俯视图。
其余结构与实施例1相同。
实施例3
本实施例提供了一种基板处理装置,该装置的结构与实施例1中的基板处理装置的结构基本相同,不同的是,如图13所示,第一卡盘401被作为整体,直接在第一卡盘401沿径向方向上开设16个空腔,每个空腔的上端面开设均匀分布的流体出孔4013,16个空腔4011以不同半径均匀设置在第一卡盘401内,16个空腔4011的形状为圆形,且呈同心圆设置。图13为该种第一卡盘401布局方式的俯视图。
其余结构与实施例1相同。
实施例4
本实施例提供了一种基板处理装置,该装置的结构与实施例1中的基板处理装置的结构基本相同,不同的是,如图16所示,与每一空腔相连接的流体输送管上分别配置一开关阀门501、一质量流量控制器502及一加热器503,其中,开关阀门501被配置为控制流经流体输送管的流体的开关;质量流量控制器502被配置为监控调节流经每个流体输送管内流体的流量;加热器503被配置为加热流体输送管内流体。通过将实施例1中的质量流量控制器502从流体输送总管406上调整设置在流体输送管上,达到既能通过控制调节质量流量控制器502调节流体流速,进而控制流体对基板100的加热,也能通过控制加热器503加热流体输送管内的流体,调节流体温度,进而控制流体对基板100加热的目的。在实际工艺过程中,可以单独控制调节质量流量控制器502,也可以单独控制加热器503,也可以同时调节质量流量控制器502和加热器503。多种控制方案,能够适应于多种情况,更便捷,高效,可调节及可控性及精准性更高。
本实施例的其余结构与实施例1相同。
本实施例对应的基板处理方法与实施例1基本相同。不同的是,本实施例 中控制每一路流体输送管内流体的热能是通过控制机构控制质量流量控制器调节位于该区域对应半径上的空腔内的流体流量和/或通过控制加热器调节位于该区域对应半径上的空腔内的流体热能,进而控制液体喷头对应的基板100下方的空腔4011内流体的热能,使从该空腔4011上的流体出孔4013喷出的流体的热能达到第二热能,具有第二热能的流体对基板100进行加热至第二温度。在液体喷头沿基板100的径向方向由基板100的中心向基板100的边缘移动过程中,控制机构控制沿基板100的径向方向由基板100的中心向基板100的边缘排布的空腔4011内的流体流量逐渐增加,以保证更快速度的加热对应区域的基板100,使基板100的局部温度快速提升至第二温度。
当通过控制调节质量流量控制器502来调节流体流速,实现流体所含热能达到第二热能时,控制机构通过根据实际对基板100加热的区域面积及均匀度的需要,通过质量流量控制器502调节流体的流速,进而达到上述目的、效果。
具体请参照图14a和图14b,示出了射流的流速与流体从流体出孔4013流出的流体射流的轨迹,通过调节每路流体输送管上的质量流量控制器502,可以改变流体出孔4013流出的流体的流速,从而改变θ角的大小,2θ角为流体射流的轨迹边界形成的椎体的顶角。流速越大,θ角越小,在该流速条件下,空腔4011对应基板100的加热面积越小;流速越小,θ角越大,在该流速条件下,空腔4011对应基板100的加热面积越大。当θ角越大时,表明通过流体出孔4013射出的流体对基板100的加热面积越大,能够在加热本空腔4011对应基板100区域的同时,给相邻空腔所对应的基板100区域进行预加热。因此当需要给相邻空腔对应的基板100区域加热时,基板100达到所需温度所用的时间将会减少,效率更高。
本实施例中,当通过加热器503实现流体所含热能调节时与实施例1的控制方法相同。
实施例5
本实施例提供了一种基板处理装置,该装置的结构与实施例1中的基板处理装置的结构基本相同。不同的是,如图17所示,与每一空腔相连接的流体输送管分别连接有第一流体输送支管和第二流体输送支管,第一流体输送支管 上安装一个开关阀门501a,第二流体输送支管安装一个开关阀门501b。
第一流体输送支管与第一流体输送总管4061连接,第二流体输送支管与第二流体输送总管4062连接。第一流体输送总管4061上设置有一个质量流量控制器502a和一个加热器503a,第二流体输送总管4062上设置有一个质量流量控制器502b及一个加热器503b。其中,开关阀门501a、501b被配置为打开或关断流经各自所在的流体输送支管的流体;质量流量控制器502a、502b被配置为监控调节流经第一流体输送总管4061、第二流体输送总管4062内流体的流量;加热器503a、503b被配置为加热第一流体输送总管4061、第二流体输送总管4062内流体。第一流体输送总管4061连接有旁路支管407a,第二流体输送总管4062连接有旁路支管407b。
本实施例其余结构与实施例1相同。
本实施例对应的基板处理方法与实施例1基本相同。不同的是,本实施例中,流体输送总管设置成为两路总管4061、4062,且每一路流体输送管均连接有两路流体输送支管,两路流体输送支管分别与两路流体输送总管4061、4062相连通。
在控制机构控制加热机构400给基板100加热的过程中,首先控制所有与第一流体输送总管4061连接的第一流体输送支管上的开关阀门501a全部打开,控制加热器503a加热流经第一流体输送总管4061内的流体,该流体通过第一流体输送支管及各路流体输送管流经每一空腔的流体出孔4013对基板100整体进行预加热至第一温度。在第一流体输送总管4061内流体的热能未达到第一热能之前,流体经过旁路支管407a排出装置外。
在液体喷头沿基板100的径向方向由基板的中心向基板的边缘移动过程中,当液体喷头移动至基板100上方某一区域时,位于该区域对应加热盘的半径上的空腔相连接的流体输送管连接的第一流体输送支管上的开关阀门501a关闭,同时打开第二流体输送支管上的开关阀门501b,控制流经液体喷头位置对应的基板100下方的空腔所连接的第二流体输送总管4062内的流体加热,该流体通过该空腔流体出孔4013对基板100的对应区域进行加热至第二温度。在第二流体输送总管4062内的流体的热能未达到第二热能前,先将流体通过旁路支管407b排出至装置外部。
通过设置两路流体输送总管4061,4062,且两路流体输送总管4061,4062内流体的热能不同,第一流体输送总管4061能够对基板100整体进行预加热,使基板100稳定保温,第二流体输送总管4062在向各路流体输送管输送流体之前就已经将第二流体输送总管4062内的流体加热至具有第二热能,在流向各路流体输送管的时候,温度切换更迅速,对基板100加热的控制更精确,工作效率更高。
实施例6
本实施例提供了一种基板处理装置,该装置的结构与实施例5中的基板处理装置的结构基本相同。不同的是,如图18所示,与每一空腔相连接的流体输送管分别连接有第一流体输送支管、第二流体输送支管、第三流体输送支管。第一流体输送支管上安装有一个开关阀门501a,第二流体输送支管上安装有一个开关阀门501b,第三流体输送支管上安装有一个开关阀门501c。第一流体输送支管与第一流体输送总管4061连接,第二流体输送支管与第二流体输送总管4062连接,第三流体输送支管与第三流体输送总管4063连接。第一流体输送总管4061连接有旁路支管407a,第二流体输送总管4062连接有旁路支管407b。第一、第二、第三流体输送总管4061、4062、4063上分别安装一个质量流量控制器502a、502b,502c。第一、第二流体输送总管4061、4062上分别安装一个加热器503a、503b。其中,开关阀门501a、501b、501c被配置为打开或关断流经各自所在的流体输送支管的流体;质量流量控制器502a、502b,502c被配置为监控调节流经每个流体输送总管4061、4062、4063内流体的流量;加热器503a、503b被配置为加热第一、第二流体输送总管4061、4062内流体。
本实施例其余结构与实施例1相同。
将基板100从夹持机构200上取走之后,加热盘需要冷却以便于进行下一片基板工艺。此时,关闭与第一、第二流体输送总管4061、4062相连接的第一流体输送支管、第二流体输送支管上所设置的开关阀门501a、501b,打开与流体输送总管4063相连接的第三流体输送支管上所设置的开关阀门501c,使低温流体被输送至加热盘的每一空腔内,对加热盘进行快速降温处理,加快加 热盘的冷却速度,提高工艺效率。
此处的低温流体为温度低于常温的流体。低温流体从加热盘的流体出孔4013流出向四周溢散流经夹持机构200,在对加热盘进行降温处理的同时也给夹持机构200降温。
在降温的过程中,为了防止加热器503a、503b的频繁开关影响其使用寿命,第一流体输送总管4061与第二流体输送总管4062内的流体通过旁路支管407a、407b排出至装置外部。当下一个基板100进入装置准备进行干燥时,可以快速切换至所需热能的流体对基板100进行区域温度的精准控制。
实施例7
本实施例提供了一种基板处理装置,该装置的结构与实施例1中的基板处理装置的结构基本相同。不同的是,如图19所示,与每一空腔相连接的流体输送管分别连接有第一流体输送支管、第二流体输送支管、第三流体输送支管。第一流体输送支管上安装有一个开关阀门501a,第二流体输送支管上安装有一个开关阀门501b,第三流体输送支管上安装有一个开关阀门501c。第一流体输送支管与第一流体输送总管4061连接,第二流体输送支管与第二流体输送总管4062连接,第三流体输送支管与第三流体输送总管4063连接。第一、第二、第三流体输送总管4061、4062、4063上均安装一个质量流量控制器502a、502b、502c及一个加热器503a、503b、503c。其中,开关阀门501a、501b、501c被配置为打开或关断流经各自所在的流体输送支管的流体。质量流量控制器502a、502b、502c被配置为监控调节流经每个流体输送总管4061、4062、4063内流体的流量;加热器503a、503b、503c被配置为加热各流体输送总管4061、4062、4063内流体。第一流体输送总管4061连接有旁路支管407a,第二流体输送总管4062连接有旁路支管407b,第三流体输送总管4063连接有旁路支管407c。
本实施例其余结构与实施例1相同。
本实施例对应的基板处理方法与实施例基本1相同。不同的是,本实施例中,流体输送总管设置成为了三路总管,且每一路流体输送管均连接有三路流体输送支管,三路流体输送支管分别与三路流体输送总管相连接。
在控制机构500控制加热机构400给基板100加热的过程中,控制机构控 制加热器503a加热流经第一流体输送总管4061内的流体,加热后的流体通过每一空腔的流体出孔4013对基板100进行加热至第一温度。
在液体喷头沿基板100的径向方向由基板100的中心向基板100的边缘移动过程中,当液体喷头移动至基板100上方某一区域时,位于该区域对应加热盘的半径上的空腔相连接的流体输送管连接的第一流体输送支管上的开关阀门501a、501c关闭,同时,该空腔所连通的流体输送管连接的第二流体输送支管上的开关阀门501b打开,以及打开在逐渐远离加热盘中心的径向方向上该空腔相邻的空腔所连通的流体输送管连接的第三流体输送支管上的开关阀门501c,控制流经液体喷头位置对应的基板100下方的空腔所连接的第二流体输送总管4062内的流体,该流体通过该空腔开设的流体出孔4013对该空腔对应区域的基板100进行加热至第二温度;同时,第三流体输送总管4063内达到第三热能的流体通过该空腔相邻的空腔所开设的流体出孔4013对基板100对应区域进行再预热至第三温度。
第三温度为再预热的温度,第三温度比第一温度高,比第二温度低,本实施例中的第三温度设定小于液体沸点的温度,对于IPA为例,较佳的工艺范围为70-78℃。
通过设置三路流体输送总管4061、4062、4063,三路流体输送总管4061、4062、4063内流体的热能不同,且三路流体输送总管4061、4062、4063内流体都是在流体输送总管内部就已经被加热,在向各流体输送管输送流体的时候,可以不用在流体输送管内再加热,避免影响目标区域温度精准控制的情况的发生,达到第一流体输送总管4061供给保温流体,给基板100起到预加热的目的。第三路流体输送总管4063供给高于第一流体输送总管4061输送的流体的温度,为基板100进行再预热,第二路流体输送总管4062供给能够使喷头分配的液体达到沸点温度附近的温度的流体,为被分配液体之后的基板100进行迅速加热,达到迅速干燥的目的。值得注意的是,第三路的再预热流体是供给在逐渐远离加热盘中心的径向方向上,与液体喷头对应基板100下方的空腔相邻的空腔。
更具体的,请参照图7,当液体喷头移动到空腔40111对应的基板100上方时,基板100被旋转驱动机构300驱动旋转,液体喷头对该环形或圆形区域 分配液体。当空腔40111为扇形时,液体喷头分配液体对应的区域为圆形区域,当空腔40111为弧形时,液体喷头分配液体对应的区域为环形区域。此时与空腔40111连通的流体输送支管上的开关阀的开闭情况为,第一流体输送总管4061连通的第一流体输送支管上的开关阀门501a关闭,第二流体输送总管4062连通的第二流体输送支管上的开关阀门501b打开,空腔40111被供给第二温度的流体,第三流体输送总管4063连通的第三流体输送支管上的开关阀门501c关闭,与此同时,在逐渐远离加热盘中心的径向方向上,与空腔40111相邻的空腔40112所连接的流体输送支管上的开关阀门的开闭情况为:第一流体输送总管4061连通的第一流体输送支管上的开关阀门501a关闭,第二流体输送总管4062连通的第二流体输送支管上的开关阀门501b关闭,第三流体输送总管4063连通的第三流体输送支管上的开关阀门501c打开,空腔40112被供给具有第三热能的流体。当液体喷头继续向边缘移动离开空腔40111,到达空腔40112时,与空腔40112连接的流体输送支管上的开关阀门的开闭情况为:第一流体输送总管4061连通的第一流体输送支管上的开关阀门501a关闭,第二流体输送总管4062连通的第二流体输送支管上的开关阀门501b打开,空腔40112被供给具有第二热能的流体,第三流体输送总管40631连通的第一流体输送支管上的开关阀门501c关闭,与此同时,在逐渐远离加热盘中心的径向方向上,与空腔40112相邻的空腔40113,被供给具有第三热能的流体,依次类推,直至喷头移动至基板100的边缘,完成加热干燥。
更进一步地,流体输送总管可以根据实际情况设置为四路总管、五路总管等,以满足基板100干燥温度更加精确控制的目标要求。示例性的,当流体输送总管设置为四路时,每一路流体输送管分别连通四路流体输送支管,每一路流体输送支管上均安装一个开关阀门。当液体喷头移动到空腔40111对应的基板100上方并向基板100分配液体时,此时空腔40111连接的流体输送支管上的开关阀门的开闭情况为:第一流体输送总管连通的第一流体输送支管上的开关阀门关闭,第二流体输送总管连通的第二流体输送支管上的开关阀门打开,空腔40111被供给具有第二热能的流体,第三流体输送总管连通的第三流体输送支管上的开关阀门关闭,第四流体输送总管连通的第四流体输送支管上的开关阀门关闭;与此同时,在逐渐远离加热盘中心的径向方向上,与空腔40111 相邻的空腔40112所连接的四路流体输送支管上的开关阀门的开闭情况为:第一流体输送总管连通的第一流体输送支管上的开关阀门关闭,第二流体输送总管连通的第二流体输送支管上的开关阀门关闭,第三流体输送总管连通的第三流体输送支管上的开关阀门打开,空腔40112被供给具有第三热能的流体,第四流体输送总管连通的第四流体输送支管上的开关阀门关闭;与此同时,在逐渐远离加热盘中心的径向方向上,与空腔40112相邻的空腔40113所连接的四路流体输送支管上的开关阀门的开闭情况为:第一流体输送总管连通的第一流体输送支管上的开关阀门关闭,第二流体输送总管连通的第二流体输送支管上的开关阀门关闭,第三流体输送总管连通的第三流体输送支管上的开关阀门关闭,第四流体输送总管连通的第四流体输送支管上的开关阀门打开,空腔40113被供给具有第四热能的流体。本方案中的第一温度为保温温度,第二温度为约为使液体喷头向基板100分配的液体达到沸点的温度,第三温度、第四温度为预热的温度,第三温度、第四温度可以为相同的温度,也可以为不同的温度,但第三温度、第四温度均需高于第一温度且低于第二温度。设置预热的温度低于沸点的温度是为了保证在液体喷头到达该区域之前,该区域的液体处于未沸腾的状态。
一种基板处理方法包括:将基板保持在夹持机构上;驱动夹持机构带动基板旋转;通过喷头机构的液体喷头向基板表面分配液体,液体喷头在基板上方从基板中心沿径向方向向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,通过对基板下方喷射具有第二热能的流体的方式对基板上相同半径区域进行局部加热,提高液体喷头下方基板的局部温度。
更进一步地,在通过喷头机构的液体喷头向基板表面分配液体之前还包括:向基板的全部下方喷射具有第一热能的流体对基板整体进行初预热。
更进一步地,通过对该区域对应的基板下方喷射具有第二热能的流体的方式对基板上相同半径的该区域进行局部加热的同时,对该区域在径向方向上的相邻区域对应的基板下方喷射具有第三热能的流体进行再预热。
更进一步地,流体为气体或液体。
更进一步地,通过控制具有第二热能的流体的温度和/或流量对基板上相同半径区域进行局部加热,提高液体喷头下方基板的局部温度。
更进一步地,还包括将基板从夹持机构上取走后,通入低温流体对加热盘进行降温。
实施例8
本实施例提供了一种基板处理装置,该装置的结构与实施例1中的基板处理装置的结构基本相同,不同之处请参照图20,图20示出了本发明实施例的第一卡盘与第二卡盘装配完成后的横截面结构示意图。如图20所示,第一卡盘401与第二卡盘402之间设置加热件408,加热件408用于对空腔4011内的流体进行加热,同时对第一卡盘401整体进行加热。在工艺过程中,根据加热的需求,加热件408的数量可以为一个或以上。当加热件408的数量为大于一个时,可以根据实际需求设置加热件408的安装位置及加热件408的自身结构。本实施例中,主要阐述加热件408的数量为一个时的情况。本实施例中,加热件408为板状结构,加热件408上开设有连通第一流体输送通道4021与流体进孔4012的连通孔4081。结合参考图5,当流体通过轴体403内部的第二流体输送通道4031及第二卡盘402内部的第一流体输送通道4021流至第一卡盘401上的空腔4011时,流体会流经加热件408上开设的连通孔4081及第一卡盘401上开设的流体进孔4012进入空腔4011,加热件408直接对空腔4011内的流体进行加热,与此同时,板状结构的加热件408与第一卡盘401直接接触的位置通过热辐射直接加热第一卡盘401整体,使第一卡盘401温度同时升高,进而在对基板100进行预加热时,可以更为快速的达到预加热的效果。
在工艺过程中,当流体通过每一支路的流体输送管进入轴体403内部的第二流体输送通道4031流经第二卡盘402内部的第一流体输送通道4021以及第一卡盘401的流体进孔4012到达空腔4011时,因为各个部件是处于常温状态,而流体所含的热能较高,流体的温度会高于流经的各个部件,因此流体会分别与流经的部件发生对流换热,将热量传递给各个部件,使得流体本身所含的热能降低,从而导致从空腔4011内流出的流体热能不足。当流体流向基板100时,基板100对应位置处的温度无法被快速加热至目标温度,进而导致基板100上的液体汽化干燥的效果受到影响,相邻的特征图案与特征图案之间仍然可能受到液体表面张力的拉扯,特征图案具有受损的可能性,影响到基板100工艺 加工的良率。
本发明实施例中,在第一卡盘401与第二卡盘402之间设置加热件408,在工艺过程中,当流体通过每一个流体输送管进入轴体403内部的第二流体输送通道4031流经第二卡盘402内部的第一流体输送通道4021之后,会流经第一卡盘401上的流体进孔4012进入空腔4011,加热件408对处于空腔4011内部的流体进行加热,增加流体的热能,使流体的热能再次提高达到能够快速加热基板100对应位置处的温度至目标温度的要求,经过空腔4011上开设的流体出孔4013流出加热盘流向基板100,对基板100进行快速升温。设置的加热件408能够起到对流体进行二次加热的效果,进一步保障基板100对应位置处的温度被快速加热至目标温度,保障基板100上该位置处的液体汽化的过程足够快,相邻的特征图案与特征图案之间没有液体表面张力的拉扯,从而有效避免基板100表面的精细图案结构在干燥过程中被损坏。
本实施例的其余结构与实施例1相同。
本实施例对应的基板处理方法与实施例1基本相同。不同的是,本实施例中在工艺过程中控制机构控制加热器503加热流体时,同时打开加热件408,预设加热件408的加热温度,应当理解,加热件408的加热温度能够根据实际工艺要求进行设定,在本发明中不做限定。示例性的,本发明实施例中的加热件408的加热温度设定为80℃,以完成对即将到达第一卡盘401内部所开设的空腔4011的流体进行对流加热的准备。
实施例9
本实施例提供了一种基板处理装置,该装置的结构与实施例8中的基板处理装置的结构基本相同,不同之处请参照图21,图21示出了本发明实施例的第一卡盘与第二卡盘装配完成后的横截面结构示意图。如图21所示,基板处理装置还包括冷却机构,冷却机构包括设置于第一卡盘401上的冷却部,冷却部的实际选择包括但不限于:冷却槽、冷却腔、冷却管以及其各种形式的组合。具体的种类可以根据实际的工艺需求进行选择。冷却部被配置为降低第一卡盘401或第二卡盘402的温度,从而避免当本次工艺操作结束后第一卡盘401或第二卡盘402温度过高而对下一片基板100的RCA工艺(化工标准工艺)造 成影响。
当冷却部被配置为降低第一卡盘401的温度时,在冷却工艺过程中,冷却部设置的方式包括但不限于以下方式:
第一种方式,冷却部701为冷却管,请参照图22,图22示出了本发明实施例中冷却部为冷却管且位于第一卡盘内部时的结构示意图。如图22所示,冷却部701内嵌于第一卡盘401内部。更进一步地,在第一卡盘401的每一空腔4011周侧分别开设有一容纳腔,冷却部701内置于所开设的容纳腔内。
第二种方式,冷却部701为冷却管,请参照图23,图23示出了本发明实施例中冷却部为冷却管且位于第一卡盘上端面时的结构示意图。如图23所示,冷却部701设置于第一卡盘401上端面,每一空腔4011上方均对应设置有冷却部701。具体地,在第一卡盘401的上端面开设容纳槽,冷却部701内置于所开设的容纳槽内,同时,在第一卡盘401上端面设置有密封层410,当冷却部701置于容纳槽内之后,密封层410与第一卡盘401固定连接以将容纳槽的开口端密封。在实际设计过程中,可以根据实际需求选择冷却部701的个数以及形状。在本发明实施例中,若干空腔4011对应区域设置的冷却管为同一个冷却管,具体结构请参照图24,图24示出了本发明实施例中冷却管的结构示意图。如图24所示,冷却管为盘状结构。
第三种方式请参照图25,图25示出了本发明实施例中冷却部为冷却腔的结构示意图。如图25所示,当冷却部701为冷却腔,冷却腔开设于第一卡盘401内部。可以理解为,本方式为第一种方式去除冷却管,冷却腔直接作为冷却部701的执行方式。
第四种方式,请参照图26,图26示出了本发明实施例中冷却部为冷却槽的结构示意图。如图26所示,当冷却部701为冷却槽时,冷却槽开设于第一卡盘401的上端面,同样的,在第一卡盘401上端面设置有密封层410,密封层410与第一卡盘401固定连接以将冷却槽的开口端密封。可以理解为,本方式为第二种方式去除冷却管,冷却槽直接作为冷却部701的执行方式。
更进一步地,第一卡盘401上包覆有保护层,第一卡盘401上端面设置的密封层410同样可以作为保护层。示例性的,当冷却部701为上述第二种方式或第四种方式设计,密封层410作为保护层时,密封层410采用耐腐蚀、耐高 温、隔热性能较佳的材料,例如特氟龙。特氟龙材质的密封层410,能够防止在工艺过程中,化学药液对第一卡盘401的腐蚀。当冷却部701为上述第二种方式或第四种方式设计,且密封层410与保护层相互独立设置时,则保护层同时将密封层410的上端面、侧面及第一卡盘401的外表面包覆,在本实施例中,仍然采用耐腐蚀、耐高温、隔热性能好的特氟龙材料作为保护层。当冷却部701为上述第一种方式或第三种方式设计时,因为未设置密封层410,因此只需将保护层把第一卡盘401的外表面包覆,在本实施例中,仍然采用耐腐蚀、耐高温、隔热性能好的特氟龙材料作为保护层。保护层的设置可以帮助将热量隔绝在加热盘的内部。
选用第三、第四种方式作为冷却部,省却了冷却管的设计,直接在第一卡盘401上进行冷却槽和冷却腔的设计,在装置制备时更为简单,且节省成本。
当冷却部701被配置为降低第二卡盘402的温度时,可以采用上述第二种方式即冷却部701为冷却管直接内嵌于第二卡盘402内部,或第三种方式直接在第二卡盘402内开设空腔,该空腔作为冷却部701进行设计,考虑到实际工艺中的操作方便,本实施例中,选择直接在第二卡盘402内开设空腔作为冷却腔的设计方式。如图27所示,图27示出了根据本发明实施例的冷却机构冷却第二卡盘的示例性示意图。
请参照图28,图28示出了根据本发明实施例的冷却机构冷却第一卡盘的示例性示意图。如图28所示,结合图22或图23或图25或图26或图27,冷却部701的进液口与第二卡盘402上开设的冷却液进口4022相连通,冷却液进口4022与轴体403内部开设的第三流体输送通道4032相连通;冷却部701的出液口与第二卡盘402上开设的冷却液出口4023相连通,冷却液出口4023与轴体403内部开设的第四流体输送通道4033相连通,轴体403底部设置与第三流体输送通道4032相连接的连接头4041以及与第四流体输送通道4033相连接的连接头4042。
在一个实施例中,冷却部701的进液口连接一个输送管,输送管贯穿第二卡盘402上开设的冷却液进口4022、轴体403内部开设的第三流体输送通道4032到达外部与连接头4041相连接;冷却部701的出液口连接一个输送管,输送管贯穿第二卡盘402上开设的冷却液出口4023、轴体403内部开设的第四 流体输送通道4033到达外部与连接头4042相连接。
与第三流体输送通道4032相连接的连接头4041连通至少一路用于向冷却部701内输送液体的进液管,本发明实施例中,选择连接头4041连接一路用于向冷却部701内输送液体的进液管40222,连接头4041连接的用于向冷却部701内输送液体的进液管的数量可以根据需求进行选择。用于向冷却部701内输送液体的进液管上配置有冷却流经进液管的液体的冷却器402221。与第四流体输送通道4033相连接的连接头4042连通至少一路用于将冷却部701内的液体排出的排液管,本发明实施例中选择连接头4042连接一路用于将冷却部701内的液体排出的排液管40224。进液管40222和排液管40224上分别配置一开关阀门,该开关阀门被配置为打开或关断流经进液管40222和排液管40224的液体。如图28所示,本发明实施例中,进液管40222上配置一开关阀门4043,排液管40224上配置一开关阀门4046。
更进一步地,与第三流体输送通道4032相连接的连接头4041连通至少一路用于向冷却部701内输送气体的进气管,本发明实施例中,设置连接头4041连接一路用于向冷却部701内输送气体的进气管40221,用于向冷却部701内输送气体的进气管的数量可以根据实际需求进行选择。与第四流体输送通道4033相连接的连接头4042连通至少一路用于将冷却部701内的气体排出的排气管,本发明实施例中,连接头4042连接一路用于将冷却部701内的气体排出的排气管40223。进气管40221和排气管40223上同样分别配置一用于打开或关断流经进气管40221和排气管40223的气体的开关阀门。如图28所示,本发明实施例中,进气管40221上配置一开关阀门4044,排气管40223上配置一开关阀门4045。
在一个实施例中,第一卡盘401的制作材料为金属,示例性的,本实施例中第一卡盘401的制作材料选择包括但不限于哈氏合金、铝合金、镍基合金;同时因为第一卡盘401为金属材料制备,具有导热性好的特性,具有散热性快的表现,隔热性能良好、耐腐蚀的密封层410能够防止在工艺过程中第一卡盘401散热过快,影响流体对基板100的加热效果。第二卡盘402的制作材料为非金属,示例性的,第二卡盘402的制作材料选择耐高温耐腐蚀的塑料,本实施例中,第二卡盘402的制作材料包括但不限于PEEK、特氟龙。根据不同材 料具有不同导热率和热膨胀系数的特性,第一卡盘401的制作材料使用高热导率和低热膨胀系数的金属材料,第二卡盘402的制作材料使用低热导率的非金属。
当热流体对基板100进行干燥工艺结束之后,第一卡盘401的温度过高,容易影响下一片基板100的干燥,本发明实施例中的冷却机构对经过干燥工艺之后的第一卡盘401具有较好的冷却效果。
在另一个实施例中,第一卡盘401的制作材料为非金属,示例性的,本实施例中第一卡盘401的制作材料选择耐高温耐腐蚀的塑料,示例性的,本发明实施例中的第一卡盘401的制作材料包括但不限于PEEK、特氟龙。第二卡盘402的制作材料为金属,示例性的,本实施例中第二卡盘402的制作材料选择铝合金、哈氏合金、镍基合金等。根据不同材料具有不同导热率和热膨胀系数的特性,本发明实施例中第一卡盘401的制作材料使用低导热率的非金属,从而保证当流体经过第一卡盘401时,热量损失较小,同时,避免当本次工艺操作结束后第一卡盘401温度过高而对下一片基板100的RCA工艺(化工标准工艺)中造成影响。第二卡盘402的制作材料使用低热膨胀系数的金属,从而保证热流体经过第二卡盘402时,第二卡盘402不易变形。第一卡盘401与第二卡盘402相互支撑,第二卡盘402低热膨胀系数的特性对第一卡盘401同样具有支撑作用,防止第一卡盘401变形。
更进一步地,请参照图25、图26,第二卡盘402与加热件408之间设置有绝热层409。通过设置绝热层409,将加热件408的热量隔绝在第二卡盘402之上,以达到将更多的热量用于对处于空腔4011内部的流体进行加热的效果。
更进一步地,在本发明实施例中,第二卡盘402外涂覆有防腐蚀层,防止在工艺过程中的化学药液以及工艺环境对金属材料制备的第二卡盘402造成腐蚀现象的发生,对机台进行保护。示例性的,本实施例中的防腐蚀层选用特氟龙涂层。
本实施例的其余结构与实施例8相同。
本实施例对应的基板处理方法与实施例8基本相同。不同的是,本实施例中控制机构还被配置为控制冷却机构对第一卡盘401或第二卡盘402降温。
具体地,基板100分区域加热干燥的工艺结束后,控制机构打开与冷却部 701的进液口和冷却部701的出液口所连接的流经液体的进液管40222和排液管40224上的阀门4043、4046;控制冷却器402221冷却流经进液管40222内的液体温度至低温,本发明实施例中的低温指温度范围在20℃以下,冷却后的低温液体经过轴体403内部开设的第三流体输送通道4032、冷却液进口4022与冷却部701的进液口进入冷却部701内部,对第一卡盘401或第二卡盘402进行降温处理,然后从冷却部701的出液口、冷却液出口4023、轴体403内部开设的第四流体输送通道4033流出冷却部701,经由与冷却部701的出液口所连通的流经液体的排液管40224排出,通入低温液体的时间为T1时间,使第一卡盘401或第二卡盘402整体温度降低至常温,然后,关闭冷却器402221及冷却部701的进液口和冷却部701的出液口所连通的流经液体的进液管40222和排液管40224上的阀门4043、4046。
更进一步地,当第一卡盘401或第二卡盘402整体温度降低至常温,关闭冷却器402221及冷却部701的进液口和冷却部701的出液口所连通的流经液体的进液管40222和排液管40224上的阀门4043、4046之后,控制机构打开与冷却部701的进液口和冷却部701的出液口所连接的流经气体的进气管40221和排气管40223上的阀门4044、4045;气体经过轴体403内部开设的第三流体输送通道4032、冷却液进口4022与冷却部701的进液口进入冷却部701内部,从冷却部701的出液口、冷却液出口4023、轴体403内部开设的第四流体输送通道4033流出冷却部701,经由与冷却部701的出液口所连通的排气管40223排出,控制气体流经冷却部701内部T2时间,使冷却部701内部干燥。优选的,为了加快干燥速度,本发明实施例中,向冷却部701内通入的气体选择干燥气体。
经过对冷却机构进行T1时间和T2时间的处理之后,第一卡盘401或第二卡盘402快速恢复至常温状态的同时,冷却部701内部的环境也重新恢复至干燥状态。
综上,干燥工艺中,在一个实施例中,设定基板100的转速为1100rpm、达到第一热能的流体流量为280L、达到第一热能的流体温度为80℃的条件下,用本发明提供的基板处理方法进行处理,实验结果请参照图29,图29示出了根据本发明实施例中利用达到第一热能的流体对基板进行预加热处理的温度曲线 变化图。如图29所示,通过仿真实验,基板100表面的温度可以在15s以内由常温状态达到70℃。
图30a至图30c揭示了根据本发明实施例1、实施例4、实施例5的基板处理方法处理基板时,随着液体喷头的移动,基板不同区域的温度变化曲线示意图。请结合图15、图16、图17以及图30a至图30c,在一个实施例中,干燥流体仍以IPA为例,以实施例1、实施例4、实施例5的方法对基板100进行干燥处理时,定义第一卡盘401上的其中一个空腔4011的编号为R,则第一卡盘401在沿径向方向上,靠近第一卡盘401中心一侧与编号为R相邻的空腔4011编号为R-1,靠近第一卡盘401边缘一侧与编号为R相邻的空腔4011编号为R+1,与编号为R+1的空腔4011相邻的空腔4011编号为R+2。其中,R为大于或等于1的正整数。当R等于1,则表示液体喷头位于基板100的中心位置。当液体喷头移动到基板100中心的正上方,向基板100表面分配液体之前,控制机构控制加热器503加热流经流体输送管内的流体热能至第一热能,达到第一热能的流体通过每一空腔4011的流体出孔4013对基板100进行加热至第一温度,第一温度为预加热的温度,本实施例中的预加热温度为70℃,结合图29所示的实验的数据结果可知,在15s内,基板100的表面由常温状态达到70℃,基板100预热完成。
液体喷头沿基板100的径向方向由基板100的中心向基板100的边缘移动过程中,当液体喷头移动至基板100上方的某一区域,控制机构控制加热器503加热位于该区域对应半径上的编号为R-1的空腔4011内的流体至第二热能,达到第二热能的流体通过该空腔4011的流体出孔4013对该区域的基板100进行加热至第二温度,工艺的第二温度为82℃,该区域的基板100的温度表现为从70℃快速提升至82℃。如图30a所示,此时,在径向方向上远离编号为R-1的空腔4011,示例性的,编号为R、编号为R+1、编号为R+2的空腔的温度仍然保持在预热完成的状态,即70℃。当液体喷头移动至基板100上方径向方向上的某一区域的下一区域时,即当液体喷头移动至编号为R的空腔4011对应的基板100上方区域时,控制机构同样控制加热器503加热位于该区域对应半径上的编号为R的空腔4011内的流体至第二热能,达到第二热能的流体通过该空腔4011的流体出孔4013对该区域的基板100进行加热至第二温度,工艺 的第二温度为82℃,该区域的基板100的温度表现为从70℃快速提升至82℃,以此类推,直至整个基板100的表面被处理完成。
在另一个实施例中,干燥流体仍以IPA为例,此时以实施例7的基板处理方法对基板100进行干燥处理时,请结合图19及图31a至图31c,图31a至图31c揭示了根据本发明实施例7的基板处理方法处理基板时,随着液体喷头的移动,基板不同区域的温度变化曲线示意图。同样定义第一卡盘401上的其中一个空腔4011的编号为R,则第一卡盘401在沿径向方向上,靠近第一卡盘401中心一侧与编号为R相邻的空腔4011编号为R-1,靠近第一卡盘401边缘一侧与编号为R相邻的空腔4011编号为R+1,与编号为R+1的空腔4011相邻的空腔4011编号为R+2。控制机构控制加热器503a加热流经第一流体输送总管4061内的流体,加热后的流体通过每一空腔的流体出孔4013对基板100进行加热至第一温度,即70℃,完成对基板100的预加热。
在接下来的基板处理过程中,液体喷头沿基板100的径向方向由基板100的中心向基板100的边缘移动过程中,当液体喷头移动至基板100上方某一区域时,位于与该区域对应加热盘半径上的编号为R-1的空腔4011相连接的流体输送管连接的第一流体输送支管上的开关阀门501a、第三流体输送支管上的开关阀门501c关闭,同时,该空腔所连通的流体输送管连接的第二流体输送支管上的开关阀门501b打开,同时,在逐渐远离加热盘中心的径向方向上该空腔相邻的编号为R的空腔4011所连通的流体输送管连接的第三流体输送支管上的开关阀门501c打开,第一流体输送支管上的开关阀门501a、第二流体输送支管上的开关阀门501b关闭,控制流经液体喷头位置对应的基板100下方的空腔所连接的第二流体输送总管4062内的流体,该流体通过编号为R-1的空腔4011开设的流体出孔4013对该空腔对应区域的基板100进行加热至第二温度,即82℃,在此过程中编号为R-1的空腔4011对应的基板100区域的温度变化曲线如图31a所示;同时,第三流体输送总管4063内达到第三热能的流体通过该编号为R-1的空腔4011相邻的编号为R的空腔4011所开设的流体出孔4013对基板100对应区域进行再预热至第三温度,即78℃,在此过程中编号为R的空腔4011对应的基板100区域的温度变化曲线如图31b所示。如图31a、图31b、图31c所示,此时,在径向方向上远离编号为R-1的空腔4011 编号为R的温度状态为再预热至78℃;编号为R+1、编号为R+2的空腔的温度仍然保持在预热完成的状态,即70℃。当液体喷头继续移动至基板100上方径向方向上的某一区域的下一区域时,即当液体喷头移动至编号为R的空腔4011对应的基板100上方区域时,控制机构同样控制编号为R的空腔4011所连通的流体输送管连接的第一流体输送支管上的开关阀门501a及第三流体输送支管上的开关阀门501c关闭,打开编号为R的空腔所连通的流体输送管连接的第二流体输送支管上的开关阀门501b,使达到第二热能的流体通过该空腔4011的流体出孔4013对该区域的基板100进行加热至第二温度,工艺的第二温度为82℃,该区域的基板100的温度表现为从78℃快速提升至82℃;此时编号为R+1的空腔4011对应的基板100的区域处于再预热至第三温度,即78℃的状态。此时,编号为R+1的空腔4011所连通的流体输送管连接的第一流体输送支管上的开关阀门501a、第三流体输送支管上的开关阀门501c均处于关闭状态,第二流体输送支管上的开关阀门501b处于打开状态,该区域的基板100的温度表现为从70℃快速提升至78℃。以此类推,直至整个基板100的表面被处理完成。其中,R为大于或等于1的正整数。当R等于1,则表示液体喷头位于基板100的中心位置,液体喷头处于基板100的中心位置时,可以选择对离基板100中心最近的一个空腔4011进行再次预加热处理,也可以选择直接加热至第二温度的处理方式进行处理,因为基板100中心区域的范围较小,两种处理方式的结果差别也较小,基本不会影响工艺结果。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (44)

  1. 一种基板处理装置,其特征在于,包括:
    控制机构;
    夹持机构,被配置为保持基板;
    喷头机构,包括液体喷头,液体喷头被配置为将液体分配至置于夹持机构上的基板表面;
    旋转驱动机构,被配置为驱动夹持机构旋转;
    加热机构,包括加热盘,加热盘设置在基板下方,加热盘沿径向方向开设至少两个空腔,每个空腔分布在不同半径上,空腔底部开设有流体进孔,空腔顶部开设有流体出孔,流体进孔与流体输送管连接;
    在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,控制机构控制位于该区域对应半径上的空腔内的流体的热能,进而提高液体喷头下方基板的局部温度。
  2. 根据权利要求1所述的基板处理装置,其特征在于:
    加热机构还包括:流体输送单元,流体输送单元上设置有加热器,加热器用于对流体输送单元内的流体进行加热。
  3. 根据权利要求1所述的基板处理装置,其特征在于:
    加热盘包括:第一卡盘和第二卡盘,所述第一卡盘设置于所述第二卡盘的上方,且所述第二卡盘与所述第一卡盘匹配设置;
    第一卡盘在沿径向方向上开设所述至少两个空腔,每个空腔分布在第一卡盘沿径向方向不同的半径上,空腔底部开设有流体进孔,空腔顶部开设有流体出孔;
    第二卡盘内部开设有与空腔数量相等的第一流体输送通道,第一流体输送通道通过流体进孔与空腔相连通。
  4. 根据权利要求3所述的基板处理装置,其特征在于:
    加热盘按角度被均分为n个等份,其中,n为大于或等于2的整数。
  5. 根据权利要求4所述的基板处理装置,其特征在于:
    每个等份内的空腔数量相等,且空腔分布于不同的半径上。
  6. 根据权利要求1所述的基板处理装置,其特征在于:
    所述至少两个空腔的形状为圆形,且呈同心圆设置。
  7. 根据权利要求1所述的基板处理装置,其特征在于:
    流经空腔的流体为气体或液体。
  8. 根据权利要求1所述的基板处理装置,其特征在于:
    加热盘的每个空腔上所开设的流体出孔的密度相同。
  9. 根据权利要求1所述的基板处理装置,其特征在于:
    与每一空腔相连接的流体输送管分别连通于同一路流体输送总管,每一流体输送管上分别配置一开关阀门、一加热器,流体输送总管上配置一质量流量控制器;其中,
    所述开关阀门被配置为打开或关断流经流体输送管的流体;
    所述质量流量控制器被配置为监控调节流经流体输送总管内流体的流量;
    所述加热器被配置为加热每个流体输送管内的流体。
  10. 根据权利要求9所述的基板处理装置,其特征在于:所述控制机构被配置为:
    打开开关阀门;
    控制加热器加热流经流体输送管内的流体热能至第一热能,达到第一热能的流体通过每一空腔的流体出孔对基板进行加热至第一温度;
    在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,控制加热器加热位于该区域对应半径上 的空腔内的流体至第二热能,达到第二热能的流体通过该空腔的流体出孔对基板对应区域进行加热至第二温度。
  11. 根据权利要求1所述的基板处理装置,其特征在于:
    与每一空腔相连接的流体输送管上分别配置一开关阀门、一质量流量控制器及一加热器;其中,
    所述开关阀门被配置为打开或关断流经流体输送管的流体;
    所述质量流量控制器被配置为监控调节流经每个流体输送管内流体的流量;
    所述加热器被配置为加热流体输送管内的流体。
  12. 根据权利要求11所述的基板处理装置,其特征在于:所述控制机构被配置为:
    打开开关阀门;
    控制加热器加热流经流体输送管内的流体热能至第一热能,达到第一热能的流体通过每一空腔的流体出孔对基板进行加热至第一温度;
    在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,通过控制质量流量控制器调节位于该区域对应半径上的空腔内的流体流量和/或通过控制加热器调节位于该区域对应半径上的空腔内的流体温度,使位于该区域对应半径上的空腔内的流体达到第二热能,达到第二热能的流体通过该空腔的流体出孔对基板对应区域进行加热至第二温度。
  13. 根据权利要求1所述的基板处理装置,其特征在于:
    与每一空腔相连接的流体输送管分别连接两路流体输送支管,每一路流体输送支管分别连通一路流体输送总管,每一流体输送支管上分别配置一开关阀门,每一流体输送总管上分别配置一质量流量控制器及一加热器;其中,
    所述开关阀门被配置为打开或关断流经流体输送支管的流体;
    所述质量流量控制器被配置为监控调节流经每个流体输送总管内流体的 流量;
    所述加热器被配置为加热各流体输送总管内流体。
  14. 根据权利要求13所述的基板处理装置,其特征在于:所述控制机构被配置为:
    通过控制质量流量控制器调节流体流量和/或通过控制加热器调节流体温度,使流经第一流体输送总管内的流体热能达到第一热能和使流经第二流体输送总管内的流体热能达到第二热能;
    打开第一流体输送支管上的开关阀门,达到第一热能的流体通过每一空腔的流体出孔对基板进行加热至第一温度;
    在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,控制该区域对应半径上的空腔相连通的流体输送管连接的第一流体输送支管上的开关阀门关闭,同时打开该空腔所连通的流体输送管连接的第二流体输送支管上的开关阀门,第二流体输送总管中达到第二热能的流体通过该空腔流体出孔对基板对应区域进行加热至第二温度。
  15. 根据权利要求1所述的基板处理装置,其特征在于:
    与每一空腔相连接的流体输送管分别连通三路流体输送支管,每一路流体输送支管分别连通一路流体输送总管,每一流体输送支管上分别配置一开关阀门,每一流体输送总管上分别配置一质量流量控制器,其中,与第一流体输送支管、第二流体输送支管所连接的流体输送总管上分别配置一加热器;其中,
    所述开关阀门被配置为打开或关断流经流体输送支管的流体;
    所述质量流量控制器被配置为监控调节流经每个流体输送总管内流体的流量;
    所述加热器被配置为加热各流体输送总管内流体。
  16. 根据权利要求15所述的基板处理装置,其特征在于:
    将基板从夹持机构上取走后,关闭第一流体输送支管和第二流体输送支管 上所设置的开关阀门,打开第三流体输送支管上所设置的开关阀门,向第三流体输送支管所连接的流体输送总管内通入低温流体,低温流体流经每一空腔对加热盘进行降温。
  17. 根据权利要求1所述的基板处理装置,其特征在于:
    与每一空腔相连接的流体输送管分别连通三路流体输送支管,第一流体输送支管连通第一流体输送总管,第二流体输送支管连通第二流体输送总管,第三流体输送支管连通第三流体输送总管,每一流体输送支管上分别配置一开关阀门,每一流体输送总管上分别配置一质量流量控制器及一加热器;其中,
    所述开关阀门被配置为打开或关断流经流体输送支管的流体;
    所述质量流量控制器被配置为监控调节流经每个流体输送总管内流体的流量;
    所述加热器被配置为加热各流体输送总管内流体。
  18. 根据权利要求17所述的基板处理装置,其特征在于:所述控制机构被配置为:
    通过控制质量流量控制器调节流体流量和/或通过控制加热器调节流体温度,使第一流体输送总管内的流体热能达到第一热能,使第二流体输送总管内的流体热能达到第二热能,使第三流体输送总管内的流体热能达到第三热能;
    打开每一流体输送管所连接的第一流体输送支管上的开关阀门,达到第一热能的流体通过每一空腔的流体出孔对基板进行加热至第一温度;
    在液体喷头沿基板的径向方向由基板中心向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,控制该区域对应半径上的空腔所连通的流体输送管连接的第一流体输送支管上的开关阀门关闭,同时打开该空腔所连通的流体输送管连接的第二流体输送支管上的开关阀门,控制第二流体输送总管中达到第二热能的流体通过该空腔流体出孔对基板对应区域进行加热至第二温度;
    同时,打开在逐渐远离加热盘中心的径向方向上该空腔相邻的空腔所连通的流体输送管连接的第三流体输送支管上的开关阀门,第三流体输送总管内达 到第三热能的流体通过该空腔相邻的空腔所开设的流体出孔对基板对应区域进行加热至第三温度;
    第一温度低于第三温度,第三温度低于第二温度。
  19. 一种基板处理方法,其特征在于,包括:
    将基板保持在夹持机构上;
    驱动夹持机构带动基板旋转;
    通过喷头机构的液体喷头向基板表面分配液体,液体喷头在基板上方从基板中心沿径向方向向基板边缘移动的过程中,当液体喷头移动至基板上方的某一区域时,通过对基板下方喷射具有第二热能的流体的方式对基板上相同半径区域进行局部加热,提高液体喷头下方基板的局部温度。
  20. 根据权利要求19所述的基板处理方法,其特征在于:在通过喷头机构的液体喷头向基板表面分配液体之前还包括:
    向基板的全部下方喷射具有第一热能的流体对基板整体进行初预热。
  21. 根据权利要求19所述的基板处理方法,其特征在于:
    通过对该区域对应的基板下方喷射具有第二热能的流体的方式对基板上相同半径的该区域进行局部加热的同时,对该区域在径向方向上的相邻区域对应的基板下方喷射具有第三热能的流体进行再预热。
  22. 根据权利要求19所述的基板处理方法,其特征在于:
    流体为气体或液体。
  23. 根据权利要求19所述的基板处理方法,其特征在于:
    通过控制具有第二热能的流体的温度和/或流量对基板上相同半径区域进行局部加热,提高液体喷头下方基板的局部温度。
  24. 根据权利要求19所述的基板处理方法,其特征在于:
    还包括将基板从夹持机构上取走后,通入低温流体对加热盘进行降温。
  25. 根据权利要求3所述的基板处理装置,其特征在于还包括:
    设置在所述第一卡盘与第二卡盘之间的加热件,用于对所述至少两个空腔内的流体进行加热。
  26. 根据权利要求25所述的基板处理装置,其特征在于,还包括:
    冷却机构,所述冷却机构包括冷却部,所述冷却部设置于所述第一卡盘上且用于降低所述第一卡盘的温度。
  27. 根据权利要求26所述的基板处理装置,其特征在于,
    所述第一卡盘上端面设置有密封层。
  28. 根据权利要求27所述的基板处理装置,其特征在于,
    所述冷却部为冷却槽,所述冷却槽开设于所述第一卡盘上端面。
  29. 根据权利要求27所述的基板处理装置,其特征在于,
    所述冷却部为冷却管,所述第一卡盘上端面开设有容纳槽,所述冷却管设置于所述容纳槽,且每一所述空腔均对应设置有所述冷却管。
  30. 根据权利要求26所述的基板处理装置,其特征在于,
    所述冷却部为冷却腔,所述冷却腔开设于所述第一卡盘内部。
  31. 根据权利要求26所述的基板处理装置,其特征在于,
    所述第一卡盘上包覆有保护层。
  32. 根据权利要求26所述的基板处理装置,其特征在于,
    所述冷却部为冷却管,所述第一卡盘内部开设有容纳腔,所述冷却管内置于容纳腔内,且每一所述空腔均对应设置有所述冷却管。
  33. 根据权利要求26所述的基板处理装置,其特征在于,
    所述第一卡盘的制作材料为金属;
    所述第二卡盘的制作材料为非金属。
  34. 根据权利要求25所述的基板处理装置,其特征在于,还包括:
    冷却机构,所述冷却机构包括冷却部,所述冷却部设置于第二卡盘上,用于降低第二卡盘的温度。
  35. 根据权利要求34所述的基板处理装置,其特征在于,
    所述冷却部为冷却腔,所述冷却腔开设于所述第二卡盘内部。
  36. 根据权利要求35所述的基板处理装置,其特征在于,
    所述第一卡盘的制作材料为非金属;
    所述第二卡盘的制作材料为金属。
  37. 根据权利要求25所述的基板处理装置,其特征在于,
    所述第二卡盘与所述加热件之间设置有绝热层。
  38. 根据权利要求26或34所述的基板处理装置,其特征在于,
    所述冷却部的进液口连接至少一路用于向冷却部内输送液体的进液管,所述进液管上配置有冷却器,用于冷却流经进液管的液体;
    所述冷却部的出液口连接至少一路用于将冷却部内的液体排出的排液管。
  39. 根据权利要求38所述的基板处理装置,其特征在于,
    所述冷却部的进液口还连接至少一路用于向冷却部内输送气体的进气管;
    所述冷却部的出液口还连接至少一路用于将冷却部内的气体排出的排气管。
  40. 根据权利要求39所述的基板处理装置,其特征在于,
    所述进液管、排液管、进气管及排气管上分别配置一开关阀门。
  41. 根据权利要求40所述的基板处理装置,其特征在于,
    所述控制机构还被配置为控制冷却机构降低第一卡盘或第二卡盘的温度。
  42. 根据权利要求41所述的基板处理装置,其特征在于,
    所述控制机构还被配置为:
    基板分区域加热干燥的工艺结束后,打开冷却部的进液口和冷却部的出液口所连接的进液管和排液管上的阀门;
    控制所述冷却器冷却流经进液管内的液体温度,冷却后的液体经过所述冷却部的进液口进入冷却部内部持续T1时间,使所述第一卡盘或第二卡盘整体温度降低至常温,关闭所述冷却器及冷却部的进液口和冷却部的出液口所连接的进液管和排液管上的阀门。
  43. 根据权利要求42所述的基板处理装置,其特征在于,
    所述控制机构还被配置为:
    关闭所述冷却器及冷却部的进液口和冷却部的出液口所连接的进液管和排液管上的阀门后,打开所述冷却部的进液口和冷却部的出液口所连接的进气管和排气管上的阀门;控制气体流经冷却部T2时间,使所述冷却部内部干燥,关闭所述冷却部的进液口和所述冷却部的出液口所连接的进气管和排气管上的阀门。
  44. 根据权利要求43所述的基板处理装置,其特征在于,
    通入所述冷却部内的气体为干燥气体。
PCT/CN2022/120824 2021-09-24 2022-09-23 基板处理装置及方法 WO2023046063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247013411A KR20240058205A (ko) 2021-09-24 2022-09-23 기판 처리 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111123098 2021-09-24
CN202111123098.6 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023046063A1 true WO2023046063A1 (zh) 2023-03-30

Family

ID=85719310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120824 WO2023046063A1 (zh) 2021-09-24 2022-09-23 基板处理装置及方法

Country Status (4)

Country Link
KR (1) KR20240058205A (zh)
CN (1) CN115910851A (zh)
TW (2) TW202313205A (zh)
WO (1) WO2023046063A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100061042A (ko) * 2008-11-28 2010-06-07 세메스 주식회사 기판 건조 장치 및 방법
CN103794540A (zh) * 2012-10-31 2014-05-14 细美事有限公司 静电卡盘与基板处理装置
CN106920763A (zh) * 2015-12-25 2017-07-04 株式会社斯库林集团 基板处理装置及基板处理方法
CN110783228A (zh) * 2018-07-25 2020-02-11 东京毅力科创株式会社 基板处理装置和基板处理方法
CN113053728A (zh) * 2019-12-27 2021-06-29 株式会社斯库林集团 基板处理方法以及基板处理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100061042A (ko) * 2008-11-28 2010-06-07 세메스 주식회사 기판 건조 장치 및 방법
CN103794540A (zh) * 2012-10-31 2014-05-14 细美事有限公司 静电卡盘与基板处理装置
CN106920763A (zh) * 2015-12-25 2017-07-04 株式会社斯库林集团 基板处理装置及基板处理方法
CN110783228A (zh) * 2018-07-25 2020-02-11 东京毅力科创株式会社 基板处理装置和基板处理方法
CN113053728A (zh) * 2019-12-27 2021-06-29 株式会社斯库林集团 基板处理方法以及基板处理装置

Also Published As

Publication number Publication date
TW202313214A (zh) 2023-04-01
CN115910851A (zh) 2023-04-04
KR20240058205A (ko) 2024-05-03
TW202313205A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
US6548111B1 (en) Method for controlling a temperature of a microelectronic substrate
US9786527B2 (en) Substrate processing device and substrate processing method for carrying out chemical treatment for substrate
KR100676203B1 (ko) 반도체 설비용 정전 척의 냉각 장치
WO2010053173A1 (ja) 半導体ウェーハの温度制御装置および温度制御方法
TW201944529A (zh) 具有整合加壓氦冷卻的陶瓷晶圓加熱器
US20060216665A1 (en) Heating apparatus, coating and development apparatus, and heating method
CN108257889A (zh) 基板处理装置及基板处理方法
US20090136670A1 (en) Apparatus and Method for Treating Substrate
TW201512451A (zh) 具有傳導性控制之化學沉積設備
US7223308B2 (en) Apparatus to improve wafer temperature uniformity for face-up wet processing
EP1676295A2 (en) Apparatus to improve wafer temperature uniformity for face-up wet processing
US20210082700A1 (en) Apparatus and method for treating substrate
US20190326139A1 (en) Ceramic wafer heater having cooling channels with minimum fluid drag
WO2023046063A1 (zh) 基板处理装置及方法
KR100900318B1 (ko) 박막증착장치용 샤워헤드 및 박막증착장치 세정방법
WO2023044769A1 (zh) 基板处理装置及方法
KR102466667B1 (ko) 기판 적재대 및 기판 처리 장치
JP2014038979A (ja) 基板処理装置、および基板処理方法
KR101024356B1 (ko) 기판 코팅 유닛, 이를 갖는 기판 처리 장치 및 이를 이용한기판 처리 방법
JP2023551329A (ja) スロットルバルブのドリフトを抑えるアクティブ冷却式フォアライントラップ
JP2023544116A (ja) 高温プロセスのための軸方向に冷却される金属シャワーヘッド
TW202125608A (zh) 基板處理方法及基板處理裝置
US10714352B2 (en) Apparatus and method for treating substrate
US20220406623A1 (en) Wafer drying apparatus, wafer processing system including the same, and wafer processing method using the same
JPH11243086A (ja) 枚葉式cvd装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013411

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022872107

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872107

Country of ref document: EP

Effective date: 20240424