WO2023045987A1 - 一种通信方法、通信装置和终端 - Google Patents

一种通信方法、通信装置和终端 Download PDF

Info

Publication number
WO2023045987A1
WO2023045987A1 PCT/CN2022/120334 CN2022120334W WO2023045987A1 WO 2023045987 A1 WO2023045987 A1 WO 2023045987A1 CN 2022120334 W CN2022120334 W CN 2022120334W WO 2023045987 A1 WO2023045987 A1 WO 2023045987A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
master
duration
scanning
communication
Prior art date
Application number
PCT/CN2022/120334
Other languages
English (en)
French (fr)
Inventor
李德建
李明超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22872032.2A priority Critical patent/EP4395418A1/en
Publication of WO2023045987A1 publication Critical patent/WO2023045987A1/zh
Priority to US18/613,532 priority patent/US20240267836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method, a communication device and a terminal.
  • a certain communication area or range may include multiple communication domains.
  • a communication domain may be a system consisting of a set of nodes and the communication links between the nodes.
  • a communication domain may include a master node and at least one slave node, wherein the master node may also be called a management node or an authorized (grant, G) node, which may manage the time-frequency resources of the communication domain to which it belongs, and has The communication link scheduling resource function in .
  • the slave node may also be called a terminal node (terminal node), and may be referred to as a T node for short.
  • the master nodes When coordinating and managing between multiple communication domains (may be referred to as multi-domain), the master nodes first need to perform device discovery, but in some cases, the master nodes cannot discover each other in time. For example, when multiple master nodes discover neighbor devices at the same time, they may not be able to discover each other because they are in the scanning state or in the broadcasting state at the same time. Therefore, device discovery is less efficient.
  • the present application provides a communication method, a communication device and a terminal, which can improve the efficiency of device discovery.
  • the present application provides a communication method, which may be performed by a first node, or may also be performed by a component (such as a chip, a chip system, etc.) configured in the first node, or may also be It is realized by a logic module or software capable of realizing all or part of the functions of the first node, which is not limited in this application.
  • the method includes: the first node scans other master nodes according to scanning parameters, and the first node is a master node (G node) of at least one communication domain; when the first node does not scan other master nodes , listen to the first broadcast message based on the random listening duration; the first broadcast message is a broadcast message from one or more master nodes in other master nodes, and the random listening duration is used for the first node to listen to other master nodes .
  • G node master node
  • the first node when the first node scans other master nodes according to the scanning parameters, but no other master nodes are scanned, the first node can continue to listen to whether other master nodes have sent the first broadcast message based on a random listening time . Since the random listening duration is not fixed, the random listening duration of different nodes may also be different. In this way, the broadcast periods of the first node and other master nodes may be staggered, and the first node can listen to Discover other master nodes within a certain period of time, so as to alleviate the problem that the first node and other master nodes cannot discover each other because they are in the scanning state or in the broadcast state at the same time, which is conducive to improving the efficiency of device discovery.
  • the requirements for the master node are relatively low, and device discovery between master nodes can be realized without the master node having the ability to actively detect.
  • the ability to have active detection can be understood as requiring the master node to send a probe request frame.
  • the first node scans according to the scan parameters, including: the first node scans according to the scan parameters when the trigger condition is met; the trigger condition includes: the first node is turned on , the first node detects interference, the first node starts the multi-domain service function, the first node receives a scan request message from the second node, or the first node performs periodic scanning; wherein, the second node is different from the first node the master node.
  • the trigger condition that the first node performs periodic scanning may specifically mean that the first node performs periodic scanning, and the timer of the periodic scanning ends, and the timer of the periodic scanning may specifically be used to set the device discovery duration as cycle to time. It should be understood that the device discovery duration is longer than the scanning duration and the random listening duration, and the scanning duration and the random scanning duration may be included in the device discovery duration.
  • the first node can scan blindly or in a targeted manner.
  • the trigger conditions are: the first node is turned on, the first node detects interference, the first node starts the multi-domain service function, or the first node executes a cycle Sexual scanning, the first node can perform blind scanning.
  • Blind scan can be understood as scanning without a target, as long as some other master node is found, or in other words, as long as the first broadcast message of some other master node is received.
  • the trigger condition is that the first node receives a scan request message from the second node, and the scan request message may indicate a target master node that needs to be discovered by the first node, and the first node may, based on the scan request message, To scan the target master node in a targeted manner, that is to say to receive the first broadcast message of the target master node in a targeted manner.
  • the master node can not only perform scanning when it is powered on, or opens multi-domain services, or performs periodic scanning as usual, but also when the node detects interference or receives a scan request message from the second node. Scanning, so that more scanning scenarios can be supported. Therefore, triggering scanning when the first node detects interference can also solve the problem that device discovery cannot be performed when there is mutual interference between the first node and other master nodes.
  • the scanning parameter is a predefined or preconfigured scanning parameter; or when the trigger condition is that the first node receives a scanning request message from the second node, the scanning parameter is determined according to the scanning request message.
  • the scan parameters may be different.
  • the trigger conditions are: the first node is powered on, the first node detects interference, the first node enables the multi-domain service function, or the first node performs periodic scanning, or
  • the scanning parameters can be predefined or pre-configured. Pre-defined or pre-configured can be understood as being determined in advance by the first node; when the trigger condition is that the first node receives a message from the second node In other words, when the first node conducts a targeted scan according to the scan request message, the scan parameters are determined according to the content in the scan request message.
  • the scan request message includes at least one of the following items: the identifier of the carrier to be scanned (operating carrier), the time offset of the scan start, the scan duration on a single carrier, and The information of the target master node.
  • the target master node is the master node indicated in the scan information that needs to be discovered by the first node.
  • the first node can scan the target master node in a targeted manner according to the carrier identifier to be scanned indicated in the scan request message, the time offset of the scan start, the scan duration on a single carrier, and the information of the target master node.
  • the information of the target master node includes at least one of the following: the identification of the working carrier of the target master node, the priority of the target master node, the sending period of the communication domain system message of the target master node, and the communication domain system information of the target master node The duration of the message; wherein, the working carrier of the target master node belongs to the carrier to be scanned.
  • the scan request message may include the frame synchronization information of the target master node to be scanned, such as the sending period of the communication domain system message of the target master node, the duration of the broadcast message, such as the duration of the communication domain system message of the target master node, And the carrier channel number, such as the identification of the working carrier of the target master node, etc.
  • the first node can perform targeted scanning according to the target master node indicated in the scan request message, that is, only target the target master node on the working carrier Scanning is performed during the sending period of the broadcast information of the master node, so that compared with scanning all carriers or channels, the scanning time and overhead can be greatly reduced, and the probability of scanning to the target master node can be increased.
  • the scanning parameters include at least one of the following: an identifier of a carrier to be scanned, a total scanning duration, and a scanning duration on a single carrier.
  • the carriers to be scanned include: the current working carrier of the first node, or all carriers supported by the first node, or the carriers indicated in the scan request message received by the first node.
  • the carrier to be scanned may be one carrier or multiple carriers.
  • the carriers to be scanned are multiple carriers, within the capability of the first node, the first node can scan multiple carriers concurrently, instead of sequentially scanning carriers one by one, so that device discovery can be quickly realized.
  • the method further includes: the first node discovers a third node based on the first broadcast message, the third node does not belong to the master node in the associated master node information table, and the associated master node
  • the information table includes a master node associated with the first node as a slave node; the first node sends an association request message to the third node in slave node mode.
  • the first node receives the first broadcast message from the third node, that is, the first node discovers the third node, and the first node determines that the third node is not in the associated master node information table maintained by the first node, so the third node The first node is not associated. Therefore, the first node can send an association request message to the third node, so that the first node can associate with the third node as a slave node. In this case, repeated association will not be caused.
  • the method further includes: the first node discovers the fourth node based on the first broadcast message, the fourth node belongs to the master node in the associated master node information table, and the associated master node information
  • the table includes a master node associated to the first node as a slave node; the first node does not send an association request message to the fourth node.
  • the first node receives the first broadcast message from the fourth node, that is, the first node discovers the fourth node, and the first node determines that the fourth node is in the associated master node information table maintained by the first node, so the fourth node
  • the first node has been discovered first and associated with the first node, that is to say, the fourth node is already a slave node of the first node, so in order to avoid the first node being associated with the fourth node as a slave node to cause
  • the association is repeated, so the first node may stop sending an association request message to the fourth node, or in other words, the first node may not send an association request message to the fourth node.
  • the associated master node information table includes information of at least one master node in one or more of the following items: working carrier identifier, physical layer address, domain name, domain identifier (identity, ID) and multi-domain service information.
  • the random listening duration is generated by a predefined function f(N), where N is a random number greater than or equal to 0.
  • T F is: M times the duration of 8 superframes, M ⁇ 0, and M is an integer.
  • T F is 64 superframe durations.
  • T F is: 1 superframe duration, 1 half superframe duration or 1 radio frame duration.
  • the first node may determine a specific value of the random listening duration according to a predefined function, and each listening duration may be randomly generated.
  • the random listening duration is determined according to a predefined mapping relationship, and the mapping relationship includes a correspondence between multiple i values and the random listening duration, where i represents a node performing Listening times, i is an integer greater than or equal to 0.
  • the first node may determine the specific value of the current random listening duration according to the predefined mapping relationship and the number of times of listening.
  • the method further includes: the first node sends a second broadcast message on at least one carrier, and the sending time of the second broadcast message is no later than the end of the planned random listening duration time, the second broadcast message is used for other master nodes to discover the first node, and at least one carrier includes: a working carrier of the first node or all carriers supported by the first node.
  • the planned end time can be understood as the time when the random listening duration timer ends. For example, if a random listening duration determined by the first node is 1 superframe duration, then the planned end time is the time when a superframe duration timer ends.
  • the first node can end the listening in advance and enter the broadcast state.
  • the first node may enter a broadcast state when the random listening duration plan ends, and send a second broadcast message on at least one carrier.
  • the first node can scan, listen and broadcast on all its working carriers (may be multiple carriers) or channels, so as to discover other master nodes and be discovered by other master nodes.
  • the present application provides a communication device, which includes: a scanning unit for scanning according to scanning parameters, scanning includes scanning for other master nodes; a listening unit for scanning other master nodes
  • scanning includes scanning for other master nodes; a listening unit for scanning other master nodes
  • the first broadcast message is listened to based on the random listening duration.
  • the first broadcast message is a broadcast message from one or more master nodes in other master nodes, and the random listening duration is used for the first node to communicate with other master nodes.
  • the first node is the master node of at least one communication domain.
  • the scanning unit is configured to: scan according to scanning parameters when a trigger condition is met; the trigger condition includes: the first node is powered on, the first node detects interference, the second A node starts the multi-domain service function, the first node receives a scanning request message from the second node, or the first node performs periodic scanning; wherein, the second node is a master node different from the first node.
  • the scanning parameter is a predefined or preconfigured scanning parameter; or when the trigger condition is that the first node receives a scanning request message from the second node, the scanning parameter is determined according to the scanning request message.
  • the scan request message includes at least one of the following: the identity of the carrier to be scanned, the time offset of the start of the scan, the scan duration on a single carrier, and information about the target master node , the target master node is the master node indicated in the scan information that needs to be discovered by the first node.
  • the information of the target master node includes at least one of the following: the identification of the working carrier of the target master node, the priority of the target master node, the sending period of the communication domain system message of the target master node, and the communication domain system information of the target master node The duration of the message; wherein, the working carrier of the target master node belongs to the carrier to be scanned.
  • the scanning parameters include at least one of the following: an identifier of a carrier to be scanned, a total scanning duration, and a scanning duration on a single carrier.
  • the carriers to be scanned include: the current working carrier of the first node, or all carriers supported by the first node, or the carriers indicated in the scan request message received by the first node.
  • the device further includes a sending unit, the sending unit is used to discover a third node at the first node based on the first broadcast message, and the third node does not belong to the associated master node information table
  • the master node is a master node
  • an association request message is sent to the third node in slave node mode
  • the association master node information table includes the master node that is associated to the first node as a slave node.
  • the device further includes a sending unit, the sending unit is used for the first node to discover a fourth node based on the first broadcast message, and the fourth node belongs to the master node in the associated master node information table.
  • the association request message is not sent to the fourth node, and the association master node information table includes the master node associated with the first node as a slave node.
  • the associated master node information table includes information of at least one master node in one or more of the following items: working carrier identifier, physical layer address, domain name, and multi-domain service information.
  • the random listening duration is generated by a predefined function f(N), where N is a random number greater than or equal to 0.
  • T F is: M times the duration of 8 superframes, M ⁇ 0, and M is an integer.
  • T F is 64 superframe durations.
  • T F is: 1 superframe duration, 1 half superframe duration or 1 radio frame duration.
  • the random listening duration is determined according to a predefined mapping relationship, and the mapping relationship includes the correspondence between multiple i values and the random listening duration, where i represents a node listening times, i is an integer greater than or equal to 0.
  • the apparatus further includes a sending unit, configured to send a second broadcast message on at least one carrier, and the sending time of the second broadcast message is not later than the random intercept The planned end time of the duration, the second broadcast message is used for other master nodes to discover the first node, and at least one carrier includes: the working carrier of the first node or all carriers supported by the first node.
  • the present application provides a communication device, where the communication device includes a processor.
  • the processor is coupled with the memory, and can be used to execute the computer program in the memory, so as to realize the first aspect and the communication method in any possible implementation manner of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the present application provides a system-on-a-chip, which includes at least one processor, configured to support the implementation of the functions involved in the above-mentioned first aspect and any possible implementation of the first aspect, for example, receiving or Processing of data and/or information involved in the methods described above.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer-readable storage medium, where a computer program (also referred to as code, or instruction) is stored on the computer storage medium, and when the computer program is run by a processor, the The above first aspect and the method in any possible implementation manner of the first aspect are executed.
  • a computer program also referred to as code, or instruction
  • the present application provides a computer program product, the computer program product including: a computer program (also called code, or instruction), when the computer program is executed, the above-mentioned first aspect and the first In one aspect the method in any one of the possible implementations is performed.
  • a computer program also called code, or instruction
  • the present application provides a terminal, where the terminal includes the communication device described in the second aspect or the third aspect.
  • the terminal is a car.
  • FIG. 1 is a schematic diagram of a topology relationship of an in-vehicle communication link provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a multi-domain communication scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of device discovery between nodes
  • Fig. 4 is a software structural block diagram of a node applicable to the communication method provided by the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • the communication device involved in the embodiment of the present application may be a car machine, a car speaker, a car microphone, a battery management system (battery management system, BMS), a battery unit, a battery management unit (battery management unit, BMU), a battery pack (including multiple battery unit) and other in-vehicle devices, but also mobile phones, tablet computers, desktop notebook computers, laptop notebook computers, ultra-mobile personal computers (UMPC), handheld computers, netbooks, personal digital assistants (personal digital assistants) digital assistant, PDA), wearable electronic devices, virtual reality devices and other electronic devices.
  • BMS battery management system
  • BMU battery management unit
  • a battery pack including multiple battery unit
  • the communication device involved in the embodiment of the present application can also be a smart terminal other than the vehicle that has the functions that can be realized by the communication method described in the embodiment of the present application, or it can be installed in a vehicle other than the vehicle that has the functions of the embodiment of the present application.
  • the functions realized by the communication method are implemented in the smart terminal or set in components of the smart terminal.
  • the smart terminal may be other terminal devices such as smart transportation devices, smart home devices, and robots.
  • the device may include, but is not limited to, a smart terminal or a controller in the smart terminal, a chip, other sensors such as a radar or a camera, and other components.
  • the communication device involved in the embodiment of the present application may also be a functional module provided in any of the above devices, such as a chip system.
  • in-vehicle wireless communication can further reduce the number of wiring harnesses in the car, the length of the wiring harness, the weight of the wiring harness, and the corresponding installation, maintenance, or maintenance costs, which makes the in-vehicle communication technology gradually become wireless. development trend.
  • Figure 1 the topological relationship of the in-vehicle communication link is shown in Figure 1. It can be seen from Figure 1 that there are multiple communication domains in the car, one of which includes a master node and at least one slave node, where the master node schedules the slave nodes to realize the mutual transmission of business data between the master and slave nodes.
  • mobile phones, earphones, and wearable devices belong to a communication domain, such as communication domain 1, where the mobile phone is the master node, and the earphones and wearable devices are slave nodes;
  • the cockpit domain controller (Cockpit domain controller, CDC ), display screen, microphone, and speakers belong to a communication domain, for example, communication domain 2, in which CDC is the master node, microphone and speaker are slave nodes;
  • the module body control module, BCM
  • mobile phone key and car key belong to a communication domain, such as communication domain 3, in which the PEPS system is the master node, and the mobile phone key and car key are slave nodes;
  • the battery management unit and the battery unit belong to a communication domain, for example called communication domain 4, wherein the battery management unit is the master node, and the battery unit is the slave node.
  • the master node of one communication domain can also serve as the slave node of another communication domain, for example
  • FIG. 1 is just an example, and more or less communication domains and nodes may be included in the actual topological relationship of communication links in the vehicle, which is not limited in this application.
  • Cockpit domain controller car machine for short.
  • the functions of the car machine already have cellular communication functions (3G, 4G, 5G, etc.), which can be combined with the car's controller area network (CAN)- Bus technology realizes information communication between people and vehicles, and between vehicles and the outside world, and enhances user experience, service and safety-related functions.
  • CAN controller area network
  • Master node and slave node Two types of nodes are distinguished in logical function, namely master node (ie G node) and slave node (ie T node).
  • the master node manages the slave nodes, has the function of allocating resources, and is responsible for allocating wireless communication resources for the slave nodes; the slave nodes use the resources allocated by the master node to communicate with the master node according to the scheduling of the master node.
  • the nodes can be various communication devices.
  • the master node is a mobile phone
  • the slave node is a headset.
  • the mobile phone and the headset establish a communication connection to realize data interaction.
  • the mobile phone manages the headset, and the mobile phone has the function of allocating resources, which can allocate resources for the headset.
  • the master node is a battery management unit
  • the slave node is a battery unit
  • a communication connection is established between the battery management unit and the battery unit.
  • the battery management unit can allocate resources for the battery units.
  • the battery unit sends information such as the state of the battery unit to the battery management unit, so that the battery management unit intelligently manages each battery unit.
  • multiple battery units can be packaged into a battery pack, and the battery pack can also serve as a slave node to communicate with the battery management unit.
  • Communication domain a system composed of a group of communication nodes with communication relationships and communication connection relationships between communication nodes.
  • one device or device may be in multiple communication domains.
  • the mobile phone when the mobile phone communicates with the headset wirelessly, the mobile phone is the master node in communication domain 1 including the mobile phone and the headset, and the headset is the slave node; then when the mobile phone detects a CDC, it establishes a wireless connection with the CDC After the connection, the mobile phone is also in the communication domain 2 including the mobile phone and the CDC.
  • the CDC is the master node, the mobile phone is the slave node, and the mobile phone obeys the scheduling of the CDC.
  • the communication domain 2 may also include other slave nodes, such as speakers and microphones.
  • the battery management unit is the master node in the communication domain 4 including the battery management unit and the multiple battery units, and the multiple battery units are slave nodes.
  • the carrier is a continuous signal that works at a pre-defined single frequency
  • the wireless channel (referred to as channel) is a data signal transmission channel that uses wireless signals as the transmission medium.
  • the carrier involved in this application may be 20 mega (mega, M) hertz (hertz, Hz), the channel may be 0.24 MHz, one carrier may include multiple channels (0.24 MHz), or in other words, one carrier may cover multiple channels.
  • the center frequency of each 20MHz carrier available in each frequency band corresponds to a channel number, that is, each 20MHz carrier corresponds to a 20MHz channel. Therefore, when there is no ambiguity, the carrier is also called a channel. It should be understood that a node can work on one carrier, and can also work on multiple carriers at the same time.
  • the broadcast message involved in this application may include physical layer broadcast information and communication domain system information (DomainSysInfo) of the media access layer.
  • the communication domain system message is the broadcast information of the media access layer. It is a message sent by the master node in the communication domain to the slave nodes in the communication domain in a broadcast manner.
  • whether the multi-domain service function is currently being executed can be determined through the multi-domain synchronization information and/or domain coordination resource configuration set two information elements in the communication domain system message.
  • the working carrier refers to the carrier of the communication domain where the master node is running, and each communication domain corresponds to one working carrier or multiple working carriers.
  • the master node can transmit the physical layer signal and physical layer control information applicable to the carrier on each carrier used, and can synchronize on the multiple carriers.
  • Superframe the duration of each superframe can be 1 millisecond (ms), and a superframe can include 48 or other number of time units, where the time unit is the time unit with the same structure as the first time unit and/or Or a time unit with the same structure as the second time unit, 48 is used as an example below for description.
  • frames with even numbers such as 0, 2, and 4 in the superframe have the same time unit structure as the first time unit, and frames with odd numbers such as 1, 3, and 5 have the same structure as the second time unit. unit of time.
  • frames with frame numbers 0 to 23 in the superframe have the same time unit structure as the first time unit, and frames with frame numbers 24 to 47 have the same time unit structure as the second time unit.
  • frames with frame numbers 0 to 10 in the superframe have the same time unit structure as the second time unit, and frames with frame numbers 11 to 47 have the same time unit structure as the first time unit.
  • the period for a node to send a broadcast message can be a superframe duration, for example, a superframe duration can be 1 ms, and a half superframe duration is half of the superframe duration, that is, a half superframe duration can be 0.5 ms, and a superframe duration can be 0.5 ms.
  • a frame can be composed of 48 radio frames, so the duration of a radio frame can be 1/48ms. It should also be understood that the present application does not set any limitation on specific values of the superframe duration, the half superframe duration and the radio frame duration.
  • the communication method provided by the embodiment of the present application is mainly applied to an in-vehicle wireless communication scenario, but the communication method provided by the embodiment of the present application may also be applied to other wide-area wireless communication or local area wireless communication scenarios. It should also be understood that the communication method provided by the embodiment of the present application can be applied to automatic driving, assisted driving, etc., and can also be applied to the Internet of Vehicles, such as vehicle to X (V2X), long term evolution of vehicle communication technology (long term evolution) -vehicle, LTE-V), vehicle-vehicle (vehicle to vehicle, V2V), etc., this application does not make any limitation on this.
  • V2X vehicle to X
  • LTE-V long term evolution of vehicle communication technology
  • V2V vehicle-vehicle to vehicle
  • V2V vehicle to vehicle
  • a certain communication area or range may include multiple communication domains.
  • coordination and management are performed between multiple communication domains (may be referred to as multi-domain)
  • device discovery needs to be performed first among master nodes.
  • Fig. 2 is a schematic diagram of a multi-domain communication scenario.
  • communication domain 1 is a communication domain composed of node 1 and 4 slave nodes of node 1, in communication domain 1, 4 nodes of node 1
  • the nodes include node 2 and node 3.
  • node 2 and node 3 are discovered by neighbor devices and join the communication domain 1 of node 1 as slave nodes.
  • FIG. 2 is only an example. In an actual multi-domain communication scenario, more or fewer communication domains may be included, and each communication domain includes a master node and at least one slave node. In the scenario, the number of communication domains and the number of slave nodes in the communication domain are not limited.
  • the master nodes may not be able to discover each other in time. For example, when multiple master nodes perform device discovery at the same time, they may not be able to discover each other because they are in the scanning state or in the broadcasting state at the same time. As shown in Figure 3, node 1 and node 2 can perform device discovery, but because node 1 is scanning, node 2 is also scanning, and node 1 and node 2 cannot scan each other, or in other words, node 1 and node 2 Neither can receive the broadcast message from the other party, and cannot find the other party. After the scan is over, node 1 enters the broadcast state and sends a broadcast message in order to be discovered by other master nodes except node 1.
  • node 1 2 may also enter the broadcast state.
  • Node 2 also sends broadcast messages in order to be discovered by other master nodes except node 2. Node 1 and node 2 cannot receive each other's broadcast messages after entering the broadcast state, so they cannot find each other .
  • the present application provides a communication method and a communication device.
  • the master node can listen to the broadcast messages of other master nodes except the master node within the random listening duration. It can avoid that the master nodes cannot discover each other due to simultaneous listening or simultaneous broadcasting.
  • scanning and listening can be a technical means for a node to realize device discovery, and scanning and listening can also be understood as maintaining a receiving state of receiving data, information, or messages on one or more carriers or channels.
  • Scanning and listening are defined to distinguish operations performed in different time periods. Scanning needs to be performed based on scanning parameters. The scanning channel range is determined by the scanning parameters and has nothing to do with the current number of working carriers of the master node; listening means that the master node Listening is performed on the current working carrier, and the duration of the listening can be performed based on a random listening duration.
  • a node scans and listens on a carrier or channel in order to determine whether there are broadcast messages sent by other master nodes on the carrier or channel. If you receive broadcast messages from other master nodes when scanning or listening to one or more carriers or channels, it can be considered that other master nodes have been discovered through scanning or listening, or in other words, device discovery has been completed.
  • Fig. 4 is a block diagram of the software structure of a node applicable to the communication method provided by the embodiment of the present application.
  • the nodes involved in this application may at least include an access layer and a basic service layer, wherein the basic service layer may also include a multi-domain service management module and a multi-domain device discovery module.
  • the multi-domain service management module can have the function of coordinating and managing multi-domain services. For example, it can instruct the multi-domain device discovery module to configure scanning parameters according to different device discovery trigger conditions, and can also configure scanning parameters according to scanning and listening results. Generate association indication information, where the association indication information is used to instruct the access layer to send an association request/response message and the like.
  • Fig. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method 500 includes step 510 and step 520, which will be described in detail below.
  • step 510 the first node scans other master nodes according to the scan parameters.
  • the first node may be a master node of at least one communication domain, and other master nodes may be one or more master nodes other than the first node.
  • scanning can be understood as a way of receiving data, information or messages, etc.
  • the first node can scan other master nodes according to scanning parameters.
  • Other master nodes may specifically refer to master nodes of one or more communication domains other than the first node. There can be one or more other master nodes. This embodiment of the present application does not limit it. It can be understood that the first node and other master nodes are not master nodes of the same or multiple communication domains at the same time.
  • the scanning of other master nodes by the first node can specifically mean that the first node is currently in the receiving state, when other master nodes send data, information or messages on the current working carrier of the first node, or on a carrier supported by the first node At the same time, the first node may receive these data, information or messages, etc.
  • the first node receives the first broadcast message from other master nodes during scanning, it can be considered that the first node has discovered other master nodes during scanning; if the first node does not receive the first broadcast message from other master nodes during scanning, Once a broadcast message is broadcast, it can be considered that the first node has not found other master nodes during scanning.
  • the first node listens to the first broadcast message based on a random listening duration when no other master nodes are scanned.
  • the first broadcast message may be a broadcast message from one or more master nodes other than the first node, or in other words, the first broadcast message may be sent by one or more master nodes other than the first node broadcast message.
  • the broadcast messages involved in this application may include physical layer broadcast information and communication domain system messages.
  • the random listening time is used for the first node to listen to other master nodes, and the first node listens to other master nodes within the random listening time.
  • the first node listens to the first broadcast message based on the random listening duration. It can be understood that, within the random listening duration, if other master nodes send the first broadcast message, the first node can receive the first broadcast message.
  • the node listens to other master nodes during the random listening time, or in other words, the first node can receive data, information or messages sent by other master nodes during the random listening time.
  • the first node receives the first broadcast message within the random listening time, it can be considered that the first node has discovered other master nodes during the random listening time; if the first node does not receive the first broadcast message within the random listening time Once the message is broadcast, it can be considered that the first node has not found other master nodes within the random listening period.
  • the random listening duration is not fixed. That is to say, for the same node, the random listening duration is not fixed.
  • the random listening duration of the previous listening is t1
  • the random listening duration of the next listening is t2, and t1 ⁇ t2;
  • the random listening time may be the same or different.
  • the first node may continue to listen to the first broadcast message based on the random listening duration when no other master nodes are scanned. Even if there are other master nodes that are in the scanning period at the same time as the first node, since the first node continues to listen based on the random listening duration after the scan ends, other master nodes may start sending broadcast messages when the first node is listening , or, the broadcast message is sent after listening based on the random listening duration, but the random listening duration of the first node may be different from the random listening duration of other master nodes. In this way, the broadcast period of the first node and other master nodes can be staggered. Even if the first node and other master nodes scan at the same time, but the first node continues to listen based on the random listening time, it is possible to receive messages from other master nodes. The first broadcast message of .
  • the probability that the first node and other master nodes will listen next time based on the same random listening time is not High, so the first node still has a higher probability of receiving the first broadcast message from other master nodes.
  • the first node when the first node scans other master nodes according to the scanning parameters, but no other master nodes are scanned, the first node can continue to listen to whether other master nodes have sent the first broadcast message based on a random listening time . Since the random listening time is not fixed, the random listening time of different nodes may also be different. In this way, the broadcast period of the first node and other master nodes may be staggered, and the first node may Discover other master nodes within the listening time, which can alleviate the problem that the first node and other master nodes cannot discover each other because they are in the scanning state or in the broadcast state at the same time, which is conducive to improving the efficiency of device discovery.
  • the requirements for the master node are relatively low, and device discovery between master nodes can be realized without the master node having the ability to actively detect.
  • the ability to have active detection can be understood as requiring the master node to send a detection request frame.
  • the first node performs scanning according to scanning parameters when the trigger condition is met.
  • the trigger conditions may include: the first node is turned on, the first node detects interference, the first node starts the multi-domain service function, the first node receives a scan request message from the second node, or the first node performs periodic scanning, wherein, The second node is a different master node than the first node.
  • the second node may be a master node among one or more master nodes to which the first node is associated as a slave node.
  • the identity of the slave node may also be referred to as a terminal mode.
  • the first node can perform blind scan or targeted scan.
  • a node can perform blind scan on other master nodes when it is turned on.
  • Blind scan can be understood as, as long as it finds some other master node, or in other words, as long as it receives the first broadcast message of some other master node Can.
  • the trigger condition is that the first node performs periodic scanning. Specifically, it may mean that the first node performs periodic scanning, and the timer of the periodic scanning ends. timing. It should be understood that the device discovery duration is longer than the scanning duration and the random listening duration, and the scanning duration and the random scanning duration may be included in the device discovery duration.
  • nodes can perform periodic scans, and the scans in this case can also be blind scans.
  • the node When the node enables the multi-domain service function, it means that the node starts the multi-domain service function, but before the multi-domain service discovery, the node needs to perform device discovery first, that is, when the node enables the multi-domain service function, it needs to scan.
  • the scan in this case can also be a blind scan.
  • the node detects interference for example, the node detects that the packet error rate increases or the throughput decreases for a period of time, or the node detects interference after performing channel measurement within the time resources allocated for itself, or the node receives its
  • the interference detection report reported to it by its slave nodes in the communication domain of the master or other master nodes, etc. can be considered as the node detected interference, which is not limited in this application.
  • the node can think that there may be other master node communication domains around it. In order to avoid mutual interference between communication domains, it can first discover the master node through scanning, associate with it and then perform multi-domain services. Perform multi-domain coordination and management.
  • a node when a node detects interference, it can scan, and the scan in this case can also be a blind scan.
  • triggering scanning when the first node detects interference can also solve the problem that device discovery cannot be performed when there is mutual interference between the first node and other master nodes.
  • the first node receives a scan request message from the second node.
  • the first node can perform a targeted scan according to the scan request of the second node.
  • the scan request message can indicate that the first node needs to scan
  • the discovered target master node can therefore be targeted to scan the target master node, that is to say, to receive the first broadcast message of the target master node in a targeted manner.
  • the first node starts up, the first node detects interference, the first node starts the multi-domain service function, the first node receives a scan request message from the second node, etc., which can also be called event trigger conditions, and the first node executes periodic Sweep can also be called periodic trigger condition. This application is not limited to this.
  • the first node when the first node performs a blind scan, there may be one or more other master nodes. If no other master nodes are found during the blind scan, it can be understood that no other master nodes are found, that is, there is no The first broadcast message of any other master node is received; when the first node conducts a targeted scan according to the scan request message, no other master nodes are scanned.
  • the other master nodes here can be understood as the target master nodes indicated in the scan request message. Node, other master nodes are not scanned, it can be understood that the target master node is not scanned.
  • the trigger condition is: the first node is powered on, the first node detects interference, the first node starts the multi-domain service function, or the first node performs periodic scanning, and the scanning parameters can be predefined or preconfigured Scanning parameters; or when the trigger condition is that the first node receives a scanning request message from the second node, the scanning parameter may be determined according to the scanning request message.
  • the scan parameters may be different.
  • the trigger conditions are: the first node is powered on, the first node detects interference, the first node enables the multi-domain service function, or the first node performs periodic scanning, or
  • the scanning parameters can be predefined or pre-configured. Pre-defined or pre-configured can be understood as being determined in advance by the first node; when the trigger condition is that the first node receives a message from the second node In other words, when the first node conducts a targeted scan according to the scan request message, the scan parameters are determined according to the content in the scan request message.
  • the scan request message may include at least one of the following items: the identifier of the carrier to be scanned, the time offset of the scan start, the scan duration on a single carrier, and information about the target master node, where the target master node is Indicates the master node that needs to be discovered by the first node.
  • the first node can scan the target master node in a targeted manner according to the identifier of the carrier to be scanned indicated in the scan request message, the time offset of the scan start, the scan duration on a single carrier, and the information of the target master node.
  • the carrier to be scanned may be one carrier or multiple carriers.
  • the carriers to be scanned are multiple carriers, within the capability of the first node, the first node can scan multiple carriers concurrently, instead of sequentially scanning carriers one by one, so that device discovery can be quickly realized.
  • the information of the target master node may include at least one of the following: the identification of the working carrier of the target master node, the priority of the target master node, the sending cycle of the communication domain system message of the target master node, and the communication domain of the target master node The duration of the system message; wherein, the working carrier of the target master node belongs to the carrier to be scanned.
  • the sending period of the system message in the communication domain may be represented by "domainSysInforPeriod", which is not limited in this application.
  • the value of the sending period of the communication domain system message can be SF64, SF128, SF256 or SF512, etc., where "SF64” means that the initial number of the superframe that may send the communication domain system message is a multiple of 64, and "SF128” means “SF256” indicates that the initial number of superframes that may send communication domain system messages is a multiple of 128, and "SF512” indicates that The starting number of the superframe that may send communication domain system messages is a multiple of 128.
  • the duration of the system message in the communication domain can be represented by "domainSysInforOnDuartion", which is not limited in this application.
  • the duration of the system message in the communication domain can be used to indicate the number of consecutive superframes that the system message in the communication domain may use in one sending cycle.
  • the duration of the system message in the communication domain can be: SF8, SF16, SF32 or SF64, etc.
  • SF8 can mean sending system messages in at most 8 consecutive superframes starting from the initial superframe number
  • SF16 can mean sending system messages in at most 16 consecutive superframes starting from the starting superframe number
  • SF32 can indicate that system messages are sent within 32 consecutive superframes starting from the initial superframe number
  • SF64 can indicate that system messages are sent within 64 consecutive superframes starting from the initial superframe number system information.
  • the scan request message may include the frame synchronization information of the target master node to be scanned, such as the sending period of the communication domain system message of the target master node, the duration of the broadcast message, such as the duration of the communication domain system message of the target master node, And the carrier channel number, such as the identification of the working carrier of the target master node, etc.
  • the first node can perform targeted scanning according to the target master node indicated in the scan request message, that is, only target the target master node on the working carrier Scanning is performed during the sending period of the broadcast information of the master node, so that compared with scanning all carriers or channels, the scanning time and overhead can be greatly reduced, and the probability of scanning to the target master node can be increased.
  • the scanning parameters may include at least one of the following: an identifier of a carrier to be scanned, a total scanning duration, and a scanning duration on a single carrier.
  • the carrier to be scanned may include: the current working carrier of the first node, or all carriers supported by the first node, or the carrier indicated in the scan request message received by the first node.
  • the first node may perform scanning according to one or more scanning parameters such as an identifier of a carrier to be scanned, a total scanning duration, or a scanning duration on a single carrier.
  • the first node can scan on the current working carrier of the first node, or on all carriers supported by the first node; when the first node performs targeted scanning according to the trigger condition, The first node can determine the scan parameters according to the information indicated in the scan request message, for example, determine the identifier of the carrier to be scanned, the time offset of the start of the scan, the scan duration on a single carrier, and the information of the target master node. Scan the target master node in a targeted manner.
  • an associated master node information table is pre-stored on the first node, and the associated master node information table may include information about master nodes associated with the first node as slave nodes and these master nodes, so as to
  • the information associated with the identity of the slave node to the master node of the first node may include one or more of the following: working carrier identifier, physical layer address, domain name, domain ID, and multi-domain service information.
  • the multi-domain service information may include management mode/non-management mode, management node capability, priority, power supply type (whether battery power supply), whether there is an input interface, the number of member G nodes in the domain, etc., which is not limited in this application .
  • the multi-domain service information may also include the physical layer address (sometimes also referred to as physical layer identity (physical layer identity, PID)) and/or media access layer address (sometimes also referred to as Layer 2 identity (layer 2identity, Layer2ID)), PID and/or Layer2ID and the domain name and/or domain ID of the master node in the associated master node information table establish a corresponding relationship, to identify each master node and slave in the associated master node information table Correspondence between node identities.
  • physical layer identity physical layer identity
  • media access layer address sometimes also referred to as Layer 2 identity (layer 2identity, Layer2ID)
  • PID and/or Layer2ID and the domain name and/or domain ID of the master node in the associated master node information table establish a
  • the first node discovers the third node based on the first broadcast message, the third node does not belong to the master node in the association master node information table, and the first node sends an association request message to the third node in slave node mode.
  • the first node receives the first broadcast message from the third node, that is, the first node discovers the third node, and the first node determines that the third node is not in the associated master node information table maintained by the first node, so the third node The first node is not associated. Therefore, the first node can send an association request message to the third node, so that the first node can associate with the third node as a slave node. In this case, repeated association will not be caused.
  • the first node may send to the third node an interactive resource control (eXchange resource control, XRC) establishment request (XRCSetupRequest) message containing an association request message, which carries association request information: an association request with a security context (associationRequestWithSec) or AssociationRequestNonSec information without security context.
  • associationRequestWithSec and associationRequestNonSec can be used for association (authentication) requests in two different scenarios with and without security context respectively.
  • the first node sends an XRCSetupRequest to the third node as a slave node to establish an XRC connection with the third node, where, as a slave node, it can be PID or layer2ID, for example, when there is a security context, the value can be PID , when there is no security context, the value can be layer2ID.
  • the third node After receiving the association request message from the first node, the third node can respond to the association request message from the first node and establish an XRC with the first node, so that the first node can complete the association to the third node as a slave node.
  • the first node associates with the third node as a slave node, it can perform subsequent multi-domain service discovery, and exchange multi-domain service-related signaling, related service information or attribute information with the third node.
  • the third node may update the associated master node information table according to the information interacted with the first node.
  • the first node discovers the fourth node based on the first broadcast message, the fourth node belongs to the master node in the associated master node information table, and the first node does not send an association request message to the fourth node.
  • the first node receives the first broadcast message from the fourth node, that is, the first node discovers the fourth node, and the first node determines that the fourth node is in the associated master node information table maintained by the first node, so the fourth node
  • the first node has been discovered first and associated with the first node, that is to say, the fourth node is already a slave node of the first node, so in order to avoid the first node being associated with the fourth node as a slave node to cause
  • the association is repeated, so the first node may stop sending an association request message to the fourth node, or in other words, the first node may not send an association request message to the fourth node.
  • the random listening duration can be generated by a predefined function f(N), where N is a random number greater than or equal to 0.
  • TF may be: M times of 8 superframe durations, M ⁇ 0, M is an integer, or, TF may be: 1 superframe duration, 1 half superframe duration or 1 wireless frame duration.
  • T F 64 superframe durations
  • the random listening duration is the product of 64 superframe durations and N.
  • TF may also be 8 superframe durations, 16 superframe durations, 32 superframe durations, 128 superframe durations, etc., which are not limited in the present application.
  • the first node may determine a specific value of the random listening duration according to a predefined function, and each listening duration may be randomly generated. It should be understood that the present application does not limit the specific expression form of the predefined function for determining the random listening duration.
  • the random listening duration is determined according to a predefined mapping relationship, and the mapping relationship includes the correspondence between multiple i values and the random listening duration, where i represents the number of times a node listens, and i is An integer greater than or equal to 0.
  • this mapping relationship may be in the form of a table, as shown in Table 1.
  • TM represents the duration of random listening
  • TM (1) may represent the duration of the first node listening for the first time
  • TM (2) may represent the duration of the first node listening for the second time
  • TM (3) may represent the duration of the first node listening for the third time
  • T M (i) may represent the duration of the first node listening for the i-th time.
  • TM (1), TM (2), TM (3) and TM (i) are all predetermined and stored, TM (1), TM (2), TM (3 ) and T M (i) may or may not have the same random listening duration, which is not limited in this application.
  • the period of the superframe cannot be changed. Therefore, if a master node enters the scanning state and enters the broadcast state synchronously with another master node, the starting moment of the broadcast message of the node can be changed, or the superframe can be changed.
  • Physical layer broadcast information and/or communication domain system messages are both feasible methods, but directly changing the start time of the superframe may cause the interruption of the communication domain synchronization signal, and the communication domain needs to be synchronized again.
  • the start time of the superframe can be changed, that is, the sending cycle of the broadcast message can be changed to delay or advance the master node to enter the broadcast state, so as to stagger the time of entering the scanning state and entering the broadcast state with other master nodes, thereby avoiding this
  • the first node sends a second broadcast message on at least one carrier, the sending time of the second broadcast message is not later than the planned end time of the random listening duration, and the second broadcast message is used for other master nodes to send messages to the first node
  • the at least one carrier includes: a working carrier of the first node or all carriers supported by the first node.
  • the planned end time can be understood as the time when the random listening duration timer ends. For example, if a random listening duration determined by the first node is 1 superframe duration, then the planned end time is the time when a superframe duration timer ends.
  • the first node can end the listening in advance and enter the broadcast state.
  • the first node may enter a broadcast state when the random listening duration plan ends, and send a second broadcast message on at least one carrier.
  • the first node can scan, listen and broadcast on all its working carriers or channels, so as to quickly discover other master nodes and be discovered by other master nodes.
  • Fig. 6 is a schematic flowchart of a communication method provided by another embodiment of the present application.
  • the method 600 may include steps 601 to 606, which will be described in detail below.
  • the multi-domain service management modules of node 1 and node 2 can scan and trigger their multi-domain device discovery modules according to event trigger conditions or periodic trigger conditions, and the multi-domain device discovery modules of node 1 and node 2 can The respective scanning parameters are configured according to the trigger conditions, and the configured scanning parameters can be sent to the respective access layers.
  • node 1 and node 2 may be the first node.
  • node 2 may be other master nodes relative to node 1; when node 2 is the first node, node 1 may be other master nodes relative to node 2.
  • the access layers of node 1 and node 2 may perform scanning according to the respective received scanning parameters.
  • step 603 when the access layer of node 1 has not scanned other master nodes, it can listen to other master nodes based on the random listening duration TM1 , and when the access layer of node 2 has not scanned other master nodes, The random listening time TM2 listens to other master nodes, and TM1 is greater than TM2 , so when node 2 does not hear other master nodes within the random listening time TM2 , it can listen to other master nodes at the planned end time of the random listening time TM2 When it arrives, it enters the broadcast state and sends out a broadcast message. At this time, node 1 is still in the listening state, so node 1 can listen to the broadcast message of node 2, that is, node 1 finds up node 2.
  • the access layer of node 1 may report the interception result to the multi-domain device discovery module of node 1, and the multi-domain device discovery module of node 1 may report the interception result to the multi-domain service management module of node 1,
  • the multi-domain service management module of node 1 determines that node 2 is not in the associated node information table stored in node 1 .
  • the multi-domain service management module of node 1 may send a connection instruction to the multi-domain device discovery module of node 1, and the multi-domain device discovery module of node 1 may send a connection instruction to the access layer of node 1, and the node 1
  • the access layer can send an association request message to the access layer of node 2, and the access layer of node 2 can send the received association request message to the multi-domain device discovery module of node 2, and the multi-domain device discovery module of node 2 can Send the received association request message to the multi-domain service management module of node 2.
  • each module of node 2 can respond to the association request message sent by node 1, and the access layer of node 1 can obtain the association result according to the association response of node 2, and report the association result to the multi-domain
  • the device discovery module, the multi-domain device discovery module of node 1 can report the association result to the multi-domain service management module of node 1.
  • node 1 may send a broadcast message on at least one carrier, and the broadcast message is sent no later than the planned end time of the random listening duration TM1 .
  • the first node can configure different scanning parameters according to different trigger conditions, and perform blind scan or targeted scan of other master nodes.
  • the first master node scans other master nodes according to the scanning parameters, but no other master nodes are found, the first node may continue to listen to whether other master nodes have sent the first broadcast message based on a random listening duration. Since the random listening time is not fixed, the random listening time of different nodes may also be different.
  • the broadcast period of the first node and other master nodes may be staggered, and the first node may Discover other master nodes within the listening time, which can alleviate the problem that the first node and other master nodes cannot discover each other because they are in the scanning state or in the broadcast state at the same time, which is conducive to improving the efficiency of device discovery.
  • the first node listens to other master nodes and the other master nodes are not in the associated master node information table stored by the first node, the first node can associate with the other master nodes as a slave node.
  • the first node When the first node listens to other master nodes master node but other master nodes are in the associated master node information table stored by the first node, the first node will not be associated with the other master node as a slave node, so that the first node and other master nodes can be avoided Duplicate linked question.
  • the first node may include a hardware structure and/or a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 700 may include: a scanning unit 710 and a listening unit 720 .
  • the communication device 700 can be used to execute the steps in the communication method 500 or the communication method 600.
  • the scanning unit 710 is used to scan other master nodes according to the scanning parameters; the listening unit 720 can be used to In the case of a node, the first broadcast message is listened to based on the random listening duration, the first broadcast message is a broadcast message from one or more master nodes in other master nodes, and the random listening duration is used for the first node to communicate with other master nodes.
  • the first node is the master node of at least one communication domain.
  • the scanning unit 710 may also be configured to scan according to scanning parameters when a trigger condition is met; the trigger condition includes: the first node is turned on, the first node detects interference, the first node starts the multi-domain service function, The first node receives a scanning request message from the second node or the first node performs periodic scanning; wherein the second node is a master node different from the first node.
  • the scanning parameters are predefined or preconfigured A scanning parameter; or when the trigger condition is that the first node receives a scanning request message from the second node, the scanning parameter is determined according to the scanning request message.
  • the scan request message includes at least one of the following items: the identifier of the carrier to be scanned, the time offset of the scan start, the scan duration on a single carrier, and information about the target master node, where the target master node is indicated in the scan information The primary node that requires the first node to discover.
  • the information of the target master node includes at least one of the following: the identification of the working carrier of the target master node, the priority of the target master node, the sending period of the communication domain system message of the target master node, and the communication domain system information of the target master node The duration of the message; wherein, the working carrier of the target master node belongs to the carrier to be scanned.
  • the scanning parameters include at least one of the following: an identifier of a carrier to be scanned, a total scanning duration, and a scanning duration on a single carrier.
  • the carriers to be scanned include: the current working carrier of the first node, or all carriers supported by the first node, or the carriers indicated in the scan request message received by the first node.
  • the communication device 700 may further include a sending unit 730, and the sending unit 730 may be used to discover a third node based on the first broadcast message by the first node, and when the third node does not belong to the master node in the associated master node information table , sending an association request message to the third node in a slave node mode, and the associated master node information table includes a master node that is associated to the first node as a slave node.
  • the communication device 700 may further include a sending unit 730, and the sending unit 730 may be used for the first node to discover the fourth node based on the first broadcast message, and when the fourth node belongs to the master node in the associated master node information table, no An association request message is sent to the fourth node, and the association master node information table includes a master node that is associated to the first node as a slave node.
  • the associated master node information table includes information of at least one master node in one or more of the following items: working carrier identifier, physical layer address, domain name, domain identifier, and multi-domain service information.
  • the random listening duration is generated by a predefined function f(N), where N is a random number greater than or equal to 0.
  • T F is: 64 superframe durations, 1 superframe duration, 1 half superframe duration, or 1 radio frame duration.
  • the random listening duration is determined according to a predefined mapping relationship, and the mapping relationship includes a correspondence between multiple i values and the random listening duration, where i represents the number of times a node listens, and i is greater than or equal to 0 an integer of .
  • the communication device 700 may further include a sending unit 730, and the sending unit 730 may be configured to send a second broadcast message on at least one carrier, and the sending time of the second broadcast message is no later than the planned end time of the random listening duration , the second broadcast message is used for other master nodes to discover the first node, and at least one carrier includes: a working carrier of the first node or all carriers supported by the first node.
  • Fig. 8 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the communication device 800 may be used to implement the function of the first node in the above method.
  • the communication device 800 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communication device 800 may include at least one processor 810 configured to implement the function of the first node in the method provided by the embodiment of the present application.
  • the processor 810 can be used to scan according to the scanning parameters, and the scanning includes scanning other master nodes; In the case that other master nodes are not scanned, listen to the first broadcast message based on the random listening duration; the first broadcast message is a broadcast message from one or more master nodes in other master nodes, and the random listening duration is used for The first node listens to other master nodes, and the first node is the master node of at least one communication domain.
  • the scanning parameters includes scanning other master nodes; In the case that other master nodes are not scanned, listen to the first broadcast message based on the random listening duration; the first broadcast message is a broadcast message from one or more master nodes in other master nodes, and the random listening duration is used for The first node listens to other master nodes, and the first node is the master node of at least one communication domain.
  • the communication device 800 may also include at least one memory 820 for storing program instructions and/or data.
  • the memory 820 is coupled to the processor 810 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 810 may cooperate with memory 820 .
  • Processor 810 may execute program instructions stored in memory 820 . At least one of the at least one memory may be included in the processor.
  • the communication device 800 may also include a communication interface 830 for communicating with other devices through a transmission medium, so that the devices used in the communication device 800 can communicate with other devices, for example, other devices may be other devices other than the first node master node.
  • the communication interface 830 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing a transceiver function.
  • the processor 810 may use the communication interface 830 to send and receive data and/or information, and be used to implement the method performed by the first node described in the embodiment corresponding to FIG. 8 .
  • the specific connection medium among the processor 810, the memory 820, and the communication interface 830 is not limited in the embodiment of the present application.
  • the processor 810 , the memory 820 and the communication interface 830 are connected through a bus 840 .
  • the bus 840 is represented by a thick line in FIG. 8 , and the connection manner between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • the present application also provides a chip system, the chip system includes at least one processor, configured to implement the functions involved in the method performed by the first node in the embodiment shown in FIG. 5 or FIG. 6 above, for example, receiving or Processing of data and/or information involved in the methods described above.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located inside or outside the processor.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application also provides a computer program product, the computer program product including: a computer program (also referred to as code, or instruction), when the computer program is executed, the first node executes the The method of any of the illustrated embodiments.
  • a computer program also referred to as code, or instruction
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program (also called a code, or an instruction).
  • a computer program also called a code, or an instruction.
  • the first node is made to execute the method in any one of the embodiments shown in FIG. 5 or FIG. 6 .
  • the present application also provides a terminal, which includes the communication device as shown in FIG. 7 or FIG. 8 .
  • the aforementioned terminal may be a car.
  • the processor in this embodiment of the present application may be an integrated circuit chip that has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • unit may be used to denote a computer-related entity, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、通信装置和终端,应用于自动驾驶、辅助驾驶等。该方法包括:第一节点根据扫描参数对其他主节点进行扫描,第一节点为至少一个通信域的主节点;第一节点在未扫描到其他主节点的情况下,基于随机侦听时长侦听第一广播消息;第一广播消息是来自其他主节点中的一个或多个主节点的广播消息,随机侦听时长用于第一节点对其他主节点的侦听。随机侦听时长是不固定的,将第一节点与其他主节点的广播时段错开,使得第一节点在随机侦听时长内可以接收到其他主节点的广播消息,可以避免第一节点与其他主节点因同时处于扫描状态或同时处于广播状态而导致无法互相发现的问题。该方法可以应用于车联网,如V2X、LTE-V、V2V等。

Description

一种通信方法、通信装置和终端
本申请要求于2021年09月23日提交中国国家知识产权局、申请号为202111116176.X、申请名称为“一种通信方法、通信装置和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更为具体地,涉及一种通信方法、通信装置和终端。
背景技术
在无线通信场景中,在一定通信区域或范围内可以包括多个通信域。通信域可以是由一组节点以及节点之间的通信链路组成的系统。一个通信域可以包括一个主节点和至少一个从节点,其中,主节点又可以称为管理节点或授权(grant,G)节点,可以管理其所属通信域的时频资源,并具有为该通信域中的通信链路调度资源的功能。从节点又可以称为终端节点(terminal node),可以简称为T节点。
多个通信域(可简称,多域)之间进行协调与管理时,主节点之间首先需要进行设备发现,但在有些情况下,主节点之间不能及时发现对方。比如,多个主节点同时进行邻居设备发现时,可能因同时处于扫描状态或同时处于广播状态而导致无法互相发现。因此,设备发现效率较低。
发明内容
本申请提供了一种通信方法、通信装置和终端,可以提高设备发现效率。
第一方面,本申请提供了一种通信方法,该方法可以由第一节点来执行,或者,也可以由配置在第一节点中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分第一节点功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:第一节点根据扫描参数对其他主节点进行扫描,第一节点为至少一个通信域的主节点(G节点);第一节点在未扫描到其他主节点的情况下,基于随机侦听时长侦听第一广播消息;第一广播消息是来自其他主节点中的一个或多个主节点的广播消息,随机侦听时长用于第一节点对其他主节点的侦听。
基于上述方案,第一节点在根据扫描参数对其他主节点进行扫描,但是没有扫描到其他主节点时,第一节点可以继续基于一个随机侦听时长侦听其他主节点是否发送了第一广播消息。由于该随机侦听时长是不固定的,不同节点的随机侦听时长也可能不同,这样一来,第一节点与其他主节点的广播时段就有可能错开,第一节点就可以在随机侦听时长内发现其他主节点,从而可以缓解第一节点与其他主节点因同时处于扫描状态或同时处于广播状态而导致无法互相发现的问题,有利于提高设备发现的效率。
此外,通过基于广播消息进行设备发现,对主节点的要求较低,不需要主节点具备主动探测的能力就可以实现主节点之间的设备发现。具备主动探测的能力可以理解为需要主节点发送探测请求(probe request)帧。
结合第一方面,在某些可能的实现方式中,第一节点根据扫描参数进行扫描,包括:第一节点在满足触发条件的情况下,根据扫描参数进行扫描;触发条件包括:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能、第一节点接收到来自第二节点的扫描请求消息或第一节点执行周期性扫描;其中,第二节点是与第一节点不同的主节点。
其中,触发条件为第一节点执行周期性扫描具体可以是指,第一节点执行周期性扫描,且周期性扫描的计时器计时结束,该周期性扫描的计时器具体可用于以设备发现时长为周期来计时。应理解,设备发现时长大于扫描时长和随机侦听时长,扫描时长和随机扫描时长可以包含于设备发现时长中。
根据不同的触发条件,第一节点可以盲扫或者针对性地扫描,例如,触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能或第一节点执行周期性扫描,第一节点可以进行盲扫。盲扫可以理解为,没有目标地扫描,只要发现某个其他主节点即可,或者说,只要接收到某个其他主节点的第一广播消息即可。又例如,触发条件为第一节点接收到来自第二节点的扫描请求消息,该扫描请求消息中可以指示出需要第一节点去发现的目标主节点,该第一节点可以基于该扫描请求消息,有针对性地去扫描该目标主节点,也就是说有针对性地去接收该目标主节点的第一广播消息。主节点不仅仅可以像往常一样在开机,或开启多域服务,或执行周期性扫描时才执行扫描,当节点检测到干扰,或者,接收到来自第二节点的扫描请求消息时,也可以执行扫描,从而可以支持更多的扫描场景。因此,当第一节点检测到干扰时触发扫描,还可以解决第一节点与其他主节点之间在存在相互干扰时不能进行设备发现的问题。
结合第一方面,在某些可能的实现方式中,当所述触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能或第一节点执行周期性扫描,扫描参数为预定义的或预先配置的扫描参数;或者当触发条件为第一节点接收到来自第二节点的扫描请求消息时,扫描参数根据扫描请求消息确定。
当触发扫描的触发条件不同时,扫描参数可能会不同,当触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能或第一节点执行周期性扫描,或者说,第一节点盲扫时,扫描参数可以是预定义或预先配置的,预定义或预先配置可以理解为是第一节事先确定好的;当触发条件为第一节点接收到来自第二节点的扫描请求消息时,或者说,第一节点根据扫描请求消息进行针对性地扫描时,扫描参数是根据扫描请求消息中的内容确定的。
结合第一方面,在某些可能的实现方式中,扫描请求消息包括如下至少一项:待扫描的载波(operating carrier)的标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息,目标主节点是扫描信息中指示的需要第一节点去发现的主节点。
第一节点可以根据扫描请求消息中指示的待扫描的载波标识、扫描开始的时间偏 移量、在单个载波上的扫描时长和目标主节点的信息等,有针对性地去扫描目标主节点。
可选地,目标主节点的信息包括如下至少一项:目标主节点的工作载波的标识、目标主节点的优先级、目标主节点的通信域系统消息的发送周期和目标主节点的通信域系统消息的时长;其中,目标主节点的工作载波属于待扫描的载波。
因此,扫描请求消息中可以包含待扫描的目标主节点的帧同步信息,例如目标主节点的通信域系统消息的发送周期,广播消息的持续时长,例如目标主节点的通信域系统消息的时长,以及载波信道号,例如目标主节点的工作载波的标识,等等,第一节点可以根据扫描请求消息中指示的目标主节点进行针对性扫描,即,只在目标主节点的工作载波上针对目标主节点的广播信息的发送时段进行扫描,从而相比扫描所有载波或信道,可以大幅减少扫描时长和开销,并且可以增大扫描到目标主节点的概率。
可选地,扫描参数包括如下至少一项:待扫描的载波的标识、扫描的总时长和在单个载波上的扫描时长。
可选地,待扫描的载波包括:第一节点当前的工作载波,或第一节点支持的全部载波,或第一节点接收到的扫描请求消息中指示的载波。
应理解,待扫描的载波可以为一个载波也可以是多个载波。当待扫描的载波是多个载波时,在第一节点的能力范围内,第一节点可以对多个载波并发扫描,可以不用再逐个载波地依次扫描,从而可以快速实现设备发现。
结合第一方面,在某些可能的实现方式中,该方法还包括:第一节点基于第一广播消息发现第三节点,第三节点不属于关联主节点信息表中的主节点,关联主节点信息表包括以从节点的身份关联到第一节点的主节点;第一节点以从节点模式向第三节点发送关联请求消息。
第一节点接收到第三节点的第一广播消息,也即,第一节点发现了第三节点,第一节点确定第三节点不在第一节点维护的关联主节点信息表中,所以第三节点没有关联第一节点,因此,第一节点可以向第三节点发出关联请求消息,以使得第一节点可以以从节点的身份关联第三节点,这种情况下,不会造成重复关联。
结合第一方面,在某些可能的实现方式中,该方法还包括:第一节点基于第一广播消息发现第四节点,第四节点属于关联主节点信息表中的主节点,关联主节点信息表包括以从节点的身份关联到第一节点的主节点;第一节点不向第四节点发送关联请求消息。
第一节点接收到第四节点的第一广播消息,也即,第一节点发现了第四节点,第一节点确定第四节点在第一节点维护的关联主节点信息表中,所以第四节点已经先发现了第一节点,并关联了第一节点,也就是说,第四节点已经是第一节点的一个从节点了,所以为了避免第一节点再以从节点的身份关联第四节点造成重复关联,所以第一节点可以停止向第四节点发送关联请求消息,或者说,第一节点可以不向第四节点发送关联请求消息。
可选地,关联主节点信息表包括如下一项或多项至少一个主节点的信息:工作载波标识、物理层地址、域名、域标识(identity,ID)和多域服务信息。
结合第一方面,在某些可能的实现方式中,随机侦听时长由预定义的函数f(N) 生成,N为大于或等于0的随机数。
一种可能的设计是,随机侦听时长满足:T M=f(N)=NT F,其中,T M表示随机侦听时长,T F为预设的时间长度。
可选地,T F为:8个超帧时长的M倍,M≥0,M为整数。
示例性地,M=8,即,T F为64个超帧时长。
可选地,T F为:1个超帧时长、1个半超帧时长或1个无线帧时长。
第一节点可以根据预定义的函数确定随机侦听时长的具体取值,每次侦听的时长可以随机生成。
结合第一方面,在某些可能的实现方式中,随机侦听时长根据预定义的映射关系确定,映射关系包括多个i值与随机侦听时长的对应关系,其中,i表示一个节点进行侦听的次数,i为大于或等于0的整数。
第一节点可以根据预定义的映射关系和第几次侦听来确定当前这次随机侦听时长的具体取值。
结合第一方面,在某些可能的实现方式中,该方法还包括:第一节点在至少一个载波上发送第二广播消息,第二广播消息的发送时间不晚于随机侦听时长的计划结束时间,第二广播消息用于其他主节点对第一节点的发现,至少一个载波包括:第一节点的工作载波或第一节点支持的全部载波。
应理解,不晚于随机侦听时长的计划结束时间,可以理解为,在随机侦听时长的计划结束时间之前或在随机侦听时长的计划结束时间。
计划结束时间可以理解为随机侦听时长计时器结束的时间,例如,第一节点确定的一个随机侦听时长为1个超帧时长,则计划结束的时长就是一个超帧时长计时结束的时间。
如果第一节点根据扫描请求消息的指示信息,进行有针对性地扫描,在随机侦听时长的计划结束时间之前侦听到了目标主节点,第一节点可以提前结束侦听,并进入广播状态,在至少一个载波上发送第二广播消息;如果第一节点进行盲扫,或者,第一节点根据扫描请求消息的指示信息,进行有针对性地扫描,但在随机侦听时长的计划结束时间之时还未侦听到目标主节点,则第一节点可以在随机侦听时长的计划结束时,进入广播状态,在至少一个载波上发送第二广播消息。
第一节点可以在其所有的工作载波(可以为多个载波)或信道上,进行扫描、侦听和广播,以发现其他主节点和被其他主节点发现。
第二方面,本申请提供了一种通信装置,该通信装置包括:扫描单元,用于根据扫描参数进行扫描,进行扫描包括对其他主节点的扫描;侦听单元,用于在未扫描到其他主节点的情况下,基于随机侦听时长侦听第一广播消息,第一广播消息是来自其他主节点中的一个或多个主节点的广播消息,随机侦听时长用于第一节点对其他主节点的侦听,第一节点为至少一个通信域的主节点。
结合第二方面,在某些可能的设计中,该扫描单元用于:在满足触发条件的情况下,根据扫描参数进行扫描;触发条件包括:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能、第一节点接收到来自第二节点的扫描请求消息或第一节点执行周期性扫描;其中,第二节点是与第一节点不同的主节点。
结合第二方面,在某些可能的设计中,当所述触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能或第一节点执行周期性扫描,扫描参数为预定义的或预先配置的扫描参数;或者当触发条件为第一节点接收到来自第二节点的扫描请求消息时,扫描参数根据扫描请求消息确定。
结合第二方面,在某些可能的设计中,扫描请求消息包括如下至少一项:待扫描的载波的标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息,目标主节点是扫描信息中指示的需要第一节点去发现的主节点。
可选地,目标主节点的信息包括如下至少一项:目标主节点的工作载波的标识、目标主节点的优先级、目标主节点的通信域系统消息的发送周期和目标主节点的通信域系统消息的时长;其中,目标主节点的工作载波属于待扫描的载波。
可选地,扫描参数包括如下至少一项:待扫描的载波的标识、扫描的总时长和在单个载波上的扫描时长。
可选地,待扫描的载波包括:第一节点当前的工作载波,或第一节点支持的全部载波,或第一节点接收到的扫描请求消息中指示的载波。
结合第二方面,在某些可能的设计中,该装置还包括发送单元,该发送单元用于在第一节点基于第一广播消息发现第三节点,第三节点不属于关联主节点信息表中的主节点时,以从节点模式向第三节点发送关联请求消息,关联主节点信息表包括以从节点的身份关联到第一节点的主节点。
结合第二方面,在某些可能的设计中,该装置还包括发送单元,该发送单元用于第一节点基于第一广播消息发现第四节点,第四节点属于关联主节点信息表中的主节点时,不向第四节点发送关联请求消息,关联主节点信息表包括以从节点的身份关联到第一节点的主节点。
可选地,关联主节点信息表包括如下一项或多项至少一个主节点的信息:工作载波标识、物理层地址、域名和多域服务信息。
结合第二方面,在某些可能的设计中,随机侦听时长由预定义的函数f(N)生成,N为大于或等于0的随机数。
一种可能的设计是,随机侦听时长满足:T M=f(N)=NT F,其中,T M表示随机侦听时长,T F为预设的时间长度。
可选地,T F为:8个超帧时长的M倍,M≥0,M为整数。
示例性地,M=8,即,T F为64个超帧时长。
可选地,T F为:1个超帧时长、1个半超帧时长或1个无线帧时长。
结合第二方面,在某些可能的设计中,随机侦听时长根据预定义的映射关系确定,映射关系包括多个i值与随机侦听时长的对应关系,其中,i表示一个节点进行侦听的次数,i为大于或等于0的整数。
结合第二方面,在某些可能的实现方式中,该装置还包括发送单元,该发送单元用于在至少一个载波上发送第二广播消息,第二广播消息的发送时间不晚于随机侦听时长的计划结束时间,第二广播消息用于其他主节点对第一节点的发现,至少一个载波包括:第一节点的工作载波或第一节点支持的全部载波。
第三方面,本申请提供了一种通信装置,该通信装置包括处理器。该处理器与存 储器耦合,可用于执行存储器中的计算机程序,以实现第一方面和第一方面中任一种可能实现方式的通信方法。
可选地,该通信装置还包括存储器。
可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第四方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持实现上述第一方面和第一方面任一种可能实现方式中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第五方面,本申请提供了一种计算机可读存储介质,所述计算机存储介质上存储有计算机程序(也可以称为代码,或指令),当所述计算机程序在被处理器运行时,使得上述第一方面和第一方面任一种可能实现方式中的方法被执行。
第六方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得上述第一方面和第一方面任一种可能实现方式中的方法被执行。
第七方面,本申请提供了一种终端,该终端包括第二方面或第三方面所述的通信装置。
可选地,该终端为车。
应当理解的是,本申请的第二方面至第七方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是本申请实施例提供的一种车内通信链路的拓扑关系的示意图;
图2是本申请实施例提供的一种多域通信场景的示意图;
图3是一种节点间进行设备发现的示意图;
图4是适用于本申请实施例提供的通信方法的一种节点的软件结构框图;
图5是本申请实施例提供的一种通信方法的示意性流程图;
图6是本申请实施例提供的另一种通信方法的示意性流程图;
图7是本申请实施例提供的一种通信装置的示意性框图;
图8是本申请实施例提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不 必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
本申请实施例涉及的通信装置可以是车机、车载扬声器、车载麦克风、电池管理系统(battery management system,BMS)、电池单元、电池管理单元(battery management unit,BMU)、电池组(包括多个电池单元)等车载设备,也可以是手机、平板电脑、桌面型笔记本电脑、膝上型笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、可穿戴电子设备、虚拟现实设备等电子设备。
本申请实施例涉及的通信装置还可以是除了车辆之外的其他具有本申请实施例所述的通信方法所能够实现的功能的智能终端,或设置在除了车辆之外的其他具有本申请实施例所述的通信方法所能够实现的功能的智能终端中或设置于该智能终端的部件中。该智能终端可以为智能运输设备、智能家居设备、机器人等其他终端设备。该装置可以包括但不限于智能终端或智能终端内的控制器、芯片、雷达或摄像头等其他传感器、以及其他部件等。或者,本申请实施例所涉及的通信装置也可以是设置在如上的任一种设备中的功能模块,例如芯片系统。
车载应用的多样化,使得车内通信节点数量、类型都越来越多,对于车载通信的能力也就提出了更高的要求。相比现有的有线通信,车载无线通信可以进一步降低车内的线束数量、线束长度、线束重量,以及与之对应的安装、维护、或保养等成本,这使得车载通信技术有逐步向无线化发展的趋势。
通常,车内通信链路的拓扑关系如图1所示。从图1可以看出,车内存在多个通信域,其中的一个通信域包括一个主节点和至少一个从节点,其中,主节点调度从节点,实现主从节点间互相传输业务数据。例如在图1中,手机、耳机和穿戴式设备属于一个通信域,例如称为通信域1,其中手机是主节点,耳机和穿戴式设备是从节点;座舱域控制器(cockpit domain controller,CDC)、显示屏、麦克、音箱属于一个通信域,例如称为通信域2,其中CDC是主节点,麦克和音箱是从节点;无钥匙进入及启动(passive entry passive start,PEPS)系统、车身控制模块(body control module,BCM)、手机钥匙和车钥匙属于一个通信域,例如称为通信域3,其中PEPS系统是主节点,手机钥匙和车钥匙是从节点;在BMS系统中,电池管理单元和电池单元属于一个通信域,例如称为通信域4,其中电池管理单元是主节点,电池单元为从节点。另外,一个通信域的主节点也可以作为另一个通信域的从节点,例如,通信域1中的手机可以作为通信域2的从节点。
应理解,图1只是一示例,在实际的车内通信链路的拓扑关系中可以包括更多或更少个通信域和节点,本申请对此不作任何限定。
为了使得本申请提供的方法更加的清楚,首先对本申请涉及到的部分术语和概念作简单介绍。
1、座舱域控制器:简称车机。目前车机的功能除了传统的收音机、音乐时频播放、导航功能以外,已经带有蜂窝通信功能(3G、4G和5G等),能结合汽车的控制器局域网络(controller area network,CAN)-总线(bus)技术,实现人与车、车与外界的信息通讯,增强了用户体验、服务及安全相关的功能。
2、主节点、从节点:在逻辑功能上区分的两类节点,分别是主节点(即G节点)和从节点(即T节点)。其中主节点管理从节点,具有分配资源的功能,负责为从节点分配无线通信资源;从节点根据主节点的调度,使用主节点分配的资源与主节点进行通信。节点可以为各种通信装置,例如主节点为手机,从节点为耳机,手机与耳机建立通信连接实现数据交互。手机管理耳机,手机具有分配资源的功能,可以为耳机分配资源。又例如,主节点为电池管理单元,从节点为电池单元,电池管理单元和电池单元建立通信连接。电池管理单元可以为电池单元分配资源。电池单元将电池单元的状态等信息发送给电池管理单元,从而使得电池管理单元智能化管理各个电池单元。
应理解的,多个电池单元可以打包成一个电池组,电池组也可以作为从节点,与电池管理单元进行通信。
3、通信域:一组具有通信关系的通信节点,以及通信节点之间的通信连接关系组成的系统。其中,一个装置或设备可以在多个通信域中。例如图1所示,当手机与耳机进行无线通信时,手机在包括手机与耳机在内的通信域1中为主节点,耳机为从节点;然后当手机检测到CDC,并与该CDC建立无线连接后,手机也在包括手机与CDC在内的通信域2中,在通信域2中CDC为主节点,手机为从节点,手机听从该CDC的调度。通信域2中还可以包括其他从节点,如音箱、麦克等。又例如,当电池管理单元和多个电池单元进行无线通信时,电池管理单元在包括电池管理单元与多个电池单元在内的通信域4中为主节点,多个电池单元为从节点。
4、载波与信道:在无线通信领域中,载波是工作在预先定义的单一频率的连续信号,无线信道(简称信道)是以无线信号作为传输媒体的数据信号传送通道。本申请涉及的载波可以是20兆(mega,M)赫兹(hertz,Hz),信道可以是0.24MHz,一个载波可以包括多个信道(0.24MHz),或者说,一个载波可以覆盖多个信道。但是,各频段可用的每个20MHz载波的中心频率对应一个信道号,即每个20MHz载波都对应一个20MHz信道,因此,在不产生歧义时,载波也称为信道。应理解,节点可以工作在一个载波上,也可以同时工作在多个载波上。
5、广播消息:本申请中涉及的广播消息可以包括物理层广播信息和媒体接入层的通信域系统消息(DomainSysInfo)。物理层广播信息以及相应的循环冗余校验(cyclic redundancy check,CRC)共63比特(bite,bit),用于承载物理层配置参数。通信域系统消息是媒体接入层的广播信息,是通信域中的主节点向其通信域的从节点以广播的方式发送的消息,可以包括通信域系统消息的发送周期、通信域系统消息的发送时长、域名、域标识、主节点的工作载波标识或工作信道号、工作载波配置、接入控制、超帧模式、竞争式资源的配置以及当前是否正在执行多域服务功能等信息。其中,当前是否正在执行多域服务功能可以通过通信域系统消息中的多域同步信息和/或域协 调资源配置集合两个信元确定。其中,工作载波是指主节点正在运行的通信域的载波,每个通信域对应一个工作载波或多个工作载波。
对于主节点同时使用多个载波的情况,主节点可以在使用的每个载波上传输适用于该载波的物理层信号和物理层控制信息,并且可以在多个载波上进行同步。
6、超帧:每个超帧的时长可以为1毫秒(ms),一个超帧可以包括48个或其他数量的时间单元,这里的时间单元为与第一时间单元结构相同的时间单元和/或与第二时间单元结构相同的时间单元,下面以48为例说明。
一示例,超帧中帧号为0、2、4等偶数的帧为与第一时间单元结构相同的时间单元,帧号为1、3、5等奇数的帧为与第二时间单元结构相同的时间单元。另一示例,超帧中帧号为0至23的帧为与第一时间单元结构相同的时间单元,帧号为24至47的帧为与第二时间单元结构相同的时间单元。
另一示例,超帧中帧号为0至10的帧为与第二时间单元结构相同的时间单元,帧号为11至47的帧为与第一时间单元结构相同的时间单元。
应理解,节点发送广播消息的周期可以为一个超帧时长,例如一个超帧时长可以为1ms,半超帧时长是超帧时长的一半,即,一个半超帧时长可以是0.5ms,一个超帧可以由48个无线帧构成,所以,一个无线帧时长可以是1/48ms。还应理解,本申请对超帧时长、半超帧时长和无线帧时长的具体取值不作任何限定。
应理解,本申请实施例提供的通信方法主要应用于车内无线通信场景,但本申请实施例提供的通信方法也可以应用于其它广域无线通信或局域无线通信场景。还应理解,本申请实施例提供的通信方法可以应用于自动驾驶、辅助驾驶等,还可以应用于车联网,如车辆外联(vehicle to X,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆-车辆(vehicle to vehicle,V2V)等,本申请对此不作任何限定。
在无线通信场景中,或其它广域无线通信场景,或局域无线通信场景中,在一定通信区域或范围内可以包括多个通信域。多个通信域(可简称,多域)之间进行协调与管理时,主节点之间首先需要进行设备发现。图2是一个多域通信的场景示意图。在图2示出的多域通信的场景中有三个通信域,分别是通信域1、通信域2和通信域3,通信域2是由节点2和两个节点2的从节点组成的通信域,通信域3是由节点3和一个节点3的从节点组成的通信域,通信域1是节点1和4个节点1的从节点组成的通信域,在通信域1中,节点1的4个节点中包括节点2和节点3,在多域通信场景中,节点2和节点3通过邻居设备发现,以从节点的身份加入到了节点1的通信域1。
应理解,图2只是一示例,在实际的多域通信场景中,可以包括更多或更少个通信域,每个通信域中包括一个主节点和至少一个从节点,本申请对多域通信场景中,通信域的个数以及通信域中从节点的个数不作限定。
但在有些情况下,主节点之间可能不能及时发现对方。比如,多个主节点同时进行设备发现时,可能因同时处于扫描状态或同时处于广播状态而导致无法互相发现。如图3所示,节点1与节点2可以进行设备发现,但是由于节点1在扫描的时候,节点2也在扫描,节点1和节点2都扫描不到对方,或者说,节点1和节点2都接收不到对方的广播消息,无法发现对方,在扫描结束后,节点1进入广播状态,发送广播 消息,以期被除节点1以外的其他主节点发现,但在节点1进入广播状态时,节点2也可能进入了广播状态,节点2也发送广播消息,以期被除节点2以外的其他主节点发现,节点1与节点2在进入广播状态后都无法接收到对方的广播消息,所以无法发现对方。
因此,本申请提供一种通信方法和通信装置,通过在扫描结束后,增加一个随机侦听时长,主节点可以在随机侦听时长内侦听除该主节点以外的其他主节点的广播消息,可以避免主节点之间因同时侦听或同时广播而无导致无法互相发现。
需要说明的是,本申请实施例中涉及到设备发现(有时简称为发现)、扫描(scan)、侦听(listen)等多个术语。其中,扫描和侦听可以是节点实现设备发现的技术手段,扫描和侦听也可以理解为在一个或多个载波或信道上保持接收数据、信息或消息等的接收状态。扫描和侦听为了区别不同时段内执行的操作而定义,扫描需要基于扫描参数来执行,其扫描信道范围由扫描参数确定,与主节点当前的工作载波个数无关;侦听则是主节点在当前的工作载波上进行侦听,侦听的时长可以基于随机侦听时长来执行。例如,一个节点在一个载波或信道上进行扫描和侦听,为了确定在该载波或该信道上是否有其他主节点发送的广播消息。若对一个或多个载波或信道上扫描或侦听的时候接收到了其他主节点的广播消息,就是可以认为通过扫描或侦听,发现了其他主节点,或者说是,完成了设备发现。
图4是适用于本申请实施例提供的通信方法的一种节点的软件结构框图。
如图4所示,本申请中涉及的节点至少可以包括接入层和基础服务层,其中,基础服务层还可以包括多域服务管理模块和多域设备发现模块。其中,多域服务管理模块可以具有负责多域服务的协调和管理的功能,例如,可以根据不同的设备发现触发条件指示多域设备发现模块进行扫描参数的配置,还可以根据扫描和侦听结果生成关联指示信息,关联指示信息用于指示接入层发送关联请求/响应消息等。
下面结合附图对本申请实施例提供的通信方法进行说明。
图5是本申请实施例提供的一种通信方法的示意性流程图。该通信方法500包括步骤510和步骤520,以下对步骤510和步骤520进行详细说明。
在步骤510中,第一节点根据扫描参数对其他主节点进行扫描。
应理解,第一节点可以为至少一个通信域的主节点,其他主节点可以是除第一节点以外的一个或多个主节点。
上文已述及,扫描可以理解为一种接收数据、信息或消息等的方式,第一节点可以根据扫描参数进行对其他主节点的扫描。其他主节点具体可以是指,除了第一节点之外的一个或多个通信域的主节点。其他主节点可以为一个,也可以为多个。本申请实施例对此不作限定。可以理解,第一节点和其他主节点不同时为同一个或多个通信域的主节点。第一节点进行对其他主节点的扫描具体可以是指,第一节点目前处于接收状态,当其他主节点在第一节点当前的工作载波,或第一节点支持的载波上发送数据、信息或消息等时,第一节点可以接收到这些数据、信息或消息等。
若第一节点在扫描的时候接收到了其他主节点的第一广播消息,则可以认为第一节点在扫描时发现了其他主节点;若第一节点在扫描的时候没有接收到其他主节点的第一广播消息,则可以认为第一节点在扫描的时候没有发现其他主节点。
在步骤520中,第一节点在未扫描到其他主节点的情况下,基于随机侦听时长侦听第一广播消息。
应理解,第一广播消息可以是来自除第一节点以外的一个或多个主节点的广播消息,或者说,第一广播消息可以是除第一节点以外的一个或多个主节点是发送的广播消息。上文已述及,本申请中涉及的广播消息可以包括物理层广播信息和通信域系统消息,相关描述参见上文术语和概念的介绍内容,为了简洁,此处不再赘述。
随机侦听时长用于第一节点对其他主节点的侦听,第一节点在随机侦听时长内对其他主节点进行侦听。第一节点基于随机侦听时长侦听第一广播消息,可以理解为,在随机侦听时长内,如果其他主节点发送了第一广播消息,第一节点可以去接收第一广播消息,第一节点在随机侦听时长内对其他主节点进行侦听,或者说,第一节点在随机侦听时长内可以去接收其他主节点发送的数据、信息或消息等。若第一节点在随机侦听时长内接收到了第一广播消息,则可以认为第一节点在随机侦听时长内发现了其他主节点;若第一节点在随机侦听时长内没有接收到的第一广播消息,则可以认为第一节点在随机侦听时长内没有发现其他主节点。
这里,随机侦听时长是不固定的。也就是说,对于同一个节点来说,随机侦听时长不固定,比如,前一次侦听的随机侦听时长为t1,后一次侦听的随机侦听时长为t2,t1≠t2;对于不同节点来说,随机侦听时长可能相同,也可能不同。
由于引入了随机侦听时长,第一节点可以在未扫描到其他主节点的情况下,继续基于随机侦听时长侦听第一广播消息。即便存在其他主节点与第一节点同时处于扫描时段,但由于第一节点在扫描结束后,还继续基于随机侦听时长侦听,而其他主节点可能在第一节点侦听时开始发送广播消息,或者,在基于随机侦听时长侦听之后发送广播消息,但第一节点的随机侦听时长与其他主节点的随机侦听时长可能是不同的。如此,就可以将第一节点与其他主节点的广播时段错开,即便第一节点与其他主节点同时扫描,但第一节点基于随机侦听时长继续侦听,就有可能接收到来自其他主节点的第一广播消息。
即便第一节点与其他主节点的随机侦听时长相同,但由于每个节点的随机侦听时长不固定,第一节点与其他主节点下一次侦听所基于随机侦听时长相同的概率并不高,所以第一节点还是有较大地概率接收到来自其他主节点的第一广播消息。
通过上述方案,第一节点在根据扫描参数对其他主节点进行扫描,但是没有扫描到其他主节点时,第一节点可以继续基于一个随机侦听时长侦听其他主节点是否发送了第一广播消息。由于该随机侦听时长是不固定的,不同节点的随机侦听时长也可能不同,这样一来,第一节点与其他主节点的广播时段就有可能错开,第一节点就有可能在随机侦听时长内发现其他主节点,从而可以缓解第一节点与其他主节点因同时处于扫描状态或同时处于广播状态而导致无法互相发现的问题,有利于提高设备发现的效率。
此外,通过基于广播消息进行设备发现,对主节点的要求较低,不需要主节点具备主动探测的能力就可以实现主节点之间的设备发现。具备主动探测的能力可以理解为需要主节点发送探测请求帧。
一种可能的实现方式,第一节点在满足触发条件的情况下,根据扫描参数进行扫 描。
触发条件可以包括:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能、第一节点接收到来自第二节点的扫描请求消息或第一节点执行周期性扫描,其中,第二节点是与第一节点不同的主节点。
应理解,第二节点可以是第一节点以从节点的身份关联到的一个或多个主节点中的一个主节点。其中,从节点的身份也可以称为终端模式。
根据不同的触发条件,第一节点可以盲扫或者针对性地扫描。
一般情况下,节点在开机时可以对其他主节点进行盲扫,盲扫可以理解为,只要发现某个其他主节点即可,或者说,只要接收到某个其他主节点的第一广播消息即可。
触发条件为第一节点执行周期性扫描具体可以是指,第一节点执行周期性扫描,且周期性扫描的计时器计时结束,该周期性扫描的计时器具体可用于以设备发现时长为周期来计时。应理解,设备发现时长大于扫描时长和随机侦听时长,扫描时长和随机扫描时长可以包含于设备发现时长中。
一般情况下,节点可以进行周期性扫描,这种情况下的扫描也可以是盲扫。节点开启多域服务功能时,说明节点启动多域服务功能,但在多域服务发现之前,节点需要先进行设备发现,也即,当节点开启多域服务功能时,需要进行扫描。这种情况下的扫描也可以是盲扫。
节点检测到干扰,例如,节点检测到在一段时间内误包率升高或者吞吐量下降,或者,节点在为自己分配的时间资源内进行信道测量后检测到干扰,或者,节点收到其为主机按的通信域中它的从节点上报给它的干扰检测报告或上报的其他主节点,等等,都可以认为是节点检测到干扰,本申请对此不作任何限定。当节点检测到干扰时,节点可以认为其周围可能有其他主节点的通信域存在,为了避免通信域之间的相互干扰,可以先通过扫描发现该主节点,与其进行关联后做多域服务,进行多域协调和管理。因此,在节点检测到干扰时,可以进行扫描,这种情况下的扫描也可以是盲扫。并且,当第一节点检测到干扰时触发扫描,还可以解决第一节点与其他主节点之间在存在相互干扰时不能进行设备发现的问题。
第一节点接收到来自第二节点的扫描请求消息,在这种情况下,第一节点可以根据第二节点的扫描请求进行有针对性地扫描,扫描请求消息中可以指示出需要第一节点去发现的目标主节点,因此可以有针对性地去扫描该目标主节点,也就是说有针对性地去接收该目标主节点的第一广播消息。
第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能、第一节点接收到来自第二节点的扫描请求消息等,也可以称为事件触发条件,第一节点执行周期性扫描,也可以称为周期性触发条件。本申请对此不作限定。
应理解,第一节点进行盲扫时,其他主节点可以是一个或多个,盲扫时未发现其他主节点,可以理解为,一个其他主节点也没有发现,也即,在盲扫时没有接收到任何一个其他主节点的第一广播消息;第一节点根据扫描请求消息进行有针对性地扫描时未扫描到其他主节点,这里的其他主节点可以理解为扫描请求消息中指示的目标主节点,未扫描到其他主节点,可以理解为,未扫描到目标主节点。
可选地,所述触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启 多域服务功能或第一节点执行周期性扫描,扫描参数可以为预定义的或预先配置的扫描参数;或者当触发条件为第一节点接收到来自第二节点的扫描请求消息时,扫描参数可以根据扫描请求消息确定。
当触发扫描的触发条件不同时,扫描参数可能会不同,当触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能或第一节点执行周期性扫描,或者说,第一节点盲扫时,扫描参数可以是预定义或预先配置的,预定义或预先配置可以理解为是第一节事先确定好的;当触发条件为第一节点接收到来自第二节点的扫描请求消息时,或者说,第一节点根据扫描请求消息进行针对性地扫描时,扫描参数是根据扫描请求消息中的内容确定的。
可选地,扫描请求消息可以包括如下至少一项:待扫描的载波的标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息,目标主节点是扫描信息中指示的需要第一节点去发现的主节点。
第一节点可以根据扫描请求消息中指示的待扫描的载波标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息等,有针对性地去扫描目标主节点。
应理解,待扫描的载波可以一个载波也可以是多个载波。当待扫描的载波是多个载波时,在第一节点的能力范围内,第一节点可以对多个载波并发扫描,可以不用再逐个载波地依次扫描,从而可以快速实现设备发现。
可选地,目标主节点的信息可以包括如下至少一项:目标主节点的工作载波的标识、目标主节点的优先级、目标主节点的通信域系统消息的发送周期和目标主节点的通信域系统消息的时长;其中,目标主节点的工作载波属于待扫描的载波。
其中,通信域系统消息的发送周期,可以用“domainSysInforPeriod”表示,本申请对此不作任何限定。通信域系统消息的发送周期的取值可以为SF64、SF128、SF256或SF512等,这里“SF64”表示的是可能发送通信域系统消息的超帧的起始编号为64的倍数,“SF128”表示的是可能发送通信域系统消息的超帧的起始编号为128的倍数、“SF256”表示的是可能发送通信域系统消息的超帧的起始编号为128的倍数,“SF512”表示的是可能发送通信域系统消息的超帧的起始编号为128的倍数。
通信域系统消息的时长,可以用“domainSysInforOnDuartion”表示,本申请对此不作任何限定。通信域系统消息的时长可以用于指示通信域系统消息在一个发送周期内可能使用的连续的超帧的个数,通信域系统消息的时长的取值可以为:SF8、SF16、SF32或SF64等,这里,“SF8”可以表示从起始超帧编号开始最多在8个连续的超帧内发送系统消息,“SF16”可以表示从起始超帧编号开始最多在16个连续的超帧内发送系统消息,“SF32”可以表示从起始超帧编号开始最多在32个连续的超帧内发送系统消息,“SF64”可以表示从起始超帧编号开始最多在64个连续的超帧内发送系统消息。
因此,扫描请求消息中可以包含待扫描的目标主节点的帧同步信息,例如目标主节点的通信域系统消息的发送周期,广播消息的持续时长,例如目标主节点的通信域系统消息的时长,以及载波信道号,例如目标主节点的工作载波的标识,等等,第一节点可以根据扫描请求消息中指示的目标主节点进行针对性扫描,即,只在目标主节 点的工作载波上针对目标主节点的广播信息的发送时段进行扫描,从而相比扫描所有载波或信道,可以大幅减少扫描时长和开销,并且可以增大扫描到目标主节点的概率。
可选地,扫描参数可以包括如下至少一项:待扫描的载波的标识、扫描的总时长和在单个载波上的扫描时长。其中,待扫描的载波可以包括:第一节点当前的工作载波,或第一节点支持的全部载波,或第一节点接收到的扫描请求消息中指示的载波。
第一节点可以根据待扫描的载波的标识、扫描的总时长或在单个载波上的扫描时长等一个或多个扫描参数执行扫描。当第一节点根据触发条件盲扫时,第一节点可以在第一节点当前的工作载波,或第一节点支持的全部载波上进行扫描;当第一节点根据触发条件有针对性地扫描时,第一节点可以根据扫描请求消息中指示的信息去确定扫描参数,例如,确定待扫描的载波标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息等,有针对性性地去扫描目标主节点。
一种可能的实现方式,第一节点上预先存储有关联主节点信息表,关联主节点信息表中可以包括以从节点的身份关联到第一节点的主节点的和这些主节点的信息,以从节点的身份关联到第一节点的主节点的信息可以包括如下一项或多项:工作载波标识、物理层地址、域名、域ID和多域服务信息等。
其中,多域服务信息可以包括管理模式/非管理模式、管理节点能力、优先级、供电类型(是否电池供电)、是否有输入界面、域内的成员G节点个数等,本申请对此不作限定。其中,多域服务信息还可以包括主节点对应的从节点的物理层地址(有时也可以称为物理层标识(physical layer identity,PID))和/或媒体接入层地址(有时也可以称为层2标识(layer 2identity,Layer2ID)),PID和/或Layer2ID与关联主节点信息表中的主节点的域名和/或域ID建立对应关系,以识别关联主节点信息表中各个主节点与从节点身份的对应关系。
可选地,第一节点基于第一广播消息发现第三节点,第三节点不属于关联主节点信息表中的主节点,第一节点以从节点模式向第三节点发送关联请求消息。
第一节点接收到第三节点的第一广播消息,也即,第一节点发现了第三节点,第一节点确定第三节点不在第一节点维护的关联主节点信息表中,所以第三节点没有关联第一节点,因此,第一节点可以向第三节点发出关联请求消息,以使得第一节点可以以从节点的身份关联第三节点,这种情况下,不会造成重复关联。
第一节点接收到第三节点的通信域系统消息后,如果第一节点确定以从节点的身份与第三节点进行关联,即,第一节点确定以从节点的身份加入第三节点的通信域,则第一节点可以向第三节点发送包含有关联请求消息的交互资源控制(eXchange resource control,XRC)建立请求(XRCSetupRequest)消息,其中携带关联请求信息:有安全上下文的关联请求(associationRequestWithSec)或者没有安全上下文的关联请求(associationRequestNonSec)信息。associationRequestWithSec和associationRequestNonSec分别可以用于有安全上下文和没有安全上下文两种不同场景下的关联(认证)请求。
第一节点以从节点的身份向第三节点发送XRCSetupRequest,用来与第三节点建立XRC连接,其中,以从节点的身份可以是PID或layer2ID,例如,有安全上下文时,取值可以是PID,没有安全上下文时,取值可以是layer2ID。
第三节点收到第一节点的关联请求消息后,可以响应第一节点的关联请求消息,与第一节点建立XRC,从而第一节点可以完成以从节点的身份关联到第三节点。
还应理解,第一节点以从节点的身份关联到第三节点后,可以执行后续的多域服务发现,与第三节点交互多域服务相关的信令、相关的服务信息或属性信息。当成功执行多域服务发现之后,第三节点可以根据与第一节点交互的信息,更新关联主节点信息表。
可选地,第一节点基于第一广播消息发现第四节点,第四节点属于关联主节点信息表中的主节点,第一节点不向第四节点发送关联请求消息。
第一节点接收到第四节点的第一广播消息,也即,第一节点发现了第四节点,第一节点确定第四节点在第一节点维护的关联主节点信息表中,所以第四节点已经先发现了第一节点,并关联了第一节点,也就是说,第四节点已经是第一节点的一个从节点了,所以为了避免第一节点再以从节点的身份关联第四节点造成重复关联,所以第一节点可以停止向第四节点发送关联请求消息,或者说,第一节点可以不向第四节点发送关联请求消息。
一种可能的设计是,随机侦听时长可以由预定义的函数f(N)生成,N为大于或等于0的随机数。
可选地,随机侦听时长满足:T M=f(N)=NT F,其中,T M表示随机侦听时长,T F为预设的时间长度。
其中,T F可以为:8个超帧时长的M倍,M≥0,M为整数,或者,T F可以为:1个超帧时长、1个半超帧时长或1个无线帧时长。
例如,M=64,即,T F为64个超帧时长,则随机侦听时长为64个超帧时长与N的乘积。
应理解,T F的取值还可以为8个超帧时长、16个超帧时长、32个超帧时长、128个超帧时长等等,本申请对此不作限定。
第一节点可以根据预定义的函数确定随机侦听时长的具体取值,每次侦听的时长可以随机生成。应理解,本申请对为了确定随机侦听时长的而预定义的函数的具体表示形式不作限定。
另一种可能的设计是,随机侦听时长根据预定义的映射关系确定,映射关系包括多个i值与随机侦听时长的对应关系,其中,i表示一个节点进行侦听的次数,i为大于或等于0的整数。
例如,这个映射关系可以是表格形式,如表1所示。
表1
序号 随机侦听时长
1 T M(1)
2 T M(2)
3 T M(3)
…… ……
i T M(i)
其中,T M表示随机侦听时长,T M(1)可以表示第一节点第1次进行侦听的时长, T M(2)可以表示第一节点第2次进行侦听的时长,T M(3)可以表示第一节点第3次进行侦听的时长,依此类推,T M(i)可以表示第一节点第i次进行侦听的时长。应理解,T M(1)、T M(2)、T M(3)以及T M(i)都是预先确定和存储的,T M(1)、T M(2)、T M(3)以及T M(i)中可以有相同的随机侦听时长,也可以没有相同的随机侦听时长,本申请对此不作任何限定。
按照通信标准,超帧的周期是无法改变的,因此,如果一个主节点与另一个主节点进入扫描状态和进入广播状态同步,则可以改变节点的广播消息的起始时刻,或者,改变超帧物理层广播信息和/或通信域系统消息都是可行方法,但是,直接改变超帧起始时刻可会导致通信域同步信号中断,而且需要通信域再次同步,因此,根据随机侦听时长T M可以改变超帧的起始时刻,也即,可以改变广播消息的发送周期,以推迟或提前主节点进入广播状态,从而与其他主节点错开进入扫描状态和进入广播状态的时间,进而可以避免该主节点与其他主节点因同时处于扫描状态或同时处于广播状态而导致无法互相发现的问题。
可选地,第一节点在至少一个载波上发送第二广播消息,第二广播消息的发送时间不晚于随机侦听时长的计划结束时间,第二广播消息用于其他主节点对第一节点的发现,至少一个载波包括:第一节点的工作载波或第一节点支持的全部载波。
应理解,不晚于随机侦听时长的计划结束时间,可以理解为,在随机侦听时长的计划结束时间之前或在随机侦听时长的计划结束时间。
计划结束时间可以理解为随机侦听时长计时器结束的时间,例如,第一节点确定的一个随机侦听时长为1个超帧时长,则计划结束的时长就是一个超帧时长计时结束的时间。
如果第一节点根据扫描请求消息的指示信息,进行有针对性地扫描,在随机侦听时长的计划结束时间之前侦听到了目标主节点,第一节点可以提前结束侦听,并进入广播状态,在至少一个载波上发送第二广播消息;如果第一节点进行盲扫,或者,第一节点根据扫描请求消息的指示信息,进行有针对性地扫描,但在随机侦听时长的计划结束时间之时还未侦听到目标主节点,则第一节点可以在随机侦听时长的计划结束时,进入广播状态,在至少一个载波上发送第二广播消息。
第一节点可以在其所有的工作载波或信道上,进行扫描、侦听和广播,以快速发现其他主节点和被其他主节点发现。
图6是本申请另一实施例提供的通信方法的示意性流程图。该方法600可以包括步骤601至步骤606,以下对步骤601至步骤606进行详细说明。
在步骤601中,节点1和节点2的多域服务管理模块可以根据事件触发条件或周期性触发条件分别对其多域设备发现模块进行扫描触发,节点1和节点2的多域设备发现模块可以分别根据触发条件配置各自的扫描参数,并可以将配置的扫描参数发给各自的接入层。
应理解,节点1和节点2都可以为第一节点。当节点1为第一节点时,节点2可以为相对于节点1来说的其他主节点;当节点2为第一节点时,节点1可以为相对于节点2来说的其他主节点。
在步骤602中,节点1和节点2的接入层可以分别根据各自收到的扫描参数进行 扫描。
在步骤603中,节点1的接入层在未扫描到其他主节点时,可以基于随机侦听时长T M1侦听其他主节点,节点2的接入层在为扫描到其他主节点时,基于随机侦听时长T M2侦听其他主节点,T M1大于T M2,所以节点2在随机侦听时长T M2内没有侦听到其他主节点时,可以在随机侦听时长T M2的计划结束时间到达时进入广播状态,向外发送广播消息,此时,节点1还处于侦听状态,所以节点1可以侦听到节点2的广播消息,也即,节点1在随机侦听时长T M1内发现了节点2。
在步骤604中,节点1的接入层可以向节点1的多域设备发现模块上报侦听结果,节点1的多域设备发现模块可以将侦听结果上报给节点1的多域服务管理模块,节点1的多域服务管理模块确定节点2不在节点1存储的关联节点信息表中。
在步骤605中,节点1的多域服务管理模块可以向节点1的多域设备发现模块发出连接指示,节点1的多域设备发现模块可以向节点1的接入层发出连接指示,节点1的接入层可以向节点2的接入层发送关联请求消息,节点2的接入层可以将接收到的关联请求消息发送给节点2的多域设备发现模块,节点2的多域设备发现模块可以将接收到的关联请求消息发送给节点2的多域服务管理模块。
在步骤606中,节点2的各个模块可以对节点1发送的关联请求消息作出响应,节点1的接入层可以根据节点2的关联响应获得关联结果,并将关联结果上报给节点1的多域设备发现模块,节点1的多域设备发现模块可以将关联结果上报给节点1的多域服务管理模块。
应理解,虽然图6中未示出,但节点1在关联到节点2后,可以在至少一个载波上发送广播消息,广播消息的发送时间不晚于随机侦听时长T M1的计划结束时间。
第一节点可以根据不同的触发条件配置不同的扫描参数,对其他主节点进行盲扫或有针对性地扫描。在第一主节点根据扫描参数对其他主节点进行扫描,但是没有扫描到其他主节点时,第一节点可以继续基于一个随机侦听时长侦听其他主节点是否发送了第一广播消息。由于该随机侦听时长是不固定的,不同节点的随机侦听时长也可能不同,这样一来,第一节点与其他主节点的广播时段就有可能错开,第一节点就有可能在随机侦听时长内发现其他主节点,从而可以缓解第一节点与其他主节点因同时处于扫描状态或同时处于广播状态而导致无法互相发现的问题,有利于提高设备发现的效率。当第一节点侦听其他主节点并且其他主节点不在第一节点存储的关联主节点信息表中时,第一节点可以以从节点的身份关联到该其他主节点,当第一节点侦听其他主节点但其他主节点在第一节点存储的关联主节点信息表中时,第一节点不会以从节点的身份关联到该其他主节点,这样一来,可以避免第一节点与其他主节点重复关联的问题。
为了实现上述本申请实施例提供的方法中的各功能,第一节点可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图7是本申请实施例提供的一种通信装置的示意性框图。如图7所示,该通信装置700可以包括:扫描单元710和侦听单元720。该通信装置700可以用于执行通信 方法500或通信方法600中的步骤。
当该通信装置700用于执行通信方法500或通信方法600中的步骤时,其中,扫描单元710用于根据扫描参数对其他主节点进行扫描;侦听单元720可以用于在未扫描到其他主节点的情况下,基于随机侦听时长侦听第一广播消息,第一广播消息是来自其他主节点中的一个或多个主节点的广播消息,随机侦听时长用于第一节点对其他主节点的侦听,第一节点为至少一个通信域的主节点。
可选地,扫描单元710还可以用于在满足触发条件的情况下,根据扫描参数进行扫描;触发条件包括:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能、第一节点接收到来自第二节点的扫描请求消息或第一节点执行周期性扫描;其中,第二节点是与第一节点不同的主节点。
可选地,当所述触发条件为:第一节点开机、第一节点检测到干扰、第一节点开启多域服务功能或第一节点执行周期性扫描,扫描参数为预定义的或预先配置的扫描参数;或者当触发条件为第一节点接收到来自第二节点的扫描请求消息时,扫描参数根据扫描请求消息确定。
可选地,扫描请求消息包括如下至少一项:待扫描的载波的标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息,目标主节点是扫描信息中指示的需要第一节点去发现的主节点。
可选地,目标主节点的信息包括如下至少一项:目标主节点的工作载波的标识、目标主节点的优先级、目标主节点的通信域系统消息的发送周期和目标主节点的通信域系统消息的时长;其中,目标主节点的工作载波属于待扫描的载波。
可选地,扫描参数包括如下至少一项:待扫描的载波的标识、扫描的总时长和在单个载波上的扫描时长。
可选地,待扫描的载波包括:第一节点当前的工作载波,或第一节点支持的全部载波,或第一节点接收到的扫描请求消息中指示的载波。
可选地,该通信装置700还可以包括发送单元730,发送单元730可以用于在第一节点基于第一广播消息发现第三节点,第三节点不属于关联主节点信息表中的主节点时,以从节点模式向第三节点发送关联请求消息,关联主节点信息表包括以从节点的身份关联到第一节点的主节点。
可选地,该通信装置700还可以包括发送单元730,发送单元730可以用于第一节点基于第一广播消息发现第四节点,第四节点属于关联主节点信息表中的主节点时,不向第四节点发送关联请求消息,关联主节点信息表包括以从节点的身份关联到第一节点的主节点。
可选地,关联主节点信息表包括如下一项或多项至少一个主节点的信息:工作载波标识、物理层地址、域名、域标识和多域服务信息。
可选地,随机侦听时长由预定义的函数f(N)生成,N为大于或等于0的随机数。
可选地,随机侦听时长满足:T M=f(N)=NT F,其中,T M表示随机侦听时长,T F为预设的时间长度。
可选地,T F为:64个超帧时长、1个超帧时长、1个半超帧时长或1个无线帧时长。
可选地,随机侦听时长根据预定义的映射关系确定,映射关系包括多个i值与随机侦听时长的对应关系,其中,i表示一个节点进行侦听的次数,i为大于或等于0的整数。
可选地,该通信装置700还可以包括发送单元730,发送单元730可以用于在至少一个载波上发送第二广播消息,第二广播消息的发送时间不晚于随机侦听时长的计划结束时间,第二广播消息用于其他主节点对第一节点的发现,至少一个载波包括:第一节点的工作载波或第一节点支持的全部载波。
图8是本申请实施例提供的另一种通信装置的示意性框图。该通信装置800可用于实现上述方法第一节点的功能。该通信装置800可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图8所示,该通信装置800可以包括至少一个处理器810,用于实现本申请实施例提供的方法中第一节点的功能。
示例性地,当该通信装置800用于实现本申请实施例提供的通信方法中第一节点的功能时,处理器810可以用于根据扫描参数进行扫描,进行扫描包括对其他主节点的扫描;在未扫描到其他主节点的情况下,基于随机侦听时长侦听第一广播消息;第一广播消息是来自其他主节点中的一个或多个主节点的广播消息,随机侦听时长用于第一节点对其他主节点的侦听,第一节点为至少一个通信域的主节点。具体参见方法示例中的详细描述,此处不做赘述。
该通信装置800还可以包括至少一个存储器820,用于存储程序指令和/或数据。存储器820和处理器810耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器810可能和存储器820协同操作。处理器810可能执行存储器820中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
该通信装置800还可以包括通信接口830,用于通过传输介质和其它设备进行通信,从而用于通信装置800中的装置可以和其它设备进行通信,例如其他设备可以是除第一节点以外的其他主节点。所述通信接口830例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器810可利用通信接口830收发数据和/或信息,并用于实现图8对应的实施例中所述的第一节点所执行的方法。
本申请实施例中不限定上述处理器810、存储器820以及通信接口830之间的具体连接介质。本申请实施例在图8中以处理器810、存储器820以及通信接口830之间通过总线840连接。总线840在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请还提供了一种芯片系统,所述芯片系统包括至少一个处理器,用于实现上述图5或图6所示实施例中第一节点执行的方法中所涉及的功能,例如,接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得第一节点执行如图5或图6所示实施例中任一实施例的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当所述计算机程序被运行时,使得第一节点执行如图5或图6所示实施例中任一实施例的方法。
本申请还提供一种终端,所述包括如图7或图8所示的通信装置。
可选地,上述终端可以为车。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方 案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    第一节点根据扫描参数对其他主节点进行扫描,所述第一节点为至少一个通信域的主节点;
    所述第一节点在未扫描到所述其他主节点的情况下,基于随机侦听时长侦听第一广播消息;所述第一广播消息是来自所述其他主节点中的一个或多个主节点的广播消息,所述随机侦听时长用于所述第一节点对所述其他主节点的侦听。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点根据扫描参数进行扫描,包括:
    所述第一节点在满足触发条件的情况下,根据扫描参数进行扫描;所述触发条件包括:所述第一节点开机、所述第一节点检测到干扰、所述第一节点开启多域服务功能、所述第一节点接收到来自第二节点的扫描请求消息或所述第一节点执行周期性扫描;
    其中,所述第二节点是与所述第一节点不同的主节点。
  3. 如权利要求2所述的方法,其特征在于,当所述触发条件为:所述第一节点开机、所述第一节点检测到干扰、所述第一节点开启多域服务功能或所述第一节点执行周期性扫描,所述扫描参数为预定义的或预先配置的扫描参数;或者
    当所述触发条件为所述第一节点接收到来自所述第二节点的所述扫描请求消息时,所述扫描参数根据所述扫描请求消息确定。
  4. 如权利要求2或3所述的方法,其特征在于,所述扫描请求消息包括如下至少一项:待扫描的载波的标识、扫描开始的时间偏移量、在单个载波上的扫描时长和目标主节点的信息,所述目标主节点是所述扫描信息中指示的需要所述第一节点去发现的主节点。
  5. 如权利要求4所述的方法,其特征在于,所述目标主节点的信息包括如下至少一项:所述目标主节点的工作载波的标识、所述目标主节点的优先级、所述目标主节点的通信域系统消息的发送周期和所述目标主节点的通信域系统消息的时长;其中,所述目标主节点的工作载波属于所述待扫描的载波。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述扫描参数包括如下至少一项:待扫描的载波的标识、扫描的总时长和在单个载波上的扫描时长。
  7. 如权利要求6所述的方法,其特征在于,所述待扫描的载波包括:所述第一节点当前的工作载波,或所述第一节点支持的全部载波,或所述第一节点接收到的扫描请求消息中指示的载波。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点基于所述第一广播消息发现第三节点,所述第三节点不属于关联主节点信息表中的主节点,所述关联主节点信息表包括以从节点的身份关联到所述第一节点的主节点;
    所述第一节点以从节点模式向所述第三节点发送关联请求消息。
  9. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点基于所述第一广播消息发现第四节点,所述第四节点属于关联主节点信息表中的主节点,所述关联主节点信息表包括以从节点的身份关联到所述第一节点的主节点;
    所述第一节点不向所述第四节点发送关联请求消息。
  10. 如权利要求8或9所述的方法,其特征在于,所述关联主节点信息表包括如下一项或多项至少一个主节点的信息:工作载波标识、物理层地址、域名、域标识和多域服务信息。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述随机侦听时长由预定义的函数f(N)生成,N为大于或等于0的随机数。
  12. 如权利要求11所述的方法,其特征在于,所述随机侦听时长满足:T M=f(N)=NT F,其中,T M表示所述随机侦听时长,T F为预设的时间长度。
  13. 如权利要求12所述的方法,其特征在于,所述T F为:64个超帧时长、1个超帧时长、1个半超帧时长或1个无线帧时长。
  14. 如权利要求1至10中任一项所述的方法,其特征在于,所述随机侦听时长根据预定义的映射关系确定,所述映射关系包括多个i值与随机侦听时长的对应关系,其中,i表示一个节点进行侦听的次数,i为大于或等于0的整数。
  15. 如权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点在至少一个载波上发送第二广播消息,所述第二广播消息的发送时间不晚于所述随机侦听时长的计划结束时间,所述第二广播消息用于其他主节点对所述第一节点的发现,所述至少一个载波包括:所述第一节点的工作载波或所述第一节点支持的全部载波。
  16. 一种通信装置,其特征在于,所述通信装置包括用于实现如权利要求1至15中任一项所述方法的单元。
  17. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行程序或指令,以使所述装置实现如权利要求1至15中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至15中任一项所述的方法。
  19. 一种终端,其特征在于,所述终端包括如权利要求16或17所述的通信装置。
  20. 如权利要求19所述的终端,其特征在于,所述终端为车。
PCT/CN2022/120334 2021-09-23 2022-09-21 一种通信方法、通信装置和终端 WO2023045987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22872032.2A EP4395418A1 (en) 2021-09-23 2022-09-21 Communication method, communication apparatus and terminal
US18/613,532 US20240267836A1 (en) 2021-09-23 2024-03-22 Communication method, communication apparatus, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111116176.XA CN115866576A (zh) 2021-09-23 2021-09-23 一种通信方法、通信装置和终端
CN202111116176.X 2021-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/613,532 Continuation US20240267836A1 (en) 2021-09-23 2024-03-22 Communication method, communication apparatus, and terminal

Publications (1)

Publication Number Publication Date
WO2023045987A1 true WO2023045987A1 (zh) 2023-03-30

Family

ID=85652323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120334 WO2023045987A1 (zh) 2021-09-23 2022-09-21 一种通信方法、通信装置和终端

Country Status (4)

Country Link
US (1) US20240267836A1 (zh)
EP (1) EP4395418A1 (zh)
CN (1) CN115866576A (zh)
WO (1) WO2023045987A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257696A (ja) * 2000-03-13 2001-09-21 Fuji Electric Co Ltd マスタスレーブ間の通信方式
CN105027592A (zh) * 2013-03-08 2015-11-04 高通股份有限公司 用于并发设备发现的系统和方法
CN106559103A (zh) * 2016-12-08 2017-04-05 西安烽火电子科技有限责任公司 一种基于北斗授时的大规模跳频组网系统
CN110493893A (zh) * 2019-09-02 2019-11-22 上海无线电设备研究所 一种自适应动态组网方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257696A (ja) * 2000-03-13 2001-09-21 Fuji Electric Co Ltd マスタスレーブ間の通信方式
CN105027592A (zh) * 2013-03-08 2015-11-04 高通股份有限公司 用于并发设备发现的系统和方法
CN106559103A (zh) * 2016-12-08 2017-04-05 西安烽火电子科技有限责任公司 一种基于北斗授时的大规模跳频组网系统
CN110493893A (zh) * 2019-09-02 2019-11-22 上海无线电设备研究所 一种自适应动态组网方法

Also Published As

Publication number Publication date
EP4395418A1 (en) 2024-07-03
US20240267836A1 (en) 2024-08-08
CN115866576A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US10098154B2 (en) Method and apparatus for detection and resolution of resource collision in a peer-to-peer network
WO2016029826A1 (zh) 使用非授权载波发送及接收信号的方法和装置
WO2017133368A1 (zh) 一种非授权频谱中prach信号的传输方法和设备
WO2016000549A1 (zh) 资源抢占方法、站点及计算机存储介质
US20120147745A1 (en) Methods and apparatus for detection of resource collision in wireless peer-to-peer communication networks
WO2017219701A1 (zh) 一种系统消息更新的方法和设备
JP2016021771A (ja) デバイスがネットワークにアクセスする方法、アクセスポイント、ネットワークアクセスデバイス、およびシステム
US20230189388A1 (en) Communication Method and Apparatus
WO2022104542A1 (zh) 无线通信方法和通信装置
EP2198537A2 (en) Method for sharing wireless channel resource in communication system
WO2019033388A1 (zh) 用于传输数据的方法和设备
JP2014528673A (ja) ワイヤレスピアツーピアネットワークにおける分散型媒体アクセスのための方法および装置
US8855693B2 (en) Method and apparatus for controlling wireless devices
WO2023045987A1 (zh) 一种通信方法、通信装置和终端
CN113965941A (zh) 信道监听方法、装置及通信设备
US20230052728A1 (en) Data transmission method and communications apparatus
CN102946634B (zh) 通信装置和数据通信方法
CN108243485B (zh) 一种无线传感网络中的时分多址信道接入方法及装置
WO2022012613A1 (zh) 上行传输方法、接收方法、装置、设备和存储介质
WO2022021161A1 (zh) 通信方法、装置、设备及存储介质
Wu et al. A multichannel MAC protocol for IoT-enabled cognitive radio ad hoc networks
US20220417879A1 (en) Communication method, apparatus, and device, and computer-readable storage medium
WO2022041138A1 (zh) 一种通信的方法及装置
WO2023124731A1 (zh) D2d通信的资源分配方法及装置、介质、程序产品
WO2023279363A1 (zh) 一种信息传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022872032

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022872032

Country of ref document: EP

Effective date: 20240326

NENP Non-entry into the national phase

Ref country code: DE