WO2023045448A1 - 一种检测组件及检测工装 - Google Patents

一种检测组件及检测工装 Download PDF

Info

Publication number
WO2023045448A1
WO2023045448A1 PCT/CN2022/100403 CN2022100403W WO2023045448A1 WO 2023045448 A1 WO2023045448 A1 WO 2023045448A1 CN 2022100403 W CN2022100403 W CN 2022100403W WO 2023045448 A1 WO2023045448 A1 WO 2023045448A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
detection
interface
ventilation
valves
Prior art date
Application number
PCT/CN2022/100403
Other languages
English (en)
French (fr)
Inventor
王佳
王志辉
林武
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22871509.0A priority Critical patent/EP4227650A1/en
Publication of WO2023045448A1 publication Critical patent/WO2023045448A1/zh
Priority to US18/342,746 priority patent/US11946833B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • G01F15/185Connecting means, e.g. bypass conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application relates to the field of flow monitoring, in particular to a detection tool.
  • a battery is a structural form in which multiple battery cells are effectively connected, and a certain number of battery cells are connected in series/parallel/series-parallel to meet the demand for power supply for electrical equipment.
  • the analysis tool needs to inhale and analyze the electrolyte, so how to detect the performance of the suction port of the analysis tool has become an urgent problem to be solved.
  • the present application provides a detection component and a tool, which can intensively detect and analyze the performance of the suction port of the tool.
  • a detection component comprising,
  • Interface one end of the interface is used to access the device under test, the interface includes a first interface, a second interface,
  • the first three-way valve the first three-way valve includes a first access valve, a first ventilation valve and a first detection valve, the other end of the first interface is connected to the first access valve, the first ventilation valve is connected to the atmosphere, and the second A ventilation valve can be opened and closed; a second three-way valve, the second three-way valve includes a second access valve, a second ventilation valve and a second detection valve, the other end of the second interface is connected to the second access valve, the second The second ventilation valve is connected to the atmosphere, and the second ventilation valve can be opened and closed; the confluence pipe, the first detection valve is connected to the confluence pipe, and the second detection valve is connected to the confluence pipe; the sensor is connected to the detection end of the sensor.
  • different gas paths of the device under test can be connected through the first interface and the second interface.
  • Each air circuit is connected to a three-way valve, and each three-way valve has a valve connected to the atmosphere, the valve connected to the interface and the valve connected to the detection equipment, and the valve connected to the detection equipment is connected to the detection device through a confluence pipe. devices such as sensors.
  • the control valve ensures that the valve connected to the atmosphere of the three-way valve corresponding to the gas path to be tested is closed, and the valves connected to the atmosphere of other gas paths are opened. In this way, it is possible to measure whether the air pressure of the current air path is normal.
  • the above solution skillfully realizes the technical effect of using one sensor to detect the gas path flow rate of the equipment to be tested through the manifold gas collection.
  • the diameters of the first access valve and the first detection valve are equal.
  • the diameter of the confluence pipe is more than 5 times the diameter of the first detection valve.
  • the confluence pipe includes a confluence cavity, and the diameter of the confluence cavity is more than 5 times the diameter of the first detection valve.
  • multiple interfaces are included, including three-way valves with at least the same number of interfaces, wherein the three-way valves include access valves, ventilation valves and detection valves respectively, and the access valves of each three-way valve are used for For connecting to the corresponding interface, the ventilation valve of each three-way valve is used to connect to the atmosphere and can be opened and closed, and the detection valve of each three-way valve is used to connect to the confluence pipe.
  • the detection component can be connected to more negative pressure ports of the equipment under test at the same time, thereby improving the detection efficiency.
  • a control unit is included, and the control unit is used to control the opening and closing of the ventilation valves of the three-way valves.
  • Each three-way valve can directly lead to the atmosphere when the ventilation valve is opened, and the detection valve cannot work.
  • the control unit By controlling the opening and closing of the ventilation valves of the three-way valves by the control unit, the switching of the working states of different detection valves can be realized. Realize the time-sharing multiplexing effect of multiple gas path detection.
  • a negative pressure gauge is also included, and the negative pressure gauge is connected to the detection end of the sensor.
  • the negative pressure gauge is connected to the detection end, and the gas in the manifold can also be connected to the negative pressure gauge to detect the negative pressure. The technical effect of displaying the negative pressure value of the gas path is achieved.
  • it in another aspect of this solution, includes a box body, and the detection assembly as above is arranged in the box body.
  • the detection assembly as above is arranged in the box body.
  • the box wall of the box body further includes an opening and an air guide tube, and the opening is connected to the interface through the air guide tube.
  • the openings can be connected to the connecting pipes of different interfaces with the equipment to be tested, and the connecting pipes can be connected according to the corresponding relationship.
  • the measurement work of different interfaces of the device under test can be performed sequentially.
  • more than two groups of detection components are arranged in the box.
  • Each group of detection components is connected to multiple three-way valves and the same sensor by multiple interfaces, thereby achieving the technical effect of saving sensors.
  • one sensor can be connected to 24 interfaces and 24 three-way valves at the same time.
  • 2 to 3 groups of detection components can also be set up, and the detection tasks of dozens of interfaces can be processed at the same time, which greatly improves the detection efficiency of the detection tool.
  • FIG. 1 is a schematic diagram of a detection component described in a specific embodiment of the present application.
  • FIG. 2 is a schematic diagram of a detection tool described in a specific embodiment of the present application.
  • Fig. 3 is a connection diagram of the control unit described in a specific embodiment of the present application.
  • the first access valve
  • the first detection valve
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited to, in electric devices such as vehicles, ships or aircrafts.
  • the power supply system comprising the battery unit and battery disclosed in this application can be used to form the electrical device, which is conducive to alleviating and automatically adjusting the deterioration of the expansion force of the battery cell, supplementing the consumption of the electrolyte, and improving the stability of battery performance and battery life. .
  • the embodiment of the present application provides an electric device using a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • the applicant provides a detection assembly, including an interface 1 , a first three-way valve 21 , a second three-way valve 22 , a manifold 3 and a sensor 4 .
  • One end of the interface 1 is used to access the device under test, and the interface 1 includes a first interface 11 and a second interface 12 .
  • the first three-way valve 21 includes a first access valve 211, a first ventilation valve 212 and a first detection valve 213, the other end of the first interface 11 is connected to the first access valve 211, the first ventilation valve 212 is connected to the atmosphere, The first ventilation valve 212 can be opened and closed.
  • the second three-way valve 22 includes a second access valve 221, a second vent valve 222 and a second detection valve 223, the other end of the second interface 12 is connected to the second access valve 221, and the second vent valve 222 is connected to the atmosphere.
  • the second ventilation valve 222 can be opened and closed.
  • the first detection valve 213 is connected to the confluence pipe 3
  • the second detection valve 223 is connected to the confluence pipe 3
  • the manifold 3 is connected to the detection end of the sensor 4 .
  • the interface 1 is usually a hollow pipeline, which can be connected to the negative pressure nozzle of the device to be tested. When the device has multiple negative pressure nozzles to be tested, multiple corresponding interfaces 1 can be provided.
  • the interface 1 includes at least a first interface 11 and a second interface 12 . More interfaces may also be included.
  • the first interface 11 and the second interface 12 are only examples showing the connection relationship with the three-way valve 2 .
  • the three-way valve 2 refers to a pipeline element with a bypass in the valve body, which is usually set as one inlet and two outlets, and each valve of the three-way valve 2 can be set to be independently opened and closed.
  • the one-inlet and two-outlet of the first three-way valve 21 in this embodiment includes a first access valve 211 , a first ventilation valve 212 and a first detection valve 213 . Wherein, when the first access valve 211 is connected to the negative pressure suction nozzle, the gas is discharged, and the first detection valve 213 is fed with gas.
  • At least the second ventilation valve 222 is set to be openable and closed.
  • the material of three-way valve 2 can be selected metal, plastics etc., and valve can adopt means such as electromagnetic valve to control its opening and closing.
  • the manifold 3 is a pipeline element with multiple inlets and single outlets, which can play the role of converging fluids and balancing and buffering pressure.
  • the material of the manifold 3 can be made of aluminum, iron, steel, alloy and other materials.
  • the sensor 4 is generally a sensing device capable of detecting fluid, such as a flow meter, a pressure sensor, etc., and can give a response signal when a change in the airflow of the manifold 3 is detected.
  • Flow meters have been widely used in oil and gas, petrochemical, water treatment, food and beverage, pharmaceutical, energy, metallurgy, pulp and paper and building materials industries. It is also divided into differential pressure flowmeter, rotameter, throttling flowmeter, slit flowmeter, volumetric flowmeter, electromagnetic flowmeter, ultrasonic flowmeter, etc. Classified by medium: liquid flowmeter and gas flowmeter. If the sensor 4 is selected as a flow meter, when the air flow of the manifold 3 changes, a response signal of the change of the air flow can be given.
  • Pressure sensors such as air pressure sensors, are instruments used to measure the absolute pressure of gases, mainly suitable for physical experiments related to gas pressure, such as gas laws, etc., and can also measure dry, non-corrosive gas pressure in biological and chemical experiments .
  • High-precision air pressure sensors generally use MEMS technology to process a vacuum cavity and a Wheatstone bridge on a single crystal silicon wafer. The voltage at both ends of the Wheatstone bridge arm is proportional to the applied pressure, after temperature compensation and calibration. It has the characteristics of small size, high precision, fast response, and not affected by temperature changes.
  • the output mode is generally two kinds of analog voltage output and digital signal output, among which the digital signal output mode is the mainstream of the current application because of its convenient connection with the single-chip microcomputer. If the sensor 4 is selected as a pressure sensor, when the airflow of the manifold 3 changes, a response signal of the change of the absolute value of the air pressure can be given. ...
  • different air paths of the device under test can be connected through the first interface 11 and the second interface 12 .
  • the air path of the equipment under test is a negative pressure suction nozzle that can generate negative pressure under normal conditions.
  • each air path is connected to interface 1, it is connected to a three-way valve 2, and each three-way valve 2 has a valve connected to the atmosphere.
  • the valve connected to interface 1 and the valve connected to the testing equipment is connected to the sensor 4 after passing through the manifold 3 .
  • the control valve keeps the valve connected to the atmosphere of the three-way valve 2 corresponding to the gas path to be tested closed, and the valves connected to the atmosphere of other gas paths are opened. If the gas path of the device to be tested can generate negative pressure, the air pressure in the three-way valve 2 will decrease, and the sensor 4 will have air flow passing through it. In this way, it can be measured whether the current air pressure of the equipment under test is normal.
  • switch the valve connected to the atmosphere of the three-way valve 2 corresponding to the detection gas path to close then when the switched gas path can work normally, the air pressure of the corresponding three-way valve 2 will decrease .
  • the gas can be collected through the manifold 3, and the technical effect of using one sensor 4 to detect the gas path flow rate of the device under test is cleverly realized.
  • the diameters of the first access valve 211 and the first detection valve 213 are equal.
  • the valve of the three-way valve 2 connected to the atmosphere is closed, and the first access valve 211 and the first detection valve 213 work.
  • the air flow of the first access valve 211 is equal to the air flow of the first detection valve 213 .
  • the above-mentioned design can ensure the stability of the airflow in the three-way valve 2, avoid the pressure change caused by the unequal flow rate of the airflow in and out, and ensure the accuracy and stability of the detection data.
  • the diameter of the confluence pipe 3 is more than 5 times the diameter of the first detection valve 213 .
  • the diameter of the first detection valve 213 may be set to 5 mm, and the maximum diameter of the manifold 3 may be set to be greater than 25 mm. After the airflow of the first detection valve 213 flows into the manifold 3, the flow velocity decreases, and the disturbance continues to decrease.
  • the diameter of the first detection valve 213 is about 6 mm, and the maximum diameter of the manifold 3 can be set at 60 mm, which is about 10 times the diameter of the first detection valve 213 . Larger diameter magnification can reduce disturbance to a greater extent and improve measurement accuracy.
  • the confluence pipe 3 includes a confluence chamber 31 , and the diameter of the confluence chamber 31 is more than five times the diameter of the first detection valve 213 .
  • the diameter of the first detection valve 213 can be set to 5 mm, and the cavity part of the confluence cavity 31 of the confluence pipe 3 can be set to be cylindrical, and the diameter of the cylindrical circle is more than 25 mm.
  • Other pipelines of the manifold 3 such as the pipelines used to connect the manifold chamber 31 and the detection end, can be set to be equivalent to the diameter of the first detection valve 213 . After the airflow of the first detection valve 213 flows into the manifold 3, the flow velocity decreases, and the disturbance continues to decrease.
  • the diameter of the first detection valve 213 is about 6 mm
  • the cavity part of the confluence cavity 31 of the confluence pipe 3 is set as a cylinder
  • the diameter of the cylinder is 60 mm, which is about 10 times that of the first detection valve 213 path. Setting the manifold cavity 31 with a larger diameter magnification can reduce disturbance to a greater extent and improve measurement accuracy.
  • the design requirements for the diameter of the pipelines of the other manifold 3 can be reduced.
  • the above solution can reduce the impact of gas confluence in multiple passages, ensure the stability of gas flow, and reduce the gas disturbance in the confluence pipe 3 . Thereby improving the measurement accuracy.
  • FIG. 1 it can also be set to include a plurality of ports 1, please continue to refer to Figure 1 here, including three-way valves 2 with at least the same number as ports 1, wherein the three-way valves 2 each include access valves , ventilation valve and detection valve, the access valve of each three-way valve 2 is used to connect to its corresponding interface 1, the ventilation valve of each three-way valve 2 is used to connect to the atmosphere and can be opened and closed, and the connection valve of each three-way valve 2 The detection valve is used to connect to the manifold 3.
  • the setting rules of multiple interfaces 1 and three-way valves 2 are the same as the above-mentioned two interfaces 1 and two three-way valves 2.
  • Interface 1 is connected to the negative pressure nozzle of the device to be tested.
  • multiple corresponding interfaces 1 can be set.
  • the other end of each interface 1 is connected to the access valve of the corresponding three-way valve 2 , the vent valve of the corresponding three-way valve 2 is connected to the atmosphere, and the detection valve is connected to the confluence pipe 3 , and finally connected to the sensor 4 through the confluence cavity 31 .
  • the working mode of multiple interfaces 1 and multiple three-way valves 2 is also similar to that of two interfaces 1. Multiple interfaces 1 can work sequentially.
  • the control valve ensures that the gas to be tested
  • the valve connected to the atmosphere of the three-way valve 2 corresponding to the air path is closed, and the valves connected to the atmosphere in other air paths are opened. If the gas circuit of the device to be tested can generate negative pressure, the air pressure in the three-way valve 2 will decrease, and the flow meter will have air flow passing through it. In this way, it can be measured whether the current air pressure of the equipment under test is normal.
  • the detection component can be connected to more negative pressure ports of the equipment under test at the same time, thereby improving the detection efficiency.
  • FIG. 1 and FIG. 3 which includes a control unit 6 for controlling the opening and closing of the ventilation valves of the three-way valves 2 .
  • Each three-way valve 2 can directly lead to the atmosphere when the ventilation valve is opened, and the detection valve cannot work.
  • the control unit 6 can coordinate the working sequence of each gas circuit, for example, the control unit 6 controls the sequential activation of the ventilation valves of different three-way valves 2 by programming a time-division multiplexing program.
  • the control unit 6 can also receive activation signals of different negative pressure suction nozzles of the device to be tested, and control the corresponding three-way valve 2 in the detection assembly according to the received activation signals, such as closing the three-way valve.
  • the ventilation valve of one-way valve 2 opens the ventilation valves of other three-way valves 2.
  • the control unit 6 controls the opening and closing of the ventilation valves of the three-way valves 2 by the control unit 6, the switching of the working states of different detection valves can be realized. Realize the time-sharing multiplexing effect of multiple gas path detection.
  • Negative pressure gauge 5 is also called vacuum pressure gauge, which is based on atmospheric pressure and is used to measure instruments that are less than atmospheric pressure.
  • the vacuum pressure gauge is suitable for measuring the vacuum pressure of liquids and gases that are non-explosive, non-crystallizing, non-solidifying, and non-corrosive to copper and copper alloys.
  • the gas in the manifold 3 can also be connected to the negative pressure gauge 5 to detect negative pressure.
  • the technical effect of displaying the negative pressure value of the gas path is achieved, and the technical effect of detecting the specific negative pressure value of different negative pressure nozzles can be further achieved by switching the corresponding gas path according to the control module.
  • a box body 7 is included, and the detection components in any of the above-mentioned embodiments are arranged in the box body 7 .
  • the box body 7 here is used for packaging and has a certain shape, such as a cuboid, cube, cylinder or the like.
  • the inside of the box body 7 can be equipped with a detection assembly of double air path/double three-way valve 2, and it can be carried by the box body 7 to simultaneously detect whether the negative pressure nozzles of the two devices to be tested can work normally .
  • the box body 7 can also be equipped with more than three gas circuits and more than three detection components of the three-way valve 2, which can simultaneously detect whether the negative pressure nozzles of multiple devices to be tested can work normally through the box body 7.
  • the box body wall of the box body 7 further includes an opening 71 and an air guide tube, and the opening 71 is connected to the interface 1 through the air guide tube.
  • the opening 71 may be a hole or hole on the wall of the box.
  • the opening 71 is mainly used to connect to the testing equipment, such as the negative pressure suction nozzle of the testing equipment, and the opening 71 can be used to connect to different interfaces 1, such as connecting with the interface 1 of the testing component through the air duct.
  • one end of the airway tube is connected to the interface 1 , and the other end can directly pass through the opening 71 to communicate with the device under test, or it can only be connected to the opening 71 .
  • the opening 71 can be connected with the connecting pipes of different interfaces 1 of the equipment under test, and the connecting pipes are connected according to the corresponding relationship, and the measurement work of different interfaces 1 of the equipment under test can be performed sequentially.
  • Prompt information such as barcodes and serial numbers can also be set on the opening 71 to prompt the user to prevent docking errors.
  • more than two groups of detection components are arranged in the box body 7 .
  • Each group of detection components has multiple interfaces 1 connected to multiple three-way valves 2 connected to the same sensor 4, thereby achieving the technical effect of saving sensors 4, and at most one sensor 4 can be connected to 24 interfaces 1 and 24 three-way valves 2 at the same time .
  • 2 to 3 sets of detection components can also be installed, and dozens of detection tasks of the interface 1 can be processed at the same time.
  • designing multiple sets of detection components can greatly improve the detection efficiency of the detection tool.
  • the present application provides a detection assembly, including at least two interfaces 1 and two three-way valves 2, and the access valve 21 of the three-way valve 2 is connected to the interface 1 , the ventilation valve 22 of the three-way valve 2 is connected to the atmosphere, and the ventilation valve 22 is also controlled by the control unit 6 to open and close.
  • the control unit 6 can also be connected to the device to be detected, and synchronously control the device to be detected and the ventilation valve 22.
  • a box body 7 can also be provided outside the testing assembly to form a portable testing tool, and an opening 71 is provided on the box body for facing the equipment to be tested.
  • the detection components set up above achieve the effect of the sensor 4 one-to-many detection interface 1 .

Abstract

一种检测组件,包括,接口(1)、第一三通阀(21)、第二三通阀(22)、汇流管(3)以及传感器(4)。接口(1)的一端用于接入待测设备,接口(1)包括第一接口(11)、第二接口(12);第一三通阀(21)包括第一接入阀门(211)、第一通气阀门(212)和第一检测阀门(213),第一接口(11)的另一端与第一接入阀门(211)连接,第一通气阀门(212)接大气,第一通气阀门(212)可开闭;第二三通阀(22)包括第二接入阀门(221)、第二通气阀门(222)和第二检测阀门(223),第二接口(12)的另一端与第二接入阀门(221)连接,第二通气阀门(222)接大气,第二通气阀门(222)可开闭;第一检测阀门(213)接入汇流管(3),第二检测阀门(223)接入汇流管(3);汇流管(3)与传感器(4)的检测端连接。一种检测工装,包括箱体(7),及设置在箱体(7)内的检测组件。检测组件及检测工装通过汇流管(3)集气实现了利用一个传感器(4)进行待测设备的气路流量检测的技术效果。

Description

一种检测组件及检测工装
本申请要求于2021年09月24日提交中国国家知识产权局、申请号为202122320528.5、申请名称为“一种检测组件及检测工装”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及流量监测领域,尤其涉及一种检测工装。
背景技术
目前,环境能源问题使社会进步面临严峻形势,低碳环保成为未来经济发展的一大主题。能量的储存和高效利用引起了各方面的重视,锂离子电池单元作为能量储存的最小单元而存在。节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。电池是将多个电池单体有效连接的一种结构形式,通过将一定数量的电池单体进行串联/并联/串并混联来满足为用电设备供电的需求。在电池单体的生产过程中,分析工装需要对电解液进行吸入分析,则如何检测分析工装的吸入口的性能,成为了一个亟待解决的问题。
发明内容
本申请提供了一种检测组件及工装,其能够集约化地检测分析工装吸入口的性能。
本申请是这样实现的:一种检测组件,包括,
接口,接口的一端用于接入待测设备,接口包括第一接口、第二接口,
第一三通阀,第一三通阀包括第一接入阀门、第一通气阀门和第一检测阀门,第一接口的另一端与第一接入阀门连接,第一通气阀门接大气,第一通气阀门可开闭;第二三通阀,第二三通阀包括第二接入阀门、第二通气阀门和第二检测阀门,第二接口的另一端与第二接入阀门连接,第二通气阀门接大气,第二通气阀门可开闭;汇流管,第一检测阀门接入汇流管,第二检测阀门接入汇流管;传感器,汇流管与传感器的检测端连接。
在本申请的实施例的技术方案中,可以通过第一接口、第二接口连入待测设备的不同气路。每个气路均连接一个三通阀,每个三通阀均有一个接大气的阀门,接入接口的阀门和接入检测设备的阀门,接入检测设备的阀门通过汇流管后连接到检测设备,如传感器。当需要对不同的气路进行检测时,控制阀门保证待测气路对应的三通阀的接大气的阀门关闭,其他气路接大气的阀门打开。这样就能测得当前气路的气压是否正常。上述方案通过汇流管集气巧妙地实现了利用一个传感器进行待测设备的气路流量检测的技术效果。
在本方案的一个方面,第一接入阀门和第一检测阀门的通径相等。通过设计第一接入阀门和第一检测阀门的通径相等,可以保证三通阀内的气流稳定性,避免了气流进出流量不等造成的压力变化,保证检测数据的精确与稳定。
在本方案的另一个方面,汇流管的通径为第一检测阀门的通径的5倍以上。通过将汇流管的通径进行增大,避免了检测工装工作时多个通 路气体汇流后的冲击,保证气体流动稳定性,减少汇流管中的气体扰动。从而提高测量精度。
在本方案的另一个方面,汇流管包括汇流腔,汇流腔的通径为所述第一检测阀门的通径的5倍以上。通过在汇流管中专门设置一个大通径的汇流腔,能够减少多个通路气体汇流后的冲击,保证气体流动稳定性,减少汇流管中的气体扰动。从而提高测量精度。
在本方案的另一个方面,包括多个接口,包括至少与接口数量相同的三通阀,其中三通阀均分别包括接入阀门、通气阀门和检测阀门,各三通阀的接入阀门用于接入与其对应的接口、各三通阀的通气阀门用于接入大气且可开闭,各三通阀的检测阀门用于接入汇流管。通过设置多个接口和多个三通阀,能够使得检测组件能够同时对接更多的待测设备的负压口,提升检测的效率。
在本方案的另一个方面,包括控制单元,控制单元用于控制各三通阀的通气阀门的开闭。各三通阀在通气阀门开启的情况下,可以直通大气,检测阀门无法工作。通过控制单元控制各三通阀的通气阀门的开闭,可以实现不同的检测阀门的工作状态的切换。实现多个气路检测的分时复用效果。
在本方案的另一个方面,还包括负压表,负压表与传感器的检测端连接。负压表连接到检测端,则汇流管的气体还可以连接到负压表检测负压。达到显示气路的负压数值的技术效果。
在本方案的另一个方面,包括箱体,箱体内设置有如上述的检测组件。通过箱体装载检测组件,能够将检测组件的各部件都相对箱体固定,能够起到保护部件防止毁坏的技术效果,同时箱体进行统一封装还能够方便携带。
在本方案的另一个方面,箱体的箱体壁上还包括开口、导气管,开口通过导气管连接到接口上。通过设置开口和导气管,能够使得不同接口的工作位点对应不同的开口,在实际使用的时候,开口上可以连接与待测设备的不同接口的连接管,将连接管按照对应关系接好,就能够依次进行待测设备的不同接口的测量工作。通过上述方案便可以方便用户进行与待测设备的对接。
在本方案的另一个方面,箱体内设置有两组以上的检测组件。每组检测组件是多个接口接多个三通阀接同一个传感器,从而起到节省传感器的技术效果,最多同时一个传感器可以接24个接口和24个三通阀。在同一个箱体内,还可以设置2至3组的检测组件,则同时可以处理几十个接口的检测任务,大大提升了检测工装的检测效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一具体实施方式所述的检测组件的示意图;
图2为本申请一具体实施方式所述的检测工装的示意图;
图3为本申请一具体实施方式所述的控制单元连接关系图。
附图标记说明:
1、接口;
11、第一接口;
12、第二接口;
2、三通阀;
21、第一三通阀;
211、第一接入阀门;
212、第一通气阀门;
213、第一检测阀门;
22、第二三通阀;
221、第二接入阀门;
222、第二通气阀门;
223、第二检测阀门;
3、汇流管;
31、汇流腔;
4、传感器;
5、负压表;
6、控制单元;
7、箱体;
71、开口。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申 请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的 方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,有利于缓解并自动调节电芯膨胀力恶化,补充电解液消耗,提升电池性能的稳定性和电池寿命。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
在二次电池的制作过程中,尤其是制作锂离子二次电池的过程中,需要对电解液进行处理。申请人注意到,在电解液的提取、化成的过程中,负压工装需要产生负压对电解液进行吸取,因此,负压的大小是影 响电解液吸取量的重要因素。而检测产生负压的负压工装的负压性能的检测工装的设计显得尤为重要。现有的检测工装通常在检测口上直接连上传感器,每个检测口均布置至少一个传感器。这种设计方式既不科学,也不经济,尤其是在芯片涨价大背景下的当下,会急剧提升检测工装的生产成本。因此,如何实现传感器的一对多复用就成了亟待解决的问题。
申请人为了解决上述问题,请参阅图1以及图2,提供了一种检测组件,包括,接口1、第一三通阀21、第二三通阀22、汇流管3以及传感器4。接口1的一端用于接入待测设备,接口1包括第一接口11、第二接口12。
第一三通阀21包括第一接入阀门211、第一通气阀门212和第一检测阀门213,第一接口11的另一端与第一接入阀门211连接,第一通气阀门212接大气,第一通气阀门212可开闭。
第二三通阀22包括第二接入阀门221、第二通气阀门222和第二检测阀门223,第二接口12的另一端与第二接入阀门221连接,第二通气阀门222接大气,第二通气阀门222可开闭。
第一检测阀门213接入汇流管3,第二检测阀门223接入汇流管3。汇流管3与传感器4的检测端连接。
接口1通常为中空的管路,可以与待测设备的负压吸嘴连接,当设备有多个待测的负压吸嘴时,可以设置多个对应的接口1。本实施例中,接口1至少包括第一接口11,第二接口12。还可以包括更多接口。第一接口11和第二接口12仅为示例展示与三通阀2的连接关系。
三通阀2指阀体有一个旁路的管路元件,通常设置为一进两出,三通阀2的各阀门可以设置为可独立地开闭。本实施例中的第一三通阀21的一进两出包括第一接入阀门211、第一通气阀门212和第一检测阀门213。其中第一接入阀门211接负压吸嘴时出气,第一检测阀门213进气。
本例中设置至少第二通气阀门222可开闭。三通阀2的材质可以选用金属、塑料等,阀门可以采用电磁阀等手段控制其开闭。
汇流管3是多进单出的管路元件,能够起到汇集流体和平衡缓冲压力的效果。汇流管3的材质可以选用铝、铁、钢、合金等材质制作。
传感器4通常为能够检测流体的传感装置,如流量计、压力传感器等,在检测到汇流管3的气流有所变化的时候,则能够给出响应信号。
流量计,现已广泛应用于石油天然气、石油化工、水处理、食品饮料、制药、能源、冶金、纸浆造纸和建筑材料等行业。又分为有差压式流量计、转子流量计、节流式流量计、细缝流量计、容积流量计、电磁流量计、超声波流量计等。按介质分类:液体流量计和气体流量计。将传感器4选用为流量计,则可以在汇流管3的气流有所变化的时候,则能够给出气流量变化的响应信号。
压力传感器,如气压传感器,用于测量气体的绝对压强的仪器,主要适用于与气体压强相关的物理实验,如气体定律等,也可以在生物和化学实验中测量干燥、无腐蚀性的气体压强。高精度气压传感器一般是利用MEMS技术在单晶硅片上加工出真空腔体和惠斯登电桥,惠斯登电桥桥臂两端出电压与施加的压力成正比,经过温度补偿和校准后具有体积小,精度高,响应速度快,不受温度变化影响的特点。输出方式一般为模拟电压输出和数字信号输出两种,其中数字信号输出方式由于和单片机连接方便,是目前应用的主流。将传感器4选用为压力传感器,则可以在汇流管3的气流有所变化的时候,则能够给出气压绝对值变化的响应信号。……
在本申请的实施例的技术方案中,可以通过第一接口11、第二接口12连入待测设备的不同气路。待测设备的气路正常状态下是能够产生负压的负压吸嘴,每个气路连接到接口1后均连接一个三通阀2,每个三通阀2均有一个接大气的阀门,接入接口1的阀门和接入检测设备的阀 门。接入检测设备的阀门通过汇流管3后连接到传感器4。
当需要对不同的气路进行检测时,控制阀门保持待测气路对应的三通阀2的接大气的阀门关闭,其他气路接大气的阀门打开。如果待测设备的气路能够产生负压,则三通阀2内气压就会降低,传感器4中就会有气流经过。这样就能测得待测设备的当前气路的气压是否正常。当需要切换检测的气路时,切换与检测气路对应的三通阀2的接大气的阀门关闭,则当切换后的气路能够正常工作时其对应的三通阀2的气压就会降低。
通过上述的检测组件,可以通过汇流管3集气,巧妙地实现了利用一个传感器4进行待测设备的气路流量检测的技术效果。
在本方案的一些实施例中,这里请看图1,第一接入阀门211和第一检测阀门213的通径相等。在工作的时候,三通阀2接大气的阀门关闭,则第一接入阀门211和第一检测阀门213工作,通过设计第一接入阀门211和第一检测阀门213的通径相等,则第一接入阀门211的气流大小等于第一检测阀门213的气流大小。
上述设计可以保证三通阀2内的气流稳定性,避免了气流进出流量不等造成的压力变化,保证检测数据的精确与稳定。
在本方案的另一些实施例中,请继续参照图1,汇流管3的通径为第一检测阀门213的通径的5倍以上。在实际的应用例中,可以将第一检测阀门213的直径设置为5mm,汇流管3的最大通径设置为25mm以上。第一检测阀门213的气流流入汇流管3后,流速降低,则扰动继续降低。在优选的实施例中,第一检测阀门213的直径约6mm,汇流管3的最大通径可以设置在60mm,即约10倍的第一检测阀门213的通径。更大的通径倍率能够更大程度地减少扰动,提高测量精度。通过将汇流管3的通径进行增大,避免了检测工装工作时多个通路气体汇流后的冲击,保证气体流动稳定性,减少汇流管3中的气体扰动。从而提高测量精度。
在本方案的一个进一步的实施例中,汇流管3包括汇流腔31,汇流腔31的通径为所述第一检测阀门213的通径的5倍以上。在实际的应用例中,可以将第一检测阀门213的直径设置为5mm,汇流管3的汇流腔31腔体部分设置为圆柱形,圆柱形的圆直径为25mm以上。汇流管3的其他管路,例如用于连接汇流腔31和检测端之间的管路,可以设置为与第一检测阀门213的直径相当即可。第一检测阀门213的气流流入汇流管3后,流速降低,则扰动继续降低。在优选的实施例中,第一检测阀门213的直径约6mm,汇流管3的汇流腔31腔体部分设置为圆柱形,圆柱形的圆直径为60mm,即约10倍的第一检测阀门213的通径。设置更大的通径倍率的汇流腔31能够更大程度地减少扰动,提高测量精度。
通过在汇流管3中专门设置一个大通径的汇流腔31,则其他汇流管3管路的通径尺寸设计要求就可以降低。上述方案能够减少多个通路气体汇流后的冲击,保证气体流动稳定性,减少汇流管3中的气体扰动。从而提高测量精度。
在本方案的其他一些实施例中,还可以设置包括多个接口1,这里请继续参阅图1,包括至少与接口1数量相同的三通阀2,其中三通阀2均分别包括接入阀门、通气阀门和检测阀门,各三通阀2的接入阀门用于接入与其对应的接口1、各三通阀2的通气阀门用于接入大气且可开闭,各三通阀2的检测阀门用于接入汇流管3。多个接口1、三通阀2的设置规律同上述的2个接口1、2个三通阀2的设置方式。接口1与待测设备的负压吸嘴连接,当设备有多个待测的负压吸嘴,可以设置多个对应的接口1。每个接口1的另一端对接相应的三通阀2的接入阀门,相应的三通阀2的通气阀门接大气,检测阀门均接入汇流管3,通过汇流腔31最终连接到传感器4。
多个接口1和多个三通阀2的工作模式也与两个接口1的工作模 式类似,多个接口1可以依次工作,当需要对不同的气路进行检测时,控制阀门保证待测气路对应的三通阀2的接大气的阀门关闭,其他气路接大气的阀门打开。如果待测设备的气路能够产生负压,则三通阀2内气压就会降低,流量计中就会有气流经过。这样就能测得待测设备的当前气路的气压是否正常。当需要切换检测的气路时,还是改成切换后的气路对应的三通阀2的接大气的阀门关闭,则当切换后的气路能够正常工作时其对应的三通阀2的气压就会降低。在通过设置多个接口1和多个三通阀2,能够使得检测组件能够同时对接更多的待测设备的负压口,提升检测的效率。
在本方案的另一些实施例中,这里请看图1及图3包括控制单元6,控制单元6用于控制各三通阀2的通气阀门的开闭。各三通阀2在通气阀门开启的情况下,可以直通大气,检测阀门无法工作。控制单元6可以协调各气路的工作顺序,例如控制单元6通过编程写好分时复用的程序控制不同的三通阀2的通气阀门的依次启动。在另一些实施例中,控制单元6还可以接收待检测设备的不同的负压吸嘴的启动信号,根据接收到的启动信号控制检测组件中对应的三通阀2的工作,如闭合该三通阀2的通气阀门,开启其他三通阀2的通气阀门。通过控制单元6控制各三通阀2的通气阀门的开闭,可以实现不同的检测阀门的工作状态的切换。实现多个气路检测的分时复用效果。
在本方案的另一个实施例中,请继续参见图1,还包括负压表5,负压表5与传感器4的检测端连接。负压表5又称为真空压力表,以大气压力为基准,用于测量小于大气压力的仪表。真空压力表适用测量无爆炸,不结晶,不凝固,对铜和铜合金无腐蚀作用的液体、气体的真空压力测量。广泛应用于气体输送,管道液体及密闭容器中测量无腐蚀性、无爆炸危险、无结晶体、不凝固体的各种液体、气体、蒸汽等介质的压力大 小,如各种工业自控环境,涉及石油管道、水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道送风、真空设备等众多行业。
通过使用负压表5连接到检测端,则汇流管3的气体还可以连接到负压表5检测负压。达到显示气路的负压数值的技术效果,根据控制模块切换对应的气路,能够进一步达到检测不同负压吸嘴的具体负压值的技术效果。
为了更好地搭载检测组件进行检测工作,在另一些实施例中,包括箱体7,箱体7内设置有上述任一实施例中的检测组件。这里的箱体7用于进行封装,有一定的形状,如长方体、正方体、圆柱体等等。某些实施例中,箱体7的内部可以设置有双气路/双三通阀2的检测组件,通过箱体7携带就可以同时检测2个待检测设备的负压吸嘴是否能够正常工作。箱体7还可以搭载三个以上气路和三个以上三通阀2的检测组件,通过箱体7携带就可以同时检测多个个待检测设备的负压吸嘴是否能够正常工作。
通过箱体7装载检测组件,能够将检测组件的各部件都相对箱体7固定,能够起到保护部件防止毁坏的技术效果,同时箱体7进行统一封装还能够方便携带。
在本方案的另一些实施例中,箱体7的箱体壁上还包括开口71、导气管,开口71通过导气管连接到接口1上。这里,开口71可以是箱体壁上的孔、洞。开口71在对外设置上主要用于对接待检测设备,例如对接待检测设备的负压吸嘴,开口71对内可以用于对接不同的接口1,例如通过导气管与检测组件的接口1连接。其他一些实施例中,导气管的一端连接在接口1上,另一端可以直接穿过开口71,联通到待测设备上,也可以仅仅是接到开口71上。
通过设置开口71和导气管,能够使得不同接口1的工作位点对应不同的开口71,在实际使用的时候,更方便用户的手动操作对接。开口71上可以连接与待测设备的不同接口1的连接管,将连接管按照对应关系接好,就能够依次进行待测设备的不同接口1的测量工作。通过上述方案便可以方便用户进行与待测设备的对接。开口71上还可以设置条码、编号等提示信息,用于提示用户防止对接错误。
在本方案的其他一些实施例中,请继续参阅图2,箱体7内设置有两组以上的检测组件。每组检测组件是多个接口1接多个三通阀2接同一个传感器4,从而起到节省传感器4的技术效果,最多同时一个传感器4可以接24个接口1和24个三通阀2。在同一个箱体7内,还可以设置2至3组的检测组件,则同时可以处理几十个接口1的检测任务,综上述,设计多组检测组件可以大大提升检测工装的检测效率。
根据本申请的一些实施例,请参阅图1至图3,本申请提供一种检测组件,包括至少两个接口1和两个三通阀2,三通阀2的接入阀门21连接接口1,三通阀2的通气阀门22接大气,通气阀门22还受到控制单元6的控制开闭,三通阀2的检测阀门23接汇流管3,汇流管3设置有一个大通径的汇流腔31,然后接入到传感器4和负压表5中,传感器4和负压表5与控制单元6通信连接,控制单元6还可以连接待检测设备,同步控制待检测设备和通气阀门22。还可以在检测组件外设置箱体7来构成便携的检测工装,箱体上设置有开口71用以对接待检测设备。以上设置的检测组件达到了传感器4一对多检测接口1的效果。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修 改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种检测组件,其特征在于,包括,
    接口,所述接口的一端用于接入待测设备,所述接口至少包括第一接口、第二接口,
    第一三通阀,所述第一三通阀包括第一接入阀门、第一通气阀门和第一检测阀门,所述第一接口的另一端与所述第一接入阀门连接,所述第一通气阀门接大气,所述第一通气阀门可开闭;
    第二三通阀,所述第二三通阀包括第二接入阀门、第二通气阀门和第二检测阀门,所述第二接口的另一端与所述第二接入阀门连接,所述第二通气阀门接大气,所述第二通气阀门可开闭;
    汇流管,所述第一检测阀门接入所述汇流管,所述第二检测阀门接入所述汇流管;
    传感器,所述汇流管与所述传感器的检测端连接。
  2. 根据权利要求1所述的检测组件,其特征在于,所述第一接入阀门和所述第一检测阀门的通径相等。
  3. 根据权利要求1或2所述的检测组件,其特征在于,所述汇流管的通径为所述第一检测阀门的通径的5倍以上。
  4. 根据权利要求3所述的检测组件,其特征在于,所述汇流管包括汇流腔,所述汇流腔的通径为所述第一检测阀门的通径的5倍以上。
  5. 根据权利要求1-4任一项所述的检测组件,其特征在于,包括多个所述接口,包括至少与所述接口数量相同的三通阀,其中所述三通阀均分别包括接入阀门、通气阀门和检测阀门,各所述三通阀的所述接入阀门用于接入与其对应的所述接口、各所述三通阀的所述通气阀门用于接入大气且可开闭,各所述三通阀的所述检测阀门用于接入所述汇流管。
  6. 根据权利要求1-5任一项所述的检测组件,其特征在于,包括控制单元,所述控制单元用于控制各三通阀的所述通气阀门的开闭。
  7. 根据权利要求1-6任一项所述的检测组件,其特征在于,还包括负压表,所述负压表与所述传感器的检测端连接。
  8. 一种检测工装,其特征在于,包括箱体,所述箱体内设置有如权利要求1-7任一项所述的检测组件。
  9. 根据权利要求8所述的检测工装,其特征在于,所述箱体的箱体壁上还包括开口、导气管,所述开口通过所述导气管连接到所述接口上。
  10. 根据权利要求8或9所述的检测工装,其特征在于,所述箱体内设置有两组以上的所述检测组件。
PCT/CN2022/100403 2021-09-24 2022-06-22 一种检测组件及检测工装 WO2023045448A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22871509.0A EP4227650A1 (en) 2021-09-24 2022-06-22 Measurement assembly and measurement tool
US18/342,746 US11946833B2 (en) 2021-09-24 2023-06-28 Test assembly and test tooling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122320528.5U CN215952668U (zh) 2021-09-24 2021-09-24 一种检测组件及检测工装
CN202122320528.5 2021-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,746 Continuation US11946833B2 (en) 2021-09-24 2023-06-28 Test assembly and test tooling

Publications (1)

Publication Number Publication Date
WO2023045448A1 true WO2023045448A1 (zh) 2023-03-30

Family

ID=80427611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100403 WO2023045448A1 (zh) 2021-09-24 2022-06-22 一种检测组件及检测工装

Country Status (4)

Country Link
US (1) US11946833B2 (zh)
EP (1) EP4227650A1 (zh)
CN (1) CN215952668U (zh)
WO (1) WO2023045448A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215952668U (zh) 2021-09-24 2022-03-04 宁德时代新能源科技股份有限公司 一种检测组件及检测工装

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559972A2 (en) * 1992-03-05 1993-09-15 ISCO, Inc. Apparatus and method for supercritical fluid extraction
US5722947A (en) * 1994-02-03 1998-03-03 Gambro Ab Apparatus for carrying out peritoneal dialyses
CN101975663A (zh) * 2010-10-20 2011-02-16 清华大学 燃料电池汽车的燃料消耗测评装置
CN203365330U (zh) * 2013-07-15 2013-12-25 浙江省海洋水产研究所 集成非水芯片电泳和过氧草酸酯类化学发光的微分析系统
CN209933632U (zh) * 2019-04-10 2020-01-14 台州欧思托气动机械科技有限公司 腹膜透析仪用的电磁阀组以及具有该阀组的腹膜透析仪
CN211235693U (zh) * 2019-12-17 2020-08-11 青岛众亚科技有限公司 色谱仪管路压力检测组件
CN211740293U (zh) * 2020-05-13 2020-10-23 北京中关村水木医疗科技有限公司 用于呼吸机的测试系统
CN213363969U (zh) * 2020-10-21 2021-06-04 丹东贝特自动化工程仪表有限公司 两种温度状态复合型临界流气体流量检测装置
CN215952668U (zh) * 2021-09-24 2022-03-04 宁德时代新能源科技股份有限公司 一种检测组件及检测工装

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380660A (zh) * 2020-05-11 2020-07-07 北京冶核技术发展有限责任公司 智能密封诊断装置
CN112345373A (zh) * 2020-11-19 2021-02-09 重庆华渝电气集团有限公司 一种呼吸袋检测系统及检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559972A2 (en) * 1992-03-05 1993-09-15 ISCO, Inc. Apparatus and method for supercritical fluid extraction
US5722947A (en) * 1994-02-03 1998-03-03 Gambro Ab Apparatus for carrying out peritoneal dialyses
CN101975663A (zh) * 2010-10-20 2011-02-16 清华大学 燃料电池汽车的燃料消耗测评装置
CN203365330U (zh) * 2013-07-15 2013-12-25 浙江省海洋水产研究所 集成非水芯片电泳和过氧草酸酯类化学发光的微分析系统
CN209933632U (zh) * 2019-04-10 2020-01-14 台州欧思托气动机械科技有限公司 腹膜透析仪用的电磁阀组以及具有该阀组的腹膜透析仪
CN211235693U (zh) * 2019-12-17 2020-08-11 青岛众亚科技有限公司 色谱仪管路压力检测组件
CN211740293U (zh) * 2020-05-13 2020-10-23 北京中关村水木医疗科技有限公司 用于呼吸机的测试系统
CN213363969U (zh) * 2020-10-21 2021-06-04 丹东贝特自动化工程仪表有限公司 两种温度状态复合型临界流气体流量检测装置
CN215952668U (zh) * 2021-09-24 2022-03-04 宁德时代新能源科技股份有限公司 一种检测组件及检测工装

Also Published As

Publication number Publication date
US11946833B2 (en) 2024-04-02
EP4227650A1 (en) 2023-08-16
CN215952668U (zh) 2022-03-04
US20230341297A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2023045448A1 (zh) 一种检测组件及检测工装
CN206362390U (zh) 流体流量测量装置及油气输送管道
CN203745051U (zh) 二位一通换向阀式pVTt法气体流量装置
CN201392329Y (zh) 绝缘油色谱分析系统
CN103499447B (zh) 用于涡轮发动机的零马赫数试验装置
CN114235321B (zh) 一种燃气舵和喷管一体化风洞测力实验装置
CN214378516U (zh) 一种燃料电池的氢气循环测试装置
CN103837215A (zh) 换向阀式pVTt法气体流量装置
CN208208885U (zh) 一种燃料电池电堆气密性检测装置
CN102087159B (zh) 双基准物的差压检漏方法
CN204101584U (zh) 风速风向传感装置
CN207366383U (zh) 催化单元的背压测试装置
CN102410969A (zh) 超导磁体液氦挥发率测量装置
CN207366057U (zh) 一种可模拟介质实际使用温度的气体流量计标准装置
CN206291942U (zh) 一种吹气式液位计
CN202676412U (zh) 切断阀漏率在线检测装置
CN206609894U (zh) 一种气体流速测量装置
CN202501959U (zh) 一种换热器内部泄露检测系统
CN212300767U (zh) 一种微漏测压装置
CN202216731U (zh) 超导磁体液氦挥发率测量装置
CN101635109B (zh) 一种开放式空气流动局部阻力测量教学实验装置
CN204612907U (zh) 一种飞机气动高空附件测试装置
CN210136149U (zh) 降低储油罐呼吸损耗的试验系统
CN202582616U (zh) 一体化智能威尔巴流量计
CN201184879Y (zh) 氢气综合测试仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022871509

Country of ref document: EP

Effective date: 20230509