WO2023045146A1 - 内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统 - Google Patents

内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统 Download PDF

Info

Publication number
WO2023045146A1
WO2023045146A1 PCT/CN2021/140052 CN2021140052W WO2023045146A1 WO 2023045146 A1 WO2023045146 A1 WO 2023045146A1 CN 2021140052 W CN2021140052 W CN 2021140052W WO 2023045146 A1 WO2023045146 A1 WO 2023045146A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
imaging
white light
beam splitter
sensor
Prior art date
Application number
PCT/CN2021/140052
Other languages
English (en)
French (fr)
Inventor
袁小文
樊睿
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2023045146A1 publication Critical patent/WO2023045146A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the invention relates to the technical field of medical devices, in particular to an endoscope imaging system, an endoscope camera head and an endoscope camera system.
  • the endoscopic imaging system injects fluorescent reagents into human tissue before surgery, and then emits the tissue in the human body through excitation light and white light.
  • the excitation light will excite the fluorescent reagent in human tissue to emit fluorescence. It is best to obtain the excited fluorescence and reflection
  • the white light synthesizes the imaging information of human tissue, and can simultaneously obtain the cleaning color image and the fluorescent image reflecting tumor information, lymphatic location and other information.
  • the quality of fluorescence imaging is average, whether it is resolution or signal-to-noise ratio, which is not conducive to the identification and positioning of morphology during surgery.
  • an endoscope imaging system including an endoscope camera, a beam splitter, a white light sensor and a fluorescence sensor;
  • the endoscope camera is used to acquire the fluorescence excited by the observed tissue and the reflected white light and excitation light, and the endoscope camera is also used to filter the excitation light and image the fluorescence and white light to the beam splitter;
  • the spectroscope is located on the optical path of the endoscopic camera imaging exit, the spectroscope has a spectroscopic film inclined relative to the imaging exit optical path, and the spectroscopic film has the characteristics of reflecting imaging white light and transmitting imaging fluorescence;
  • the white light sensor is located on the optical path of the imaging white light reflected by the spectroscopic mirror, and the white light sensor is used to obtain the imaging white light reflected by the spectroscopic mirror and generate a white light signal;
  • the fluorescence sensor is located on the optical path of the imaging fluorescence transmitted by the spectroscope, the fluorescence sensor is used to acquire the imaging fluorescence transmitted by the spectroscope and generate a fluorescence signal, and the white light signal and the fluorescence signal are used to synthesize the observed Tissue image.
  • the beam splitter includes a first beam splitter and a second beam splitter, and the beam splitter film is located between the first beam splitter and the second beam splitter.
  • both the first beam splitter and the second beam splitter are prism structures.
  • a first filter is provided on the optical path between the beam splitter and the fluorescence sensor, and the first filter is used to filter out the white light transmitted by the beam splitter.
  • a second filter is provided on the optical path between the beam splitter and the white light sensor, and the second filter is used to filter out the fluorescence reflected by the beam splitter.
  • the sensitivity and/or pixel size of the white light sensor and the fluorescent sensor are different.
  • the fluorescence sensor is an infrared enhanced sensor.
  • an infrared adapter lens is provided on the optical path between the spectroscope and the fluorescence sensor, and the infrared adapter lens is used to obtain the imaging fluorescence transmitted by the spectroscope, and to convert the acquired imaging After the fluorescence is adapted, it is emitted to the fluorescence sensor.
  • the endoscope camera head includes an imaging lens and an excitation light filter
  • the imaging lens is used to acquire white light and emit imaging white light, and acquire fluorescence and emit imaging fluorescence
  • the excitation light filter Used to filter out excitation light
  • the excitation light filter is located on the optical path between the imaging lens and the beam splitter.
  • an endoscope imaging system including an imaging mirror group, a beam splitter, a white light sensor, and a fluorescence sensor;
  • the imaging mirror group is used to obtain the fluorescence excited by the observed tissue and the reflected white light and excitation light, and the imaging mirror group is also used to filter the excitation light and image the fluorescence and white light and emit them to the beam splitter;
  • the beam splitter is located on the optical path of the imaging mirror group, and the beam splitter is used for reflecting imaging white light and transmitting imaging fluorescence;
  • the white light sensor is located on the optical path of the imaging white light reflected by the spectroscopic mirror, and the white light sensor is used to obtain the imaging white light reflected by the spectroscopic mirror and generate a white light signal;
  • the fluorescence sensor is located on the optical path of the imaging fluorescence transmitted by the spectroscope, the fluorescence sensor is used to acquire the imaging fluorescence transmitted by the spectroscope and generate a fluorescence signal, and the white light signal and the fluorescence signal are used to synthesize the observed Tissue image.
  • the sensitivity and/or pixel size of the white light sensor and the fluorescent sensor are different.
  • the fluorescence sensor is an infrared enhanced sensor.
  • an infrared adapter lens is provided on the optical path between the spectroscope and the fluorescence sensor, and the infrared adapter lens is used to obtain the imaging fluorescence transmitted by the spectroscope, and to convert the acquired imaging Fluorescence is scaled and exits to the fluorescence sensor.
  • the imaging lens group includes an imaging lens and an excitation light filter
  • the imaging lens is used to acquire white light and emit imaging white light, and acquire fluorescence and emit imaging fluorescence
  • the excitation light filter is used to to filter out the excitation light
  • the excitation light filter is located on the optical path between the imaging lens and the beam splitter.
  • a first optical filter is provided on the optical path between the spectroscope and the fluorescence sensor.
  • a second filter is provided on the optical path between the beam splitter and the white light sensor.
  • the beam splitter is a dichroic right-angle beam splitter prism.
  • an endoscope imaging system including an endoscope camera, a beam splitter, a white light sensor and a fluorescence sensor;
  • the endoscopic camera head, the beam splitter and the fluorescence sensor are sequentially arranged on the first linear optical path, the spectroscopic mirror and the white light sensor are arranged on the second linear optical path, and the first linear optical path is connected to the first linear optical path.
  • the second linear optical paths intersect each other, and the beam splitter is located at the intersection position of the first linear optical paths and the second linear optical paths;
  • the endoscope camera is used to acquire the fluorescence excited by the observed tissue and the reflected white light and excitation light, and the endoscope camera is also used to filter the excitation light and image the fluorescence and white light along the first straight line
  • the line light path exits to the beam splitter;
  • the beam splitter is used to transmit the fluorescence emitted by the endoscope camera to the fluorescence sensor along the first linear optical path, and is used to transmit the white light emitted by the endoscope camera along the first linear optical path.
  • Two linear light paths are reflected to the white light sensor;
  • the white light sensor is used to acquire the white light reflected by the beam splitter and generate a white light signal
  • the fluorescence sensor is used to acquire the fluorescence transmitted by the spectroscope and generate a fluorescence signal, and the white light signal and the fluorescence signal are used to synthesize an image of the observed tissue.
  • first linear optical path and the second linear optical path are perpendicular to each other.
  • the beam splitter has a beam splitting surface inclined at 45° relative to the first linear optical path, and the beam splitting surface is used for transmitting fluorescent light and reflecting white light.
  • the sensitivity and/or pixel size of the white light sensor and the fluorescent sensor are different.
  • the fluorescence sensor is an infrared enhanced sensor.
  • an infrared adapter lens is provided on the first linear optical path between the beam splitter and the fluorescence sensor, and the infrared adapter lens is used to acquire the imaging fluorescence transmitted by the beam splitter , and output the acquired imaging fluorescence to the fluorescence sensor after adaptive processing.
  • the endoscope camera head includes an imaging lens and an excitation light filter
  • the imaging lens is used to acquire white light and emit imaging white light, and acquire fluorescence and emit imaging fluorescence
  • the excitation light filter Used to filter out excitation light
  • the excitation light filter is located on the first linear optical path between the imaging lens and the beam splitter.
  • a first optical filter is provided on the first linear optical path between the spectroscope and the fluorescence sensor, and the first filter is used to filter out the light transmitted by the spectroscope. white light.
  • a second optical filter is provided on the second linear optical path between the spectroscope and the white light sensor, and the second filter is used to filter out the light reflected by the spectroscope. fluorescence.
  • an endoscope camera head including a casing and the above-mentioned endoscope imaging system, and the endoscope imaging system is installed in the casing.
  • a processor is provided in the housing, the processor is connected to the white light sensor and the fluorescence sensor, and the processor is used to obtain the white light signal and the fluorescence signal, and convert the white light The signal is synthesized with the fluorescent signal to obtain an image signal of the observed tissue.
  • an endoscope camera system which includes a light source, a light guide, an endoscope, a cable, a camera host, and the above-mentioned endoscope camera head, and the light source communicates with the endoscope through the light guide
  • the endoscope is connected, one end of the endoscope camera is connected to the endoscope, and the other end of the endoscope camera is connected to the camera host through the cable;
  • the endoscope includes a lighting An optical path and an imaging optical path, the illumination optical path is connected to the light guide, and the imaging optical path is connected to the endoscope camera.
  • the light source includes a white light source and an excitation light source
  • the white light source is used to emit white light to the observed tissue
  • the excitation light source is used to emit excitation light to the observed tissue, so The excitation light is used to excite the fluorescent reagent on the observed tissue to generate fluorescence.
  • the camera host has a processor, the processor is connected to the camera through the cable, and the processor is used to acquire the image signal output by the camera, and perform processing on the image signal processed to output at least an image of the observed tissue.
  • the imaging white light imaged by the imaging mirror group is reflected to the white light sensor through the beam splitter, and the imaging mirror group is imaged.
  • the imaging fluorescence is transmitted to the fluorescence sensor, and white light and fluorescence are separated and processed independently for optical imaging, which can improve the freedom of image sensor selection, improve the signal-to-noise ratio of fluorescence, and improve the quality of fluorescence imaging, which is beneficial to the morphology of surgery. Identify and locate.
  • Fig. 1 is a schematic structural view of an endoscope imaging system in an embodiment
  • Fig. 2 is a schematic structural diagram of an endoscope imaging system in an embodiment
  • Fig. 3 is a schematic diagram of an optical path structure of an endoscope imaging system in an embodiment
  • Fig. 4 is a white light image MTF of an endoscope imaging system in an embodiment
  • Fig. 5 is an image MTF of an endoscope imaging system in an embodiment
  • Fig. 6 is a schematic structural diagram of an endoscopic imaging system in an embodiment
  • Fig. 7 is a schematic structural diagram of an endoscope camera in an embodiment
  • Fig. 8 is a schematic structural diagram of an endoscope camera in an embodiment
  • Fig. 9 is a schematic structural view of an endoscope camera system in an embodiment
  • 1-imaging lens group 11-imaging lens, 12-excitation light filter, 2-beam splitter, 21-first beam splitter, 22-second beam splitter, 23-beam splitting film, 3-white light sensor , 4-fluorescence sensor, 5-infrared adapter lens, 6-first filter, 7-second filter, 8-housing, 9-processor, 10-light source, 20-light guide, 30- Endoscope, 40-endoscope camera, 50-camera host, 60-display, 71-cable, 72-video connection line, 100-position to be observed, 1000-endoscope camera system.
  • the endoscopic imaging system synthesizes fluorescent images through white light and fluorescence to obtain more and more accurate lesion information.
  • the white light is reflected by the observed tissue, and the fluorescence is obtained by laser excitation of the fluorescent reagent in the observed tissue.
  • the fluorescence is weaker than the white light, so increasing the signal-to-noise ratio of the fluorescence can improve the imaging quality.
  • the embodiment of this application proposes a variety of improvement schemes to improve the quality of fluorescence imaging.
  • One of them is to use white light and fluorescence to separate and perform optical imaging processing independently, which can improve the freedom of choice of the image sensor, and is conducive to improving the signal-to-noise ratio of fluorescence.
  • the second is to choose an infrared-enhanced fluorescence sensor, which can acquire imaging fluorescence more sensitively, thereby improving the signal-to-noise ratio of fluorescence imaging, thereby improving the quality of fluorescence imaging;
  • third In order to set the infrared adapter lens on the optical path at the front end of the fluorescence sensor, so that the size of the imaging fluorescence can be adapted to the size of the fluorescence sensor, so as to fully utilize the pixels of the fluorescence sensor and ensure the same field of view as the white light optical path.
  • improve the quality of fluorescence imaging Fourth, because the transmission efficiency of the spectroscopic film is better than reflection, placing the fluorescence in the transmission light path can minimize the loss of fluorescence in the light path and improve the signal strength of the fluorescence image.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • the front end of the light path is the place where the light travels first, and the back end of the light path is the place where the light travels later.
  • the white light in this article can also be called visible light or natural light.
  • An embodiment provides an endoscope imaging system, the endoscope imaging system is used to be installed inside the endoscope camera head, and the endoscope imaging system is used to obtain the white light emitted by the observed tissue through the endoscope and excite Light and the excited fluorescent light, the three kinds of light are mixed together to form a mixed light.
  • the fluorescence sensor is arranged on the light path transmitted by the spectroscope, so as to reduce the loss in the process of fluorescence propagation and improve the signal-to-noise ratio of fluorescence imaging.
  • the endoscopic imaging system of the present embodiment comprises imaging mirror group 1, beam splitter 2, white light sensor 3 and fluorescence sensor 4, wherein, imaging mirror group 1, beam splitter 2 and fluorescence sensor 4 are located in a straight line successively On the optical path, the linear optical path is the first linear optical path, the imaging mirror group 1 is located at the forefront of the optical path, and the fluorescence sensor 4 is located at the rear end of the optical path.
  • the beam splitter 2 and the white light sensor 3 are located on another linear optical path, which is the second linear optical path, wherein the first linear optical path and the second linear optical path cross each other, and the beam splitter 2 is located on the first linear optical path and the second linear optical path.
  • the beam splitter 2 is located on the first linear light path and the second straight light path at the same time, and the beam splitter 2 plays the role of light splitting to divide one light path into two light paths.
  • the beamsplitter 2 is used to transmit fluorescence and reflect white light
  • the fluorescence sensor 4 is located on the first linear optical path transmitted by the beamsplitter 2
  • the white light sensor 3 is located on the second linear optical path reflected by the beamsplitter 2 .
  • the first linear optical path and the second linear optical path are perpendicular to each other, and the white light sensor 3 and the fluorescent sensor 4 respectively face two mutually perpendicular outgoing surfaces of the beam splitter 2 .
  • the imaging mirror group 1 is installed at the position closest to the endoscope, and the imaging mirror group 1 is located on the outgoing light path (the first linear light path) of the endoscope.
  • Imaging lens group 1 comprises imaging lens 11 and excitation light filter 12, and imaging lens 11 comprises several optical lenses, comprises double cemented positive lens, negative lens, positive lens and double cemented positive lens as imaging lens 11, and imaging lens 11 uses It is used to convert the acquired white light into imaging white light, and image the acquired fluorescence into imaging fluorescence, and also image the laser light into imaging laser.
  • the excitation light filter 12 is used for filtering laser light and transmitting white light and fluorescence.
  • the excitation light filter 12 is installed on the imaging optical path of the imaging lens 11 , that is, the excitation light filter 12 is located at the rear end of the optical path of the imaging lens 11 .
  • the excitation light filter 12 emits the imaging white light and imaging fluorescence after filtering the laser light to the beam splitter 2 .
  • the excitation light filter 12 is arranged on the rear end of the optical path of the imaging lens 11, so that the imaging lens 11 is located between the endoscope tail window and the excitation light filter 12, so that the endoscope tail window and the excitation light filter 12 can be avoided.
  • the secondary reflection ghost generated between them is beneficial to improve the imaging quality.
  • the imaging lens 11 and the excitation light filter 12 can be installed separately as two components, or can be set as an integrated structure as one component.
  • the beam splitter 2 is a dichroic beam splitter.
  • the dichroic beam splitter is specifically a dichroic beam splitting rectangular prism.
  • the dichroic beam splitter may also be other types of dichroic beam splitting prisms or dichroic plane mirrors.
  • the beam splitter 2 has a transmitted light path on the same straight line as the incident light path, and a reflected light path perpendicular to the incident light path.
  • the spectroscope 2 is coated so that the spectroscope 2 can transmit the imaging fluorescence, and the imaging fluorescence is emitted from the transmission light path, and can reflect the imaging white light, and the imaging white light is emitted from the reflection light path.
  • the spectroscope 2 does not rule out the existence of a small amount of transmitted white light and reflected fluorescence.
  • Beam splitter 2 comprises the first beam splitter 21, the second beam splitter 22 and the dichroic film 23, the first beam splitter 21 and the second beam splitter 22 are isosceles rectangular prisms, the slope of the first beam splitter 21 and the second beam splitter 22
  • the inclined planes are bonded and fixed together, and the dichroic film 23 is arranged between the inclined plane of the first dichroic mirror 21 and the inclined plane of the second dichroic mirror 22 by means of coating etc.
  • the splitting planes are inclined at 45° respectively.
  • the spectroscopic film 23 has the characteristics of transmitting fluorescent light and reflecting white light.
  • the spectroscopic film 23 is used to transmit the fluorescent light to the fluorescent sensor 4 along the first linear optical path, and is also used to reflect the white light to the white light sensor 3 along the second linear optical path.
  • the dichroic mirror 2 can also be a plane lens, and the dichroic film 23 is arranged on the plane lens.
  • the flat lens is installed at an angle of 45° relative to the incident light axis, which can also achieve light splitting.
  • the method of transmitting fluorescence and reflecting white light is used for light splitting, so that more fluorescence can be obtained, and the degree of freedom of image sensor selection can be improved, which is conducive to improving the signal-to-noise ratio of fluorescence, thereby improving the efficiency of fluorescence imaging. quality.
  • the white light sensor 3 is installed on the light path reflected by the beam splitter 2, and the white light sensor 3 is used to acquire the imaging white light reflected by the beam splitter 2, and convert the acquired imaging white light into a white light signal.
  • the fluorescence sensor 4 is installed on the optical path transmitted by the spectroscope 2, and the fluorescence sensor 4 is used to acquire the imaging fluorescence transmitted by the spectroscope 2, and convert the acquired imaging fluorescence into a fluorescence signal.
  • the white light sensor 3 and the fluorescence sensor 4 are respectively used to transmit the white light signal and the fluorescence signal to the processor, and the processor synthesizes and superimposes the white light signal and the fluorescence signal.
  • the light-sensing size of the white light sensor 3 and the light-sensing size of the fluorescent sensor 4 are adapted to each other so as to have the same field of view on the basis of fully utilizing the pixels.
  • the parameters such as the sensitivity and pixel size of the white light sensor 3 and the fluorescence sensor 4 can be partially or completely different, that is, in this embodiment, using the spectroscopic mode of transmitted fluorescence and reflected white light can improve the selection of the white light sensor 3 and the fluorescence sensor 4. Degree of freedom, the same field of view can be obtained without the same parameters, and higher images can be obtained.
  • the white light sensor 3 can also be provided with a white light adaptation lens, the white light sensor 3 acquires white light through the white light adaptation lens, and the white light adaptation lens is used to adjust the sensitivity parameters of the white light sensor 3 such as the photosensitive size and field of view range, In order to make the white light image acquired by the white light sensor 3 and the fluorescence image acquired by the fluorescence sensor 4 match each other.
  • the beam splitter reflects the imaging white light imaged by the imaging mirror group to the white light sensor, and transmits the imaging fluorescence imaged by the imaging mirror group to the fluorescence sensor, and uses white light and fluorescence to separate and perform optical imaging independently Processing can improve the freedom of image sensor selection.
  • fluorescence is weaker than white light
  • the fluorescent sensor should choose a sensor that is more sensitive than white light sensor, which will help improve the signal-to-noise ratio of fluorescence, improve the quality of fluorescence imaging, and facilitate the identification of morphology during surgery. and positioning.
  • an endoscope imaging system is provided, and the fluorescence sensor 4 is selected as the infrared enhanced sensor in the endoscope imaging system on the basis of the above embodiments.
  • Fluorescence sensor 4 uses an infrared enhanced sensor (existing mature components) to improve the sensitivity to fluorescence, thereby improving the signal-to-noise ratio of fluorescence imaging and improving the quality of fluorescence imaging.
  • the infrared enhanced sensor can obtain a fluorescent imaging signal with sufficient signal-to-noise ratio, and the selection of the fluorescent sensor 4 is not limited by the white light sensor 3 .
  • an endoscope imaging system is provided.
  • the endoscope imaging system adds an infrared adapter lens, and the infrared adapter lens can adapt the size of the fluorescent light to be imaged. Sensor 4 dimensions.
  • the endoscope imaging system of this embodiment includes an imaging lens group 1 , a beam splitter 2 , a white light sensor 3 , a fluorescence sensor 4 and an infrared adapter lens 5 .
  • the positional relationship of the imaging mirror group 1 , the beam splitter 2 , the white light sensor 3 and the fluorescence sensor 4 is the same as that of the above embodiment.
  • the imaging mirror group 1, the beam splitter 2 and the fluorescence sensor 4 are sequentially located on a straight optical path, the imaging mirror group 1 is located at the forefront of the optical path, and the fluorescence sensor 4 is located at the rear end of the optical path.
  • the beam splitter 2 is used to transmit fluorescence and reflect white light (visible light), the fluorescence sensor 4 is located on the optical path transmitted by the beam splitter 2, and the white light sensor 3 is located on the optical path reflected by the beam splitter 2.
  • the infrared adapter lens 5 is installed on the optical path between the beam splitter 2 and the fluorescence sensor 4 , that is, the infrared adapter lens 5 is installed on the optical path transmitted by the beam splitter 2 .
  • the infrared adapter lens 5 includes several optical lenses, such as a convex-concave lens and a doublet lens.
  • the infrared adapter lens 5 is used to acquire the imaging fluorescence air-permeable from the spectroscope 2 , scale the acquired imaging fluorescence to a size suitable for the photosensitive size of the fluorescence sensor 4 , and emit the scaled imaging fluorescence to the fluorescence sensor 4 .
  • the infrared adaptation lens 5 is used for adapting red light and white light, and the adaptation includes enlarging or reducing, and filtering out light of a specific waveband. Whether the infrared adapter lens 5 reduces the size of the imaging fluorescence or enlarges the size of the imaging fluorescence is based on the size ratio of the photosensitive size of the fluorescence sensor 4 to the size of the imaging fluorescence.
  • the infrared adapter lens 5 is selected as a lens that reduces the imaging size; if the photosensitive size of the fluorescence sensor 4 is greater than the size of the imaging fluorescence, the infrared adapter lens 5 is selected to enlarge the imaging size lenses.
  • the infrared adapter lens 5 uses a positive lens and a combined lens of a cemented positive lens to reduce the fluorescence imaging.
  • an infrared adapter lens 5 is added at the optical front end of the fluorescence sensor 4, so that the fluorescence sensor 4 can fully utilize the pixels of the fluorescence sensor while ensuring the same field of view as the imaging white light, thereby improving
  • the signal-to-noise ratio of fluorescence imaging improves the quality of fluorescence imaging.
  • an endoscope imaging system is provided.
  • the endoscope imaging system adds an infrared adapter lens 5, and the infrared adapter lens 5 is used to adapt and process fluorescence and white light.
  • the adaptation processing includes enlarging or reducing, and filtering out the light of a specific wavelength band, so that the adapted light is beneficial to improve the imaging quality; and the fluorescence sensor 4 is defined as an infrared enhanced sensor.
  • the infrared enhanced sensor is used in conjunction with the infrared adapter lens 5, which can maximize the signal-to-noise ratio of the fluorescence imaging and improve the imaging quality.
  • FIG. 4 shows the MTF (modulation transfer function) of the white light image of this embodiment
  • FIG. 5 shows the MTF (modulation transfer function) of the fluorescence image of this embodiment.
  • Figures 4 and 5 show that the aberration correction of this embodiment is close to the diffraction limit, the spatial response corresponding to the contrast of 0.5 has reached 100 lp/mm, and the optical resolution of fluorescence has reached the same level as that of white light. It can be seen that this embodiment The example endoscopic imaging system can obtain clearer fluorescence images.
  • an endoscope imaging system is provided.
  • the endoscope imaging system adds a first filter 6 and a second filter 7 on the basis of the above embodiments.
  • the first optical filter 6 is arranged between the beam splitter 2 and the fluorescence sensor 4, if the infrared adapter lens 5 is also arranged between the beam splitter 2 and the fluorescence sensor 4, then the first optical filter 6 is set Between the infrared adapter lens 5 and the fluorescence sensor 4, the first filter 6 is used to filter out light in other wavelength bands, reducing the interference of other light on the fluorescence imaging, thereby improving the quality of fluorescence imaging.
  • the first optical filter 6 can also be arranged between the beam splitter 2 and the infrared adapter lens 5, and can also play the same role.
  • the second filter 7 is arranged between the beam splitter 2 and the white light sensor 3 , and the second filter 7 is used to filter out light in other wavelength bands, reducing the interference of other light on white light imaging, thereby improving the quality of white light imaging.
  • only one of the first optical filter 6 and the second optical filter 7 is provided, which can also improve a certain imaging quality.
  • an endoscope camera head is provided, and the endoscope camera head includes a housing and the endoscope imaging system of any one of the above embodiments.
  • the endoscope imaging system is installed in the imaging outer housing 8, the housing 8 has a front-end docking port and a rear-end docking port, the front-end docking port is used for docking with the endoscope, so that the endoscope can be connected with the endoscope
  • the optical path of the endoscope imaging system is docked, and the rear end interface is used for docking with the line, so that the endoscope imaging system can transmit the obtained white light signal and fluorescent signal to the camera host.
  • the endoscope camera head of this embodiment adopts the endoscope imaging system of the above embodiment, so that the endoscope camera head has the effect of improving image quality.
  • a processor 9 is also provided in the housing 8, and the processor 9 is respectively connected to the white light sensor 3 and the fluorescence sensor 4 for signals.
  • the processor 9 is used to obtain the white light signal generated by the white light sensor 3.
  • the white light signal and the fluorescent signal are synthesized to obtain an image signal of the observed tissue.
  • the white light signal and the fluorescence signal are combined and processed before being transmitted to the camera host, which can share the tasks of the processor in the camera body and form distributed processing, which can avoid the loss of white light signal and fluorescence signal in the process of propagation.
  • an endoscope camera system 1000 is provided in an embodiment, and the endoscope camera system 1000 includes a light source 10, a light guide 20, an endoscope 30, an endoscope camera 40, a cable 71, a camera Host 50, display 60 and video connection line 72.
  • the endoscope camera head 40 is the endoscope camera head in the above-mentioned embodiment, and the endoscope 30 adopts the cooperation of a homogenizer and an ultra-wide-angle optical fiber in the illumination light path, so as to improve the luminous flux and make the illuminance distribution in the observation field uniform, thereby Improve the contrast and signal-to-noise ratio of the endoscope image, thereby improving the imaging quality;
  • the camera host 50 is connected to the endoscope camera 40 through a cable 71 , and the white light signal and the fluorescent signal generated by the endoscope camera 40 are transmitted to the camera host 50 through the cable 71 for processing.
  • the cable 71 can be an optical communication cable, such as an optical fiber; the endoscope camera 40 converts the image signal (electrical signal) into an optical signal, which is transmitted to the camera host 50 by the cable 71, and the camera host 50 Then convert the optical signal into an electrical signal (image signal).
  • the camera host 50 is connected to the display 60 through a video connection line 72 for sending image signals to the display 60 for display.
  • the endoscope camera system 1000 may include more or more than those shown in FIG. Fewer components, or a combination of some components, or different components, for example, the endoscope camera system 1000 may also include a dilator, a smoke control device, an input and output device, a network access device, and the like.
  • the light source 10 is used for providing an illumination source to the site to be observed 100 and exciting fluorescence imaging.
  • the light source 10 includes a white light source (visible light source) and an excitation light source (laser illumination light source, such as near-infrared light) corresponding to the fluorescent reagent.
  • a processor is provided in the camera main unit 50, and the processor is connected to the endoscopic camera 40 through a cable 71.
  • the processor acquires the image signal output by the camera, and processes the image signal to output at least the observed tissue Image.
  • the acquired image signal may be a separate white light signal and fluorescent signal, or an image signal obtained by combining the white light signal and the fluorescent signal.
  • the endoscopic camera system 1000 of this embodiment adopts the endoscopic camera head 40 of the above-mentioned embodiment, and can obtain an image with a higher signal-to-noise ratio, which further facilitates morphological identification and positioning during surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)

Abstract

一种内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统,内窥镜成像系统包括成像镜组、分光镜、白光传感器和荧光传感器,白光传感器位于分光镜反射成像白光的光路上,白光传感器用于获取分光镜反射的成像白光并生成白光信号;荧光传感器位于分光镜透射成像荧光的光路上,荧光传感器用于获取分光镜透射的成像荧光并生成荧光信号,白光信号和荧光信号用于合成被观察组织的图像。内窥镜成像系统中采用白光和荧光分开并独立做光学成像处理,可以提高图像传感器的选择自由度,有利于提高荧光的信噪比,进而提高荧光成像质量,利于手术中形态学的辨识和定位。

Description

内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统 技术领域
本发明涉及医疗器械技术领域,具体涉及一种内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统。
背景技术
内窥镜成像系统,通过术前注射荧光试剂到人体组织内,再通过激发光和白光出射人体内的组织,激发光将激发人体组织内的荧光试剂发出荧光,最好获取激发的荧光和反射的白光合成人体组织的成像信息,能够同时获得清洗色彩图像和反应肿瘤信息、淋巴位置等信息的荧光图像。
但目前的产品中,荧光成像的质量一般,不论是分辨率还是信噪比,都不利于手术中形态学的辨识和定位。
技术问题 技术解决方案
一种实施例中,提供一种内窥镜成像系统,包括内窥镜摄像头、分光镜、白光传感器和荧光传感器;
所述内窥镜摄像头用于获取被观察组织激发的荧光及反射的白光和激发光,所述内窥镜摄像头还用于滤除激发光并将荧光和白光成像后出射至所述分光镜;
所述分光镜位于所述内窥镜摄像头成像出射的光路上,所述分光镜具有相对所述成像出射的光路倾斜的分光膜,所述分光膜具有反射成像白光和透射成像荧光的特性;
所述白光传感器位于所述分光镜反射成像白光的光路上,所述白光传感器用于获取所述分光镜反射的成像白光并生成白光信号;
所述荧光传感器位于所述分光镜透射成像荧光的光路上,所述荧光传感器用于获取所述分光镜透射的成像荧光并生成荧光信号,所述白光信号和所述荧光信号用于合成被观察组织的图像。
一种实施例中,所述分光镜包括第一分光镜和第二分光镜,所述分光膜位于所述第一分光镜和所述第二分光镜之间。
一种实施例中,所述第一分光镜和第二分光镜均为棱镜结构。
一种实施例中,所述分光镜和所述荧光传感器之间的光路上设有第一滤光片,所述第一滤光片用于滤除所述分光镜透射的白光。
一种实施例中,所述分光镜和所述白光传感器之间的光路上设有第二滤光片,所述第二滤光片用于滤除所述分光镜反射的荧光。
一种实施例中,所述白光传感器与所述荧光传感器的灵敏度和/或像素大小不同。
一种实施例中,所述荧光传感器为红外增强传感器。
一种实施例中,所述分光镜和所述荧光传感器之间的光路上设有红外适配镜头,所述红外适配镜头用于获取所述分光镜透射的成像荧光,及将获取的成像荧光适配处理后出射至所述荧光传感器。
一种实施例中,所述内窥镜摄像头包括成像镜头和激发光滤光片,所述成像镜头用于获取白光并出射成像白光,以及获取荧光并出射成像荧光,所述激发光滤光片用于滤除激发光。
一种实施例中,所述激发光滤光片位于所述成像镜头和所述分光镜之间的光路上。
一种实施例中,提供一种内窥镜成像系统,包括成像镜组、分光镜、白光传感器和荧光传感器;
所述成像镜组用于获取被观察组织激发的荧光及反射的白光和激发光,所述成像镜组还用于滤除激发光并将荧光和白光成像后出射至所述分光镜;
所述分光镜位于所述成像镜组成像出射的光路上,所述分光镜用于反射成像白光和透射成像荧光;
所述白光传感器位于所述分光镜反射成像白光的光路上,所述白光传感器用于获取所述分光镜反射的成像白光并生成白光信号;
所述荧光传感器位于所述分光镜透射成像荧光的光路上,所述荧光传感器用于获取所述分光镜透射的成像荧光并生成荧光信号,所述白光信号和所述荧光信号用于合成被观察组织的图像。
一种实施例中,所述白光传感器与所述荧光传感器的灵敏度和/或像素大小不同。
一种实施例中,所述荧光传感器为红外增强传感器。
一种实施例中,所述分光镜和所述荧光传感器之间的光路上设有红外适配镜头,所述红外适配镜头用于获取所述分光镜透射的成像荧光,及将获取的成像荧光缩放后出射至所述荧光传感器。
一种实施例中,所述成像镜组包括成像镜头和激发光滤光片,所述成像镜头用于获取白光并出射成像白光,以及获取荧光并出射成像荧光,所述激发光滤光片用于滤除激发光。
一种实施例中,所述激发光滤光片位于所述成像镜头和所述分光镜之间的光路上。
一种实施例中,所述分光镜和所述荧光传感器之间的光路上设有第一滤光片。
一种实施例中,所述分光镜和所述白光传感器之间的光路上设有第二滤光片。
一种实施例中,所述分光镜为二向直角分光棱镜。
一种实施例中,提供一种内窥镜成像系统,包括内窥镜摄像头、分光镜、白光传感器和荧光传感器;
所述内窥镜摄像头、所述分光镜和荧光传感器依次设置在第一直线光路上,所述分光镜和所述白光传感器设置在第二直线光路上,所述第一直线光路与所述第二直线光路相互交叉,所述分光镜位于所述第一直线光路和所述第二直线光路交叉位置处;
所述内窥镜摄像头用于获取被观察组织激发的荧光及反射的白光和激发光,所述内窥镜摄像头还用于滤除激发光并将荧光和白光成像后沿着所述第一直线光路出射至所述分光镜;
所述分光镜用于将所述内窥镜摄像头出射的荧光沿着所述第一直线光路透射至所述荧光传感器,及用于将所述内窥镜摄像头出射的白光沿着所述第二直线光路反射至所述白光传感器;
所述白光传感器用于获取所述分光镜反射的白光并生成白光信号;
所述荧光传感器用于获取所述分光镜透射的荧光并生成荧光信号,所述白光信号和所述荧光信号用于合成被观察组织的图像。
一种实施例中,所述第一直线光路和所述第二直线光路相互垂直。
一种实施例中,所述分光镜具有相对所述第一直线光路倾斜45°的分光面,所述分光面用于透射荧光和反射白光。
一种实施例中,所述白光传感器与所述荧光传感器的灵敏度和/或像素大小不同。
一种实施例中,所述荧光传感器为红外增强传感器。
一种实施例中,所述分光镜和所述荧光传感器之间的所述第一直线光路上设有红外适配镜头,所述红外适配镜头用于获取所述分光镜透射的成像荧光,及将获取的成像荧光适配处理后出射至所述荧光传感器。
一种实施例中,所述内窥镜摄像头包括成像镜头和激发光滤光片,所述成像镜头用于获取白光并出射成像白光,以及获取荧光并出射成像荧光,所述激发光滤光片用于滤除激发光。
一种实施例中,所述激发光滤光片位于所述成像镜头和所述分光镜之间的所述第一直线光路上。
一种实施例中,所述分光镜和所述荧光传感器之间的所述第一直线光路上设有第一滤光片,所述第一滤光片用于滤除所述分光镜透射的白光。
一种实施例中,所述分光镜和所述白光传感器之间的所述第二直线光路上设有第二滤光片,所述第二滤光片用于滤除所述分光镜反射的荧光。
一种实施例中,提供了一种内窥镜摄像头,包括壳体和上述的内窥镜成像系统,所述内窥镜成像系统安装在所述壳体内。
一种实施例中,所述壳体内设有处理器,所述处理器与所述白光传感器和荧光传感器连接,所述处理器用于获取所述白光信号和所述荧光信号,并将所述白光信号和所述荧光信号合成得到被观察组织的图像信号。
一种实施例中,提供了一种内窥镜摄像系统,所述包括光源、导光束、内窥镜、线缆、摄像主机和上述内窥镜摄像头,所述光源通过所述导光束与所述内窥镜连接,所述内窥镜摄像头的一端与所述内窥镜连接,所述内窥镜摄像头的另一端通过所述线缆与所述摄像主机连接;所述内窥镜包括照明光路和成像光路,所述照明光路与所述导光束对接,所述成像光路与所述内窥镜摄像头对接。
一种实施例中,所述光源包括白光光源和激发光光源,所述白光光源用于发射白光出射至被观察组织上,所述激发光光源用于发射激发光出射至被观察组织上,所述激发光用于激发被观察组织上的荧光试剂产生荧光。
一种实施例中,所述摄像主机具有处理器,所述处理器通过所述线缆与所述摄像头连接,所述处理器用于获取所述摄像头输出的图像信号,并对所述图像信号进行处理,以至少输出被观察组织的图像。
有益效果
依据上述实施例的内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统,内窥镜成像系统中通过分光镜将成像镜组成像的成像白光反射至白光传感器,及将成像镜组成像的成像荧光透射至荧光传感器,采用白光和荧光分开并独立做光学成像处理,可以提高图像传感器的选择自由度,有利于提高荧光的信噪比,进而提高荧光成像质量,利于手术中形态学的辨识和定位。
附图说明
图1为一种实施例中内窥镜成像系统的结构示意图;
图2为一种实施例中内窥镜成像系统的结构示意图;
图3为一种实施例中内窥镜成像系统的光路结构示意图;
图4为一种实施例中内窥镜成像系统的白光图像MTF;
图5为一种实施例中内窥镜成像系统的图像MTF;
图6为一种实施例中内窥镜成像系统的结构示意图;
图7为一种实施例中内窥镜摄像头的结构示意图;
图8为一种实施例中内窥镜摄像头的结构示意图;
图9为一种实施例中内窥镜摄像系统的结构示意图;
图中,1-成像镜组,11-成像镜头,12-激发光滤光片,2-分光镜,21-第一分光镜,22-第二分光镜,23-分光膜,3-白光传感器,4-荧光传感器,5-红外适配镜头,6-第一滤光片,7-第二滤光片,8-壳体,9-处理器,10-光源,20-导光束,30-内窥镜,40-内窥镜摄像头,50-摄像主机,60-显示器,71-线缆,72-视频连接线,100-待观察部位,1000-内窥镜摄像系统。
本发明的实施方式
内窥镜成像系统通过白光和荧光合成带荧光的图像,以获取更多更准确的病灶信息。其中,白光由被观察组织反射获得,荧光由激光激发被观察组织内的荧光试剂获得,荧光相对白光较弱,因此提高荧光的信噪比能够提高成像的质量。
本申请实施例提出了多种提高荧光成像质量的改进方案,其一为采用白光和荧光分开并独立做光学成像处理,可以提高图像传感器的选择自由度,有利于提高荧光的信噪比,以此提高荧光成像的质量;其二为选择红外增强的荧光传感器,红外增强的荧光传感器能够更为灵敏的获取成像荧光,进而提高荧光成像的信噪比,以此提高荧光成像的质量;其三为在荧光传感器前端的光路上设置红外适配镜头,以使得成像荧光的尺寸适配荧光传感器的尺寸,以起到完全利用荧光传感器像素的同时保证与白光光路具有相同的视场范围,以此提高荧光成像的质量;其四,由于分光膜的透射效率优于反射,将荧光放置于透射光路可以尽量减小荧光在光路中的损耗,提升荧光图像的信号强度。
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。光路的前端为光先传播到的地方,光路的后端为光后传播到的地方,本文中的白光也可以称为可见光或自然光。
一种实施例中提供了一种内窥镜成像系统,内窥镜成像系统用于安装在内窥镜摄像头内部,内窥镜成像系统用于通过内窥镜获取被观察组织发射的白光和激发光以及激发的荧光,三种光混合在一起形成混合光。本内窥镜成像系统中将荧光传感器设置在分光镜透射的光路上,以降低荧光传播过程中的损失,提高荧光成像的信噪比。
请参考图1,本实施例的内窥镜成像系统包括成像镜组1、分光镜2、白光传感器3和荧光传感器4,其中,成像镜组1、分光镜2和荧光传感器4依次位于一条直线光路上,该直线光路为第一直线光路,成像镜组1位于光路的最前端,荧光传感器4位于光路的最后端。分光镜2和白光传感器3位于另一条直线光路上,该直线光路为第二直线光路,其中第一直线光路和第二直线光路相互交叉,分光镜2位于第一直线光路和第二直线光路交叉位置处,分光镜2同时位于第一直线光路和第二直线光路上,并且分光镜2起到分光的作用将一条光路分成两条光路。分光镜2用于透射荧光和反射白光,荧光传感器4位于分光镜2透射的第一直线光路上,白光传感器3位于分光镜2反射的第二直线光路上。
第一直线光路和第二直线光路相互垂直,白光传感器3和荧光传感器4分别朝向分光镜2两个相互垂直的出射面。
成像镜组1安装在最靠近内窥镜的位置,成像镜组1位于内窥镜的出射光路(第一直线光路)上。成像镜组1包括成像镜头11和激发光滤光片12,成像镜头11包括若干个光学镜片,如成像镜头11包括双胶合正透镜、负透镜、正透镜和双胶合正透镜,成像镜头11用于将获取的白光转成像为成像白光,及将获取的荧光成像为成像荧光,同时也会将激光成像为成像激光。激发光滤光片12用于滤除激光,及透射白光和荧光。
本实施例中,激发光滤光片12安装在成像镜头11的成像光路上,即激发光滤光片12位于成像镜头11光路的后端。激发光滤光片12将滤除激光后的成像白光和成像荧光出射至分光镜2上。激发光滤光片12设置在成像镜头11光路的后端,使得成像镜头11位于内窥镜尾窗与激发光滤光片12之间,能够避免内窥镜尾窗与激发光滤光片12之间产生的二次反射鬼影,有利于提升成像质量。
成像镜头11和激发光滤光片12可以作为两个部件分别安装,也可以作为一个部件设置为一体式结构。
分光镜2为二向分光镜,二向分光镜具体为二向分光直角棱镜,二向分光镜也可以为其他形式的二向分光棱镜或者二向分光平面镜。分光镜2具有与入射光路位于同一条直线上的透射光路,以及具有与入射光路垂直的反射光路。分光镜2通过镀膜使得分光镜2能够透射成像荧光,成像荧光从透射光路射出,以及能够反射成像白光,成像白光从反射光路射出。当然,分光镜2也不排除存在少部分的透射白光和反射荧光。
分光镜2包括第一分光镜21、第二分光镜22和分光膜23,第一分光镜21和第二分光镜22均等腰直角棱镜,第一分光镜21的斜面和第二分光镜22的斜面贴合固定在一起,分光膜23采用镀膜等方式设置在第一分光镜21的斜面和第二分光镜22的斜面之间,分光膜23形成一个相对第一直线光路和第二直线光路分别倾斜45°的分光面。分光膜23具有透射荧光和反射白光的特性,分光膜23用于将荧光沿着第一直线光路透射至荧光传感器4,还用于将白光沿着第二直线光路反射至白光传感器3。
在其他实施例中,分光镜2也可以为平面镜片,平面镜片上设有分光膜23。平面镜片相对入射光轴倾斜45°安装,也能够实现分光。
由于分光膜23的反射作用中,难以很好的保证荧光尽可能的反射到荧光传感器4中,容易出现透射荧光的现象,反射荧光存在较大的折损;而膜的透射作用中,容易实现荧光尽可能的透射到荧光传感器4中,反射的荧光很少。因此,本实施例中,采用透射荧光和反射白光的方式进行分光,能够获得更多的荧光,进而可以提高图像传感器的选择自由度,有利于提高荧光的信噪比,以此提高荧光成像的质量。
白光传感器3安装在分光镜2反射的光路上,白光传感器3用于获取分光镜2反射的成像白光,并将获取的成像白光转为白光信号。荧光传感器4安装在分光镜2透射的光路上,荧光传感器4用于获取分光镜2透射的成像荧光,并将获取的成像荧光转为荧光信号。白光传感器3和荧光传感器4分别用于将白光信号和荧光信号传递给处理器,处理器将白光信号和荧光信号合成叠加。其中,白光传感器3的感光尺寸和荧光传感器4的感光尺寸相互适配,以充分利用像素的基础上具有相同的视场范围。其中,白光传感器3与荧光传感器4的灵敏度和像素大小等参数可以部分不同或者全部不同,即本实施例中,采用透射荧光和反射白光的分光模式,可以提高白光传感器3与荧光传感器4选择的自由度,无需两者参数相同,也能够获取相同的视场范围,得到更高的图像。
一种实施例中,白光传感器3还可以设置有白光适配镜头,白光传感器3通过白光适配镜头获取白光,白光适配镜头用于调节白光传感器3的感光尺寸、视场范围等感光参数,以使得白光传感器3获取的白光图像与荧光传感器4获取的荧光图像相互适配。
本实施例中的内窥镜成像系统,分光镜将成像镜组成像的成像白光反射至白光传感器,及将成像镜组成像的成像荧光透射至荧光传感器,采用白光和荧光分开并独立做光学成像处理,可以提高图像传感器的选择自由度,如荧光相对白光弱,荧光传感器选择比白光传感器感光更强的传感器,有利于提高荧光的信噪比,提高荧光成像质量,利于手术中形态学的辨识和定位。
一种实施例中,提供了一种内窥镜成像系统,本内窥镜成像系统在上述实施例的基础上将荧光传感器4选择为红外增强传感器。
荧光传感器4采用红外增强传感器(现有的成熟元器件)提高对荧光的感光能力,进而提高荧光成像的信噪比,提高荧光成像质量。红外增强传感器能够得到足够信噪比的荧光成像信号,并且荧光传感器4的选取不受白光传感器3的限制。
一种实施例中,提供了一种内窥镜成像系统,本内窥镜成像系统在上述实施例的基础上增加了红外适配镜头,红外适配镜头能够对将成像荧光的尺寸适配荧光传感器4的尺寸。
请参考图2和图3,本实施例的内窥镜成像系统包括成像镜组1、分光镜2、白光传感器3、荧光传感器4和红外适配镜头5。
成像镜组1、分光镜2、白光传感器3和荧光传感器4的位置关系与上述实施例的相同。成像镜组1、分光镜2和荧光传感器4依次位于一条直线光路上,成像镜组1位于光路的最前端,荧光传感器4位于光路的最后端。分光镜2用于透射荧光和反射白光(可见光),荧光传感器4位于分光镜2透射的光路上,白光传感器3位于分光镜2反射的光路上。
红外适配镜头5安装在分光镜2和荧光传感器4之间的光路上,即红外适配镜头5安装在分光镜2透射的光路上。红外适配镜头5包括若干个光学镜片,如包括一个凸凹透镜和一个双胶合透镜。红外适配镜头5用于获取分光镜2透气的成像荧光,将获取的成像荧光缩放至与荧光传感器4感光尺寸适配的尺寸,及将缩放后的成像荧光出射至荧光传感器4。
红外适配镜头5用于适配红光、白光,适配包括放大或缩小、滤除特定波段的光。红外适配镜头5缩小成像荧光缩的尺寸还是放大成像荧光的尺寸,以荧光传感器4的感光尺寸与成像荧光的尺寸大小比为根据。若荧光传感器4的感光尺寸小于成像荧光的尺寸,则红外适配镜头5选择为缩小成像尺寸的镜片;若荧光传感器4的感光尺寸大于成像荧光的尺寸,则红外适配镜头5选择为放大成像尺寸的镜片。
如荧光传感器4的感光尺寸小于成像荧光的尺寸,红外适配镜头5采用一个正透镜以及一个胶合正透镜的组合透镜对荧光成像进行缩小。
本实施例中的内窥镜成像系统,在荧光传感器4的光学前端增设红外适配镜头5,使得荧光传感器4可以完全利用荧光传感器像素的同时保证与成像白光具有相同的视场范围,进而提高荧光成像的信噪比,提高荧光成像质量。
一种实施例中,提供了一种内窥镜成像系统,本内窥镜成像系统在上述实施例的基础上增加了红外适配镜头5,红外适配镜头5用于适配处理荧光和白光,适配处理包括放大或缩小、以及滤除特定波段的光,以使得适配处理后的光有利于提高成像质量;以及荧光传感器4限定为红外增强传感器。
红外增强传感器与红外适配镜头5配合使用,能够最大限度的提高荧光成像的信噪比,提高成像质量。
请参考图4和图5,图4为本实施例的白光图像MTF(调制传递函数),图5为本实施例的荧光图像MTF(调制传递函数)。图4和图5显示,本实施例的像差矫正都已经接近了衍射极限,0.5对比度对应的空间响应评论都到达了100lp/mm,荧光的光学分辨率和白光达到了相同水平,可见本实施例的内窥镜成像系统能够得到更为清晰的荧光图像。
一种实施例中,提供了一种内窥镜成像系统,本内窥镜成像系统在上述实施例的基础上增加第一滤光片6和第二滤光片7。
请参考图6,第一滤光片6设置在分光镜2和荧光传感器4之间,若分光镜2和荧光传感器4之间还设置有红外适配镜头5,则第一滤光片6设置在红外适配镜头5和荧光传感器4之间,第一滤光片6用于滤除其他波段的光线,减少其他光线对荧光成像的干扰,进而提高荧光成像质量。
第一滤光片6也可以设置在分光镜2和红外适配镜头5之间,也能够起到相同的作用。
第二滤光片7设置在分光镜2和白光传感器3之间,第二滤光片7用于滤除其他波段的光线,减少其他光线对白光成像的干扰,进而提高白光成像质量。
一种实施例中,仅设置第一滤光片6和第二滤光片7中的一个,也能够提升一定的成像质量。
一种实施例中,提供了一种内窥镜摄像头,内窥镜摄像头包括壳体和上述任一实施例的内窥镜成像系统。
请参考图7,内窥镜成像系统安装在成像外壳体8,壳体8具有前端对接口和后端对接口,前端对接口用于与内窥镜对接,以使得内窥镜能够与内窥镜成像系统的光路对接,后端对接口用于与线路对接,以使得内窥镜成像系统能够将得到的白光信号和荧光信号传递给摄像主机。
本实施例的内窥镜摄像头,采用上述实施例的内窥镜成像系统,使得内窥镜摄像头具有提高图像质量的效果。
请参考图8,一种实施例中,壳体8内还设有处理器9,处理器9分别与白光传感器3和荧光传感器4信号连接,处理器9用于获取白光传感器3生成的白光信号以及荧光传感器4生成的荧光信号,将白光信号和荧光信号合成得到被观察组织的图像信号。本方案中,将白光信号和荧光信号先进行合并处理后再传给摄像主机,能够分担摄像主体内处理器的任务,形成分布式处理,能够避免白光信号和荧光信号传播过程中的损耗。
请参考图9,一种实施例中提供一种内窥镜摄像系统1000,内窥镜摄像系统1000包括光源10、导光束20、内窥镜30、内窥镜摄像头40、线缆71、摄像主机50、显示器60和视频连接线72。其中内窥镜摄像头40为上述实施例中的内窥镜摄像头,内窥镜30在照明光路中采用匀光器和超广角光纤的配合,达到提高光通量的同时使得观察视野内照度分布均匀,从而改善内窥镜图像的对比度和信噪比,进而提高成像质量;内窥镜30包括照明光路和成像光路,照明光路与导光束20对接,成像光路与内窥镜摄像头40对接。
摄像主机50通过线缆71与内窥镜摄像头40连接,内窥镜摄像头40生成的白光信号和荧光信号通过线缆71传输到摄像主机50进行处理。在某些实施例中,线缆71可以为光通信线缆,例如光纤;内窥镜摄像头40将图像信号(电信号)转成光信号,由线缆71传输到摄像主机50,摄像主机50再将光信号转成电信号(图像信号)。摄像主机50通过视频连接线72与显示器60连接,用于将图像信号发送到显示器60进行显示。本领技术人员应当理解的是,图9仅是内窥镜摄像系统1000的示例,并不构成对内窥镜摄像系统1000的限定,内窥镜摄像系统1000可以包括比图9所示更多或更少的部件,或者组合某些部件,或者不同的部件,例如内窥镜摄像系统1000还可以包括扩张器、烟雾控制装置、输入输出设备、网络接入设备等。
光源10用于向待观察部位100提供照明光源和激发荧光成像。光源10包括白光光源(可见光光源)和对应于荧光试剂的激发光光源(激光照明光源,例如近红外光)。
本实施例中,摄像主机50内设有处理器,处理器通过线缆71与内窥镜摄像头40连接,处理器获取摄像头输出的图像信号,并对图像信号进行处理,以至少输出被观察组织的图像。其中获取的图像信号可以为单独的白光信号和荧光信号,也可以为白光信号和荧光信号合并的图像信号。
本实施的内窥镜摄像系统1000,采用上述实施例的内窥镜摄像头40,能够得到信噪比更高的图像,进而有利于手术中形态学的辨识和定位。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (35)

  1. 一种内窥镜成像系统,其特征在于,包括成像镜组(1)、分光镜(2)、白光传感器(3)和荧光传感器(4);
    所述成像镜组(1)用于获取被观察组织激发的荧光及反射的白光和激发光,所述成像镜组(1)还用于滤除激发光并将荧光和白光成像后出射至所述分光镜(2);
    所述分光镜(2)位于所述成像镜组(1)成像出射的光路上,所述分光镜(2)具有相对所述成像出射的光路倾斜的分光膜(23),所述分光膜(23)具有反射成像白光和透射成像荧光的特性;
    所述白光传感器(3)位于所述分光镜(2)反射成像白光的光路上,所述白光传感器(3)用于获取所述分光镜(2)反射的成像白光并生成白光信号;
    所述荧光传感器(4)位于所述分光镜(2)透射成像荧光的光路上,所述荧光传感器(4)用于获取所述分光镜(2)透射的成像荧光并生成荧光信号,所述白光信号和所述荧光信号用于合成被观察组织的图像。
  2. 如权利要求1所述的内窥镜成像系统,其特征在于,所述分光镜(2)包括第一分光镜(21)和第二分光镜(22),所述分光膜(23)位于所述第一分光镜(21)和所述第二分光镜(22)之间。
  3. 如权利要求2所述的内窥镜成像系统,其特征在于,所述第一分光镜(21)和第二分光镜(22)均为棱镜结构。
  4. 如权利要求1所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述荧光传感器(4)之间的光路上设有第一滤光片(6),所述第一滤光片用于滤除所述分光镜透射的白光。
  5. 如权利要求1所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述白光传感器(3)之间的光路上设有第二滤光片(7),所述第二滤光片用于滤除所述分光镜反射的荧光。
  6. 如权利要求1所述的内窥镜成像系统,其特征在于,所述白光传感器(3)与所述荧光传感器(4)的灵敏度和/或像素大小不同。
  7. 如权利要求1所述的内窥镜成像系统,其特征在于,所述荧光传感器(4)为红外增强传感器。
  8. 如权利要求1所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述荧光传感器(4)之间的光路上设有红外适配镜头(5),所述红外适配镜头(5)用于获取所述分光镜(2)透射的成像荧光,及将获取的成像荧光适配处理后出射至所述荧光传感器(4)。
  9. 如权利要求1所述的内窥镜成像系统,其特征在于,所述成像镜组(1)包括成像镜头(11)和激发光滤光片(12),所述成像镜头(11)用于获取白光并出射成像白光,以及获取荧光并出射成像荧光,所述激发光滤光片(12)用于滤除激发光。
  10. 如权利要求9所述的内窥镜成像系统,其特征在于,所述激发光滤光片(12)位于所述成像镜头(11)和所述分光镜(2)之间的光路上。
  11. 一种内窥镜成像系统,其特征在于,包括成像镜组(1)、分光镜(2)、白光传感器(3)和荧光传感器(4);
    所述成像镜组(1)用于获取被观察组织激发的荧光及反射的白光和激发光,所述成像镜组(1)还用于滤除激发光并将荧光和白光成像后出射至所述分光镜(2);
    所述分光镜(2)位于所述成像镜组(1)成像出射的光路上,所述分光镜(2)用于反射成像白光和透射成像荧光;
    所述白光传感器(3)位于所述分光镜(2)反射成像白光的光路上,所述白光传感器(3)用于获取所述分光镜(2)反射的成像白光并生成白光信号;
    所述荧光传感器(4)位于所述分光镜(2)透射成像荧光的光路上,所述荧光传感器(4)用于获取所述分光镜(2)透射的成像荧光并生成荧光信号,所述白光信号和所述荧光信号用于合成被观察组织的图像。
  12. 如权利要求11所述的内窥镜成像系统,其特征在于,所述白光传感器(3)与所述荧光传感器(4)的灵敏度和/或像素大小不同。
  13. 如权利要求11所述的内窥镜成像系统,其特征在于,所述荧光传感器(4)为红外增强传感器。
  14. 如权利要求11所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述荧光传感器(4)之间的光路上设有红外适配镜头(5),所述红外适配镜头(5)用于获取所述分光镜(2)透射的成像荧光,及将获取的成像荧光适配处理后出射至所述荧光传感器(4)。
  15. 如权利要求11所述的内窥镜成像系统,其特征在于,所述成像镜组(1)包括成像镜头(11)和激发光滤光片(12),所述成像镜头(11)用于获取白光并出射成像白光,以及获取荧光并出射成像荧光,所述激发光滤光片(12)用于滤除激发光。
  16. 如权利要求15所述的内窥镜成像系统,其特征在于,所述激发光滤光片(12)位于所述成像镜头(11)和所述分光镜(2)之间的光路上。
  17. 如权利要求11所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述荧光传感器(4)之间的光路上设有第一滤光片(6),所述第一滤光片用于滤除所述分光镜透射的白光。
  18. 如权利要求11所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述白光传感器(3)之间的光路上设有第二滤光片(7),所述第二滤光片用于滤除所述分光镜反射的荧光。
  19. 如权利要求11所述的内窥镜成像系统,其特征在于,所述分光镜(2)为二向直角分光棱镜。
  20. 如权利要求11所述的内窥镜成像系统,其特征在于,所述白光传感器(3)上设有白光适配镜头。
  21. 一种内窥镜成像系统,其特征在于,包括成像镜组(1)、分光镜(2)、白光传感器(3)和荧光传感器(4);
    所述成像镜组(1)、所述分光镜(2)和荧光传感器(4)依次设置在第一直线光路上,所述分光镜(2)和所述白光传感器(3)设置在第二直线光路上,所述第一直线光路与所述第二直线光路相互交叉,所述分光镜(2)位于所述第一直线光路和所述第二直线光路交叉位置处;
    所述成像镜组(1)用于获取被观察组织激发的荧光及反射的白光和激发光,所述成像镜组(1)还用于滤除激发光并将荧光和白光成像后沿着所述第一直线光路出射至所述分光镜(2);
    所述分光镜(2)用于将所述成像镜组(1)出射的荧光沿着所述第一直线光路透射至所述荧光传感器(4),及用于将所述成像镜组(1)出射的白光沿着所述第二直线光路反射至所述白光传感器(3);
    所述白光传感器(3)用于获取所述分光镜(2)反射的白光并生成白光信号;
    所述荧光传感器(4)用于获取所述分光镜(2)透射的荧光并生成荧光信号,所述白光信号和所述荧光信号用于合成被观察组织的图像。
  22. 如权利要求21所述的内窥镜成像系统,其特征在于,所述第一直线光路和所述第二直线光路相互垂直。
  23. 如权利要求22所述的内窥镜成像系统,其特征在于,所述分光镜(2)具有相对所述第一直线光路倾斜45°的分光面,所述分光面用于透射荧光和反射白光。
  24. 如权利要求21所述的内窥镜成像系统,其特征在于,所述白光传感器(3)与所述荧光传感器(4)的灵敏度和/或像素大小不同。
  25. 如权利要求21所述的内窥镜成像系统,其特征在于,所述荧光传感器(4)为红外增强传感器。
  26. 如权利要求21所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述荧光传感器(4)之间的所述第一直线光路上设有红外适配镜头(5),所述红外适配镜头(5)用于获取所述分光镜(2)透射的成像荧光,及将获取的成像荧光适配处理后出射至所述荧光传感器(4)。
  27. 如权利要求21所述的内窥镜成像系统,其特征在于,所述成像镜组(1)包括成像镜头(11)和激发光滤光片(12),所述成像镜头(11)用于获取白光并出射成像白光,以及获取荧光并出射成像荧光,所述激发光滤光片(12)用于滤除激发光。
  28. 如权利要求27所述的内窥镜成像系统,其特征在于,所述激发光滤光片(12)位于所述成像镜头(11)和所述分光镜(2)之间的所述第一直线光路上。
  29. 如权利要求21所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述荧光传感器(4)之间的所述第一直线光路上设有第一滤光片(6),所述第一滤光片用于滤除所述分光镜透射的白光。
  30. 如权利要求21所述的内窥镜成像系统,其特征在于,所述分光镜(2)和所述白光传感器(3)之间的所述第二直线光路上设有第二滤光片(7),所述第二滤光片用于滤除所述分光镜反射的荧光。
  31. 一种内窥镜摄像头,其特征在于,包括壳体(8)和如权利要求1至30中任一项所述的内窥镜成像系统,所述内窥镜成像系统安装在所述壳体(8)内。
  32. 如权利要求31所述的内窥镜摄像头,其特征在于,所述壳体(8)内设有处理器(9),所述处理器(9)与所述白光传感器(3)和荧光传感器(4)连接,所述处理器(9)用于获取所述白光信号和所述荧光信号,并将所述白光信号和所述荧光信号合成得到被观察组织的图像信号。
  33. 一种内窥镜摄像系统,其特征在于,所述包括光源(10)、导光束(20)、内窥镜(30)、线缆(71)、摄像主机(50)和如权利要求31或32所述的内窥镜摄像头(40),所述光源(10)通过所述导光束(20)与所述内窥镜(30)连接,所述内窥镜摄像头(40)的一端与所述内窥镜(30)连接,所述内窥镜摄像头(40)的另一端通过所述线缆(71)与所述摄像主机(50)连接;所述内窥镜(30)包括照明光路和成像光路,所述照明光路与所述导光束(20)对接,所述成像光路与所述内窥镜摄像头(40)对接。
  34. 如权利要求33所述的内窥镜摄像系统,其特征在于,所述光源(10)包括白光光源和激发光光源,所述白光光源用于发射白光出射至被观察组织上,所述激发光光源用于发射激发光出射至被观察组织上,所述激发光用于激发被观察组织上的荧光试剂产生荧光。
  35. 如权利要求33所述的内窥镜摄像系统,其特征在于,所述摄像主机(50)具有处理器,所述处理器通过所述线缆(71)与所述摄像头连接,所述处理器用于获取所述摄像头输出的图像信号,并对所述图像信号进行处理,以至少输出被观察组织的图像。
PCT/CN2021/140052 2021-09-24 2021-12-21 内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统 WO2023045146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021120336 2021-09-24
CNPCT/CN2021/120336 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045146A1 true WO2023045146A1 (zh) 2023-03-30

Family

ID=85653273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140052 WO2023045146A1 (zh) 2021-09-24 2021-12-21 内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统

Country Status (2)

Country Link
CN (2) CN115886687A (zh)
WO (1) WO2023045146A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116982916A (zh) * 2023-09-04 2023-11-03 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种宽视场荧光内窥成像装置和方法
CN116982916B (zh) * 2023-09-04 2024-05-14 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种宽视场荧光内窥成像装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291682A (ja) * 2001-04-02 2002-10-08 Olympus Optical Co Ltd 蛍光観察用内視鏡装置
CN104274156A (zh) * 2013-07-12 2015-01-14 韩国电气研究院 用于检测前哨淋巴结处的nir荧光的设备和方法
CN107405058A (zh) * 2015-07-30 2017-11-28 奥林巴斯株式会社 内窥镜用摄像头和具有它的内窥镜装置
US20180000401A1 (en) * 2013-07-12 2018-01-04 Inthesmart Co. Ltd. Apparatus and method for detecting nir fluorescence at sentinel lymph node
CN108577791A (zh) * 2018-05-16 2018-09-28 广东欧谱曼迪科技有限公司 一种荧光导航内窥镜系统及其增强荧光成像灵敏度的方法
CN109124586A (zh) * 2018-08-15 2019-01-04 南京航空航天大学 一种多模式荧光内窥实时成像系统
CN109924938A (zh) * 2019-03-26 2019-06-25 华中科技大学苏州脑空间信息研究院 外置式双光源阴道镜成像系统
CN110536630A (zh) * 2017-04-27 2019-12-03 奥林巴斯株式会社 光源装置系统、通常光源装置、特殊光观察用光源装置、内窥镜系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291682A (ja) * 2001-04-02 2002-10-08 Olympus Optical Co Ltd 蛍光観察用内視鏡装置
CN104274156A (zh) * 2013-07-12 2015-01-14 韩国电气研究院 用于检测前哨淋巴结处的nir荧光的设备和方法
US20180000401A1 (en) * 2013-07-12 2018-01-04 Inthesmart Co. Ltd. Apparatus and method for detecting nir fluorescence at sentinel lymph node
CN107405058A (zh) * 2015-07-30 2017-11-28 奥林巴斯株式会社 内窥镜用摄像头和具有它的内窥镜装置
CN110536630A (zh) * 2017-04-27 2019-12-03 奥林巴斯株式会社 光源装置系统、通常光源装置、特殊光观察用光源装置、内窥镜系统
CN108577791A (zh) * 2018-05-16 2018-09-28 广东欧谱曼迪科技有限公司 一种荧光导航内窥镜系统及其增强荧光成像灵敏度的方法
CN109124586A (zh) * 2018-08-15 2019-01-04 南京航空航天大学 一种多模式荧光内窥实时成像系统
CN109924938A (zh) * 2019-03-26 2019-06-25 华中科技大学苏州脑空间信息研究院 外置式双光源阴道镜成像系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116982916A (zh) * 2023-09-04 2023-11-03 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种宽视场荧光内窥成像装置和方法
CN116982916B (zh) * 2023-09-04 2024-05-14 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种宽视场荧光内窥成像装置和方法

Also Published As

Publication number Publication date
CN115844311A (zh) 2023-03-28
CN115886687A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US10617287B2 (en) Endoscope system and endoscope light source apparatus
US10368728B2 (en) Endoscope apparatus
US11633091B2 (en) Method and apparatus for illuminating an object field imaged by an image sensor
US10659703B2 (en) Imaging device and imaging method for capturing a visible image and a near-infrared image
WO2017181864A1 (zh) 一种近眼显示系统
US9549662B2 (en) Endoscope connector method and apparatus
US11382487B2 (en) Micro CMOS scopes for medical imaging
JP2007518491A (ja) 立体映像化システム用収束光学装置
JP5563933B2 (ja) 内視鏡用ライトガイドおよびそれを備えた内視鏡
CN211270678U (zh) 眼底相机的光学系统及眼底相机
JP2002065602A (ja) 照明光学系及び内視鏡装置
CN107174215A (zh) 一种内窥式荧光观察装置
US20180199801A1 (en) Endoscope apparatus
JP2015135511A (ja) 医療用の光学観察装置のカメラアダプタおよびカメラ/アダプタ複合体
US6749562B2 (en) Video endoscope and system incorporating the same
CN106094224B (zh) 一种转折分光单元及内窥镜光学成像系统、成像方法
WO2024077895A1 (zh) 一种荧光影像探头以及手持影像探测器
JPWO2020210168A5 (zh)
WO2023045146A1 (zh) 内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统
CN112869703A (zh) 眼底相机的光学系统及眼底相机
CN114176485B (zh) 内窥镜装置摄像头偏振光光学系统、摄像头及内窥镜装置
CN118042976A (zh) 内窥镜成像系统、内窥镜摄像头及内窥镜摄像系统
US20140055562A1 (en) Endoscopic synthetic stereo imaging method and apparatus
WO2021171695A1 (ja) 撮像システム、撮像システムの制御方法、及びプログラム
JP3222233B2 (ja) 内視鏡観察システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958257

Country of ref document: EP

Kind code of ref document: A1