WO2017181864A1 - 一种近眼显示系统 - Google Patents

一种近眼显示系统 Download PDF

Info

Publication number
WO2017181864A1
WO2017181864A1 PCT/CN2017/079940 CN2017079940W WO2017181864A1 WO 2017181864 A1 WO2017181864 A1 WO 2017181864A1 CN 2017079940 W CN2017079940 W CN 2017079940W WO 2017181864 A1 WO2017181864 A1 WO 2017181864A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
imaging
display system
eye display
Prior art date
Application number
PCT/CN2017/079940
Other languages
English (en)
French (fr)
Inventor
周旭东
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2017181864A1 publication Critical patent/WO2017181864A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to the field of augmented reality, and in particular to a near-eye display system.
  • Augmented Reality is a technology that uses virtual objects or information to enhance the reality of real scenes.
  • Augmented reality technology is usually based on the real physical environment image obtained by the image acquisition device such as a camera.
  • the computer system recognizes and analyzes the query, and displays the virtual image generated by the virtual content such as text content, image content or image model associated with the virtual reality image.
  • the user can obtain the extended information such as the annotation, description and the like of the real object in the real physical environment, or experience the stereoscopic and highlighted enhanced visual effect of the real object in the real physical environment.
  • Existing augmented reality devices generally converge the light of a virtual image into the pupil of a user through an optical lens, which imposes stricter restrictions on the position of the human eye.
  • the user's pupil position changes such as the user's eyeball rotation
  • the actual device automatically adjusts the pitch.
  • the accuracy of the two is not high at present, and thus the light of the virtual image cannot be completely entered into the human eye, so that the augmented reality device cannot send the virtual image to the user, or the transmitted virtual image is not effective, and then the user cannot be given.
  • With a good augmented reality experience is not high at present, and thus the light of the virtual image cannot be completely entered into the human eye, so that the augmented reality device cannot send the virtual image to the user, or the transmitted virtual image is not effective, and then the user cannot be given.
  • the present invention provides a near-eye display system including an image source and an array imaging device, the array imaging device including at least two imaging mirrors, and the output pupils of all the imaging mirrors are spliced together;
  • the image light output by the image source enters the human eye through the reflection of the array imaging device to form a projected image; the ambient light passes through the array imaging device to enter the human eye to form an environmental image.
  • the imaging mirrors are sequentially disposed along a transmission direction of the image light, and the reflectance is sequentially increased.
  • the image source includes:
  • a reflective image source is disposed on the optical path of the illumination light for emitting the image light under the illumination light.
  • the image source includes:
  • a light source for providing initial light
  • a scanning device is disposed on the optical path of the initial light for deflecting the initial light to form the image light.
  • the scanning device is a MEMS scanning galvanometer or a fiber scanning device.
  • the imaging mirror is a reflective diffraction mirror or a transmissive diffraction mirror.
  • the array imaging device comprises:
  • a light guiding device for guiding the image light
  • An imaging mirror array disposed in front of the human eye and composed of at least two imaging mirrors, each of the imaging mirrors reflecting a portion of the image light toward the human eye when the image light passes through the imaging mirror Another portion of the image light is transmitted along a direction of propagation of the image light in the light guiding device.
  • the light guiding device is specifically a flat optical waveguide.
  • the imaging mirror is a diffraction mirror surface, and the diffraction mirror surface is disposed on the light guiding device in a manner facing the human eye.
  • the diffraction mirror surface is attached to a corresponding position of the light guiding device, or the diffraction mirror surface is made by a corresponding position of the light guiding device.
  • the imaging mirror is a mirror surface formed by a reflective, transmissive film layer, the reflective surface of the reflective, transmissive film layer facing the human eye.
  • the array imaging device includes at least two imaging mirrors, and the output pupils of all the imaging mirrors are spliced together, which is equivalent to expanding the exit pupil diameter of the augmented reality device, the image light output by the augmented reality device is more easily entered into the pupil of the eye. in.
  • the present invention provides significantly increased exit pupils, thereby reducing or avoiding strict restrictions on the position of the human eye, thereby expanding the applicable population of augmented reality devices, and without requiring user enhancement.
  • the realistic device performs the adjustment of the interpupillary distance, and also avoids the defect that the user cannot obtain a good augmented reality experience due to the inaccuracy of the adjustment result.
  • FIG. 1 is a block diagram of a near-eye display system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first implementation manner of a near-eye display system according to an embodiment of the present invention
  • 3A is a schematic view of a first optical path of a near-eye display system in a vertical direction
  • 3B is a schematic diagram of a second optical path of the near-eye display system in the vertical direction
  • FIG. 4 is a schematic diagram of a second implementation manner of a near-eye display system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a third implementation manner of a near-eye display system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fourth implementation manner of a near-eye display system according to an embodiment of the present invention.
  • the embodiment of the invention discloses a near-eye display system.
  • the near-eye display system can be applied to an augmented reality device such as an HMD head (English: Head Mount Display; Chinese: wearable visual device) or smart glasses, and is not limited herein.
  • FIG. 1 is a block diagram of a near-eye display system according to an embodiment of the present invention.
  • the near The eye display system includes an image source 10 and an array imaging device 20.
  • the array imaging device 20 includes at least two imaging mirrors, and the fields of view and the pupils of all the imaging mirrors are stitched together.
  • the image source 10 can output an image using, for example, a laser light source, an LED (Light Emitting Diode), or the like.
  • the imaging mirror may specifically be a mirror surface formed by a reflective and transmissive film layer (where the film having a reflectance and transmittance of 50% is a semi-transparent film layer), or may be a reflective diffraction mirror or transmission. The diffraction mirror surface is not limited here.
  • the image light output by the image source 10 is reflected by the array imaging device 20 into the human eye to form a projected image.
  • Ambient light is transmitted through the array imaging device 20 into the human eye to form an environmental image.
  • the array imaging device 20 includes at least two imaging mirrors, and the output pupils of all the imaging mirrors are spliced together, which is equivalent to expanding the exit pupil diameter of the augmented reality device, thereby making the image light output by the augmented reality device more Easy to enter the pupil of the eye. It can be seen that compared with the exit pupil of a single optical lens, the exit pupil provided by the embodiment is significantly increased, thereby reducing or avoiding the strict limitation of the position of the augmented reality device on the human eye, thereby expanding the applicable population of the augmented reality device. . In addition, since the user does not need to adjust the distance adjustment of the augmented reality device, the defect that the user cannot obtain a good augmented reality experience due to the inaccuracy of the adjustment result is also avoided.
  • FIG. 2 is a schematic diagram of a first implementation manner of a near-eye display system according to an embodiment of the present invention.
  • the image source 10 of the near-eye display system includes an illumination source and a reflective image source.
  • the illumination source is used to emit illumination light.
  • the illumination source may be the laser generating device 101.
  • the laser generating apparatus 101 includes a red laser generating unit 1011, a green laser generating unit 1012, and a blue laser generating unit 1013.
  • the color of each laser generating unit in the laser generating device 101 can be set according to actual needs to meet the needs of the actual situation, and is not limited herein.
  • the illumination source can also be an LED source. The light emitted by the LED light source can be divided into red light, green light, and blue light by a beam splitter, and is not limited herein.
  • the reflective image source is disposed on the light path of the illumination light for emitting an image light source under the action of the illumination light.
  • the reflective image source is specifically an LCOS (Liquid Crystal on Silicon; Chinese: Silicon-based Liquid Crystal) display 102.
  • the image source 10 further includes a laser collimating beam expanding and shaping device 103.
  • the laser collimating beam expanding and shaping device 103 is disposed on the optical path of the laser light emitted by the laser generating device 101. It is used for collimating, expanding, and shaping the laser light emitted from the laser generating device 101.
  • the laser collimating beam expanding and shaping device 103 includes a red laser collimating beam expanding and shaping unit 1031, a green laser collimating beam expanding and shaping unit 1032, and a blue laser collimating beam expanding and shaping unit 1033 to respectively
  • the laser light emitted from the red laser light generating unit 1011, the green laser light generating unit 1012, and the blue laser light generating unit 1013 performs collimation, beam expansion, and shaping processing. Under normal circumstances, the collimation accuracy can be required to be several milliradians, and will not be described here.
  • image source 10 also includes a light combining device 104.
  • the light combining means 104 is disposed on the optical path of the laser collimating beam expanding and shaping device 103 for synthesizing the laser light emitted from the laser generating device 101 into one optical path.
  • the light combining device 104 includes a dichroic mirror 1041, a dichroic mirror 1042, and a dichroic mirror 1043.
  • the dichroic mirror 1041 reflects red light
  • the dichroic mirror 1042 transmits red light
  • the dichroic mirror 1043 transmits red and green light and reflects blue light, thereby the red laser generating unit 1011 and the green laser generating unit 1012.
  • the laser light emitted from the blue laser generating unit 1013 is combined into an optical path, which will not be described herein.
  • the image source 10 further includes a polarization beam splitter (English: polarization beam splitter; PBS) 105.
  • the polarization beam splitting prism 105 is disposed on the optical path of the light combining device 104. After the light output from the light combining device 104 enters the polarization beam splitting prism 105, the P-polarized light is transmitted, and the S-polarized light is reflected to the LCOS display 102. Under the action of S-polarized light, the LCOS display 102 can output image light through internal liquid crystal modulation, which will not be described herein.
  • image source 10 further includes filtering means 106.
  • the filtering device 106 is disposed on the outgoing light path of the polarization beam splitting prism 105 for filtering out the diffracted light beam that may be formed by the LCOS display 102.
  • the filtering device 106 specifically includes a focusing lens 1061, a diaphragm 1062, and a collimating lens 1063.
  • the focus lens 1061 is used to perform focusing processing on the image light transmitted by the LCOS display 102 through the polarization beam splitting prism 105.
  • the aperture 1062 is configured to filter the image light that is focused by the focusing lens 1061 to filter out the diffracted beam.
  • the collimator lens 1063 is configured to collimate the image light filtered by the aperture 1062 and output the processed image light to the array imaging device 20.
  • the array imaging device 20 specifically includes a light guiding device 201 and an imaging mirror array 202.
  • the light guiding device 201 is used to guide image light.
  • the imaging mirror array 202 is disposed in front of the human eye and is composed of at least two imaging mirrors. As the image light passes through the imaging mirror, each imaging mirror transmits another portion of the image light as it is reflected in the light guiding device while reflecting a portion of the image light to the human eye.
  • the light guiding device 201 may specifically be a flat optical waveguide.
  • FIG. 3A is a schematic view of a first optical path of a near-eye display system in a vertical direction.
  • FIG. 3A only shows that the light guiding device 201 is suspended.
  • the light guiding device 201 includes a vertical expansion waveguide 2011.
  • the vertically-expanded waveguide 2011 is used to spread light in the vertical direction as well.
  • the vertical extension waveguide 2011 includes four light guide mirrors, and the reference numerals of the four light guide mirrors are 20111, 20112, 20113, and 20114, respectively.
  • the four light guiding mirror surfaces may specifically be mirror surfaces formed of a reflective, transmissive film layer.
  • the reflectance of the light guide surface 20111 can be set to 25%
  • the reflectance of the light guide surface 20112 can be set to 33%
  • the reflectance of the light guide surface 20113 can be set to 50%.
  • the reflectance of the light guide mirror 20114 is set to 100%. In this way, it is possible to ensure that the intensity of the beam emitted from each imaging surface (light guide surface) is 25% of the total light intensity.
  • the numerical values shown here are only an example, and those skilled in the art can set the reflectance to a suitable value according to the actual situation to meet the needs of the actual situation, and will not be described herein.
  • FIG. 3B is a schematic diagram of a second optical path of the near-eye display system in the vertical direction.
  • at least two image sources 10 can also be disposed in the vertical direction.
  • four image sources 10 are provided.
  • the image light emitted by each image source 10 has the same light intensity. In this way, it is also possible to ensure uniform light intensity in the vertical direction, which will not be described again here.
  • the light guiding device 201 specifically further includes a horizontal waveguide.
  • the image light output by the vertical expansion waveguide 2011 enters the horizontal waveguide and propagates forward under the guidance of the horizontal waveguide until it hits the imaging mirror array 202.
  • the imaging mirror is specifically a mirror surface formed of a reflective, transmissive film layer.
  • each time the image light passes through a reflective, transmissive film layer a portion of the image light is reflected to the human eye and the other portion is transmitted in the direction of propagation of the image light.
  • the exit pupils of a plurality of reflective, transmissive film layers are spliced together, which is equivalent to expanding the exit pupil diameter of the augmented reality device.
  • those skilled in the art can set appropriate parameters, such as tilt angle, spacing, etc., for a plurality of reflective and transmissive film layers in the imaging mirror array 202 according to actual conditions, so that The exit pupils of the plurality of reflective, transmissive film layers can be spliced together, so that the spliced field of view of the plurality of reflective and transmissive film layers can cover the entire image source field of view, thereby enabling imaging of a large field of view. I won't go into details here.
  • the imaging mirror array 202 includes mirrors 2021, 2022, 2023, 2024, and 2025.
  • the reflectance of the mirror 2021 can be set to 20%
  • the reflectance of the mirror 2022 can be set to 25%
  • the reflectance of the mirror 2023 can be set to 33%
  • the reflectivity of the mirror 2024 can be set.
  • the reflectance of the mirror 2025 is set to 100%.
  • the intensity of light emitted by each mirror is 20% of the total light intensity.
  • the numerical values shown here are only an example, and those skilled in the art can set the reflectance of the mirror to an appropriate value according to the actual situation to meet the needs of the actual situation. No longer elaborate. It can be seen that the "image mirror is arranged in the order of the transmission direction of the image light, and the reflectance is sequentially increased" can ensure the uniformity of the light intensity in the horizontal direction, thereby giving the user a good visual experience.
  • the imaging mirror is specifically a mirror surface formed by a reflective, transmissive film layer, it is necessary to first plate the first layer on the first horizontal waveguide in the light guiding device 201.
  • the above-mentioned spectroscopic function can be accurately achieved by requiring high uniformity of the plated reflective and transmissive film layer.
  • the processing cost and processing difficulty of the imaging mirror are high.
  • the exit pupil of the imaging mirror formed by the reflective, transmissive film layer is spliced together, it is equivalent to expanding the exit pupil diameter of the augmented reality device, thereby making the image light output by the augmented reality device easier to enter.
  • image light can enter the pupil of the eye, thereby reducing or avoiding
  • the strict limitation of the position of the human eye observation further expands the applicable population of the augmented reality device, and does not require the user to adjust the distance adjustment of the augmented reality device, and also avoids the user's inability to obtain a good augmented reality experience due to inaccurate adjustment results. defect.
  • FIG. 4 is a schematic diagram of a second implementation manner of a near-eye display system according to an embodiment of the present invention.
  • image source 10 includes a light source 111 and a scanning device 112.
  • Light source 111 is used to provide initial light.
  • the light source 111 may be a laser light source, an LED light source, or the like, which is not limited herein.
  • a scanning device 112 is disposed on the optical path of the initial ray for deflecting the initial ray to form image ray.
  • the scanning device 112 includes a MEMS scanning galvanometer 1121.
  • the MEMS scanning galvanometer 1121 may be composed of a two-dimensional MEMS scanning galvanometer or two two-dimensional MEMS scanning galvanometers.
  • the initial light is the light modulated according to the virtual image that needs to be sent to the user's eyes.
  • the MEMS scanning galvanometer 1121 can be deflected according to the driving signal, that is, the purpose of outputting the image light by the scanning process, so that the virtual image can be transmitted to the user's eyes through the image light.
  • the scanning device 112 further includes a collimating device 1122.
  • the collimating device 1122 can be specifically a collimating lens.
  • the collimating lens collimates the light emitted from the MEMS scanning galvanometer 1121 to It is possible to enter the subsequent array imaging device 20 in an approximately parallel manner.
  • the array imaging device 20 in this embodiment is the same as that described in the first embodiment. For the sake of brevity of the description, details are not described herein again.
  • the exit pupil of the imaging mirror formed by the reflective and transmissive film layer is spliced together, it is equivalent to expanding the exit pupil diameter of the augmented reality device, thereby causing the image of the augmented reality device to output.
  • Light is more easily accessible into the pupil of the eye. For example, whether the user's eyes are at the position shown at 301 in FIG.
  • image light can enter the pupil of the eye, thereby reducing or avoiding
  • the strict limitation of the position of the human eye observation further expands the applicable population of the augmented reality device, and does not require the user to adjust the distance adjustment of the augmented reality device, and also avoids the user's inability to obtain a good augmented reality experience due to inaccurate adjustment results. defect.
  • FIG. 5 is a schematic diagram of a third implementation manner of a near-eye display system according to an embodiment of the present invention.
  • image source 10 includes a light source 121 and a scanning device 122.
  • Light source 121 is used to provide initial light.
  • the light source 121 may be a laser light source, an LED light source, or the like, which is not limited herein.
  • the scanning device 122 is disposed on the optical path of the initial light for deflecting the initial light to form image light.
  • the scanning device 122 specifically includes a fiber scanning device 1221.
  • the fiber scanning device 1221 includes an optical fiber and a scan drive unit.
  • the scan driving unit deflects the optical fiber in the horizontal direction and the vertical direction according to the driving signal, and processes the initial light outputted by the light source into image light, thereby realizing the purpose of transmitting the virtual image to the eyes of the user.
  • the scanning device 122 further includes a collimating lens 1222.
  • the collimating lens 1222 is used to collimate the cone beam scanned by the fiber scanning device 1221 so that it can enter the subsequent array imaging device 20 in an approximately parallel manner.
  • the array imaging device 20 in this embodiment is the same as that described in the first embodiment. For the sake of brevity of the description, details are not described herein again.
  • the exit pupil of the imaging mirror formed by the reflective and transmissive film layer is spliced together, it is equivalent to expanding the exit pupil diameter of the augmented reality device, thereby causing the image of the augmented reality device to output. Light is more easily accessible into the pupil of the eye.
  • the image light can enter the pupil of the eye, thereby reducing or avoiding strict restrictions on the position of the human eye, thereby expanding the applicable population of the augmented reality device, and There is no need for the user to adjust the distance adjustment of the augmented reality device, and the user is prevented from obtaining a good augmented reality experience due to inaccurate adjustment results.
  • FIG. 6 is a schematic diagram of a fourth implementation manner of a near-eye display system according to an embodiment of the present invention. As shown in FIG. 6, the specific implementation of the image source 10 in this embodiment is consistent with the content described in the second embodiment, and is not described herein for the sake of brevity of the description.
  • the specific implementation of the image source 10 may also adopt the solutions as described in the first embodiment and the third embodiment, and other solutions that can be adopted by those skilled in the art, which are not limited herein.
  • the array imaging device 20 includes a light guiding device 211 and an imaging mirror array 212.
  • the light guiding device 211 includes a coupling prism 2111 and a slab optical waveguide 2112.
  • the imaging mirror in the imaging mirror array 212 is a diffractive mirror.
  • the diffraction mirror surface is disposed on the light guiding device 211 in a manner facing the human eye. In the present embodiment, the position of the slab optical waveguide 2112 in the light guiding device 211 on the human eye.
  • the coupling prism 2111 is used to adjust the angle of the image light output by the image source 10 into the slab optical waveguide 2112 so that the image light can be transmitted in the slab optical waveguide 2112 under the condition of total reflection.
  • the imaging mirror in the imaging mirror array 212 is specifically taken as a reflective diffraction mirror as an example.
  • the imaging mirror array 212 includes reflective diffractive mirror faces 2121, 2122, and 2123.
  • Each of the reflective diffraction mirrors is disposed on a side of the slab optical waveguide 2112 that is away from the human eye.
  • the reflective diffraction mirror surface can be realized in the following two ways. The first implementation manner: firstly, the structure corresponding to the reflective diffraction mirror surface is made, and then it is attached to the corresponding position on the side of the flat optical waveguide 2112 away from the human eye by a fitting manner.
  • a corresponding coupling structure needs to be provided between the reflective diffraction mirror surface and the planar optical waveguide 2112 to prevent image light from still propagating in the planar optical waveguide 2112.
  • the second implementation manner directly forming the corresponding position of the planar optical waveguide 2112 as a reflective diffraction mirror structure.
  • those skilled in the art can set appropriate parameters for a plurality of reflective diffraction mirrors in the imaging mirror array 202 according to actual conditions, such as a grating constant, between two adjacent reflective diffraction mirrors.
  • a grating constant such as a grating constant
  • the image light passes through the reflective diffraction mirror surface 2121, a part of the image light is concentrated and imaged in front of the human eye, and the other portion continues to be transmitted as the zero-order diffracted light along the flat optical waveguide 2112, and the zero-order diffracted light is in the subsequent optical path.
  • the reflective diffraction mirrors 2122 and 2123 pass through, the same optical phenomenon occurs in the same way. Therefore, in order to ensure the uniformity of the image light, it is necessary to reasonably design the diffraction rate of each diffraction order in the diffraction structure of each of the reflective diffraction mirrors. I won't go into details here.
  • the imaging mirror array 212 in this embodiment does not need to be coated, and only the design of the diffraction structure of each reflective diffraction mirror surface can realize the effect of splitting, and the imaging mirror is additionally provided.
  • the processing cost of the array 212 is relatively reduced, the processing difficulty is also reduced, and it is easier to achieve scale in the industry.
  • each transmissive diffraction mirror surface may be disposed on the side of the flat optical waveguide 2112 in the light guiding device 211 near the human eye, that is, as shown in FIG. The position of the slab optical waveguide 2112 opposite to the reflective diffraction mirror surface.
  • transmissive diffractive mirror surface such as diffraction rate, adjacent distance or fabrication manner, etc.
  • Other settings of the transmissive diffractive mirror surface are the same as those of the reflective diffractive mirror surface, and will not be described herein.
  • the exit pupil of the diffraction mirror is spliced together, it is equivalent to expanding the exit pupil diameter of the augmented reality device, so that the image light output by the augmented reality device is more easily entered into the pupil of the eye.
  • image light can enter the pupil of the eye, thereby reducing or avoiding
  • the strict limitation of the position of the human eye observation further expands the applicable population of the augmented reality device, and does not require the user to adjust the distance adjustment of the augmented reality device, and also avoids the user's inability to obtain a good augmented reality experience due to inaccurate adjustment results. defect.
  • the array imaging device 20 includes at least two imaging mirrors, and the output pupils of all the imaging mirrors are spliced together, which is equivalent to expanding the exit pupil diameter of the augmented reality device, thereby making the image light output by the augmented reality device easier to enter the eye.
  • the exit pupil provided by the embodiment is significantly increased compared with the exit pupil of a single optical lens, thereby reducing or avoiding strict restrictions on the position of the human eye, thereby expanding the applicable population of the augmented reality device, and eliminating The user adjusts the distance adjustment of the augmented reality device, and also avoids the defect that the user cannot obtain a good augmented reality experience due to inaccurate adjustment results.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种近眼显示系统,包括图像源(10)和阵列成像装置(20)。阵列成像装置(20)包括至少两个成像镜面,所有成像镜面对应的出瞳拼接在一起。由图像源(10)输出的图像光线经阵列成像装置(20)的反射进入人眼,形成投影图像。环境光线经过阵列成像装置(20)的透射进入人眼,形成环境图像。由于阵列成像装置(20)包括至少两个成像镜面,并且所有成像镜面对应的出瞳拼接在一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。与单一光学透镜的出瞳相比,所述近眼显示系统提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节。

Description

一种近眼显示系统
本申请要求享有2016年4月22日提交的名称为“一种近眼显示系统”的中国专利申请CN201610257778.X的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及增强现实领域,尤其涉及一种近眼显示系统。
背景技术
增强现实(英文:Augmented Reality;简称:AR),是利用虚拟物体或信息对真实场景进行现实增强的技术。增强现实技术通常基于摄像头等图像采集设备获得的真实物理环境影像,通过计算机系统识别分析及查询检索,将与之存在关联的文本内容、图像内容或图像模型等虚拟生成的虚拟图像显示在真实物理环境影像中,从而使用户能够获得身处的现实物理环境中的真实物体的标注、说明等相关扩展信息,或者体验到现实物理环境中真实物体的立体的、突出强调的增强视觉效果。
现有的增强现实设备一般通过光学透镜将虚拟图像的光线会聚到用户的瞳孔中,其对人眼观察的位置有较严格的限制。在用户的瞳孔位置发生变化时(例如用户的眼球转动),或者在两个瞳距不同的用户先后使用同一个增强现实设备的时候,需要用户对增强现实设备的瞳距进行调节,或者由增强现实设备自动进行瞳距的调节。但目前这两者的精度都不高,因而会导致虚拟图像的光线无法全部进入人眼,从而使得增强现实设备无法向用户发送虚拟图像,或者发送的虚拟图像的效果不佳,继而无法给用户以良好的增强现实体验。
因此,现有技术中存在的因增强现实设备对人眼观察的位置有较严格的限制,而导致无法给用户以良好的增强现实体验的技术问题。
发明内容
本发明的目的是提供一种近眼显示系统,其可提供较大的出瞳,对人眼观察的位置没有限制,解决了现有技术中存在的因增强现实设备对人眼观察的位置有较严格的限制,而导致无法给用户以良好的增强现实体验的技术问题。
为了实现上述发明目的,本发明提供了一种近眼显示系统,其包括图像源和阵列成像装置,所述阵列成像装置包括至少两个成像镜面,所有成像镜面对应的出瞳拼接在一起;
由所述图像源输出的图像光线,经所述阵列成像装置的反射进入人眼,形成投影图像;环境光线经过所述阵列成像装置的透射进入人眼,形成环境图像。
可选地,所述成像镜面沿着所述图像光线的传输方向依次设置,且反射率依次增强。
可选地,所述图像源包括:
照明光源,用于提供照明光线;
反射式图像源,设置在所述照明光线的光路上,用于在所述照明光线的作用下发出所述图像光线。
可选地,所述图像源包括:
光源,用于提供初始光线;
扫描装置,设置在所述初始光线的光路上,用于对所述初始光线进行偏转,以形成所述图像光线。
可选地,所述扫描装置为MEMS扫描振镜或光纤扫描装置。
可选地,所述成像镜面为反射式衍射镜面或透射式衍射镜面。
可选地,所述阵列成像装置包括:
导光器件,用于引导所述图像光线;
成像镜面阵列,设置于人眼前方,由至少两个成像镜面组成,在所述图像光线经过所述成像镜面时,每个成像镜面在将所述图像光线的一部分向人眼方向反射时,还沿着所述图像光线在所述导光器件中的传播方向,传输所述图像光线中的另一部分。
可选地,所述导光器件具体为平板光波导。
可选地,所述成像镜面为衍射镜面,所述衍射镜面以面对人眼的方式设置于所述导光器件上。
可选地,所述衍射镜面贴合在所述导光器件的相应位置,或者所述衍射镜面由所述导光器件的相应位置制作而成。
可选地,所述成像镜面为由可反射、可透射的膜层形成的镜面,所述可反射、可透射的膜层的反射面朝向所述人眼。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
由于阵列成像装置包括至少两个成像镜面,并且所有成像镜面对应的出瞳拼接在一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。与单一光学透镜的出瞳相比,本发明提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为本发明实施例提供的近眼显示系统的模块图;
图2为本发明实施例提供的近眼显示系统的第一种实现方式的示意图;
图3A为近眼显示系统在垂直方向的第一种光路示意图;
图3B为近眼显示系统在垂直方向的第二种光路示意图;
图4为本发明实施例提供的近眼显示系统的第二种实现方式的示意图;
图5为本发明实施例提供的近眼显示系统的第三种实现方式的示意图;
图6为本发明实施例提供的近眼显示系统的第四种实现方式的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种近眼显示系统。在实际应用中,该近眼显示系统可以应用在HMD头(英文:Head Mount Display;中文:戴式可视设备)、智能眼镜等增强现实设备上,在此不做限制。
请参考图1,图1为本发明实施例提供的近眼显示系统的模块图。如图1所示,该近 眼显示系统包括图像源10和阵列成像装置20。阵列成像装置20包括至少两个成像镜面,所有成像镜面对应的视场和出瞳拼接在一起。图像源10例如可以采用激光光源、LED(英文:Light Emitting Diode;中文:发光二极管)光源等等输出图像。成像镜面具体可以为由可反射、可透射的膜层形成的镜面(其中,反射率和透射率均为50%的膜层为半反半透膜层),也可以是反射式衍射镜面或透射式衍射镜面,在此不做限制。
在具体实施过程中,由图像源10输出的图像光线,经阵列成像装置20的反射进入人眼,形成投影图像。环境光线经过阵列成像装置20的透射进入人眼,形成环境图像。
可以看出,由于阵列成像装置20包括至少两个成像镜面,并且所有成像镜面对应的出瞳拼接在一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。可见,与单一光学透镜的出瞳相比,本实施例提供的出瞳明显增大,从而减少或者避免了增强现实设备对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群。另外,由于无需用户对增强现实设备进行瞳距调节,因此也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
在接下来的部分中,将结合附图,对上述技术方案进行详细的举例介绍。
实施例一
请参考图2,图2为本发明实施例提供的近眼显示系统的第一种实现方式的示意图。如图2所示,该近眼显示系统的图像源10包括照明光源和反射式图像源。
照明光源用于发出照明光线。在本实施例中,照明光源可以为激光发生装置101。如图2所示,激光发生装置101包括红色激光发生单元1011、绿色激光发生单元1012和蓝色激光发生单元1013。在另一实施例中,激光发生装置101中各个激光发生单元的颜色可以根据实际需要进行设置,以满足实际情况的需要,在此不做限制。在其他实施例中,照明光源还可以为LED光源。通过分光镜将LED光源发出的光分为红光、绿光和蓝光即可,在此不做限制。
反射式图像源设置在照明光线的光路上,用于在照明光线的作用下发出图像光源。在本实施例中,请参考图2,反射式图像源具体为LCOS(英文:Liquid Crystal on Silicon;中文:硅基液晶)显示器102。
请继续参考图2,如图2所示,在本实施例中,图像源10还包括激光准直扩束和整形装置103。激光准直扩束和整形装置103设置于激光发生装置101发出的激光的光路上, 用于对激光发生装置101发出的激光进行准直、扩束和整形处理。具体地,激光准直扩束和整形装置103包括红色激光准直扩束和整形单元1031、绿色激光准直扩束和整形单元1032和蓝色激光准直扩束和整形单元1033,以分别对红色激光发生单元1011、绿色激光发生单元1012和蓝色激光发生单元1013发出的激光进行准直、扩束和整形处理。在通常情况下,准直精度可以要求在几个毫弧度,在此不再赘述。
请继续参考图2,图像源10还包括合光装置104。在本实施例中,合光装置104设置于激光准直扩束和整形装置103的光路上,用于将由激光发生装置101发出的激光合成到一个光路。具体地,如图2所示,合光装置104包括二向色镜1041、二向色镜1042和二向色镜1043。其中,二向色镜1041反射红光,二向色镜1042透射红光、反射绿光,二向色镜1043透射红绿光、反射蓝光,从而将红色激光发生单元1011、绿色激光发生单元1012和蓝色激光发生单元1013发出的激光合成到一个光路,在此不再赘述。
请继续参考图2,在本实施例中,图像源10还包括偏振分光棱镜(英文:polarization beam splitter;简称:PBS)105。偏振分光棱镜105设置在合光装置104的光路上。在合光装置104输出的光线进入到偏振分光棱镜105中后,P偏振的光线会发生透射,而S偏振的光线会反射至LCOS显示器102。在S偏振的光线的作用下,LCOS显示器102通过内部液晶调制,能够输出图像光线,在此不再赘述。
请继续参考图2,如图2所示,在本实施例中,图像源10还包括滤波装置106。滤波装置106设置于偏振分光棱镜105的出射光路上,用于滤除LCOS显示器102可能形成的衍射光束。具体地,滤波装置106具体包括聚焦透镜1061、光阑1062和准直透镜1063。其中,聚焦透镜1061用于对LCOS显示器102透射过偏振分光棱镜105的图像光线进行聚焦处理。光阑1062用于对被聚焦透镜1061聚焦后的图像光线进行滤波处理,以滤除其中的衍射光束。准直透镜1063用于对被光阑1062滤波后的图像光线进行准直处理,并将处理后的图像光线输出到阵列成像装置20。
在具体实施过程中,阵列成像装置20具体包括导光器件201和成像镜面阵列202。其中,导光器件201用于引导图像光线。成像镜面阵列202设置于人眼前方,由至少两个成像镜面组成。在图像光线经过成像镜面时,每个成像镜面在将图像光线的一部分反射至人眼时,还按图像光线在导光器件中的传播方向,传输图像光线中的另一部分。
在具体实施过程中,导光器件201具体可以为平板光波导。
为了能够在垂直方向也进行扩展导光,请同时参考图3A。图3A为近眼显示系统在垂直方向的第一种光路示意图。为了说明书的简洁,图3A仅仅示出了导光器件201中垂 直方向的光路示意图。如图3A所示,导光器件201包括垂直扩展波导2011。该垂直扩展波导2011用于在垂直方向也进行扩展导光。如图3A所示,垂直扩展波导2011包括4个导光镜面,4个导光镜面的附图标记分别为20111、20112、20113和20114。该4个导光镜面具体可以为由可反射、可透射的膜层形成的镜面。为了保证垂直方向上光强度的均匀性,可以将导光镜面20111的反射率设置为25%,将导光镜面20112的反射率设置为33%,将导光镜面20113的反射率设置为50%,将导光镜面20114的反射率设置为100%。这样,能够保证每个成像面(导光镜面)出射的光束强度为总光强的25%。当然,此处所示的数值仅仅是一个举例,本领域所属的技术人员能够根据实际情况,将反射率设置为合适的数值,以满足实际情况的需要,在此就不再赘述了。
在具体实施过程中,除了如图3A所示的光路方式之外,还可以采用如图3B所示的光路方式。请参考图3B,图3B为近眼显示系统在垂直方向的第二种光路示意图。如图3B所示,还可以在垂直方向上设置至少两个图像源10。在本实施例中,设置了4个图像源10。每个图像源10发出的图像光线的光强度相同。这样,也能够保证垂直方向上的光强度均匀,在此就不再赘述了。
请继续参考图2,如图2所示,在本实施例中,导光器件201具体还包括水平波导。由垂直扩展波导2011输出的图像光线进入水平波导后,在水平波导的引导作用下向前传播,直到碰到成像镜面阵列202为止。在本实施例中,成像镜面具体为由可反射、可透射的膜层形成的镜面。如图2所示,图像光线每经过一个可反射、可透射的膜层,即会将图像光线的一部分反射至人眼,而将另一部分沿图像光线的传播方向透射。多个可反射、可透射的膜层的出瞳拼接在一起,相当于扩大了增强现实设备的出瞳直径。
通过本实施例的介绍,本领域所属的技术人员能够根据实际情况,为成像镜面阵列202中的多个可反射、可透射的膜层设置合适的参数,例如倾斜角度、间距等等,以使得多个可反射、可透射的膜层的出瞳能够拼接在一起,进而使得多个可反射、可透射的膜层的拼接视场能够覆盖整个图像源视场,从而可以实现大视场的成像,在此就不再赘述了。
为了保证水平方向光强度的均匀,在本实施例中,成像镜面阵列202包括镜面2021、2022、2023、2024和2025。在本发明一优选实施例中,可以将镜面2021的反射率设置为20%,将镜面2022的反射率设置为25%,将镜面2023的反射率设置为33%,将镜面2024的反射率设置为50%,将镜面2025的反射率设置为100%。这样,每个镜面出射的光强度为总光强度的20%。当然,此处所示的数值仅仅是一个举例,本领域所属的技术人员能够根据实际情况,将镜面的反射率设置为合适的数值,以满足实际情况的需要,在此就 不再赘述了。可见,采用“成像镜面按图像光线的传输方向依次设置,且反射率依次增强”这一方案,能够保证水平方向上光强度的均匀性,从而能够给用户以良好的视觉体验。
需要说明的是,在本实施例中,由于成像镜面具体为由可反射、可透射的膜层形成的镜面,所以需要在导光器件201中的第一块水平波导上先镀上第一层可反射、可透射的膜层,再胶合镀有第二层可反射、可透射的膜层的第二块水平波导,以此类推,直到完成所有成像镜面。对所镀的可反射、可透射的膜层的均匀度要求较高,才能够准确地实现上述的分光功能。另外,成像镜面的加工成本和加工难度都较高。
可以看出,由于由可反射、可透射的膜层形成的成像镜面的出瞳拼接在了一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。例如,无论用户的眼睛是在如图2中301所示的位置,还是在302所示的位置,还是在303所示的位置,图像光线均能够进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
实施例二
请参考图4,图4为本发明实施例提供的近眼显示系统的第二种实现方式的示意图。如图4所示,图像源10包括光源111和扫描装置112。
光源111用于提供初始光线。在本实施例中,光源111具体可以为激光光源、LED光源等等,在此不做限制。
扫描装置112设置在初始光线的光路上,用于对初始光线进行偏转,以形成图像光线。在本实施例中,扫描装置112包括MEMS扫描振镜1121。在本实施例中,MEMS扫描振镜1121可以由一个二维MEMS扫描振镜组成,或者由两个一维MEMS扫描振镜组成。
当然了,需要说明的是,初始光线为根据需要发送到用户眼睛中的虚拟图像进行调制后的光线。在光源111输出初始光线后,MEMS扫描振镜1121能够根据驱动信号进行偏转,也即通过扫描这一过程实现了输出图像光线的目的,从而能够通过图像光线将虚拟图像发送到用户眼睛中。
请继续参考图4,在本实施例中,扫描装置112还包括准直装置1122。准直装置1122具体可以为准直透镜。准直透镜对从MEMS扫描振镜1121出射的光线进行准直处理,使 得其能够以近似平行的方式进入到后续的阵列成像装置20中。
本实施例中的阵列成像装置20与实施例一中介绍的内容一致,为了说明书的简洁,在此不再赘述。
如实施例一中介绍地,由于由可反射、可透射的膜层形成的成像镜面的出瞳拼接在了一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。例如,无论用户的眼睛是在如图4中301所示的位置,还是在302所示的位置,还是在303所示的位置,图像光线均能够进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
实施例三
请参考图5,图5为本发明实施例提供的近眼显示系统的第三种实现方式的示意图。如图5所示,图像源10包括光源121和扫描装置122。
光源121用于提供初始光线。在本实施例中,光源121具体可以为激光光源、LED光源等等,在此不做限制。
扫描装置122,设置在初始光线的光路上,用于对初始光线进行偏转,以形成图像光线。在本实施例中,扫描装置122具体包括光纤扫描装置1221。光纤扫描装置1221包括光纤和扫描驱动单元。扫描驱动单元根据驱动信号,对光纤在水平方向和垂直方向进行偏转,将光源输出的初始光线处理为图像光线,从而实现将虚拟图像发送到用户眼睛中的目的。
请继续参考图5,在本实施例中,扫描装置122还包括准直透镜1222。准直透镜1222用于将光纤扫描装置1221扫描出射的锥形光束进行准直处理,从而使得其能够以近似平行的方式进入到后续的阵列成像装置20中。
本实施例中的阵列成像装置20与实施例一中介绍的内容一致,为了说明书的简洁,在此不再赘述。
如实施例一中介绍地,由于由可反射、可透射的膜层形成的成像镜面的出瞳拼接在了一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。例如,无论用户的眼睛是在如图5中301所示的位置,还是在 302所示的位置,还是在303所示的位置,图像光线均能够进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
实施例四
请参考图6,图6为本发明实施例提供的近眼显示系统的第四种实现方式的示意图。如图6所示,本实施例中的图像源10的具体实现与实施例二中介绍的内容一致,在此为了说明书的简洁,就不再赘述了。
在其他实施例中,图像源10的具体实现还可以采用如实施例一、实施例三中介绍的方案,以及本领域所属的技术人员能够采用的其他方案,在此不做限制。
请继续参考图6,如图6所示,在本实施例中,阵列成像装置20包括导光器件211和成像镜面阵列212。导光器件211包括耦合棱镜2111和平板光波导2112。成像镜面阵列212中的成像镜面为衍射镜面。衍射镜面以面对人眼的方式设置于导光器件211上。在本实施例中,导光器件211中的平板光波导2112上面对人眼的位置。
在具体实施过程中,耦合棱镜2111用于调整图像源10输出的图像光线进入平板光波导2112的角度,使得图像光线能够满足全反射条件地在平板光波导2112中传输。
在本实施例中,将以成像镜面阵列212中的成像镜面具体为反射式衍射镜面为例来进行介绍。请继续参考图6,如图6所示,成像镜面阵列212包括反射式衍射镜面2121、2122和2123。每个反射式衍射镜面设置在平板光波导2112上远离人眼的一侧。具体地,反射式衍射镜面可以通过如下两种方式实现。第一种实现方式:先做出反射式衍射镜面对应的结构,然后通过贴合的方式将其贴合在平板光波导2112远离人眼的一侧上的相应位置。当然,在这种情况下,反射式衍射镜面与平板光波导2112之间需要设置相应的耦合结构,以避免图像光线仍然在平板光波导2112中传播。第二种实现方式:将平板光波导2112的相应位置直接制作为反射式衍射镜面结构。
通过本实施例的介绍,本领域所属的技术人员能够根据实际情况,为成像镜面阵列202中的多个反射式衍射镜面设置合适的参数,例如光栅常数、相邻两个反射式衍射镜面之间的距离等等,以使得多个反射式衍射镜面的出瞳能够拼接在一起,进而使得反射式衍射镜面的拼接视场能够覆盖整个图像源视场,从而可以实现大视场的成像,在此不再赘述。
当然,由于在图像光线经过反射式衍射镜面2121时,图像光线的一部分会聚成像在人眼前方,另一部分作为零级衍射光线沿着平板光波导2112继续传输,并且该零级衍射光线在后续光路中经过反射式衍射镜面2122和2123时,同理会发生相同的光学现象,所以为了保证图像光线的均匀性,需要合理地设计每个反射式衍射镜面的衍射结构中各个衍射级次的衍射率,在此就不再赘述了。
本实施例中的成像镜面阵列212与实施例一中的成像镜面阵列202相比,无需镀膜,仅通过对每个反射式衍射镜面的衍射结构的设计,即能够实现分光的效果,另外成像镜面阵列212的加工成本相对降低,加工难度也降低,更容易在产业上实现规模化。
在成像镜面阵列212中的成像镜面具体为透射式衍射镜面时,每个透射式衍射镜面可以设置在导光器件211中的平板光波导2112上靠近人眼的一侧,也即图6所示的平板光波导2112上与反射式衍射镜面相对的位置。
透射式衍射镜面的其他设置如衍射率、相邻距离或制作方式等等与反射式衍射镜面的设置同理,在此不再赘述。
可以看出,由于衍射镜面的出瞳拼接在了一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。例如,无论用户的眼睛是在如图6中301所示的位置,还是在302所示的位置,还是在303所示的位置,图像光线均能够进入眼睛的瞳孔中,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
由于阵列成像装置20包括至少两个成像镜面,并且所有成像镜面对应的出瞳拼接在一起,相当于扩大了增强现实设备的出瞳直径,因此使得增强现实设备输出的图像光线更加容易进入眼睛的瞳孔中。可见,与单一光学透镜的出瞳相比,本实施例提供的出瞳明显增大,从而减少或者避免了对人眼观察的位置的严格限制,进而扩大了增强现实设备的适用人群,并且无需用户对增强现实设备进行瞳距调节,也避免了用户因调节结果不精确而导致无法获得良好的增强现实体验的缺陷。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是 一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (11)

  1. 一种近眼显示系统,其特征在于,包括图像源和阵列成像装置,所述阵列成像装置包括至少两个成像镜面,所有成像镜面对应的出瞳拼接在一起;
    由所述图像源输出的图像光线,经所述阵列成像装置的反射进入人眼,形成投影图像;环境光线经过所述阵列成像装置的透射进入人眼,形成环境图像。
  2. 如权利要求1所述的近眼显示系统,其特征在于,所述成像镜面沿着所述图像光线的传输方向依次设置,且反射率依次增强。
  3. 如权利要求1所述的近眼显示系统,其特征在于,所述图像源包括:
    照明光源,用于提供照明光线;
    反射式图像源,设置在所述照明光线的光路上,用于在所述照明光线的作用下发出所述图像光线。
  4. 如权利要求1所述的近眼显示系统,其特征在于,所述图像源包括:
    光源,用于提供初始光线;
    扫描装置,设置在所述初始光线的光路上,用于对所述初始光线进行偏转,以形成所述图像光线。
  5. 如权利要求4所述的近眼显示系统,其特征在于,所述扫描装置为MEMS扫描振镜或光纤扫描装置。
  6. 如权利要求1-5中任一项所述的近眼显示系统,其特征在于,所述成像镜面为反射式衍射镜面或透射式衍射镜面。
  7. 如权利要求1-5中任一项所述的近眼显示系统,其特征在于,所述阵列成像装置包括:
    导光器件,用于引导所述图像光线;
    成像镜面阵列,设置于人眼前方,由至少两个成像镜面组成,在所述图像光线经过所述成像镜面时,每个成像镜面在将所述图像光线的一部分向人眼方向反射时,还沿着所述图像光线在所述导光器件中的传播方向,传输所述图像光线中的另一部分。
  8. 如权利要求7所述的近眼显示系统,其特征在于,所述导光器件具体为平板光波导。
  9. 如权利要求7所述的近眼显示系统,其特征在于,所述成像镜面为衍射镜面,所 述衍射镜面以面对人眼的方式设置于所述导光器件上。
  10. 如权利要求9所述的近眼显示系统,其特征在于,所述衍射镜面贴合在所述导光器件的相应位置,或者所述衍射镜面由所述导光器件的相应位置制作而成。
  11. 如权利要求7所述的近眼显示系统,其特征在于,所述成像镜面为由可反射、可透射的膜层形成的镜面,所述可反射、可透射的膜层的反射面朝向所述人眼。
PCT/CN2017/079940 2016-04-22 2017-04-10 一种近眼显示系统 WO2017181864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610257778.X 2016-04-22
CN201610257778.XA CN107305291A (zh) 2016-04-22 2016-04-22 一种近眼显示系统

Publications (1)

Publication Number Publication Date
WO2017181864A1 true WO2017181864A1 (zh) 2017-10-26

Family

ID=60116546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079940 WO2017181864A1 (zh) 2016-04-22 2017-04-10 一种近眼显示系统

Country Status (2)

Country Link
CN (1) CN107305291A (zh)
WO (1) WO2017181864A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333776A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示光学模组及近眼显示系统
CN108333777A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示光学模组及近眼显示系统
CN108375832A (zh) * 2018-04-20 2018-08-07 深圳创维新世界科技有限公司 增强现实显示光学模组及增强现实显示系统
CN108398792A (zh) * 2018-04-20 2018-08-14 深圳创维新世界科技有限公司 增强现实显示光学模组及系统
CN108398793A (zh) * 2018-04-20 2018-08-14 深圳创维新世界科技有限公司 增强现实显示系统
CN108803023A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示模组、显示方法及头戴式显示设备
US11054649B2 (en) 2017-12-01 2021-07-06 Tae Kyung Kim Image display optical apparatus and image generation method thereof
CN113126291A (zh) * 2019-12-30 2021-07-16 重庆爱奇艺智能科技有限公司 一种近眼显示系统
CN114609779A (zh) * 2020-12-09 2022-06-10 黄海琴 一种应用于增强现实的长景深大视场角图像传导光学系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133860B (zh) * 2018-02-09 2022-01-25 中强光电股份有限公司 显示装置
CN110133859B (zh) 2018-02-09 2021-09-03 中强光电股份有限公司 显示装置
CN108803022A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示设备及双目大视场近眼显示设备
CN108803027A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种近眼显示系统
CN108333780A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
CN108333781B (zh) * 2018-04-20 2023-10-27 深圳创维新世界科技有限公司 近眼显示系统
CN109239835A (zh) * 2018-10-19 2019-01-18 成都理想境界科技有限公司 波导、成像扩展模组、光源模组、近眼显示系统及设备
CN111694150A (zh) * 2019-03-14 2020-09-22 中强光电股份有限公司 近眼显示装置
WO2021027677A1 (zh) * 2019-08-09 2021-02-18 蒋晶 波导型光学组件、近眼显示装置、图像投射方法、光学元件制造方法和光束合成器制造方法
CN111983811B (zh) 2020-09-09 2022-08-19 京东方科技集团股份有限公司 一种近眼显示装置
CN112462523A (zh) * 2020-12-08 2021-03-09 谷东科技有限公司 一种增强现实近眼显示波导装置
CN112904566A (zh) * 2021-03-22 2021-06-04 深圳珑璟光电科技有限公司 照明光学系统及光学显示设备
CN115480401A (zh) 2021-06-16 2022-12-16 中强光电股份有限公司 照明系统及投影装置
CN115616774A (zh) * 2021-07-15 2023-01-17 上海鲲游科技有限公司 分孔径式微投影装置及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013565A1 (en) * 2004-08-05 2006-02-09 Lumus Ltd. Optical device for light coupling
CN103620479A (zh) * 2011-07-15 2014-03-05 谷歌公司 具有多个反射器的用于近眼式显示器的目镜
CN103885184A (zh) * 2014-04-10 2014-06-25 北京理工大学 一种投影式平面波导头盔显示器
CN103941398A (zh) * 2014-04-09 2014-07-23 北京理工大学 透过式眼镜显示器
CN104204871A (zh) * 2012-03-02 2014-12-10 谷歌公司 夹心式衍射光学组合器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724443B2 (en) * 2005-02-10 2010-05-25 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
JP5226528B2 (ja) * 2005-11-21 2013-07-03 マイクロビジョン,インク. 像誘導基板を有するディスプレイ
CN104216120B (zh) * 2014-08-29 2016-11-02 中国科学院长春光学精密机械与物理研究所 半透膜阵列平板波导式头戴显示器光学系统
CN104656259B (zh) * 2015-02-05 2017-04-05 上海理湃光晶技术有限公司 共轭窄带三基色交错的体全息光栅波导近眼光学显示器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013565A1 (en) * 2004-08-05 2006-02-09 Lumus Ltd. Optical device for light coupling
CN103620479A (zh) * 2011-07-15 2014-03-05 谷歌公司 具有多个反射器的用于近眼式显示器的目镜
CN104204871A (zh) * 2012-03-02 2014-12-10 谷歌公司 夹心式衍射光学组合器
CN103941398A (zh) * 2014-04-09 2014-07-23 北京理工大学 透过式眼镜显示器
CN103885184A (zh) * 2014-04-10 2014-06-25 北京理工大学 一种投影式平面波导头盔显示器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11054649B2 (en) 2017-12-01 2021-07-06 Tae Kyung Kim Image display optical apparatus and image generation method thereof
CN108803023A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示模组、显示方法及头戴式显示设备
CN108398792A (zh) * 2018-04-20 2018-08-14 深圳创维新世界科技有限公司 增强现实显示光学模组及系统
CN108333776A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示光学模组及近眼显示系统
CN108398793A (zh) * 2018-04-20 2018-08-14 深圳创维新世界科技有限公司 增强现实显示系统
CN108375832A (zh) * 2018-04-20 2018-08-07 深圳创维新世界科技有限公司 增强现实显示光学模组及增强现实显示系统
CN108333777A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示光学模组及近眼显示系统
CN108333777B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 近眼显示光学模组及近眼显示系统
CN108375832B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 增强现实显示光学模组及增强现实显示系统
CN108398793B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 增强现实显示系统
CN108333776B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 近眼显示光学模组及近眼显示系统
CN108398792B (zh) * 2018-04-20 2023-10-03 深圳创维新世界科技有限公司 增强现实显示光学模组及系统
CN113126291A (zh) * 2019-12-30 2021-07-16 重庆爱奇艺智能科技有限公司 一种近眼显示系统
CN114609779A (zh) * 2020-12-09 2022-06-10 黄海琴 一种应用于增强现实的长景深大视场角图像传导光学系统

Also Published As

Publication number Publication date
CN107305291A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
WO2017181864A1 (zh) 一种近眼显示系统
JP6994940B2 (ja) 光結合を用いたヘッドマウント型画像装置
US11128847B2 (en) Information display device and information display method
US11698533B2 (en) Tiled waveguide display with a wide field-of-view
JP7029399B2 (ja) 仮想/拡張現実システムにおけるビーム角度センサ
EP3028216B1 (en) Near-eye optic positioning in display devices
US10553139B2 (en) Enhanced imaging system for linear micro-displays
JP7489560B2 (ja) 二重混合光照射フィールドデバイス
US10228561B2 (en) Eye-tracking system using a freeform prism and gaze-detection light
TW202026685A (zh) 具有反射鏡的光導顯示器
TW201215913A (en) Laser-scanning virtual image display
TWI727217B (zh) 光傳遞模組以及頭戴式顯示裝置
CN108803020A (zh) 一种近眼显示系统及头戴显示设备
JP2023526018A (ja) 回折接眼レンズ導波管ディスプレイにおける瞳分離のための方法およびシステム
WO2020048536A1 (zh) 显示模组及成像方法
US20190094444A1 (en) Optical coupling of waveguide and dlp light engine
US10775607B2 (en) Backlight module, holographic display device and holographic display method thereof
US20220050286A1 (en) Beam scanner with pic input and display based thereon
WO2018001321A1 (zh) 一种近眼显示系统、虚拟现实设备和增强现实设备
US11940628B2 (en) Display device having common light path region
US11579450B1 (en) Holographic diffuser display
KR102151883B1 (ko) 유한 깊이 영상을 제공하는 도파관 디스플레이에서 화소 방사각 조정을 통한 크로스토크 저감 방법
US20220357575A1 (en) Head-up display
JP2021113929A (ja) 導光部材および虚像表示装置
CN112649953A (zh) 一种显示设备模组及头戴式显示设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785349

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785349

Country of ref document: EP

Kind code of ref document: A1