WO2023045119A1 - 超声成像方法和系统 - Google Patents

超声成像方法和系统 Download PDF

Info

Publication number
WO2023045119A1
WO2023045119A1 PCT/CN2021/138274 CN2021138274W WO2023045119A1 WO 2023045119 A1 WO2023045119 A1 WO 2023045119A1 CN 2021138274 W CN2021138274 W CN 2021138274W WO 2023045119 A1 WO2023045119 A1 WO 2023045119A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
wave
mode
imaging mode
mixed
Prior art date
Application number
PCT/CN2021/138274
Other languages
English (en)
French (fr)
Inventor
罗锐
田志鑫
凌浩
Original Assignee
武汉联影医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111124331.2A external-priority patent/CN114027872B/zh
Priority claimed from CN202111250486.0A external-priority patent/CN114027873B/zh
Application filed by 武汉联影医疗科技有限公司 filed Critical 武汉联影医疗科技有限公司
Priority to US17/810,330 priority Critical patent/US20230099970A1/en
Publication of WO2023045119A1 publication Critical patent/WO2023045119A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8995Combining images from different aspect angles, e.g. spatial compounding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • This specification relates to the field of ultrasonic medical technology, in particular to an ultrasonic imaging method, system, device and computer-readable storage medium.
  • Ultrasound Medicine can combine acoustics, medicine, optics and electronics and other disciplines, and its applications can include ultrasonic diagnosis, ultrasonic therapy, etc.
  • Ultrasonic Diagnosis can apply ultrasonic detection technology to the human body, and through measuring the data and morphology of physiological or tissue structures, it can provide hints or guidelines for discovering diseases.
  • Ultrasound diagnosis can be used as a non-invasive, painless, convenient, intuitive and effective means of examination, especially B-ultrasound, which is widely used.
  • ultrasonic imaging In ultrasonic medical applications such as ultrasonic diagnosis, ultrasonic imaging is the core and key link. Ultrasound imaging can transmit ultrasonic waves from an ultrasonic probe to an object to be inspected, and generate an ultrasonic image based on echo signals of the ultrasonic waves. The imaging effect of ultrasound imaging is directly related to the execution efficiency of ultrasound medical applications such as ultrasound diagnosis, so it is also a key area that has been committed to improvement in medicine.
  • One of the embodiments of the present specification provides an ultrasonic imaging method, which is executed on at least one machine, each of the at least one machine has at least one processor and a memory, and the method includes: The information determines the target imaging mode; according to the target imaging mode, perform corresponding imaging operations to obtain corresponding target imaging results; wherein, the imaging requirements include at least requirements related to image quality and/or frame rate, and the target imaging modes include The first target imaging mode and/or the second target imaging mode, the first target imaging mode is used to optimize the imaging of the local imaging area, and/or, the second target imaging mode uses different transmit beam types and/or Mixed waves of different emission frequencies are imaged.
  • One of the embodiments of this specification provides an ultrasound imaging method, which is executed on at least one machine, each of the at least one machine has at least one processor and a memory, and the method includes: determining on the initial imaging image A region of interest, the initial imaging image includes a global imaging region; determining imaging condition data according to the region of interest; judging which optimized imaging mode the imaging condition data conforms to, and triggering an imaging operation in a corresponding optimized imaging mode to generate Optimizing the imaging image, the optimized imaging mode at least includes a first optimized imaging mode and a second optimized imaging mode, wherein the first optimized imaging mode refers to an emission parameter adjustment operation covering the global imaging area, and the second optimized imaging mode
  • the imaging mode refers to a synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging region.
  • One of the embodiments of the present specification provides an ultrasonic imaging method, which is executed on at least one machine, each of the at least one machine has at least one processor and a memory, and the method includes: The information determines the corresponding mixed wave imaging mode; according to the mixed wave imaging mode, perform the corresponding mixed wave imaging operation to obtain the corresponding imaging result; wherein, the imaging requirements include at least requirements related to image quality and/or frame rate, and the The mixed wave imaging operation performs imaging with at least mixed waves of different transmit beam types and/or different transmit frequencies, the transmit beam types including at least focused waves and/or unfocused waves.
  • One of the embodiments of the present specification provides an ultrasonic imaging system, including: at least one storage medium storing at least one set of instructions; and at least one processor configured to communicate with the at least one storage medium, wherein, when executing In the at least one set of instructions, the at least one processor is instructed to make the system: determine a target imaging mode according to information related to imaging requirements; perform corresponding imaging operations according to the target imaging mode to obtain corresponding target imaging Result; wherein, the imaging requirements include at least requirements related to image quality and/or frame rate, and the target imaging mode includes a first target imaging mode and/or a second target imaging mode, and the first target imaging mode uses To optimize imaging of the local imaging area, and/or, the second target imaging mode uses different transmission beam types and/or mixed waves of different transmission frequencies to perform imaging.
  • an ultrasonic imaging system including: an imaging mode determination module, configured to determine a target imaging mode according to information related to imaging requirements; an imaging operation module, configured to perform corresponding imaging according to the target imaging mode Operate to obtain corresponding target imaging results; wherein, the imaging requirements include at least requirements related to image quality and/or frame rate, and the target imaging modes include the first target imaging mode and/or the second target imaging mode, the The first target imaging mode is used for optimal imaging of the local imaging area, and/or, the second target imaging mode utilizes mixed waves of different transmit beam types and/or different transmit frequencies to perform imaging.
  • One of the embodiments of this specification provides a non-transitory computer-readable storage medium, including at least one set of instructions, wherein, when executed by at least one processor of a computer device, the at least one set of instructions instructs the at least one processing
  • a device determine a target imaging mode according to information related to imaging requirements; perform corresponding imaging operations according to the target imaging mode, and obtain corresponding target imaging results; wherein, the imaging requirements include at least requirements related to image quality and/or frame rate Requirements, the target imaging mode includes a first target imaging mode and/or a second target imaging mode, the first target imaging mode is used to optimize imaging of a local imaging area, and/or, the second target imaging mode Imaging with a mixture of different transmit beam types and/or different transmit frequencies.
  • One of the embodiments of the present specification provides an ultrasonic imaging system, including: at least one storage medium storing at least one set of instructions; and at least one processor configured to communicate with the at least one storage medium, wherein, when executing In the at least one set of instructions, the at least one processor is instructed to cause the system to: determine a region of interest on an initial imaging image, the initial imaging image comprising a global imaging region; determine an imaging region based on the region of interest Condition data; determine which optimized imaging mode the imaging condition data conforms to, and trigger an imaging operation in a corresponding optimized imaging mode to generate an optimized imaging image, where the optimized imaging mode includes at least a first optimized imaging mode and a second optimized imaging mode , wherein the first optimized imaging mode refers to an emission parameter adjustment operation covering the global imaging area, and the second optimized imaging mode refers to enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area Simultaneous operation of imaging.
  • an ultrasonic imaging system including: a region of interest determination module, configured to determine a region of interest on an initial imaging image, the initial imaging image including a global imaging region; an imaging condition data determination module, using The imaging condition data is determined according to the region of interest; the optimized imaging image generating module is used to determine which optimized imaging mode the imaging condition data conforms to, and trigger an imaging operation in a corresponding optimized imaging mode to generate an optimized imaging image, so
  • the optimized imaging mode includes at least a first optimized imaging mode and a second optimized imaging mode, wherein the first optimized imaging mode refers to an emission parameter adjustment operation covering the global imaging area, and the second optimized imaging mode refers to an operation covering all Synchronous operation of enhanced imaging of the region of interest and non-enhanced imaging covering the global imaging region.
  • One of the embodiments of this specification provides a non-transitory computer-readable storage medium, including at least one set of instructions, wherein, when executed by at least one processor of a computer device, the at least one set of instructions instructs the at least one processing Device: determine the region of interest on the initial imaging image, the initial imaging image includes the global imaging region; determine imaging condition data according to the region of interest; determine which optimal imaging mode the imaging condition data conforms to, and trigger corresponding optimization
  • An imaging operation in an imaging mode to generate an optimized imaging image the optimized imaging mode at least includes a first optimized imaging mode and a second optimized imaging mode, wherein the first optimized imaging mode refers to emission parameters covering the global imaging area
  • the second optimized imaging mode refers to a synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging region.
  • One of the embodiments of the present specification provides an ultrasonic imaging system, including: at least one storage medium storing at least one set of instructions; and at least one processor configured to communicate with the at least one storage medium, wherein, when executing In the at least one set of instructions, the at least one processor is instructed to cause the system to: determine a corresponding mixed wave imaging mode according to information related to imaging requirements; perform a corresponding mixed wave imaging operation according to the mixed wave imaging mode , to obtain corresponding imaging results; wherein, the imaging requirements include at least requirements related to image quality and/or frame rate, and the mixed wave imaging operation at least utilizes mixed waves of different transmit beam types and/or different transmit frequencies for imaging,
  • the transmit beam types include at least focused waves and/or unfocused waves.
  • One of the embodiments of this specification provides an ultrasonic imaging system, including: a hybrid wave imaging mode determination module, configured to determine a corresponding hybrid wave imaging mode according to information related to imaging requirements; a hybrid wave imaging operation module, configured to Wave imaging mode, performing corresponding mixed wave imaging operations to obtain corresponding imaging results; wherein, the imaging requirements at least include requirements related to image quality and/or frame rate, and the mixed wave imaging operations at least use different transmit beam types and/or or mixed waves of different transmission frequencies for imaging, and the transmission beam types include at least focused waves and/or unfocused waves.
  • One of the embodiments of this specification provides a non-transitory computer-readable storage medium, including at least one set of instructions, wherein, when executed by at least one processor of a computer device, the at least one set of instructions instructs the at least one processing A device: determine the corresponding mixed wave imaging mode according to the information related to the imaging requirement; perform the corresponding mixed wave imaging operation according to the mixed wave imaging mode, and obtain the corresponding imaging result; wherein the imaging requirement includes at least image quality and/or For frame rate-related requirements, the mixed wave imaging operation at least utilizes mixed waves of different transmit beam types and/or different transmit frequencies for imaging, and the transmit beam types include at least focused waves and/or unfocused waves.
  • FIG. 1 is a schematic diagram of an application scenario of an ultrasound imaging system according to some embodiments of the present specification
  • Fig. 2 is a schematic diagram of an application scenario of an ultrasonic imaging device according to some embodiments of the present specification
  • Fig. 3 is an exemplary flowchart of an ultrasound imaging method according to some embodiments of the present specification.
  • Fig. 4 is an exemplary flow chart of a target imaging mode determination process according to some embodiments of the present specification
  • Fig. 5 is an exemplary flow chart of a target imaging mode selection process according to some embodiments of the present specification
  • Fig. 6 is an exemplary flowchart of a process of obtaining a target imaging result according to some embodiments of the present specification
  • Fig. 7 is an exemplary structural block diagram of a processing device according to some embodiments of the present specification.
  • Fig. 8 is an exemplary flowchart of an ultrasound imaging method according to some embodiments of the present specification.
  • Fig. 9 is an exemplary flowchart of an ultrasound imaging method according to some embodiments of the present specification.
  • Fig. 10a to Fig. 10c are example diagrams of determining ROI through touch screen and/or non-touch screen operation instructions according to some embodiments of the present specification
  • Fig. 11 is an exemplary flow chart of determining imaging condition data according to a region of interest according to some embodiments of the present specification
  • 12a to 12b are examples of required focal points for emission of the global imaging area according to some embodiments of the present specification.
  • 13a to 13b are examples of required focal points for emission of effective imaging regions according to some embodiments of the present specification.
  • Fig. 14 is an exemplary flow chart of judging which optimal imaging mode the imaging condition data conforms to and triggering the imaging operation in the corresponding optimal imaging mode according to some embodiments of the present specification;
  • Fig. 15a to Fig. 15b are example diagrams showing transmission parameter adjustment according to some embodiments of the present specification.
  • Fig. 16a to Fig. 16c are example diagrams showing transmission parameter adjustment according to some embodiments of the present specification.
  • Fig. 17a to Fig. 17d are example diagrams showing transmission parameter adjustment according to some embodiments of the present specification.
  • Fig. 18 is an example diagram of an enhanced imaging operation covering a region of interest according to some embodiments of the present specification.
  • Fig. 19 is an example diagram of an image composite operation of an enhanced image and a global image according to some embodiments of the present specification
  • Fig. 20a to Fig. 20c are example diagrams of operation nodes where the image composite operation of the enhanced image and the global image is shown according to some embodiments of the present specification;
  • Fig. 21 is an example diagram of an optimized imaging setting interface according to some embodiments of the present specification.
  • Fig. 22 is an exemplary structural block diagram of a processing device according to some embodiments of this specification.
  • Fig. 23 is an exemplary flowchart of an ultrasound imaging method according to some embodiments of the present specification.
  • Fig. 24 is an exemplary flowchart of performing corresponding mixed wave imaging operations according to the mixed wave imaging mode according to some embodiments of the present specification
  • Fig. 25 is an example diagram of determining the limit deflection angle and limit delay time according to the limit condition of array element directivity according to some embodiments of the present specification
  • Fig. 26 is an example diagram of determining the limit deflection angle and limit delay time according to the limit condition of array element directivity according to some embodiments of the present specification
  • Fig. 27a to Fig. 27d are diagrams illustrating the effects of deflection scanning with divergent beams according to some embodiments of the present specification
  • Fig. 28 is an example diagram of determining the limit deflection angle and limit delay time according to the limit condition of array element directivity according to some embodiments of the present specification
  • Fig. 29 is an example of focus distribution in mixed wave imaging mode according to some embodiments of the present specification.
  • Fig. 30 is a schematic diagram of emission imaging of the first mixed wave imaging mode according to some embodiments of the present specification.
  • Fig. 31 is an example of focus distribution in mixed wave imaging mode according to some embodiments of the present specification.
  • Fig. 32 is a schematic diagram of emission imaging in the second mixed wave imaging mode according to some embodiments of the present specification.
  • 33a to 33c are exemplary diagrams of sound pressure distribution of ultrasonic beams in the hybrid wave imaging mode according to some embodiments of the present specification
  • Fig. 34 is an exemplary structural block diagram of a processing device according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the effect of ultrasound imaging may be related to multiple factors, including but not limited to the image quality of the imaging area, frame rate, and so on.
  • image quality and frame rate can affect each other.
  • the image signal-to-noise ratio which measures image quality
  • PRF pulse repetition frequency
  • image quality indicators such as image spatial resolution and/or image uniformity can be improved by increasing the number of transmitting focal points or imaging line density, but at the same time, the image frame rate will decrease.
  • a specific imaging operation may be associated with a user's imaging requirement, so that in multiple scenarios, corresponding imaging operations may be performed according to the user's imaging requirement.
  • the corresponding target imaging mode can be determined according to the information related to the imaging requirement, and the corresponding imaging operation can be performed according to the determined target imaging mode to obtain an imaging result that matches the imaging requirement, thereby improving comprehensive imaging efficiency and improving user experience.
  • Fig. 1 is a schematic diagram of an application scenario of an ultrasound imaging system 100 according to some embodiments of the present specification.
  • an ultrasound device 110 may be included in an application scenario.
  • a processing device 120 may be included in an application scenario.
  • a storage device 130 may be included in an application scenario.
  • a terminal 140 may be included in an application scenario.
  • the ultrasound device 110 may be used to perform scans of a subject for diagnostic imaging.
  • the ultrasound device 110 can be used to view image information of internal tissues of a subject to assist doctors in disease diagnosis.
  • the ultrasound device 110 may transmit higher frequency sound waves (eg, ultrasound) to a subject through a probe to generate an ultrasound image.
  • objects may include biological objects and/or non-biological objects.
  • an object may include a specific part of a human body, such as a neck, chest, abdomen, etc., or a combination thereof.
  • the object may be a patient to be scanned by the ultrasound device 110 .
  • ultrasound images may include brightness-mode (B-mode) images, color-mode (C-mode) images, motion-mode (M-mode) images, Doppler-mode (D-mode) images, and elastography-mode (E-mode) images. ) at least one of the images.
  • the ultrasound images may include two-dimensional (2D) images or three-dimensional (3D) images.
  • the ultrasound device 110 may be used for data acquisition, processing and/or output, positioning, and other functions.
  • the ultrasonic device 110 may include one or more sub-functional devices (such as a single sensing device or a sensing system device composed of multiple sensing devices).
  • the ultrasonic device 110 may include, but not limited to, an ultrasonic transmitting unit (for example, including an ultrasonic transducer, etc.), an ultrasonic imaging unit, a radio frequency sensing unit, an NFC communication unit, an image acquisition unit, an image display unit, an audio output unit, etc. or any combination thereof.
  • the ultrasonic imaging unit may be used for processing received signals, including data processing that may be involved in the ultrasonic imaging process such as filtering, demodulation, and beam forming.
  • the image display unit may be used to optimize the display of the imaged image.
  • the ultrasound device 110 can collect imaging object information and/or receive imaging operation instruction information through its information input module (not shown in FIG. 1 ), for example, preset requirement parameter selection instructions, or input information related to imaging requirements information, user instructions, etc.
  • the ultrasound device 110 may also receive imaging object information and/or imaging operation instruction information sent from the terminal 140 or the processing device 120 through the network 150, for example, a preset requirement parameter selection instruction, or input information related to imaging requirements user instruction, etc., or may send the intermediate imaging result data or the target imaging image to the processing device 120 , the storage device 130 or the terminal 140 .
  • Processing device 120 may comprise a single server, or a group of servers.
  • the server group can be centralized or distributed (for example, processing device 120 can be a distributed system).
  • processing device 120 may be local or remote.
  • processing device 120 may access information and/or data stored in ultrasound device 110 , terminal 140 and/or storage device 130 via network 150 .
  • the processing device 120 may be directly connected to the ultrasound device 110, the terminal 140 and/or the storage device 130 to access stored information and/or data.
  • processing device 120 may be implemented on a cloud platform.
  • the cloud platform can include private clouds, public clouds, hybrid clouds, community clouds, distributed clouds, internal clouds, multi-layer clouds, etc., or any combination thereof.
  • processing device 120 may be implemented on a computing device including one or more components.
  • processing device 120 may process information and/or data related to imaging requirements to perform one or more functions described herein. For example, processing device 120 may determine a target imaging mode based on information related to imaging requirements.
  • processing device 120 may include processing device 700 , processing device 2200 and/or processing device 3400 .
  • Processing device 700, processing device 2200, and/or processing device 3400 may be configured as one or more processing devices.
  • the functions of two or more of the processing device 700, the processing device 2200 and the processing device 3400 may be implemented on the same processing device.
  • one function of the processing device 700, the processing device 2200, and/or the processing device 3400 may be implemented on multiple processing devices.
  • processing device 120 may include one or more processing engines (eg, single-core processing engines or multi-core processing engines).
  • the processing device 120 may include a central processing unit (CPU), an application specific integrated circuit (ASIC), an application specific instruction set processor (ASIP), a graphics processing unit (GPU), a physical processing unit (PPU), a digital signal processor (DSP), Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), Controller, Microcontroller Unit, Reduced Instruction Set Computer (RISC), Microprocessor, etc. or any combination thereof.
  • the processing device 120 may be integrated in the ultrasound device 110 and/or the terminal 140 .
  • the ultrasonic device 110, the terminal 140 and/or other possible system components may include the processing device 120, for example, the processing device 120 or a module capable of realizing the function of the processing device 120 may be integrated into the ultrasonic device 110, the terminal 140 and/or other possible system components.
  • one or more components of the ultrasound imaging system 100 may transmit data to other components of the ultrasound imaging system 100 via the network 150 .
  • the processing device 120 can obtain the information and/or data in the terminal 140, the ultrasonic device 110 and/or the storage device 130 through the network 150, or can send the information and/or data to the terminal 140, the ultrasonic device 110 and the /or storage device 130 .
  • the storage device 130 may be used to store data and/or instructions.
  • Data refers to a digital representation of information, and may include various types, such as binary data, text data, image data, video data, and the like.
  • Instructions refer to programs that can control equipment or devices to perform specific functions.
  • the storage device 130 can store preset requirement parameters, information data related to imaging requirements, target imaging mode data, target imaging mode control program data, target imaging result data, imaging condition data (such as first conditions, etc.), emission parameters Ultrasound imaging data (such as first transmission parameters, etc.), mixed wave echo data (such as first mixed wave echo data, etc.), user input instructions (such as touch screen operation instructions, etc.) and/or preset machine learning algorithms, etc.
  • the storage device 130 may include one or more storage components, and each storage component may be an independent device or a part of other devices.
  • the storage device 130 may include random access memory (RAM), read only memory (ROM), mass storage, removable memory, volatile read-write memory, etc., or any combination thereof.
  • mass storage may include magnetic disks, optical disks, solid-state disks, and the like.
  • the storage device 130 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an internal cloud, a multi-layer cloud, etc., or any combination thereof.
  • Terminal 140 refers to one or more terminal devices or software used by a user.
  • the terminal 140 may include a processing unit, a display unit, an input/output unit, a sensing unit, a storage unit, and the like.
  • the perception unit may include, but not limited to, a light sensor, a distance sensor, an acceleration sensor, a gyroscope sensor, a sound detector, etc. or any combination thereof.
  • the terminal 140 may be one of a mobile device 140-1, a tablet computer 140-2, a laptop computer 140-3, a desktop computer 140-4, and other devices with input and/or output functions or any combination thereof.
  • the terminal 140 can be used by one or more users, including users who directly use the service, such as ultrasound diagnostic doctors or ultrasound inspection personnel, and other related users, such as hospital medical system end users, etc. .
  • Network 150 may connect various components of the system and/or connect parts of the system with external resources.
  • the network 150 enables communication among various components and with other components outside the system, facilitating the exchange of data and/or information.
  • the network 150 may be any one or more of a wired network or a wireless network.
  • network 150 may include a cable network, a fiber optic network, a telecommunications network, the Internet, a local area network (LAN), a wide area network (WAN), a wireless local area network (WLAN), a metropolitan area network (MAN), a public switched telephone network (PSTN) , Bluetooth network, ZigBee network (ZigBee), near field communication (NFC), internal bus, internal line, cable connection, etc. or any combination thereof.
  • network 150 may include one or more network access points.
  • network 150 may include wired or wireless network access points, such as base stations and/or network switching points, through which one or more components entering and leaving ultrasound imaging system 100 may connect to network 150 to exchange data and/or information.
  • Fig. 2 is a schematic diagram of an application scenario of an ultrasound device 110 according to some embodiments of the present specification.
  • the ultrasound device 110 may include a transmit beamformer 111 , a transmit controller 112 , a receive controller 113 , a memory 114 , a processor 115 , a display 116 , an input device 117 and/or a probe 118 .
  • the input device 117 may include but not limited to a keyboard, a mouse, a handwriting tablet, and a touch screen, and may also use voice and gestures as input instructions to control the system.
  • the processor 115 can analyze the instructions and determine the corresponding target imaging mode, and set the corresponding parameter requirements of the target imaging mode, as follows: Send it to the transmit beamformer 111, and the transmit beamformer 111 can calculate transmit parameters such as delay time, deflection angle, and/or corresponding parameters of the array elements according to the parameter requirements, and the transmit controller 112 can form corresponding scans of the target imaging mode according to the transmit parameters.
  • the search sequence (or scan sequence) is used to generate a driving voltage signal to excite the transducer elements in the probe 118 to vibrate to form corresponding ultrasonic waves.
  • a reflected signal can be generated.
  • the transducer array element of the probe 118 can receive the vibration wave reflected by the medium, and the receiving controller 113 can convert the mechanical wave into an electrical signal and/or store it in the memory
  • the processor 115 can convert the electrical signal into an image, and/or output the image to the display 116 according to the operation mode corresponding to the corresponding imaging mode and/or the user's real-time input or selected processing option or adjustment option.
  • the transmit beamformer 111 is not limited to hardware circuits, such as FPGA (programmable gate array) and DSP (digital signal processing), and can also be a digital beamformer;
  • the one-dimensional array may also be a multi-dimensional array set according to the corresponding target imaging mode (such as the first mixed-wave imaging mode or the second mixed-wave imaging mode in the second target imaging mode, etc.).
  • different beams of different beam types and/or different transmission parameters can not be transmitted at the same time, and one type of wave can be transmitted at a time and the next transmission can be performed after receiving the echo , so that it will not cause interference to the echo signal.
  • a multi-dimensional array (such as a two-dimensional array) can facilitate the use of array element-related parameters such as different widths of multiple array elements, so that different array elements are respectively suitable for corresponding beams, thereby meeting multiple imaging requirements and improving overall imaging efficiency.
  • system and its modules shown in FIG. 1 can be implemented in various ways.
  • the system and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented by using dedicated logic;
  • the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or specially designed hardware.
  • an appropriate instruction execution system such as a microprocessor or specially designed hardware.
  • the methods and systems described above can be implemented using computer-executable instructions and/or included in processor control code, for example on a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read-only memory (firmware ) or on a data carrier such as an optical or electronic signal carrier.
  • the system and its modules in this specification can not only be realized by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. , can also be realized by software executed by various types of processors, for example, and can also be realized by a combination of the above-mentioned hardware circuits and software (for example, firmware).
  • hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc.
  • programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc.
  • software for example, and can also be realized by a combination of the above-mentioned hardware circuits and software (for example, firmware).
  • the imaging mode determination module 710, imaging operation module 720 disclosed in FIG. 7, and/or, the region of interest determination module 2210, imaging condition data determination module 2220, optimized imaging image generation module disclosed in FIG. 2230, and/or, the mixed wave imaging mode determination module 3410 and the mixed wave imaging operation module 3420 disclosed in FIG. 34 may be implemented in the ultrasound device 110 and the processing device 120.
  • the region of interest determination module 2210 and the imaging condition data determination module 2220 may be sub-modules of the imaging mode determination module 710 .
  • the optimized imaging image generation module 2230 may be a sub-module of the imaging operations module 720 .
  • the hybrid wave imaging mode determination module 3410 may be a sub-module of the imaging mode determination module 710
  • the hybrid wave imaging operation module 3420 may be a sub-module of the imaging operation module 720 .
  • the imaging mode determination module 710, imaging operation module 720 disclosed in FIG. 7, and/or, the region of interest determination module 2210, imaging condition data determination module 2220, optimized imaging image generation module disclosed in FIG. 2230, and/or, the mixed-wave imaging mode determination module 3410 and the mixed-wave imaging operation module 3420 disclosed in FIG. 34 can be different modules in one system, or one module can realize the above-mentioned two or more modules. Function. For example, each module may share one storage module, or each module may have its own storage module. Such deformations are within the protection scope of this specification.
  • Fig. 3 is an exemplary flowchart of an ultrasound imaging method 300 according to some embodiments of the present specification.
  • the ultrasound imaging method 300 may be performed by the processing device 700 , the ultrasound device 110 and/or the processing device 120 .
  • the process 300 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 300 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 300 may be performed by one or more modules in FIG. 7 .
  • the ultrasound imaging method 300 may include one or more of the following steps.
  • a target imaging mode may be determined according to information related to imaging requirements.
  • step 310 may be performed by imaging mode determination module 710 .
  • Step 320 Perform corresponding imaging operations according to the target imaging mode to obtain corresponding target imaging results.
  • step 320 may be performed by imaging operations module 720 .
  • imaging requirements may include at least requirements related to image quality and/or frame rate.
  • the target imaging mode may include a first target imaging mode and/or a second target imaging mode.
  • the first target imaging mode can be used for optimal imaging of the local imaging region.
  • the second target imaging mode may utilize a mixture of different transmit beam types and/or different transmit frequencies for imaging.
  • Imaging requirements may refer to corresponding imaging requirements of different users (such as ultrasound testing personnel, ultrasound diagnosis doctors, etc.) in a certain imaging scene.
  • Information related to imaging requirements may refer to any information that can reflect or indicate imaging requirements, for example, image parameter information.
  • imaging requirements may include requirements related to image quality and/or frame rate.
  • information related to imaging requirements may include spatial resolution, contrast resolution, temporal resolution, image signal-to-noise ratio, frame rate, frame number, imaging speed, imaging time, or any other feasible means that can reflect image Indicators related to quality and/or frame rate requirements (or called imaging requirement parameters).
  • the aforementioned imaging scenarios may include scenarios with different imaging requirements in terms of image quality and/or frame rate, for example, imaging diagnostic scenarios that require higher image quality in diseased tissue areas such as tumors, and for example, frame rate Highly demanding cardiac contrast imaging scenarios, blood vessel detection scanning imaging scenarios, etc.
  • the imaging requirement can be characterized by the corresponding imaging requirement grade or specific value, for example, according to the image quality from high to low, it can be set as "image quality level one", “image quality level two", “image quality Level 3" and so on. For another example, according to the frame rate, it can be set as “Level 1" or “Level 2". Numerical representations, etc.
  • step 310 can be implemented as the following process: according to preset demand parameters and/or user input instructions, obtain information related to imaging requirements; The target imaging mode is determined in the second target imaging mode.
  • the preset requirement parameters may include image quality parameters and/or frame rate parameters.
  • the image quality parameters may include spatial resolution, contrast resolution, temporal resolution, image signal-to-noise ratio, and/or any other feasible corresponding index parameters that can reflect image quality.
  • the frame rate parameter may include frame rate, frame number, imaging speed, imaging time, and/or any other feasible index parameter that can reflect the frame rate.
  • the preset requirement parameters may be pre-stored in the ultrasound device 110 , the processing device 120 , the storage device 130 and/or the terminal 140 .
  • the preset requirement parameters can be obtained from the ultrasound device 110 , the processing device 120 , the storage device 130 and/or the terminal 140 in real time.
  • the preset demand parameters can be selected by the user in the form of multiple demand parameter options.
  • the image quality parameter menu has spatial resolution, contrast resolution, Multiple options such as time resolution, image signal-to-noise ratio, etc.
  • the frame rate parameter menu has multiple options such as frame frequency, frame number, imaging speed, and imaging time.
  • the input command may be a key input command, a mouse input command, a text input command, a voice command, a touch screen command, a gesture command, an EEG input command, an eye movement input command or any other feasible input command data.
  • the user input instruction may contain various information content related to image quality and/or frame rate requirements, for example, the user may select the image quality requirement level as "Level 1" or "Level 3" through touch screen instructions.
  • the user can input the imaging demand information of "frame rate level 1, image quality level 2" through voice commands, and for another example, the user can input image signal-to-noise ratio value and/or frame rate through text input commands specific demand values.
  • the user can input information such as imaging site and/or imaging purpose, and the ultrasound imaging system 100 can automatically match corresponding information related to imaging requirements through the information such as imaging site and/or imaging purpose.
  • the user can select the imaging site as the heart, and the ultrasound imaging system 100 can automatically match the imaging requirement information of "level one frame rate".
  • the information related to the imaging requirement included in the instruction may be automatically identified according to the user input instruction.
  • the aforementioned preset requirement parameters may be selected according to the information corresponding to the recognized user input instruction.
  • the preset requirement parameters may be updated according to user input instructions recorded by the ultrasound imaging system 100 .
  • information related to imaging requirements can be obtained by setting or adjusting parameters corresponding to imaging requirements in the ultrasound imaging system 100 .
  • the imaging requirement parameter is a characterizing data parameter as information related to the imaging requirement, that is, the imaging requirement parameter includes all information related to the imaging requirement.
  • imaging requirement parameters can be set and adjusted on the imaging requirement parameter setting interface of the ultrasound imaging system 100 .
  • the aforementioned imaging requirement parameters may include image quality index data and/or frame rate index data.
  • the information related to the imaging requirement can be obtained by manually inputting the requirement information, for example, by receiving an imaging requirement adjustment instruction from the user in real time.
  • information related to imaging requirements can be obtained according to the characteristics of a specific imaging region. For example, when imaging a region of interest (ROI, Region of Interest) as a local imaging region, the imaging can be determined according to the region of interest. Condition data, determining information related to imaging requirements according to the imaging condition data.
  • the imaging condition data of the region of interest and the region of non-interest may be the same or different, and correspondingly, the information related to the imaging requirements of the region of interest and the region of non-interest may also be the same or different.
  • the imaging requirement information can be determined according to the ROI type. When the ROI type is determined to be a diseased tissue such as a tumor, the requirement information with an image quality requirement level of "Level 1" is obtained.
  • the imaging requirement information can be determined according to the size of the ROI.
  • “ROI image quality level one, ROI frame rate level one" and/or “non-ROI image quality level two” can be obtained.
  • information related to imaging requirements may be acquired according to tissue motion information (eg, tissue motion characteristics) of the detected object.
  • tissue motion information eg, tissue motion characteristics
  • the tissue motion information of the detection object such as a certain organ of a patient, etc.
  • the imaging condition data such as the transmission parameters of the mixed beam
  • the imaging requirement can be determined according to the imaging condition data. relevant information.
  • the image quality and/or frame rate requirements can be used together with the tissue motion information of the part to be scanned as the basis information for determining the mixed wave imaging mode, or according to
  • the tissue motion information of the part to be scanned (or scanned) determines the specific imaging requirement information of the corresponding image quality and/or frame rate (for example, in a cardiac contrast imaging scene of a specific detection object, the imaging as the frame rate parameter can be The time is set within a specific threshold range to meet the best frame rate in that specific scene).
  • the aforementioned user-specific scene may be an imaging scene with significant tissue motion information, or a functional tissue imaging scene that requires a high frame rate, such as a cardiac angiography imaging scene, a blood vessel detection scanning imaging scene, and the like. Further descriptions of imaging condition data can be found elsewhere in this specification (eg, FIGS. 8-21 and corresponding descriptions).
  • a mapping relationship table between corresponding tissue motion information of various imaging scenarios and imaging requirement information may be created.
  • the imaging requirement information identification program can be set according to the aforementioned mapping relationship table, so that the corresponding imaging requirement information can be obtained according to the imaging requirement information identification program and/or the tissue motion information of a certain scene or multiple scenes.
  • the imaging requirement information recognition program may include a preset machine learning recognition model, and the imaging requirement information may be calculated by inputting tissue motion information into the preset machine learning recognition model.
  • the preset machine learning identification model may be a machine learning classification model obtained through model pre-training.
  • the training process of the machine learning classification model may include the following steps:
  • the data updates the model parameters, and continues to train until the desired model is obtained, that is, the machine learning classification model.
  • the training sample data of the tissue motion information and the label data of the imaging requirement information can be obtained from the ultrasonic imaging history record data, for example, it can be based on the ultrasonic imaging accumulated by the ultrasonic device 110 for various imaging scenarios of various detection objects Obtained from historical record data.
  • the machine learning classification model trained according to the training sample data and its label data that can reflect the actual imaging needs of users will have higher accuracy and adaptability when obtaining imaging demand information, and can better meet the actual imaging needs of imaging users , while improving user imaging experience.
  • the target imaging mode is determined by selecting from the first target imaging mode and/or the second target imaging mode according to the aforementioned information about the imaging requirements.
  • the mode condition can be judged according to the acquired information related to the imaging requirement.
  • the target imaging mode refers to an imaging mode that can meet imaging requirements.
  • the target imaging mode may include a first target imaging mode and/or a second target imaging mode.
  • the first target imaging mode may cover the global imaging area, and/or perform corresponding optimized imaging operations according to characteristics of local imaging areas in the global imaging area.
  • the global imaging region refers to an ultrasonic imaging region with a larger range in the ultrasonic imaging image, so that ultrasonic detection or diagnosis can view image information of a larger range, including one or more ROIs and/or peripheral regions.
  • the obtained imaging image may not only include ROIs for ultrasonic detection or diagnosis, but also include related peripheral areas outside of these ROIs.
  • the global imaging area may be or include the largest imaging area that can be detected by the ultrasound probe.
  • the global imaging area may be or include an imaging area set by a user.
  • the global imaging area may include a local imaging area.
  • the local imaging region refers to one or more regions of interest in the global imaging region.
  • enhanced imaging may be performed on the local imaging area within the global imaging area, so as to perform acoustic wave energy compensation.
  • the local imaging region may include one or more ROIs, ie regions of interest.
  • the first target imaging mode may include at least one of a first optimized imaging mode and a second optimized imaging mode.
  • the first optimized imaging mode can be used to perform emission parameter adjustment operations covering the global imaging area
  • the second optimized imaging mode can be used to perform enhanced imaging covering the local imaging area and non-enhanced imaging covering the global imaging area synchronous operation.
  • the transmission parameters refer to corresponding parameters that can affect the transmission process or imaging effect during ultrasound imaging.
  • the transmit parameters may at least include at least one of transmit mode, transmit aperture parameter, transmit focus parameter, transmit deflection angle, transmit frequency, transmit waveform, and gain (ie, gain adjustment).
  • the emission mode may include at least one of focused emission, divergent wave emission, wide beam emission, plane wave emission, single-element emission or a mixed emission of two or more emission modes, or any other feasible emission model.
  • the transmitting aperture parameter may be a transmitting aperture position or a combination mode of transmitting array elements, a transmitting aperture distance, a receiving aperture distance or any other feasible transmitting aperture parameter.
  • the transmit focus parameters may include the number of transmit focuses, the position of transmit focus, the depth of transmit focus or any other feasible transmit focus parameters.
  • the transmit waveform may be a sinusoidal waveform, a shock waveform, a waveform of any shape in which multiple frequencies are superimposed, or any other feasible transmit waveform.
  • the frame rate may not be greatly sacrificed, which means that the number of shots that can be increased is limited when the effective imaging area is to be imaged.
  • FIGS. 8 to 21 More descriptions about the process 300 and steps 310 and 320 can refer to FIGS. 8 to 21 , FIGS. 23 to 33 and related descriptions, and will not be repeated here.
  • FIG. 4 is an exemplary flowchart of a target imaging mode determination process 400 according to some embodiments of the present specification.
  • process 400 may be performed by processing device 700 , ultrasound device 110 , and/or processing device 120 .
  • the process 400 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 400 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 400 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • step 310 in FIG. 3 may be performed according to process 400 .
  • process 400 may include one or more of the following steps.
  • Step 311 determining imaging condition data according to the local imaging area
  • Step 312 Select a target imaging mode from the first optimized imaging mode and the second optimized imaging mode according to the imaging condition data.
  • the imaging condition data refers to the data used to determine which optimal imaging mode is suitable for the current local imaging region (such as the selected ROI).
  • the imaging condition data may include corresponding parameter data that can reflect the characteristics of the current local imaging region (such as the size of the ROI region, etc.).
  • imaging condition data may include local imaging region area values.
  • the imaging condition data may include a ratio of the area of the local imaging region to the area of the global imaging region.
  • the imaging condition data may include relationship data between the emission condition data of the effective imaging area of the local imaging area and the emission condition data of the global imaging area.
  • the effective imaging area refers to the actual imaging area including the local imaging area, so as to guarantee the imaging effect in the local imaging area.
  • the relationship data between the emission condition data of the effective imaging area and the emission condition data of the global imaging area may include the difference between the emission condition data of the effective imaging area and the emission condition data of the global imaging area, Ratio or any other possible relationship data.
  • imaging condition data may include emission condition parameters for a localized imaging region.
  • the imaging condition data may include emission condition parameters of the partial imaging area or emission condition parameters of the effective imaging area.
  • the emission condition parameter is a corresponding condition parameter indicating which optimal imaging mode is satisfied.
  • the emission condition parameter may be the number of focal points required for emission in the currently selected partial imaging area, the number of emission times, or the emission interval (ie, the time interval between receiving the last emission and starting the next emission) and so on.
  • the required number of focal points, number of shots, shot time, etc. required by different partial imaging regions in one or more shot modes can be determined according to historical record data.
  • the ratio of the number of focal points required for emission in the current local imaging area to the number of focal points required for emission in the global imaging area is calculated.
  • the emission can be focused emission, divergent wave emission, wide beam emission or
  • the transmission mode of any other possible waveforms may also be a mixed transmission mode of the foregoing transmission modes.
  • the imaging condition data can be pre-calculated and stored in the imaging condition data determining module 420 , the storage device 130 or the ultrasound device 110 by the preset imaging condition calculation program according to the historically selected feature data of the local imaging region.
  • the imaging condition data can trigger a preset imaging condition calculation program to perform real-time calculation according to the currently selected local imaging region.
  • the imaging condition data can be determined according to the ROI. For more descriptions, refer to FIG. 11 and related descriptions, which will not be repeated here.
  • FIG. 5 is an exemplary flowchart of a target imaging mode selection process 500 according to some embodiments of the present specification.
  • process 500 may be performed by processing device 700 , ultrasound device 110 , and/or processing device 120 .
  • the process 500 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 500 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 500 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • step 312 in FIG. 4 may be performed according to process 500 .
  • process 500 may include one or more of the following steps.
  • Step 3121 in response to the imaging condition data satisfying the first condition, determine that the target imaging mode is the first optimal imaging mode.
  • Step 3122 in response to the fact that the imaging condition data does not satisfy the first condition, determine that the target imaging mode is the second optimal imaging mode.
  • the first condition refers to a judging condition that the imaging condition data satisfies a specific threshold range.
  • the first condition may be that the ratio of the area of the local imaging region to the area of the global imaging region is greater than a set threshold.
  • the first condition may be that the relationship data between the emission condition data of the effective imaging area of the local imaging area and the emission condition data of the global imaging area is smaller than a set threshold.
  • the first condition may be that the relationship data between the emission condition data of the effective imaging region of the ROI and the emission condition data of the global imaging region is less than a set threshold, for example, it may be that all the emission condition data of the effective imaging region of the ROI A ratio between the required number of shots and the required number of shots of the global imaging area is less than a threshold.
  • the imaging operation in the first optimized imaging mode may be triggered, including but not limited to: adjusting the emission parameters under the condition of meeting the frame rate requirement, so that the acoustic energy of the region of interest is enhanced .
  • imaging operations in the second optimized imaging mode may be triggered, including but not limited to: synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area , to respectively obtain the enhanced image of the region of interest and the global image of the global imaging region; the image composite operation is performed on the enhanced image and the global image.
  • the imaging operation in the first optimized imaging mode or the imaging operation in the second optimized imaging mode may be triggered as required.
  • steps 3121 and 3122 For more descriptions of steps 3121 and 3122, refer to FIG. 14 and related descriptions, and details are not repeated here.
  • the second target imaging mode refers to a mixed wave imaging mode in which optimized imaging is achieved by using mixed waves of different transmit beam types and/or different transmit frequencies.
  • the mixed-wave imaging mode refers to an imaging mode in which mixed-wave mixed imaging of different emission beam types and/or different emission frequencies can be performed on the scanned object.
  • transmit beam types may include focused waves and/or unfocused waves, and/or any other feasible beam type.
  • unfocused waves may include plane waves, divergent waves, wide beams, or any other feasible unfocused beam type.
  • the mixed-wave imaging mode may include imaging modes with the same transmission frequency and different transmission beam types, for example, a mixed-wave imaging mode with the same transmission frequency (for example, 7.5 MHz) for both divergent and focused waves.
  • the mixed-wave imaging mode may be an imaging mode with different transmission frequencies and the same transmission beam type, for example, a mixed-wave imaging mode with two focused waves or two non-focused waves with transmission frequencies of 7.5 MHz and 5 MHz respectively.
  • the mixed-wave imaging mode can be an imaging mode with different transmission frequencies and different transmission beam types, for example, a divergent wave with a transmission frequency of 7.5 MHz, a focused wave with a transmission frequency of 10 MHz, and a plane wave with a transmission frequency of 5 MHz.
  • Hybrid wave imaging mode it should be noted that, in the mixed wave imaging mode, the number of triggering launches of different transmit beam types and/or corresponding transmit beams of different transmit frequencies is not particularly limited.
  • a plane wave with the same transmit frequency can be Perform multiple triggered imaging at multiple different time nodes or periods, or only perform one triggered imaging at one time node or period.
  • divergent waves with different emission frequencies can be triggered twice or twice at different time nodes or periods. Multiple times, for example, divergent waves, focused waves, and plane waves of different emission frequencies can be respectively triggered once for imaging.
  • the order in which the corresponding beams of different transmit beam types and/or different transmit frequencies trigger imaging is not particularly limited, for example, trigger the divergent wave first, then trigger the focused wave, and then , firstly trigger a divergent wave with an emission frequency of 7.5MHz, then trigger a focused wave with an emission frequency of 10MHz, then trigger a plane wave with an emission frequency of 5MHz, and so on.
  • the second target imaging mode may include at least one of the first mixed wave imaging mode and the second mixed wave imaging mode.
  • a first hybrid wave imaging mode may be used for full aperture hybrid transmit operation and a second hybrid wave imaging mode may be used for moving aperture hybrid transmit operation.
  • the full-aperture mixed transmission operation can be a transmission operation in which all apertures of the array element participate in the transmission when focused waves and/or non-focused waves are transmitted, so as to cover a wider range of scanning areas.
  • the full-aperture hybrid transmission operation can be that all apertures participate in the transmission when the unfocused wave is transmitted, and the local aperture (ie, part of the apertures) participates in the transmission when the focused wave is transmitted (for example, it can be focused on a specific area that focuses on image quality. or region of interest), so that resources can be rationally allocated to meet user imaging needs while saving costs.
  • the moving aperture mixed transmitting operation may be a transmitting operation in which all apertures or partial apertures of the array element transmit according to the corresponding mixed transmitting sequence rules when focused waves and/or unfocused waves are transmitted.
  • the moving aperture mixed transmitting operation may be an operation in which focused waves (for example, focused waves) and unfocused waves (for example, divergent waves) are transmitted using a local aperture according to a corresponding mixed transmitting order.
  • focused waves and unfocused waves may be transmitted alternately according to a corresponding mixed transmitting order.
  • the sequence, rule or program of mixed transmissions may include the setting of respective transmission time nodes of focused waves and unfocused waves and/or the setting of alternate transmission time intervals and the like.
  • the mobile aperture hybrid transmission operation can use different mixed beams to transmit specific combined sequences under the corresponding transmission order or rules, and can comprehensively use the respective advantages of multiple beams to perform transmission scanning in important areas (such as regions of interest) to obtain richer dimensions.
  • the mixed wave echo data (such as the echo signal data of multiple beams, echo image or imaging data, etc.) is convenient for subsequent echo signal compounding or image compounding processing, so as to meet the personalized imaging needs of different users in different scenarios. Assure.
  • FIG. 6 is an exemplary flowchart of a process 600 for obtaining a target imaging result according to some embodiments of the present specification.
  • process 600 may be performed by processing device 700 , ultrasound device 110 and/or processing device 120 .
  • the process 600 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 600 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 600 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • step 320 in FIG. 3 may be performed according to process 600 when the target imaging mode is the second target imaging mode.
  • process 600 may include one or more of the following steps.
  • Step 321 according to the first transmission parameters of the first mixed wave imaging mode, perform the full aperture transmission operation of the first ultrasonic wave, and perform the full aperture transmission operation or partial aperture transmission operation of the second ultrasonic wave, to obtain the first mixed wave echo data , and determine the target imaging result based on the first mixed wave echo data.
  • Step 322 According to the second transmission parameters of the second mixed wave imaging mode, perform the moving aperture transmitting operation of the first ultrasonic wave, and perform the full aperture transmitting operation or the partial aperture transmitting operation of the second ultrasonic wave, to obtain the second mixed wave echo data , and determine the target imaging result based on the second mixed wave echo data.
  • the mixed wave imaging operation in the first mixed wave imaging mode may be triggered according to the mixed wave imaging mode, including but not limited to: determining one or more first focus positions (or first focus positions); Determine the first transmission parameter of the first hybrid wave imaging mode according to the first focus position; perform the full-aperture transmission operation of the first ultrasonic wave and perform the full-aperture transmission of the second ultrasonic wave according to the first transmission parameter of the first hybrid wave imaging mode operation or partial aperture transmit operation to obtain first mixed wave echo data.
  • the first focus position may satisfy a first focus boundary condition.
  • the mixed wave imaging operation in the second mixed wave imaging mode may be triggered according to the mixed wave imaging mode, including but not limited to: determining one or more second focus positions (or second focus positions); Determine the second transmission parameter of the second hybrid wave imaging mode according to the second focus position; perform the moving aperture transmission operation of the first ultrasonic wave and/or the full aperture transmission of the second ultrasonic wave according to the second transmission parameter of the second hybrid wave imaging mode operation or partial aperture transmit operation to obtain second mixed wave echo data.
  • the second focus position may satisfy a second focus boundary condition.
  • steps 321 and 322 can be found in FIG. 24 and related descriptions, and will not be repeated here.
  • Fig. 7 is a block diagram showing an exemplary structure of a processing device 700 according to some embodiments of this specification.
  • the processing device 700 may include an imaging mode determination module 710 and an imaging operation module 720 .
  • the imaging mode determination module 710 can be used to determine the target imaging mode according to the information related to the imaging requirements; the imaging operation module 720 can be used to perform corresponding imaging operations according to the target imaging mode to obtain corresponding target imaging results.
  • the imaging requirements may at least include requirements related to image quality and/or frame rate
  • the target imaging mode may include a first target imaging mode and/or a second target imaging mode, and the first target imaging mode may be used to image a local area Optimal imaging is performed, and/or, a second target imaging mode may utilize a mixture of different transmit beam types and/or different transmit frequencies for imaging. More descriptions about the corresponding functions performed by the imaging mode determination module 710 and the corresponding functions performed by the imaging operation module 720 may refer to related descriptions in FIG. 1 to FIG. 6 , which will not be repeated here.
  • An ultrasonic imaging system may include: at least one storage medium storing at least one set of instructions; and at least one processor configured to communicate with the at least one storage medium, wherein when When executing the at least one set of instructions, the at least one processor is instructed to make the system: determine a target imaging mode according to information related to imaging requirements; perform corresponding imaging operations according to the target imaging mode, and obtain corresponding target imaging results ;
  • the imaging requirements include at least requirements related to image quality and/or frame rate
  • the target imaging mode includes a first target imaging mode and/or a second target imaging mode, and the first target imaging mode is used to optimize the local imaging area
  • the imaging, and/or, second target imaging mode utilizes a mixture of different transmit beam types and/or different transmit frequencies for imaging.
  • FIG. 1 to FIG. 6 which will not be repeated here.
  • An ultrasonic imaging device may include a processor, which may be used to execute the ultrasonic imaging method described in any of the foregoing embodiments (see related descriptions in FIGS. 1 to 6 ), where No longer.
  • the non-transitory computer-readable storage medium includes at least one set of instructions, wherein, when executed by at least one processor of a computer device, the at least one set of instructions instructs the at least one processor to:
  • the ultrasound imaging method described in any one of the foregoing embodiments can be implemented, and will not be repeated here.
  • Fig. 8 is an exemplary flowchart of an ultrasound imaging method 800 according to some embodiments of the present specification.
  • Fig. 9 is another exemplary flowchart of an ultrasound imaging method 900 according to some embodiments of the present specification.
  • process 800 may be performed by processing device 2200 , ultrasound device 110 , and/or processing device 120 .
  • the process 800 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 800 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 800 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • process 800 or process 900 may include one or more of the following steps.
  • process 800 of FIG. 8 may be implemented according to process 900 of FIG. 9 .
  • Step 810 determine the region of interest on the initial imaging image, and the initial imaging image may include a global imaging region.
  • step 810 may be performed by the ROI determining module 2210 .
  • Step 820 determine imaging condition data according to the region of interest.
  • step 820 may be performed by the imaging condition data determination module 2220 .
  • Step 830 determine which optimized imaging mode the imaging condition data conforms to, and trigger an imaging operation in the corresponding optimized imaging mode to generate an optimized imaging image.
  • the optimized imaging mode may include at least a first optimized imaging mode and/or a second optimized imaging mode.
  • the first optimized imaging mode can perform emission parameter adjustment operations covering the global imaging area.
  • the second optimized imaging mode can perform synchronous operations of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area.
  • step 830 may be performed by the optimized imaging image generation module 2230 .
  • step 830 may be performed by one or more of the following steps.
  • Step 831 determine which optimal imaging mode the imaging condition data conforms to, and then determine whether to trigger the first optimal imaging mode or trigger the second optimal imaging mode according to the determination result.
  • step 832a When it is determined that the first optimized imaging mode is triggered, go to step 832a: perform an emission parameter adjustment operation covering the global imaging area to generate a corresponding optimized imaging image.
  • step 832b When it is determined to trigger the second optimized imaging mode, enter step 832b: perform synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area, and generate corresponding optimized imaging images.
  • the corresponding imaging condition data of the selected ROI is analyzed and judged to determine what it meets.
  • An optimized imaging mode can be selected, and the corresponding optimized imaging mode can be triggered, so as to provide a corresponding imaging solution with high adaptability, improve imaging efficiency, and meet various imaging needs.
  • the initial imaging image refers to a preliminary imaging image before optimized imaging, where the initial imaging image may include a global imaging area.
  • the region of interest determination module 2210 may acquire an initial imaging image.
  • the initial imaging image may be generated by the ultrasound device 110 .
  • the ultrasonic device 110 may transmit ultrasonic pulses to the target to be detected, receive ultrasonic echo signals reflected by the target to be detected, perform imaging processing on the received ultrasonic echo signals, and output an initial imaging image.
  • the aforementioned imaging processing may include filtering processing, demodulation processing, beam synthesis processing, compound imaging processing (such as line compounding, frequency compounding, spatial compounding, etc.), envelope processing, logarithmic imaging processing, and image postprocessing. At least one or more of processing (such as grayscale processing, speckle noise suppression, edge refinement, etc.).
  • the initial imaging image may be generated by an initial imaging sub-module (not shown in FIG. 22 ) of the region of interest determining module 2210 .
  • the initial imaging image can be obtained from the processing device 120, the storage device 130 or the terminal 140, for example, the storage device 130 can store the pre-generated initial imaging image, and for example, it can be obtained from the patient user terminal, ultrasound detection or A diagnosis user terminal (for example, a patient's user terminal storing historical ultrasound detection results, a certain ultrasound testing personnel's user terminal, and a certain diagnostic doctor's user terminal) acquires corresponding initial ultrasound images.
  • the storage device 130 can store the pre-generated initial imaging image, and for example, it can be obtained from the patient user terminal, ultrasound detection or A diagnosis user terminal (for example, a patient's user terminal storing historical ultrasound detection results, a certain ultrasound testing personnel's user terminal, and a certain diagnostic doctor's user terminal) acquires corresponding initial ultrasound images.
  • the initial imaging image can be obtained from any possible system components in the ultrasound imaging system 100, for example, a cloud server or a background system.
  • the initial imaging image may be obtained from other systems other than the ultrasound imaging system 100 , for example, may be obtained from one or some hospital medical systems that have business or data association with the ultrasound imaging system 100 . It should be noted that, the acquisition manner of the initial imaging image above is only an example, and is not particularly limited in this embodiment of the specification.
  • At least one of an artificial intelligence automatic recognition algorithm, an automatic tracking algorithm, and touch-screen and/or non-touch-screen operation instructions can be used to determine the ROI.
  • the artificial intelligence automatic identification algorithm or automatic tracking algorithm has the advantages of fast and high efficiency in determining ROI; through touch screen and/or non-touch screen operation instructions, it can meet the dynamic adjustment when determining ROI and the user's personality for determining ROI Customize the demand and improve interactivity.
  • the ROI can be determined by using one or more combinations of artificial intelligence automatic recognition algorithm, automatic tracking algorithm, and touch screen and/or non-touch screen operation instructions, and multiple combinations can be made according to actual needs
  • the corresponding settings of the methods are used to make comprehensive use of the advantages of each method, improve the efficiency of determining ROI, and meet the user's ROI selection requirements in various scenarios.
  • the ROI can be any region in the global imaging region.
  • an ROI may consist of multiple partial ROIs.
  • the ROI can be a closed shape (such as a rectangle) or an open shape (such as a line segment).
  • the aforementioned closed shape may be a regular shape (such as a square) or an irregular shape.
  • a preset machine learning algorithm (such as a deep learning algorithm) can be used to automatically identify the ROI, thereby determining the ROI.
  • the preset target detection model can be used to track and record the initially selected or drawn ROI, even if the probe is changed, the automatic tracking of the ROI can still be realized, thereby improving the efficiency of ROI determination.
  • the aforementioned preset target detection model can be SSD (Single Shot MultiBox Detector), Faster R-CNN (Faster Region-Convolutional Neural Network), YOLO (You Only Look Once) or any other feasible target detection Model.
  • a preset feature detection method and/or a preset feature matching method may be used to detect and/or match image features (such as feature points, feature lines, feature regions, etc.) to determine the ROI.
  • the aforementioned preset feature detection method can be SIFT (ScaleInvariant Feature Transform, scale invariant feature transformation) operator, SURF (Speeded Up Robust Feature, accelerated robust feature) operator, FAST (Features from Accelerated Segment Test , Accelerated segmentation test to obtain features), LBP (Local Binary Pattern, local binary pattern) operator, HOG (Histogram of Oriented Gradient, gradient histogram) operator or any other feasible feature detection method
  • the preset feature matching method can be It is RANSAC (RANdom SAmple Consensus, random sampling consistent) algorithm, ORB (Oriented FAST and Rotated BRIEF, fast feature point extraction and description) algorithm or any other feasible feature detection method.
  • the region matching the ROI can be directly found in the initial imaging image using a preset template matching method, and/or the ROI can be determined by tracking the ROI.
  • the aforementioned preset template matching method may be a template matching algorithm based on a contour, a template matching algorithm based on an edge gradient, or any other feasible template matching algorithm.
  • the ROI can be determined through touch screen and/or non-touch screen operation instructions.
  • the touchscreen and/or non-touchscreen operation instructions may include touchscreen drawing manipulation instructions, trackball manipulation instructions, air gesture drawing manipulation instructions and/or any other feasible input operation instructions.
  • 10a to 10c are example diagrams of determining ROI through touch screen and/or non-touch screen operation instructions according to some embodiments of this specification, wherein the area surrounded by the outermost boundary line of each image (that is, the area displayed by the initial imaging image The entire image area) can be regarded as the global imaging area of the initial imaging image.
  • the region of interest determination module 2210 receives touch screen operation instructions (such as manual drawing, etc.) input by the ultrasound detection user or doctor user. ), and draw an end-to-end line in the effective imaging area (as shown by the solid line in the figure) according to the touch screen operation instruction, which constitutes a closed shape, and the drawn trajectory line (as shown by the dotted line in the figure) is The boundaries of the ROI.
  • touch screen operation instructions such as manual drawing, etc.
  • the effective imaging area refers to the actual imaging area including the ROI, so as to guarantee the imaging effect in the ROI.
  • the area of the effective imaging region may be equal to the area of the ROI.
  • the area of the effective imaging region may be larger than the ROI area.
  • the ratio of the area of the effective imaging area to the area of the ROI may range from 1.5 to 2.0 (for example, 1.8), so as to avoid incomplete imaging at the edge of the ROI, and reduce the imaging of non-ROI areas to prevent redundant calculations. Reduce the amount of computation.
  • the effective imaging area may be a closed shape (such as an ellipse) or an open shape (such as a curved line segment).
  • the aforementioned closed shape may be a regular shape (such as a rhombus) or an irregular shape.
  • the closed shape or the non-closed shape of the effective imaging area may be similar to or consistent with the closed shape or the non-closed shape of the ROI.
  • the region of interest determination module 2210 receives a non-touch screen operation instruction input by the ultrasound detection user or doctor user (such as Trackball or space gesture drawing instructions, etc.), and draw a curved line segment covering the ROI in the effective imaging area (as shown by the solid line in the figure) according to the non-touch screen operation instructions (when it is inconvenient to draw a closed shape).
  • a trackball can be used to mark key points of the ROI or directly draw the corresponding shape of the ROI.
  • the region of interest determination module 2210 may receive touch screen and/or input from the ultrasound detection user or the doctor user. or non-touch screen operation instructions (such as manual touch screen click, trackball click, or non-touch screen default option command selection, etc.), the image display and control interface can default to a conventional shape (such as a rectangle framed by a solid line in the figure) , circle, ellipse and other regular shapes), and then according to the received touch screen swipe command or space swipe command, adjust to the area shown in the dotted line box in the figure along the direction of the arrow in the figure, so that the corresponding operation command can be used according to the user's (
  • the following may include ultrasound detection users, patient users, diagnostic users, or doctor users, and any possible user groups with imaging needs, referred to as users) need to adjust the size of the ROI area.
  • the trackball when using the trackball to select ROI, you can first press the OK key to determine the starting point, and a default rectangular area centered on the starting point can appear on the image display and manipulation interface, and then scroll based on this rectangular area Trackball, the area drawn at this time expands or shrinks with the rolling of the trackball, and finally press the OK key to confirm the end point, that is, the selection of ROI is completed.
  • the method of determining the effective imaging area on the image display and manipulation interface may be similar to that of the ROI.
  • imaging condition data may be determined according to the region of interest.
  • the imaging condition data may include corresponding parameter data that can reflect the characteristics of the currently selected ROI (such as the size of the ROI area, etc.).
  • imaging condition data may include ROI area values.
  • the imaging condition data may include a ratio of the area of the ROI to the area of the global imaging region.
  • the imaging condition data may include emission condition parameters of the ROI. In some embodiments, the imaging condition data may include emission condition parameters of the ROI and/or emission condition parameters of the effective imaging region.
  • the emission condition parameter is a corresponding condition parameter indicating which optimal imaging mode is satisfied.
  • the transmission condition parameter may be the number of focal points required for transmission of the currently selected ROI, the number of transmissions, or the transmission interval (ie, the time interval between receiving the last transmission and starting the next transmission) and so on. In some embodiments, the number of focal points, the number of times of shots, the time of shots, and the like required by different ROIs in corresponding emission modes (for example, focused emission mode) can be determined according to historical record data.
  • the imaging condition data may include relationship data between the emission condition data of the ROI and the emission condition data of the global imaging region.
  • the relationship data between the emission condition data of the ROI and the emission condition data of the global imaging area may include the difference, ratio, or any other value between the emission condition data of the ROI and the emission condition data of the global imaging area. Possible relationship data between the two, for example, the ratio of the number of focal points required for emission of the current ROI to the number of focal points required for emission of the global imaging area calculated according to the preset imaging condition calculation program.
  • the emission here may include focused emission, divergent wave emission, broad beam emission or any other possible waveform emission modes, and may also be a mixed wave emission of different emission beam types and/or different emission frequencies.
  • the imaging condition data may include relationship data between the emission condition data of the effective imaging region of the ROI and the emission condition data of the global imaging region.
  • the relationship data between the emission condition data of the effective imaging area of the ROI and the emission condition data of the global imaging area may include the relationship between the emission condition data of the effective imaging area of the ROI and the emission condition data of the global imaging area difference, ratio, or any other possible relationship between the two.
  • the first optimized imaging mode and/or the second optimized imaging mode may include: performing imaging operations using mixed waves of different transmit beam types and/or different transmit frequencies, the transmit beam types may at least include focused waves and/or or unfocused waves. In some embodiments, it may be determined according to the imaging condition data which transmit beam type and/or which transmit frequency mixed wave is specifically used for the imaging operation in the first optimized imaging mode or the second optimized imaging mode. In some embodiments, according to the relationship data between the emission condition data of the ROI and the emission condition data of the global imaging area, it can be determined which type of emission beam and what type of emission beam to use in the first optimal imaging mode or the second optimal imaging mode. and/or which transmitted frequency mixed waves are used for imaging operations. In some embodiments, hybrid wave imaging operations may include full aperture hybrid transmit operations and/or moving aperture hybrid transmit operations.
  • the selected ROI area value or the ratio of the ROI area to the area of the global imaging area is small, it means that the ROI area or the proportion of the ROI in the global imaging area is small, and the ROI can be covered by the second optimized imaging mode.
  • the emission frequencies of focused waves and unfocused waves can be equal or different.
  • the emission parameters can be adjusted in the global imaging area through the first optimized imaging mode, such as increasing the emission frequency of the ROI, or through the second optimized imaging mode, using non-focused waves (such as divergent waves) to emit in the global imaging area
  • the enhanced imaging of the focused wave is further performed only in the ROI.
  • the imaging requirements of various scenarios can be more efficiently met , to further improve the imaging efficiency as a whole, and to allocate transmission resources more reasonably to improve user experience.
  • the imaging condition data can be pre-calculated and stored in the imaging condition data determination module 2220 , the storage device 130 or the ultrasound device 110 by the preset imaging condition calculation program according to the historically selected feature data of the ROI region.
  • a preset imaging condition calculation program may be triggered to perform real-time calculation according to the currently selected ROI area.
  • Fig. 11 is an exemplary flow chart of determining imaging condition data according to a region of interest according to some embodiments of the present specification.
  • process 1100 may be performed by processing device 2200 , ultrasound device 110 and/or processing device 120 .
  • the process 1100 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 1100 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 1100 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • step 820 in FIG. 8 may be performed according to process 1100 .
  • process 1100 may include one or more of the following steps.
  • Step 821 Calculate the effective imaging area of the ROI according to the ROI.
  • Step 822 Calculate first emission condition parameters covering the effective imaging area according to the effective imaging area.
  • Step 823 Determine the relationship data between the first emission condition parameter of the effective imaging area and the second emission condition parameter of the global imaging area.
  • the first emission condition parameter and the second emission condition parameter may respectively include at least the number of focal points or the number of shots. Since the number of focal points or the number of shots is the data parameter that can best reflect the emission conditions during imaging, when at least the number of focal points or the number of shots is selected as the first emission condition parameter of the effective imaging area and the second emission condition parameter of the global imaging area, Obtaining the relationship data between the two can accurately and efficiently determine the imaging condition data and ensure the reliability of data acquisition.
  • the first transmission condition parameter and the second transmission condition parameter may also respectively include a transmission interval and the like.
  • the area of the effective imaging region can be calculated according to the preset ratio range (such as 1.5 to 1.8) or the preset ratio of the effective imaging region area to the ROI area, and then according to the effective For the area of the imaging area, the effective imaging area is determined through touch screen and/or non-touch screen operation instructions, such as a solid line rectangle as shown in Figure 10a, and other regular shapes that meet the area requirements.
  • the preset ratio range such as 1.5 to 1.8
  • the unclosed shape when the selected ROI is an unclosed shape, such as an unclosed line segment, through touch screen and/or non-touch screen operation instructions, the unclosed shape can be placed in the area according to the preset area multiple. Thickening within the preset area multiple threshold range (such as 1.8 to 2.0, or greater than 2.0) to determine the effective imaging area, such as the solid line strip shape as shown in Figure 10b, and other irregular shapes that meet the area requirements.
  • the preset area multiple threshold range such as 1.8 to 2.0, or greater than 2.0
  • the effective imaging area determined by the selected ROI as long as its outwardly expanding shape area meets the preset area requirements, whether the specific shape is a closed shape or an unclosed shape, or a regular shape or an irregular shape, can be determined according to the ultrasonic Detect the specific demand selection of the user or doctor user.
  • the number of focal points required to cover the effective imaging area can be calculated by calculation formula (1), which can be represented by SPD:
  • Worg is the width of the global imaging area
  • Wroi is the width of the effective imaging area
  • Sorg is the number of shots required for the global imaging area
  • ts is the scaling factor.
  • Fig. 12a is an example of required focal points for emission of a global imaging area according to some embodiments of the present specification.
  • Fig. 12b is an example of required focal points for emission of an effective imaging area according to some embodiments of the present specification.
  • the solid-line frame area shown in FIG. 12b is the effective imaging area of the ROI, the focal points are distributed in the effective imaging area, and a line-scan imaging method is adopted.
  • the width Wroi of the effective imaging area can be calculated according to the foregoing effective imaging area calculation method.
  • the width Worg of the global imaging area and the number of shots Sorg required by the global imaging area may be equal to the width of the initial imaging image and the number of shots Sorg.
  • Fig. 13a and Fig. 13b are examples of required focal points for emission of the effective imaging area shown according to some embodiments of the present specification. Different from the distribution of focal points in the effective imaging area shown in Fig. 12a and Fig. 12b, the focal points shown in Fig. 13a and Fig. 13b are distributed outside the effective imaging area. At the same time, an appropriate emission aperture is selected so that more acoustic energy can be covered in the In the active imaging area, this requires fewer shots than if the focus is distributed in the active imaging area. As shown by the focal point F1 in Fig. 13a, the number of focal points required at this time is relatively small.
  • the emission focus position corresponding to the effective imaging area can be determined in the following manner: an ellipse can be established with the center of the effective imaging area (ie, the center of the rectangular area in FIG. It is 1.5-2 times the width and height of the rectangular area; the focus can be located below the effective imaging area and evenly distributed on the ellipse, and the distance between the two most focal points can be greater than the width of the effective imaging area; the effective imaging area can be selected
  • the array directly above is used as the emission aperture, and the directivity of the transducer array element is better at this time.
  • the size of the emission aperture is slightly larger than the width of the effective imaging area as an example.
  • the actual size of the emission aperture can be determined and set according to the actual desired effect.
  • each emission can cover at least part of the effective imaging area, as shown in Figure 13b, assuming that the white shaded area AF is the effective emission area of the focal point F, the effective imaging area can be expressed as Aroi, then the intersection of the two areas It is the area where the emission of the focus F can be imaged (subsequently referred to as the actual imaging area of the focus F) (such as the area AF1 enclosed by the black line segment in 13b).
  • the actual imaging areas of other focal points can be calculated in the same or similar manner.
  • the ultrasonic emission can cover the effective imaging area.
  • the number of focal points required to satisfy the above conditions can be calculated as follows: Calculate the minimum length that the intermediate focal point can cover in the effective imaging area, that is, after the intersection of the two illumination boundaries of the focal point and the boundary of the effective imaging area
  • the obtained line segment mn can specifically calculate Lmn by the following formula (2):
  • Ls is the distance from the focal point F1 to the nearest boundary of the effective imaging area
  • Lt is the distance from the focal point F1 to the transducer
  • the size of the emission aperture is St.
  • Wroi is the width of the effective imaging area
  • ts is the same as in the formula (1), and is also a proportional coefficient.
  • the maximum frame rate of the system can be calculated by formula (4) (the maximum frame rate represents for forg):
  • h is the detection depth
  • Sorg is the number of shots required for an initial imaging image covering the global imaging area
  • c is the speed of sound waves propagating in the medium, that is, the speed of sound.
  • the number of shots Sroi required for the effective imaging area can be calculated. If the effective imaging area is to be imaged, the minimum frame rate of the system can be calculated by formula (5) (the minimum frame rate is expressed as froi):
  • the ratio of the frame rate after optimized imaging of the effective imaging area to the frame rate of the global imaging area (denoted as r), that is, the ratio between the first emission condition parameter of the effective imaging area and the second emission condition parameter of the global imaging area
  • r the ratio between the first emission condition parameter of the effective imaging area and the second emission condition parameter of the global imaging area
  • Fig. 14 is an exemplary flowchart of determining which optimal imaging mode the imaging condition data conforms to and triggering an imaging operation in the corresponding optimal imaging mode according to some embodiments of the present specification.
  • process 1400 may be performed by processing device 2200 , ultrasound device 110 and/or processing device 120 .
  • the process 1400 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 1400 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 1400 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • step 830 in FIG. 8 may be performed according to process 1400 .
  • process 1400 may include one or more of the following steps.
  • Step 831 judging whether the relationship data between the first emission condition parameter of the effective imaging area and the second emission condition parameter of the global imaging area is smaller than a threshold.
  • Step 832a triggering an imaging operation in the first optimized imaging mode in response to the relationship data being smaller than the threshold.
  • the imaging operation in the first optimized imaging mode may include: adjusting emission parameters under the condition that the frame rate requirement is met, so that the acoustic wave energy in the region of interest is enhanced.
  • Step 832b triggering an imaging operation in the second optimized imaging mode in response to the relationship data being not less than the threshold.
  • the imaging operation in the second optimized imaging mode may include: synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging region, so as to respectively obtain enhanced images about the region of interest and about The global image of the global imaging area; the image composite operation is performed on the enhanced image and the global image.
  • triggering the imaging operation in the first optimized imaging mode may include: adjusting the emission parameters under the condition that the frame rate requirement is met, and maintaining the original sound waves in the global imaging area At the same time, the acoustic energy in the region of interest is enhanced.
  • triggering the imaging operation in the first optimized imaging mode may include: adjusting the transmission parameters under the condition that the frame rate requirement is met, so that the global imaging including the region of interest The sonic energy in the area is enhanced.
  • the effective imaging area of the currently selected ROI belongs to a larger area or a smaller area, according to its area Features trigger corresponding optimization of imaging modes.
  • the relational data when the relational data is less than the threshold, it indicates that the current effective imaging area is large. If the effective imaging area is enhanced to cover the area of interest, it may increase the number of shots or prolong the shot time, thereby affecting the frame rate. Therefore, the first optimized imaging On the basis of the mode covering the global imaging area, adjust the corresponding emission parameters for the area of interest, and increase the acoustic energy of the area of interest as much as possible without losing the acoustic energy required by other areas outside the area of interest in the global imaging area , or the acoustic wave energy in the global imaging area, which can not only improve the image quality without reducing the frame rate, but also realize the global imaging and dynamic adjustment of the global imaging area, thereby improving the imaging efficiency.
  • the relational data is greater than the threshold, it indicates that the current effective imaging area is small, and the enhanced imaging covering the region of interest will not lead to too many shots or too long firing times, and the enhanced imaging operation covering the region of interest can be performed simultaneously
  • the non-enhanced imaging operation covering the global imaging area can also control the number of shots or the shot time within a reasonable range, and finally improve the image quality while also ensuring the frame rate, so that the final imaging efficiency is greatly improved.
  • the threshold T can be set according to specific imaging requirements.
  • the aforementioned imaging requirement may be a frame rate requirement as a key parameter for determining the threshold T, such as a minimum frame rate requirement.
  • the frame rate requirements can be different. For example, carotid artery inspection has lower frame rate requirements, and the minimum frame rate can be no lower than 20fps (frame per second), while heart inspection has higher frame rate requirements, and the minimum The frame rate can be no lower than 50fps.
  • the maximum frame rate that the ultrasound system can achieve at this time is 60fps.
  • the balance between the imaging quality and the frame rate can be achieved by adjusting the proportional coefficient ts, that is, ts is a variable variable, which can be set and adjusted in real time according to different requirements.
  • ts is a variable variable, which can be set and adjusted in real time according to different requirements.
  • the scaling factor ts may be appropriately increased.
  • the scaling factor ts may be appropriately reduced.
  • the number of shots can just cover the entire effective imaging area. If the imaging quality is higher, ts can be increased to 1.2 to 1.5, but the frame rate will be lost; if the frame rate If there is a higher requirement, this parameter can also be appropriately lowered to about 0.8. For example, assuming that the global imaging area is imaged with a line array, the width of the global imaging area is 5cm, and the calculated width of the effective imaging area is 1.5cm, then calculated by formula (1), the minimum number of shots required to cover the effective imaging area for:
  • the imaging quality can be improved by increasing the number of shots, and ts can be increased to 1.2 to 1.6 without affecting the frame rate. If you continue to increase ts, the system can remind you that the current state will reduce the minimum frame rate, and the doctor needs to choose whether to continue to increase the ratio factor.
  • the imaging operation in the first optimal imaging mode is triggered, and the emission parameters are adjusted under the frame rate requirement, and one emission parameter can be adjusted separately Or a combination of several emission parameters can be adjusted.
  • the transmit parameters may at least include at least one of transmit mode, transmit aperture parameter, transmit focus parameter, transmit deflection angle, transmit frequency, transmit waveform, and gain (ie, gain adjustment).
  • the emission mode may include at least one of focused emission of different emission frequencies, divergent wave emission, wide beam emission, plane wave emission, single array element emission or a mixed emission of two or more emission modes, or other Any possible launch mode.
  • the transmit aperture parameter may be transmit aperture position or transmit array element combination, transmit aperture distance, receive aperture distance or any other feasible transmit aperture parameters.
  • the transmit focus parameters may include the number of transmit focuses, the position of transmit focus, the depth of transmit focus or any other feasible transmit focus parameters.
  • the transmitting waveform may be a sinusoidal waveform, a shock waveform, a waveform of arbitrary shape in which multiple frequencies are superimposed, or any other feasible transmitting waveform.
  • the frame rate cannot be greatly sacrificed, which means that when imaging the effective imaging area, the number of shots that can be increased is limited.
  • select the The focal point is set outside the effective imaging area for imaging. If the effective imaging area is wide at this time, the effective emission area can be expanded by expanding the emission aperture and increasing the emission deflection angle; if the effective imaging area is in the near field area (closer to the probe area), the transmission frequency emitted by the effective imaging area can be increased, so that the high-frequency sound waves can produce the expected imaging effect on the near field.
  • Fig. 15a and Fig. 15b are diagrams showing examples of transmission parameter adjustment according to some embodiments of the present specification.
  • the focal points are distributed horizontally within the width W of the effective imaging area.
  • the focal point distribution range can be appropriately expanded, such as 1.2 to 1.5 times the width W.
  • the focal longitudinal position is at the L multiple of the depth of the effective imaging area, that is Among them, the value of L can be 2 to 3.
  • the calculation method of the number of focal points one or more of the aforementioned formulas (1), (2), (3), (4), (5), and (6) can be used to calculate.
  • the focus position shown in Figure 15a located below the effective imaging area can also be adjusted to the top of the effective imaging area, so that the focus position is closer to the transmitting array element of the transducer , to adjust the energy distribution of sound waves in each area covering the global emission area.
  • multi-dimensional focus adjustment can also be realized through the control program, and the focus position can be adjusted in multiple dimensional spaces (such as two-dimensional space, etc.) (for example, the focus position can be adjusted in horizontal or vertical dimensions).
  • the focus position distribution shown in Fig. 13a and Fig. 13b can be adjusted to the focus position distribution shown in Fig. 15a or Fig. 15b, so as to meet the focus adjustment requirements of various imaging scenarios, and ultimately improve imaging efficiency.
  • the global imaging area can be better covered It realizes the dynamic display and adjustment of the global imaging area, improves the overall imaging efficiency, and meets the diverse imaging needs of users.
  • adjusting the emission parameters may include: analyzing the focus distribution in areas other than the interest area to determine the area to be compensated that meets the preset focus distribution conditions; compensate.
  • focus sparse analysis can be performed on the focus distribution in areas other than the region of interest, so that the area to be compensated that meets the preset focus sparse distribution conditions can be adjusted by adjusting the corresponding emission parameters.
  • the corresponding emission parameters when performing the compensation of acoustic wave energy in the area to be compensated, can be adjusted according to different acoustic wave energy compensation requirements, including adjusting one emission parameter alone or adjusting multiple emission parameters in combination, such as adjusting the emission mode , or adjust the emission mode and emission angle at the same time.
  • Fig. 16a to Fig. 16c are example diagrams showing transmission parameter adjustment according to some embodiments of the present specification.
  • the divergent wave transmission mode as shown in Figure 16a can also be used, as shown in Figure 16b wide beam transmission pattern as shown, plane wave transmission pattern as shown in Figure 16c, or any other feasible transmission pattern.
  • the initial emission pattern covering the global imaging area is not limited to one emission pattern focused emission.
  • the initial transmission mode may be at least one of focused transmission, divergent wave transmission, wide beam transmission, plane wave transmission, and single-array transmission, or a mixed transmission of two or more transmission modes, Or any other possible launch mode.
  • the emission mode for acoustic wave energy compensation can be at least one or two or more of focused emission, divergent wave emission, wide beam emission, plane wave emission, and single array element emission. , or any other feasible launch mode.
  • focused transmission has the characteristics of strong focused sound wave energy, wide beam, divergent wave, plane wave, etc. have the characteristics of wide transmission coverage area
  • the compensation of one emission mode or the mixed selection of multiple emission modes can be carried out, so as to improve the imaging efficiency and achieve the expected imaging effect, so as to meet the personalized imaging needs of users.
  • Fig. 17a to Fig. 17d are example diagrams showing transmission parameter adjustment according to some embodiments of the present specification.
  • Figure 17a and Figure 17b when the selected ROI area is too large or spans a wide range of regions, if the second optimized imaging of synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area is used mode, the number of transmissions needs to be increased, which will affect the frame rate, and the first optimized imaging mode that adjusts the transmission parameters under the condition of meeting the frame rate requirements can be adopted.
  • Figure 17a shows the focus distribution of the initial imaging image, in which the focus is evenly distributed on the same horizontal line, assuming that the doctor selects the long solid-line area located on the upper part of the global imaging area in Figure 17b as the ROI area, which almost spans For the entire horizontal range, according to the characteristics of the ROI area, the focus within the original spanning range can be moved to the ROI area, and the focus outside the ROI area is also evenly distributed between the positions before and after the move.
  • the emission can be appropriately increased, and the acoustic wave energy compensation operation can be performed by adding a wide beam emission mode.
  • the initial emission mode after adjusting the focus position multiple focal points are added outside the global imaging area, so that the energy compensation through the additional emission mode can be concentrated in the lower area of the global imaging area, thereby compensating the lower area due to the focus moving up.
  • the resulting energy loss achieves the expected optimized imaging effect of this kind of global imaging area.
  • step 832b when the response to the relationship data is not less than the threshold value, the imaging operation in the second optimal imaging mode is triggered, and the synchronous operation of the enhanced imaging covering the region of interest and the non-enhanced imaging covering the global imaging area , may include: performing enhanced imaging on the region of interest by alternate emission methods, and performing non-enhanced imaging on the global imaging region, so as to respectively obtain an enhanced image of the region of interest and a global image of the global imaging region.
  • the alternate emission method may be to alternately emit the enhanced image of the region of interest and the global image of the global imaging region according to the emission elements of the same array at preset interval time points.
  • the enhanced imaging operation of the ROI may adopt a conventional imaging method, for example, similar to the imaging process of the initial imaging image.
  • the enhanced imaging operation of the ROI may adopt a focused emission mode to achieve enhanced acoustic wave energy in the ROI region.
  • the enhanced imaging operation of the ROI can adopt a similar imaging operation of adjusting the emission parameters of the global imaging region or the region of interest in the first optimized imaging mode in the above step 832a.
  • the global imaging in the first optimized imaging mode The relevant description of the imaging operation for adjusting the emission parameters of the region or the region of interest will not be repeated here.
  • the non-enhanced imaging operation of the global imaging region may adopt a conventional imaging method, for example, similar to the imaging process of the initial imaging image, for details, please refer to the relevant description of the initial imaging image, which will not be repeated here.
  • the non-enhanced imaging operation of the global imaging area can adopt a similar imaging operation of adjusting the emission parameters of the global imaging area or the region of interest in the first optimized imaging mode in the above step 832a, for details, please refer to the first optimized imaging mode The relevant description of the imaging operation of adjusting the emission parameters of the lower global imaging region or the region of interest will not be repeated here.
  • FIG. 18 is an example diagram of an enhanced imaging operation 1800 covering a region of interest according to some embodiments of the present specification.
  • process 1800 may be performed by processing device 2200 , ultrasound device 110 and/or processing device 120 .
  • the process 1800 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 1800 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 1800 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • process 1800 may include one or more of the following steps.
  • Step 910 Calculate the emission boundary and effective emission area of the focal point F according to the emission aperture and the position of the focal point F.
  • Step 920 select the target point coordinates (x, y) in the effective imaging area.
  • Step 930 judging whether the target point is within the effective emission area of the focal point F.
  • Step 940 if yes, proceed to step 960 for beamforming, if not, traverse the next target point, and repeat operations from step 920 to step 940 until all target points have been traversed.
  • Step 950 obtaining the beamforming result in the effective imaging area under the focal point F.
  • the enhanced image of the ROI can directly replace the ROI area on the global image, and only perform edge transition processing on the overlapping parts of the two edges , such as weighted compound transition processing, to ensure that there is no obvious dividing line between the two, and finally obtain the optimized imaging image in the second optimized imaging mode.
  • the image compositing operation on the enhanced image and the global image may be specifically implemented as follows: performing one or more operations of weighted compositing, frequency domain compositing, and edge enhancement on the enhanced image and the global image.
  • Fig. 19 is an example diagram of an image compositing operation of an enhanced image and a global image according to some embodiments of the present specification.
  • the image compositing operation may include performing a weighted compositing operation on the enhanced image and the global image.
  • the weight parameter may set a Gaussian weight with the ROI region as the origin, and finally combine to obtain an optimized imaging image in the second optimized imaging mode. Optimizing the imaging quality of the image details of the imaging image can achieve a significant improvement compared with the original imaging image.
  • the image compositing operation may include performing a frequency domain compositing operation on the enhanced image and the global image.
  • the high-frequency information of the enhanced image and the low-frequency information of the global image may be used for mixing.
  • Two-dimensional Fourier transform (or wavelet transform and other transformations) can be performed on the global image and enhanced image containing the effective imaging area to obtain the frequency domain information of the two images, low-pass filter the image with high low-frequency energy, and High-pass filtering is performed on the image with strong frequency signal, and then inverse Fourier transform is performed to obtain the filtered image, and then the two images are combined linearly or nonlinearly.
  • the composite image can retain strong low-frequency signals and high-frequency signals at the same time, contain richer color and texture information, and can obtain optimized imaging images with excellent imaging effects.
  • the image compositing operation may include performing an edge enhancement operation on the enhanced image and the global image.
  • edge extraction operators Robots operator, Sobel operator, Prewitt operator, Kirsch operator, Robinson operator, etc.
  • the texture information is extracted from the image, and then the texture information is combined to the effective imaging area of the global image (or on the enhanced image), so as to obtain more detailed information and improve the image quality, which can also ensure the good imaging effect of the optimized imaging image.
  • Enhanced imaging of the region of interest and non-enhanced imaging of the global imaging region are performed by alternate emission methods to obtain an enhanced image of the region of interest and a global image of the global imaging region, and then the enhanced image and the global image are processed
  • the image compounding operation of one or more operations in weighted compounding, frequency domain compounding, and edge enhancement realizes the synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area, which can not only improve imaging efficiency, It can also guarantee the dynamic display and dynamic adjustment function of the global area of the final optimized imaging image, which is convenient for viewing the relationship between ROI and other areas during ultrasonic detection or ultrasonic diagnosis, and meets the user's personalized and diversified imaging image viewing and adjustment needs.
  • Fig. 20a to Fig. 20c are example diagrams of operation nodes where the image compositing operation of the enhanced image and the global image is shown according to some embodiments of the present specification.
  • the operation node where the image compositing operation of the enhanced image and the global image is located may be set after the enhanced image beamforming and compositing as shown in FIG. 20 a , and before the enveloping operation.
  • the compounding operations in beamforming and compounding may include compound imaging processing, such as line compounding, frequency compounding, spatial compounding, and the like.
  • the operation node where the image composite operation of the enhanced image and the global image is located may be set after the enveloping operation shown in FIG.
  • the operation node where the image composite operation of the enhanced image and the global image is located can be set after the respective imaging of the two images shown in FIG.
  • the imaging is an image with relatively complete details.
  • the composite operation of the two images can obtain a better image composite effect, and finally improve the imaging efficiency and optimize the effect.
  • the above ultrasonic imaging method may further include: adjusting the imaging condition data and/or emission parameters according to the optimized imaging image, frame rate requirements, and/or received instructions, so that the user can optimize the actual effect of the imaging image, Dynamic frame rate requirements or other operating instructions accepted can achieve further improvements in optimizing imaging images to meet users' higher imaging needs and improve user experience.
  • Fig. 21 is an example diagram of an optimized imaging setting interface according to some embodiments of the present specification.
  • the imaging condition data can be reset by selecting "emission condition parameter setting" (not shown in Figure 21) in the sub-menu of the imaging condition data setting menu option. Set or re-select the ROI area, and repeat steps 810 to 830 above.
  • the user can also make real-time adjustments by optimizing the imaging condition data setting menu option and/or the emission parameter setting menu option in the imaging setting interface, so as to finally optimize the imaging The image meets the user's frame rate requirements.
  • the user when the user moves the ultrasound probe or reselects the ROI area during the detection or diagnosis process, the user will receive corresponding operation instructions that the probe detection signal changes or draw the ROI area, and these operation instructions can also trigger optimized imaging
  • the setting interface pops up, so that the user can adjust and set the corresponding imaging condition data parameters or emission parameters according to the new imaging requirements.
  • the user can perform the optimal imaging mode switching function operation through the optimal imaging mode switching menu option on the optimal imaging setting interface through additional command input according to the needs of the current optimal imaging mode, for example, from the first optimization
  • the imaging mode is switched to the second optimized imaging mode.
  • Fig. 22 is an exemplary structural block diagram of a processing device 2200 according to some embodiments of this specification. As shown in FIG. 22 , the processing device 2200 may include a region of interest determining module 2210 , an imaging condition data determining module 2220 and/or an optimized imaging image generating module 2230 .
  • the region of interest determination module 2210 may be used to determine the region of interest on the initial imaging image, where the initial imaging image may include a global imaging region.
  • the ROI determining module 2210 may be used to determine the region of interest on the initial imaging image, where the initial imaging image may include a global imaging region.
  • the imaging condition data determination module 2220 may be used to determine the imaging condition data according to the region of interest.
  • the specific process and further descriptions of the imaging condition data determination module 2220 performing determination of the imaging condition data according to the region of interest please refer to the relevant content description of the ultrasonic imaging method 800 described in any of the foregoing embodiments, and details will not be repeated here.
  • the optimized imaging image generation module 2230 may be used to determine which optimized imaging mode the imaging condition data conforms to, and trigger an imaging operation in the corresponding optimized imaging mode to generate an optimized imaging image.
  • the optimized imaging mode may at least include a first optimized imaging mode and a second optimized imaging mode.
  • An ultrasonic imaging system may include: at least one storage medium storing at least one set of instructions; and at least one processor configured to communicate with the at least one storage medium, wherein when When executing the at least one set of instructions, the at least one processor is instructed to cause the system to: determine a region of interest on an initial imaging image, the initial imaging image includes a global imaging region; determine imaging condition data according to the region of interest; Which optimized imaging mode the condition data conforms to, and triggers the imaging operation in the corresponding optimized imaging mode to generate an optimized imaging image.
  • the optimized imaging mode includes at least a first optimized imaging mode and a second optimized imaging mode, wherein the first optimized imaging mode refers to The emission parameter adjustment operation covering the global imaging area, the second optimized imaging mode refers to the synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area.
  • first optimized imaging mode refers to The emission parameter adjustment operation covering the global imaging area
  • second optimized imaging mode refers to the synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area.
  • some embodiments of this specification also provide an ultrasonic imaging device, including a processor, the processor is used to execute the corresponding process of the ultrasonic imaging method 800 described in any of the foregoing embodiments, for details, refer to FIG. 8 to FIG. 21 Relevant descriptions will not be repeated here.
  • some embodiments of this specification also provide a non-transitory computer-readable storage medium, including at least one set of instructions, wherein, when executed by at least one processor of a computer device, the at least one set of instructions instructs the at least one Processor: It can execute the corresponding process of the ultrasonic imaging method 800 as described in any one of the foregoing embodiments. For details, refer to the related descriptions in FIG. 8 to FIG. 21 , which will not be repeated here.
  • the ultrasonic imaging method, system, device and computer-readable storage medium provided by some embodiments of this specification have at least the following beneficial effects: (1) comprehensively consider the relationship between image imaging quality, frame frequency, and transmission time, etc., which affect the overall imaging efficiency According to the imaging requirements or diagnostic requirements of different imaging conditions, analyze and judge according to the corresponding imaging condition data of the selected ROI, determine which optimized imaging mode it meets, and trigger the applicable corresponding optimized imaging mode, so as to provide high adaptability The corresponding imaging scheme can not only improve the imaging efficiency, but also meet a variety of different imaging requirements, so as to provide the best imaging scheme while overcoming the defects of the previous technical schemes; (2) support adaptive enhancement of the region of interest (hereinafter referred to as ROI ) and other regions can be dynamically displayed and dynamically adjusted at the same time.
  • ROI region of interest
  • the imaging mode of the global region is convenient for users to view and adjust imaging images during detection or diagnosis, which can improve user experience; (3) due to the selection of regions of interest or imaging
  • the calculations involved in the ultrasound imaging process such as the calculation of condition data, can be calculated and stored in a preset way, and can also provide interactive methods (such as interactive interfaces, etc.) It can also meet the real-time interaction and dynamic adjustment needs of the user during imaging, and further improve the user experience.
  • Fig. 23 is an exemplary flowchart of an ultrasound imaging method 2300 according to some embodiments of the present specification.
  • process 2300 may be performed by ultrasound device 110 , processing device 120 and/or processing device 3400 .
  • the process 2300 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 2300 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 2300 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • process 2300 may include one or more of the following steps.
  • Step 2310 determine the corresponding mixed wave imaging mode according to the information related to the imaging requirement.
  • step 2310 may be performed by the mixed wave imaging mode determination module 3410 .
  • Step 2320 According to the mixed-wave imaging mode, perform corresponding mixed-wave imaging operations to obtain corresponding imaging results. In some embodiments, step 2320 may be performed by hybrid wave imaging operation module 3420 .
  • imaging requirements may include requirements related to image quality and/or frame rate.
  • information related to imaging requirements may include spatial resolution, contrast resolution, temporal resolution, image signal-to-noise ratio, frame rate, imaging speed, imaging time, or any other feasible information that can reflect image quality and/or Or an index related to a frame rate requirement (or called an imaging requirement parameter).
  • information related to imaging requirements can be obtained by setting or adjusting corresponding imaging requirement parameters in the ultrasound system.
  • the information related to the imaging requirement can be obtained through manual input, for example, by receiving an imaging requirement instruction from the user in real time.
  • transmit beam types may include focused waves and/or unfocused waves, and/or any other feasible beam type.
  • unfocused waves may include plane waves, divergent waves, wide beams, or any other feasible unfocused beam type.
  • the mixed-wave imaging mode may include imaging modes with the same transmission frequency and different transmission beam types, for example, a mixed-wave imaging mode with the same transmission frequency (for example, 8 MHz) for both divergent and focused waves.
  • the mixed-wave imaging mode may be an imaging mode with different transmission frequencies and the same transmission beam type, for example, a mixed-wave imaging mode with two focused waves or two non-focused waves with transmission frequencies of 8 MHz and 4 MHz respectively.
  • the mixed wave imaging mode can be an imaging mode with different transmission frequencies and different transmission beam types, for example, a mixture of divergent waves with a transmission frequency of 8 MHz, focused waves with a transmission frequency of 10 MHz, and plane waves with a transmission frequency of 5 MHz. wave imaging mode.
  • a plane wave with the same transmit frequency can be Multiple emission imaging can be performed at multiple different time nodes or periods, or only one emission imaging can be performed at one time node or period.
  • divergent waves with different emission frequencies can be transmitted twice or more at different time nodes or periods.
  • divergent waves, focused waves, and plane waves of different emission frequencies are respectively imaged once.
  • the order of different types of transmitting beams and/or corresponding beams of different transmitting frequencies for imaging is not particularly limited. , first emit a divergent wave with a frequency of 8MHz, then a focused wave with a frequency of 10MHz, then a plane wave with a frequency of 5MHz, and so on.
  • the hybrid wave imaging modality may include a first hybrid wave imaging modality and/or a second hybrid wave imaging modality.
  • the first hybrid wave imaging mode may include full aperture hybrid transmit operation and the second hybrid wave imaging mode may include moving aperture hybrid transmit operation.
  • the full-aperture mixed transmission operation can be a transmission operation in which all apertures of the array element participate in the transmission when focused waves and/or non-focused waves are transmitted, so as to cover a wider range of scanning areas.
  • the full-aperture hybrid transmission operation can be that all apertures participate in the transmission when the unfocused wave is transmitted, and the local aperture (ie, part of the apertures) participates in the transmission when the focused wave is transmitted (for example, it can be focused on a specific area that focuses on image quality. or region of interest), so that resources can be rationally allocated to meet user imaging needs while saving costs.
  • the moving aperture mixed transmitting operation may be a transmitting operation in which all apertures or partial apertures of the array element transmit according to the corresponding mixed transmitting sequence rules when focused waves and/or unfocused waves are transmitted.
  • the moving aperture mixed transmitting operation may be a transmitting operation in which focused waves (eg, focused waves) and unfocused waves (eg, divergent waves) are transmitted using a local aperture according to a corresponding mixed transmitting sequence.
  • focused waves and unfocused waves may be transmitted alternately according to a corresponding mixed transmission sequence program.
  • the sequence, rule or program of mixed transmissions may include the setting of respective transmission time nodes of focused waves and unfocused waves and/or the setting of alternate transmission time intervals and the like.
  • the mobile aperture mixed transmission operation mode can use different mixed beams to transmit specific combined sequences under the corresponding set transmission order or rules, and can comprehensively use the respective advantages of multiple beams to conduct transmission scans in important areas (such as areas of interest) to obtain
  • the mixed-wave echo data with richer dimensions (such as echo signal data of multiple beams, echo images or imaging data, etc.) is convenient for subsequent echo signal compounding or image compounding processing, so as to meet the individualization of different scenarios for different users Imaging needs are guaranteed.
  • Fig. 24 is an exemplary flow chart of performing corresponding mixed wave imaging operations according to the mixed wave imaging mode according to some embodiments of the present specification.
  • process 2400 may be performed by processing device 3400 , ultrasound device 110 and/or processing device 120 .
  • the process 2400 may be stored in a storage device (such as the storage device 130 ) in the form of programs or instructions, and the process 2400 may be implemented when the ultrasound imaging system 100 (such as the processing device 120 ) executes the programs or instructions.
  • process 2400 may be performed by one or more modules in FIG. 7 , FIG. 22 and/or FIG. 34 .
  • step 2320 in FIG. 23 may be performed according to process 2400 .
  • step 2320 according to the mixed wave imaging mode, perform the corresponding mixed wave imaging operation to obtain the corresponding imaging result, which may include at least one of the following two branch steps:
  • Step 2321, triggering the mixed wave imaging operation in the first mixed wave imaging mode according to the mixed wave imaging mode may include: determining the first focus position, which satisfies the first focus boundary condition; determining the first focus position according to the first focus position The first transmitting parameter of the mixed wave imaging mode; according to the first transmitting parameter of the first mixed wave imaging mode, the full aperture transmitting operation of the first ultrasonic wave is performed, and the full aperture transmitting operation or the partial aperture transmitting operation of the second ultrasonic wave is performed to obtain First mixed wave echo data.
  • Step 2322, triggering the hybrid wave imaging operation in the second hybrid wave imaging mode according to the hybrid wave imaging mode may include: determining the second focus position, which satisfies the second focus boundary condition; determining the second focus position according to the second focus position The second transmitting parameter of the mixed wave imaging mode; according to the second transmitting parameter of the second mixed wave imaging mode, the moving aperture transmitting operation of the first ultrasonic wave and the full aperture transmitting operation or partial aperture transmitting operation of the second ultrasonic wave are performed to obtain the second Mixed wave echo data.
  • the first focus position may include at least part (for example, all) of the respective focus arrangement positions and/or at least part (for example, all) of the respective positions of the focal points of each transmitted beam in the first hybrid wave imaging mode
  • the second The focus positions may include at least a part (eg all) of the focus arrangement positions and/or at least a part (eg all) of the respective focus positions of each transmitted beam in the second hybrid wave imaging mode.
  • the first focal point may include a real focal point and/or a virtual focal point
  • the second focal point may include a real focal point and/or a virtual focal point.
  • the first focal point may be located within and/or outside the imaging area, and the second focal point may be located within and/or outside the imaging area. In some embodiments, there may be one or more first focal points, and one or more second focal points.
  • the first focal point or the second focal point may include multiple (eg, 10) real focal points of focused waves located within the imaging area and multiple (eg, 8) virtual focal points of divergent waves located outside the imaging area.
  • the first emission parameters may include respective delay times and/or deflection angles of at least some (for example, all) focal points in the first hybrid wave imaging mode, and the second emission parameters may include at least Delay and/or declination of some (eg all) focal points respectively.
  • the first ultrasonic waves may be unfocused waves and the second ultrasonic waves may be focused waves.
  • the first hybrid wave echo data or the second hybrid wave echo data may include respective echo data of different beams or composite data of respective echoes of different beams.
  • the respective echo data of different beams may include echo signal data or echo image data of corresponding beams.
  • the composite echo data of different beams may be composite echo data obtained by beamforming the echo signals of the corresponding beams.
  • the first mixed-wave imaging mode or the second mixed-wave imaging mode may be triggered (or executed) independently. In some embodiments, the first hybrid wave imaging mode and the second hybrid wave imaging mode can be triggered simultaneously.
  • the corresponding focus position and emission parameters of the full-aperture emission operation or the moving-aperture emission operation are to more advantageously carry out the full-aperture emission operation or the moving-aperture emission operation of the mixed wave under various imaging requirements of different users, so as to ensure the imaging efficiency.
  • the mixed wave imaging operation in the mixed wave imaging mode may further include: imaging different local imaging areas in the global imaging area using mixed waves of different transmit beam types and/or different transmit frequencies.
  • the first mixed wave imaging mode and/or the second mixed wave imaging mode can be used to perform imaging on different local imaging areas in the global imaging area, for example, a certain local imaging area adopts the first mixed wave imaging mode, Another partial imaging area adopts the second mixed wave imaging mode. In this way, the mixed wave imaging mode can be set according to the specific imaging requirements of the local imaging area, which can further improve the efficiency and meet the imaging requirements of complex scenes.
  • the hybrid wave imaging operation in the hybrid wave imaging mode may further include: performing an emission parameter adjustment operation covering the global imaging area according to the region of interest, or combining the enhanced imaging covering the region of interest with the non- Synchronized operation for enhanced imaging.
  • it can be determined according to the imaging condition data whether in the first mixed-wave imaging mode or the second mixed-wave imaging mode, whether to use the emission parameter adjustment operation covering the global imaging area according to the region of interest or to cover the region of interest Simultaneous operation of enhanced imaging of a region and non-enhanced imaging covering a global imaging region.
  • the relationship data between the emission condition data of the ROI and the emission condition data of the global imaging area it can be determined that in the first mixed wave imaging mode or the second mixed wave imaging mode, the specific method according to the region of interest The emission parameter adjustment operation covering the global imaging area is performed, or the synchronous operation of enhanced imaging covering the region of interest and non-enhanced imaging covering the global imaging area.
  • the enhanced imaging covering the ROI and the non-enhanced imaging covering the global imaging area can be synchronized in the second mixed-wave imaging mode operate.
  • the ROI area value or the ratio of the ROI area to the area of the global imaging area is large, it means that the ROI area or the proportion of the ROI in the global imaging area is relatively large, and the coverage global imaging can be performed in the first mixed wave imaging mode Transmit parameter adjustment operations for the region.
  • the first focal point boundary condition and/or the second focal point boundary condition are obtained in the following manner: determining the transmit beam in the first mixed wave imaging mode and/or the second mixed wave imaging mode according to the array element directivity constraint condition The limit deflection angle and/or limit delay time; according to the limit deflection angle and/or limit delay time, determine the first focus boundary condition and/or the second focus boundary condition of the focus distribution inside and outside the imaging area.
  • the array element directivity restriction condition may be a restriction condition determined according to an array element directivity function.
  • the aforementioned array element directivity function may adopt a spatial distribution function (directivity diagram or direction characteristic function) that reflects the radiation sound field of the transmitting array element (or transducer) or the sensitivity of the receiving array element (or transducer) .
  • the array element directivity constraints can be changed by setting or adjusting corresponding array element parameters (for example, array element aperture, array element center distance, array element width, array element quantity, or array element emission frequency, etc.).
  • the limit deflection angle and/or the limit delay time of the transmit beam in the first mixed wave imaging mode and/or the second mixed wave imaging mode may be determined through array element directivity function calculation. In some embodiments, the array element directivity restriction conditions of the first mixed wave imaging mode and the second mixed wave imaging mode may be the same. In some embodiments, the array element directivity restriction conditions of the first mixed wave imaging mode and the second mixed wave imaging mode may be different. In some embodiments, the limit deflection angle and/or limit delay time of the transmitting beam in the first hybrid imaging mode and the second hybrid imaging mode may be the same. In some embodiments, the limit deflection angle and/or limit delay time of the transmitting beam in the first hybrid imaging mode may be different from that in the second hybrid imaging mode.
  • Fig. 25 and Fig. 26 are diagrams showing examples of determining the limit deflection angle and limit delay time according to the constraint condition of array element directivity according to some embodiments of the present specification.
  • Fig. 27a to Fig. 27d are diagrams illustrating the effect of deflection scanning with divergent beams according to some embodiments of the present specification.
  • Fig. 28 is an example diagram of determining a limit deflection angle and a limit delay time according to a limit condition of array element directivity according to some embodiments of the present specification. It should be noted that the calculation methods of the limit deflection angle and the limit delay time in the examples shown in FIGS. 25 to 28 can be adopted in the first mixed wave imaging mode and/or the second mixed wave imaging mode.
  • N is the number of array elements
  • d is the distance between array elements
  • ⁇ p is the beam deflection angle
  • is the wavelength of the emitted sound wave.
  • the deflection angle ⁇ p can take a value between 0 and 12 degrees (including 12 degrees). In some embodiments, the delay time can take a value between 0 and 20 microseconds (including 20 microseconds).
  • the imaging process can preferably be combined with off-angle scanning using diverging waves.
  • the deflection angle of the plane wave beam can satisfy the above-mentioned array element directivity restriction, so that the main lobe of the beam within the maximum deflection angle can maintain good sound field characteristics in the beam deflection direction to reduce ultrasonic imaging artifacts to improve image quality.
  • the high-energy focused beamline scanning image can be used as the basic image
  • the divergent beamformed image can be used as the deflection angle image to supplement the medium boundary information and suppress random noise, which can not only ensure image quality, but also Improve imaging frame rate.
  • the following uses divergent wave beams and focused wave beams as examples to illustrate examples of calculation methods for limit deflection angles and limit delay times.
  • the delay time shown in FIG. 28 is the non-return-to-zero delay time.
  • the delay time of the divergent beam can be calculated by formula (9):
  • the delay time of the focused wave beam can be calculated by formula (10):
  • Ei is the i-th array element in the aperture
  • FDi is the virtual focal point
  • FFi is the real focal point
  • c is the speed of sound wave propagating in the medium, that is, the speed of sound
  • point O is the center of the transmitting aperture
  • FDiO is the direction of the divergent wave transmitting beam
  • OFFi is the beam direction of the focused wave
  • draw an arc with the virtual focus FDi and the real focus FFi as the center of the circle through the point O and obtain the wave front reference line of the divergent wave and the focused wave
  • the delay time of the array element Ei can be determined by the wave It is determined by the normal distance GDEi from the front reference line to the array element and the Z coordinate of the wave front reference point GD.
  • the calculated delay time is negative, and at this time, the greater the distance of GDEi is, the first to launch; if the Z coordinate of GD is positive, the calculated The calculated delay time is positive, the smaller the GDEi distance, the first to launch, and the formed wave front tends to spread in the imaging area; while the calculation of the delay time of the focused wave is the opposite, the formed wave front is in the imaging area.
  • the Z coordinate of GD is negative
  • the calculated delay time is negative, and at this time, the greater the distance of GDEi is, the first to launch
  • the Z coordinate of GD is positive
  • the calculated The calculated delay time is positive, the smaller the GDEi distance, the first to launch, and the formed wave front tends to spread in the imaging area; while the calculation of the delay time of the focused wave is the opposite, the formed wave front is in the imaging area.
  • the maximum delay time of the focused wave and the divergent wave can be the same. That is to say, the maximum delay time has nothing to do with the transmit beam type, the difference between the maximum and minimum values of the non-zero delay time, the sum of the distances from the focus to the nearest array element and the farthest array element, and the distance from the focus to the center of the aperture decided together.
  • the limit delay time after zeroing of the divergent beam can be calculated by formula (11):
  • the limit delay time of the focused wave beam after returning to zero can be calculated by formula (12):
  • Ej is the array element closest to the focus
  • En is the array element farthest from the focus.
  • the first focus boundary condition of the focus distribution can be determined outside the imaging region and/or the second focal boundary condition.
  • the first focus boundary condition may include: the focus of the unfocused wave outside the imaging area is located on the first boundary line segment, the second boundary line segment on, and/or located away from the element array and in a V-shaped area surrounded by the first boundary line segment and the second boundary line segment, the extension line of the first boundary line segment and the extension line of the second boundary line segment respectively pass through the second end point of the element array and the first end point of the array element array, and the included angle with the line perpendicular to the array element array is the limit deflection angle.
  • all focal points of unfocused waves can be arranged on the first boundary line segment and the second boundary line segment, so as to ensure the array element directivity at its limit deflection angle or limit delay time when the unfocused wave beam is emitted.
  • the emission of all focal points of unfocused waves can perform full-aperture emission operation, so that each focal point can cover a wider scanning range (for example, it can cover at least the imaging area or a wider area than the imaging area) area).
  • a part of the focal point of the unfocused wave can be arranged on the first boundary line segment and the second boundary line segment, and the rest of the focal points can be arranged on the V-shape surrounded by the first boundary line segment and the second boundary line segment away from the element array.
  • this arrangement can ensure that part of the focal point of the non-focused wave can be transmitted with full aperture. Since the non-focused wave itself has the characteristics of wide coverage, even if part of the focal point is used for full-aperture transmission, the overall imaging effect can still be in the image. Improvements in quality and frame rate to meet user responsive imaging needs.
  • the focused waves may be uniformly or non-uniformly arranged in the imaging region, so that the focal point of the focused waves performs a full-aperture transmitting operation or a partial-aperture transmitting operation when transmitting.
  • the full-aperture emission operation performed by the focused wave may include: the two outermost real focuses of the focused wave may correspond to the array elements at both ends of the array, and all the array elements are set to transmit real focuses, that is, the focused wave performs The imaging area when transmitting with full aperture can cover all array elements.
  • the focused wave when performing the full-aperture emission operation, the focused wave may be scanned line by line in a predetermined order according to the set real focal point.
  • the focused wave when the full-aperture transmission operation is performed, the focused wave may be alternately transmitted according to the set real focus, and the unfocused wave may be transmitted according to the set virtual focus.
  • the focusing wave performing partial aperture transmitting operation may include: the two outermost real focuses of the focusing wave may correspond to the array elements at both ends of the element array, and only local (or part) array elements are set to corresponding transmitting real focuses , that is, the imaging area when the focused wave performs local aperture emission can cover a specific part of the array elements.
  • the focusing wave performing partial aperture emission operation may include: the outermost two real focal points of the focusing wave may correspond to non-end elements of the array element array, and only local (or part) array elements are set to corresponding emission real points. The focal point, that is, the imaging area where the focused wave performs local aperture emission can cover a specific part of the array elements.
  • focused waves when the local aperture transmission operation is performed, focused waves can be transmitted line by line (or scanned line by line) in a predetermined order according to the set real focus, for example, each array element participating in the transmission can be transmitted by each real focus Fired line by line.
  • focused waves when the partial aperture transmission operation is performed, focused waves may be transmitted alternately according to a set real focus and unfocused waves according to a set virtual focus.
  • the corresponding focus position is arranged according to the first focus boundary condition, which can make all or part of the focus of the non-focused wave focus on It can cover a wide range of emission scans.
  • the echo data obtained by emitting all focal points of non-focused waves is used as the basic image
  • the echo data obtained by emitting all focal points of focused waves is used as the enhanced image.
  • it can ensure that the imaging area is relatively stable.
  • the number of shots is greatly reduced, and the shooting time is reduced to increase the imaging speed.
  • the overall imaging frame rate will obviously increase, which improves the overall imaging efficiency and can meet the high imaging needs of users (such as the need for high frame heart rate imaging and other moving tissue imaging scenarios, etc.).
  • Fig. 29 is an example of focus distribution in mixed wave imaging mode according to some embodiments of the present specification.
  • one or more rows of transducer element arrays i.e., one-dimensional array element array or multi-dimensional array element array
  • the focal point of the focused wave is located above the array element array (i.e., below the X-axis)
  • the focus of unfocused waves is located below the element array (ie above the X axis).
  • the focus position, focus deflection angle and/or delay time of the first mixed wave imaging mode may be determined according to the first focus boundary condition.
  • determining the first boundary line segment and the second boundary line segment of the first focus boundary condition may include: The end point En and the first end point E1 of the array element array are respectively drawn as connecting lines AM and BL with an included angle ⁇ (that is, the limit deflection angle) with the negative direction of the Z-axis, and the intersection point of the connecting lines is FDc.
  • the range covered by the aperture is the effective imaging area
  • the intersection point FDc of the line is the critical point
  • AFDc and BFDc are the left and right boundaries respectively, that is, the first A boundary line segment and the second boundary line segment, if and only when the focal point is located in the V-shaped area surrounded by AFDcB (away from the direction of the array element array) (including the boundary of the first boundary line segment and the boundary of the second boundary line segment)
  • the focal point is not in this area, the angle between the line from the focal point to the aperture boundary and the line in the negative direction of the Z axis (vertical straight line AE1, BEn) may be greater than ⁇ .
  • the line connecting the focus and the aperture center O intersects AM at FDj, and the distance FDj'O>FDjO, but at this time the line connecting the focus FDj'O and the boundary of the transducer array
  • the covered effective imaging range becomes smaller, and selecting points on the first boundary line segment and the second boundary line segment as focal points can ensure that each shot can cover a larger imaging area. Therefore, when setting the focus, you can choose to place the focus on the first boundary line segment AFDc and the second boundary line segment BFDc, or you can calculate the connection line between the set virtual focus point FDj' and the aperture center O in the form of the following straight line equations.
  • the focus FDj on the boundary line AFDc uses the calculated focus FDj to calculate the launch delay time.
  • the direction of the focal point FDi pointing to the center of the aperture O is the main direction of the beam
  • the angle ⁇ between the focal point and the positive direction of the Z axis is the deflection angle of the beam.
  • Different focal positions above the array will provide different deflection angles.
  • Angle of the transmit beam is the angle of the transmit beam.
  • the focal point located above the element array is determined as a virtual focus point
  • the focal point located below the element array is determined as a real focus point.
  • the focal point located below the element array is determined as a real focus point.
  • the local aperture emission operation can be performed in a line-by-line emission or alternate emission manner.
  • the number of deflection angles may be determined according to the number of virtual focal points, so as to set or adjust the amount of boundary information of the medium that can be acquired in an image.
  • the emission line density can be set or adjusted according to the number of real focal points, so that the image quality or frame rate adjustment of the basic image can be realized by accepting the line density, so as to affect the final imaging image.
  • the number of aperture array elements can be calculated by formula (14):
  • the focused wave beam is transmitted line by line using a real focus (for example, from one end of the array to the other end, etc.) to form a base image, and the unfocused beam is transmitted using a virtual focus to form a superimposed image.
  • a real focus for example, from one end of the array to the other end, etc.
  • performing a corresponding mixed wave imaging operation to obtain a corresponding imaging result may include one or more of the following steps.
  • a composite operation is performed on the first mixed-wave echo data and/or the second mixed-wave echo data, and the composite operation includes at least one or a combination of line composite, spatial composite, frequency composite, and image composite.
  • At least one or more of line compounding, spatial compounding, frequency compounding, and image compounding can be performed according to the coherence information of the first mixed wave echo data and/or the second mixed wave echo data combination of operations. In some embodiments, at least one or a combination of line compounding, spatial compounding, frequency compounding, and image compounding may be performed in any feasible way or means, which is not particularly limited in the embodiments of this specification.
  • Fig. 30 is a schematic diagram of emission imaging in the first mixed wave imaging mode according to some embodiments of the present specification.
  • the focused wave can be emitted using a partial aperture, while the divergent wave can be emitted using a full aperture, and the focused wave can be scanned line by line first, and then the divergent wave can be scanned angle by deflection.
  • the echo data transmitted by the focused wave each time only forms m lines through beam synthesis (as shown in Figure 30, m is 4), each line corresponds to an array element and a real focus, and all n*m lines are finally synthesized A line scan image; while the divergent wave uses full aperture emission and the array element probe covers the effective imaging area, a single emission can synthesize an image (consisting of n*m lines of the divergent wave beam).
  • the compounding operation of the first mixed wave echo data may include: considering the correlation between adjacent shots, calculating the accumulation weight for each shot, performing coherent compounding or non-coherent compounding by setting corresponding weighting coefficients, and /or obtain an imaging image.
  • the foregoing coherent compounding or non-coherent compounding may be performed in an image-by-image compounding manner.
  • the number of focal points of the focused wave is n
  • the number of focal points of the divergent wave is k
  • each focal point corresponds to one transmission
  • k adjacent transmissions of the divergent wave have mutual coverage or overlapping areas
  • their coherence can be used , use the demodulated complex data to perform coherent recombination between adjacent transmissions, and use coherent methods such as phase coherence coefficient, symbol coherence coefficient, and short-order spatial coherence coefficient to calculate the weighting coefficient of each pixel, and apply the weighting coefficient to In coherent superposition to take advantage of the coherence between adjacent shots, all divergent wave deflection (deflection angle) images are composited into one image. Whereas n adjacent shots of the focused beam do not involve area coverage or overlap, all lines combine into one image. Finally, the divergent wave image and the focused wave image are combined incoherently in the real number domain to obtain the final imaging image.
  • the second focus boundary condition may include: the focus of the unfocused wave outside the imaging area is located between the first boundary point and the second boundary point , the first boundary point is located on the first reference line and the second reference line, the first reference line passes through the real focal point of the first end in the imaging area and the angle between the first reference line and the vertical line passing through the first end point of the array element array is the limit Deflection angle, the angle between the second reference line passing through the second end point of the array element array and the vertical line passing through the second end point of the array element array is the limit deflection angle; the second boundary point is located on the third reference line and the fourth reference line, The third reference line passes through the real focal point of the second end in the imaging area and the included angle with the vertical line passing through the second end point of the array element array is the limit deflection angle, and the fourth reference line passes through the first end point of the array element array and passes through the array element array The included angle of
  • At least part (for example, all) of the focal points of the unfocused waves can be arranged between the first boundary point and the second boundary point, so as to ensure that when the unfocused wave beam is emitted, it will be at its limit deflection angle or limit delay Under the condition of time-limited array element directivity, the emission of all focal points of the non-focused wave can perform the operation of moving the aperture of the local aperture, so that each focal point can cover the predetermined scanning range every time it emits.
  • the focal points at both ends of the unfocused wave can be arranged at the first boundary point and the second boundary point, and the rest of the focal points can be arranged in the area between the first boundary point and the second boundary point.
  • the focused waves may be uniformly or non-uniformly arranged in the imaging region, so that the focal point of the focused waves performs a full-aperture transmitting operation or a partial-aperture transmitting operation when transmitting.
  • the full-aperture emission operation performed by the focused wave may include: the two outermost real focuses of the focused wave may correspond to the array elements at both ends of the array, and all the array elements are set to transmit real focuses, that is, the focused wave performs The imaging area when transmitting with full aperture can cover all array elements.
  • the focused wave when performing the full-aperture emission operation, the focused wave may be scanned line by line in a predetermined order according to the set real focal point.
  • the focused wave when the full-aperture transmission operation is performed, the focused wave may be alternately transmitted according to the set real focus, and the unfocused wave may be transmitted according to the set virtual focus.
  • the focusing wave performing partial aperture transmitting operation may include: the two outermost real focuses of the focusing wave may correspond to the array elements at both ends of the element array, and only local (or part) array elements are set to corresponding transmitting real focuses , that is, the imaging area when the focused wave performs local aperture emission can cover a specific part of the array elements.
  • the focusing wave performing partial aperture transmitting operation may include: the outermost two real focal points of the focusing wave may correspond to non-end array elements of the array element array, and only local (or part) array elements set corresponding transmitting real focal points , that is, the imaging area when the focused wave performs local aperture emission can cover a specific part of the array elements.
  • the focused waves when performing the partial aperture emission operation, may be emitted line by line in a predetermined order according to the set real focal point. In some embodiments, when the partial aperture transmission operation is performed, the focused wave can be transmitted according to the set real focus, and the unfocused wave can be transmitted according to the set virtual focus. In some embodiments, focused and unfocused waves may be emitted alternately.
  • the corresponding focus position is arranged according to the second focus boundary condition, which can make all or part of the focus of the non-focused wave focus on It can cover the predetermined emission scanning range.
  • the echo data obtained by emitting all focal points of the focused wave can be used as the basic image
  • the echo data obtained by emitting all the focal points of the unfocused wave can be used as the enhanced image, which can also ensure high image quality in the imaging area and reduce
  • the number of launches reduces the launch time to increase the imaging speed, improves the overall imaging frame rate, improves the overall imaging efficiency, and meets the specific imaging needs of users.
  • Fig. 31 is an example of focus distribution in mixed wave imaging mode according to some embodiments of the present specification.
  • one or more rows of transducer element arrays ie, one-dimensional array element array or multi-dimensional array element array
  • the focal point of the focused wave is located above the array element array (below the X-axis).
  • several real focal points corresponding to the local element array may be evenly arranged in the imaging area (as shown by real focal points such as FF1, FFi, and FFn in FIG. 31 ).
  • the partial aperture emission operation can be performed in a line-by-line emission or alternating emission mode.
  • the real focus cross emission method can be adopted, for example, according to the first real focus on the far left fires, then a second real-focus fire, followed by a second real-focus fire, and so on.
  • the focus of unfocused waves (such as divergent waves, etc.) is located below the element array (ie above the X axis).
  • the focus position, focus deflection angle or delay time of the second mixed wave imaging mode may be determined according to the second focus boundary condition.
  • the focal point of the unfocused wave outside the imaging area is located between the first boundary point U and the second boundary point V
  • the first boundary point U is located between the first reference line UFFn and the second reference line UFFn
  • the first reference line UFFn passes through the second end real focus FFn in the imaging area and the angle between it and the vertical line passing through the second end point En of the array element array is the limit deflection angle ⁇
  • the second reference line BL passes through the array element
  • the angle between the first end point E1 of the array and the vertical line passing through the first end point E1 of the array element array is the limit deflection angle ⁇
  • the second boundary point V is located on the third reference line FF1V and the fourth reference line AM
  • the third The reference line FF1V passes through the real focal point FF1 at the first end in the imaging area (below the X axis), and the angle between it and the vertical line passing through the first end point E1 of the array
  • the determination of the first boundary point U and the second boundary point V may include: drawing a straight line E1FF1 perpendicular to the element array (that is, the X axis in the figure) through the first end point E1 of the array element array, and then The angle between the straight line E1FF1 is ⁇ .
  • the line between point U and point V is evenly or non-uniformly distributed, so that the virtual focus can be under the restriction of the directivity of the array element, so that the effective imaging area can cover all the real focus, that is, the line below the line UL and VM intersection area.
  • other virtual focal points may be equally distributed between points U and V as the first boundary point and the second boundary point.
  • the number of virtual and real focal points may be the same.
  • the leftmost real focal point FF1 can be connected with the leftmost virtual focal point U, and the connecting line intersects the transducer array at point P, where P is set as the center of the aperture when the unfocused wave is emitted, and the focused wave Take the array element closest to the focal point as the center of the aperture when the focused wave is emitted, and emit vertically downward and focus on the real focal point FF1.
  • the line connecting the focal point and the center of the aperture is the main direction of the beam, such as the center of the aperture of the first emission line of the focused wave is E1, then E1FF1 is the main direction of the focused wave, vertically downward;
  • P is the unfocused wave ( Such as the aperture center of the divergent wave), then UP is the main direction of the unfocused wave;
  • the position of the aperture center P needs to be moved so that FDi, P, and FF1 are at on a straight line.
  • the central beam of the unfocused beam passes through the real focal point FF1, so that the two beams can form well at the real focal point sound field distribution.
  • Fig. 32 is a schematic diagram of emission imaging in the second mixed wave imaging mode according to some embodiments of the present specification.
  • the focused wave and the divergent wave are alternately emitted during emission.
  • the focus emission sequence can be set as: real focus TF1, virtual focus TD1, real focus TF2, virtual focus TD2... .
  • the focused beam TFi can form m receiving lines, and the number of scanning lines that can be formed by the diverging beam TDi can be determined by the number of real focal points in the area vertically below the aperture array element. If there are k real focal points under the aperture array element, the divergent beam TDi can synthesize k*m lines at a time.
  • the composite operation of the second mixed wave echo data may include: determining the weight coefficient of the second mixed wave echo data according to the coherence information of the second mixed wave echo data; and/or determining the weight coefficient of the second mixed wave echo data according to the second Weighting coefficients for mixed wave echo data, coherently and/or non-coherently combined.
  • the center of the main direction of the beam can pass through the real focus area when the moving aperture transmits divergent waves, and the first coherent recombination method and/or the second coherent recombination method can be used for coherent recombination Way.
  • the first coherent compounding method can use compounding between adjacent transmissions, such as taking the m lines synthesized by TF1, and then from the k*m lines synthesized by TD1 with declination angle information (ie deflection angle information) corresponding to the position m lines, since these two are adjacent transmissions, the coherence coefficient (ie, coherence information) can be calculated for the m lines with overlapping positions, such as phase coherence coefficient, symbol coherence coefficient, and short-order spatial coherence coefficient can be used etc., the respective weight coefficients can be determined through the coherence coefficient, and then new m lines can be obtained as components in the composite image through weighted coherent superposition and compounding.
  • echo data from adjacent transmissions may be composited.
  • the focused wave and the divergent wave are emitted alternately, and the coherent recombination between the scan lines (ie, echo data) of the focused wave and the divergent wave can be performed, such as recombining TF1 and TD1, and recombining TD1 and TF2. Therefore, n real focal points and n virtual focal points can be compounded 2*n-1 times, and finally a composite image with m*n lines can be synthesized through coherent compounding.
  • the second method of coherent compounding can use the compounding between the virtual focus emission.
  • the divergent wave can form multiple lines at a time with the virtual focus emission. There can be cross-overlapping areas between different emission, and the value of each pixel can be calculated in the overlapping area.
  • Coherence coefficient, each weight coefficient can be determined through the coherence coefficient, and then the coherent composite divergent wave image can be obtained by calculating the coherent weight coefficient and then compounding.
  • the random noise in the anechoic region can be suppressed by the coherent recombination of the divergent waves, and at the same time, different information of the medium under deflection scanning can be provided.
  • the image obtained by coherent compounding can obtain information under multiple off-angle scans, and the compound process can suppress a part of random noise and enhance the amount of information of the medium under off-angle scans.
  • the two coherent composite images can be incoherently composited through the corresponding weight configuration, which can further improve the imaging speed of the system, improve the imaging efficiency as a whole, and meet the user's requirements for image quality, frame rate-related imaging needs.
  • a corresponding mixed wave imaging operation may be performed according to the mixed wave imaging mode to obtain a corresponding imaging result, which may include one or more of the following steps.
  • Triggering the mixed wave imaging operation in the third mixed wave imaging mode according to the mixed wave imaging mode may include: respectively transmitting unfocused waves of the first transmission frequency, focused waves of the second transmission frequency, and/or harmonics of the third transmission frequency wave, to obtain corresponding first unfocused wave imaging data, second focused wave imaging data and/or third harmonic imaging data; and/or first unfocused wave imaging data, second focused wave imaging data and/or Image compositing operations of coherent compositing and/or incoherent compositing are performed on the third harmonic imaging data.
  • preset two or more (for example, three) different transmission frequencies for example, center frequency, respectively, f1 ,
  • the mixed wave imaging operation in the third mixed wave imaging mode may include one or more of the following steps.
  • the ultrasonic array element probe sequentially transmits and receives wide-beam signals of the first transmission frequency (for example, 7.5MHz) of N1 frames, images the received N1 frames of radio frequency data, and averages the obtained N1 frames of data to obtain an image I1.
  • the ultrasonic array element probe transmits a focused wave beam signal of a second transmission frequency (for example, 10 MHz), and images the received radio frequency data to obtain an image I2.
  • the ultrasonic array element probe sequentially transmits and receives focused wave beam signals with the same amplitude, a phase difference of 180 degrees, and a frequency of the third transmission frequency (for example, 5MHz), and sums the received two sets of radio frequency signals; and then sums the summed
  • the data is imaged to obtain image I3.
  • the images I1, I2, and I3 can be incoherently weighted and composited to obtain an image Image.
  • Image Image can be calculated using formula (15):
  • w1, w2 and w3 represent weight coefficients, and all of w1, w2 and w3 are positive numbers.
  • w1, w2, and w3 may be empirical constants whose values are determined based on experience, and their value ranges are not particularly limited.
  • Fig. 33a to Fig. 33c are exemplary diagrams of the sound pressure distribution of the ultrasonic beam in the hybrid wave imaging mode according to some embodiments of the present specification.
  • the sound pressure distribution map can be obtained by Field II simulation.
  • Figure 33a shows the sound pressure distribution of 7.5MHz wide beam.
  • Figure 33b shows the sound pressure distribution of the 10MHz focused beam.
  • the dotted area in the figure is the area with higher sound pressure, which means that the image depth under the focused beam with higher frequency is less attenuation and more information is retained in the shallow area.
  • Figure 33c shows the distribution of 5MHz harmonic sound pressure.
  • the dotted line area in the figure is the area with higher sound pressure. It can be seen that in the harmonic imaging mode, the image depth is less attenuated and more information is retained in the deeper area.
  • the larger frequency component can improve the image quality of the shallow area of the image
  • the compound harmonic frequency component can improve the image quality of the deep layer.
  • the spatial resolution of the area makes it possible to reduce speckle noise without loss of resolution and improve the image quality of the final imaging; at the same time, since the wide-beam imaging transmission can cover the entire imaging area, the entire imaging area can be acquired through one transmission and reception Compared with the traditional pure focus imaging, it can reduce the number of ultrasonic transmissions and greatly improve the imaging frame rate.
  • the personalized image quality and frame rate requirements of multiple imaging scenes can be targeted through various combination settings of frequency and ultrasonic beam type. For example, if you pay more attention to image quality, you can mix the same beam type (such as wide beam) at different frequencies, thereby greatly improving the user's imaging operation experience.
  • tissue motion information of the detection object may be obtained, and parameters of the focused wave and/or the non-focused wave are determined according to the tissue motion information.
  • a tracer, a tracer or a contrast agent can be used to track and detect the target tissue, so as to obtain its tissue motion information.
  • the sensor such as a position sensor, etc.
  • the tissue motion information of the detection object may be the motion speed of the tissue boundary.
  • the parameter of the focused wave and/or the unfocused wave may be a required number of transmission foci and/or a ratio parameter of the focused wave and/or the unfocused wave respectively.
  • the image quality and/or frame rate requirements can be used together with the tissue motion information of the part to be scanned as the basis for determining the mixed wave imaging mode, or according to the The tissue motion information of the (or scan) part determines the specific imaging requirement information of the corresponding image quality and/or frame rate, and then adjusts the mixed-wave imaging mode according to the imaging requirement information, such as adjusting the ratio of focused wave emission to unfocused wave emission etc.
  • the aforementioned user-specific scenes may include imaging scenes with significant tissue motion information, or functional tissue imaging scenes with higher frame rate requirements, such as cardiac angiography imaging scenes, blood vessel detection scanning imaging scenes, and the like.
  • the ultrasonic imaging system 100 or the processing device 3400 can adaptively adjust the transmission beam.
  • the position sensor at the array element probe detects that the position of the array element probe is relatively stable, it can first transmit Several full-aperture divergent waves are used to analyze the echo signal and extract the tissue movement velocity information of the scanned part.
  • the frame rate required for the scan site can be estimated based on the selected scan site and speed information. If a higher imaging frame rate is required, the number of focused wave line scans can be reduced in subsequent transmissions, and the number of unfocused wave scans can be increased, and the focused wave and non-focused waves can be automatically adjusted according to the tissue movement information of the scanned part. The scale of the wave, allowing automatic control and/or dynamic adjustment of the frame rate.
  • the ultrasound imaging system 100 or the processing device 3400 may acquire the adapted array element probe and/or the system preset parameters of the part to be scanned.
  • the position sensor and/or temperature sensor of the array element probe can feed back signals to the system.
  • the system can ensure that the time to form a frame does not exceed tmin by controlling the ratio of divergent waves to focused waves. Assume that the time required to form a focused wave image is tF, and the time required to form a divergent wave image is tD. And the system controls the number of divergent wave images used for compounding to be x, and the number of focused wave images to be y. By adjusting the values of x and y, it is ensured that x*tD+y*tF ⁇ tmin.
  • the system can repeat the above process through callbacks to automatically adjust the frame rate to maximize the adjustment of the system and optimize imaging performance.
  • blood flow detection and 2D scanning may require transmission pulses with different center frequencies, so the system can perform duplex transmission on the two transmissions during transmission, and perform corresponding processing on the received data. Since the two kinds of emission may not be performed at the same time, and blood flow detection requires multiple emission to detect a blood flow, the detected blood flow may not be consistent with the 2D background in real time.
  • the ultrasound imaging system 100 or the processing device 3400 may use mixed emission to detect blood flow through divergent waves.
  • Multiple divergent waves can be emitted to detect blood flow at least some points (for example, all points) in the effective area covered by the divergent waves, instead of only detecting blood flow changes on one line, which can effectively improve the frame rate of blood flow detection , narrow the time gap with the 2D mode, and finally achieve fusion, so as to achieve the frame rate matching between functional imaging and 2D scanning imaging, and improve the real-time consistency between functional imaging and 2D scanning imaging.
  • the mixed-wave imaging mode can be applied to corresponding scenes that require high frame rate or have significant characteristics of tissue motion information.
  • a single transmission of unfocused waves (such as divergent waves) can form a wide range of image data, and the combination of unfocused waves and focused waves can significantly reduce the number of transmissions of the system in the hybrid wave imaging mode; by using focusing By imaging the entire area with waves or emitting focused waves multiple times, it is also possible to obtain the phase change information of each point in the image in time, which can be used to evaluate the movement of cardiac tissue or blood flow in blood vessels, and can ensure the quality of imaging images .
  • Fig. 34 is an exemplary structural block diagram of a processing device 3400 according to some embodiments of this specification.
  • the processing device 3400 may include a mixed wave imaging mode determination module 3410 and/or a mixed wave imaging operation module 3420 .
  • the mixed-wave imaging mode determination module 3410 may be configured to determine a corresponding mixed-wave imaging mode according to information related to imaging requirements.
  • the mixed-wave imaging operation module 3420 can be used to perform corresponding mixed-wave imaging operations according to the mixed-wave imaging mode to obtain corresponding imaging results.
  • the processing device 3400 executing the ultrasonic imaging process or the mixed-wave imaging mode determination process of the mixed-wave imaging mode determination module 3410, and the mixed-wave imaging operation process of the mixed-wave imaging operation module 3420, reference can be made to the ultrasonic imaging method described in any of the above-mentioned embodiments. The related description of 2300 will not be repeated here.
  • An ultrasonic imaging system may include: at least one storage medium storing at least one set of instructions; and at least one processor configured to communicate with the at least one storage medium, wherein, when executing the When at least one set of instructions is described, at least one processor is instructed as a system: determine a corresponding mixed wave imaging mode according to information related to imaging requirements; perform a corresponding mixed wave imaging operation according to the mixed wave imaging mode, and obtain a corresponding imaging result; wherein, Imaging requirements include at least those related to image quality and/or frame rate.
  • Hybrid wave imaging operations utilize at least mixed wave imaging of different transmit beam types and/or different transmit frequencies.
  • the transmit beam types include at least focused wave and/or non-focused Wave.
  • some embodiments of this specification also provide an ultrasonic imaging device, including a processor, which is used to execute the corresponding process of the ultrasonic imaging method 2300 described in any one of the foregoing embodiments, for details, refer to FIG. 23 to FIG. 33 Relevant descriptions will not be repeated here.
  • some embodiments of this specification also provide a non-transitory computer-readable storage medium, including at least one set of instructions, wherein, when executed by at least one processor of a computer device, the at least one set of instructions instructs the at least one processor to:
  • the ultrasonic imaging method, system, device, and computer-readable storage medium provided by some embodiments of this specification have at least the following beneficial effects: (1) By comprehensively considering the user's imaging needs including image quality and/or frame rate, by The use of mixed wave emission and its multiple composite methods, effective resource allocation, and determination of the best mixed wave imaging mode, and then complete the imaging operation in this mixed wave imaging mode, to obtain optimized imaging results, can improve the overall imaging efficiency and meet the needs of users Anticipate the imaging needs and greatly improve the user experience; (2) Through the full-aperture hybrid emission operation in the hybrid wave imaging mode, it covers a larger scanning area, combining the fast speed of unfocused wave imaging, wide coverage, and Uniform sound field and less number of transmissions increase the frame rate, and at the same time improve the image quality through focused wave energy enhancement; (3) Through the moving aperture operation mode in the mixed wave imaging mode, it is possible to combine and utilize a variety of The respective advantages of the beams are to carry out emission scanning in important areas (such as the area of interest), and to obtain more abundant dimensional mixed-wave
  • the ultrasonic imaging method, system, equipment and computer-readable storage medium provided by the embodiments of this specification have at least the following beneficial effects:
  • Imaging scheme It supports adaptive enhancement of the imaging mode of the global region that can dynamically display and adjust the region of interest and other regions at the same time, making it easier for users to view and adjust imaging images during detection or diagnosis, and greatly improve (4) Due to the calculation involved in the ultrasonic imaging process such as the selection of the region of interest or the calculation of imaging condition data, it can be calculated and stored in a preset way, and an interactive mode can only be provided for the user when the user needs it Calculation after dynamic adjustment not only guarantees a small amount of calculation, but also meets the real-time interaction and dynamic adjustment requirements of the user during imaging, and further improves the user experience; (5) through the full-aperture hybrid emission operation in the hybrid wave imaging mode, Covering a wide range of scanning areas, while combining the fast imaging speed of non-focused waves, wide coverage area, uniform sound field and less number of shots to improve the frame rate, the image quality is improved by focusing wave energy enhancement; (6) by mixing The moving aperture operation mode in the wave imaging mode not only combines the advantages of various beams to carry out favorable
  • the numerical parameters used in the specification and claims are approximations that may vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Primary Health Care (AREA)
  • Acoustics & Sound (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像方法、系统、设备及计算机可读存储介质。方法包括:根据与成像需求有关的信息确定目标成像模式(310);根据目标成像模式,进行相应成像操作,获得相应目标成像结果(320);其中,成像需求至少包括与图像质量和/或帧率有关的需求,目标成像模式包括第一目标成像模式和/或第二目标成像模式,第一目标成像模式用于对局部成像区域进行优化成像,和/或,第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。

Description

超声成像方法和系统
交叉引用
本申请要求2021年09月24日递交的申请号为202111124331.2的中国申请,以及2021年10月26日递交的申请号为202111250486.0的中国申请的优先权,其所有内容通过引用的方式包含于此。
技术领域
本说明书涉及超声医学技术领域,特别涉及超声成像方法、系统、设备及计算机可读存储介质。
背景技术
超声医学(Ultrasound Medicine)可以结合声学、医学、光学及电子学等学科,其应用可以包括超声诊断、超声治疗等。例如,超声诊断(Ultrasonic Diagnosis)可以将超声检测技术应用于人体,通过测量了解生理或组织结构的数据和形态,为发现疾病做出提示或指引。超声诊断可以作为一种无创、无痛、方便、直观的有效检查手段,尤其是B超,应用广泛。
而在超声诊断等超声医学应用中,超声成像是较为核心且关键的环节。超声成像可以将超声波从超声探头发射到待检查的对象,并根据超声波的回波信号产生超声图像。超声成像的成像效果,直接关系到超声诊断等超声医学应用的执行效率,因此也是医学上一直致力改进的重点领域。
发明内容
本说明书实施例之一提供一种超声成像方法,在至少一个机器上执行,所述至少一个机器中的每一个机器具有至少一个处理器和一个存储器,所述方法包括:根据与成像需求有关的信息确定目标成像模式;根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
本说明书实施例之一提供一种超声成像方法,在至少一个机器上执行,所述至少一个机器中的每一个机器具有至少一个处理器和一个存储器,所述方法包括:在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;根据所述感兴趣区域确定成像条件数据;判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
本说明书实施例之一提供一种超声成像方法,在至少一个机器上执行,所述至少一个机器中的每一个机器具有至少一个处理器和一个存储器,所述方法包括:根据与成像需求有关的信息确定相应混合波成像模式;根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
本说明书实施例之一提供一种超声成像系统,包括:至少一个存储介质,其存储有至少一组指令;以及至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:根据与成像需求有关的信息确定目标成像模式;根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
本说明书实施例之一提供一种超声成像系统,包括:成像模式确定模块,用于根据与成像需求有关的信息确定目标成像模式;成像操作模块,用于根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
本说明书实施例之一提供一种非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:根据与成像需求有关的信息确定目标成像模式;根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;其 中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
本说明书实施例之一提供一种超声成像系统,包括:至少一个存储介质,其存储有至少一组指令;以及至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;根据所述感兴趣区域确定成像条件数据;判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
本说明书实施例之一提供一种超声成像系统,包括:感兴趣区域确定模块,用于在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;成像条件数据确定模块,用于根据所述感兴趣区域确定成像条件数据;优化成像图像生成模块,用于判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
本说明书实施例之一提供一种非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;根据所述感兴趣区域确定成像条件数据;判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
本说明书实施例之一提供一种超声成像系统,包括:至少一个存储介质,其存储有至少一组指令;以及至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:根据与成像需求有关的信息确定相应混合波成像模式;根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
本说明书实施例之一提供一种超声成像系统,包括:混合波成像模式确定模块,用于根据与成像需求有关的信息确定相应混合波成像模式;混合波成像操作模块,用于根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
本说明书实施例之一提供一种非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:根据与成像需求有关的信息确定相应混合波成像模式;根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的超声成像系统的应用场景示意图;
图2是根据本说明书一些实施例所示的超声成像设备的应用场景示意图;
图3是根据本说明书一些实施例所示的超声成像方法的示例性流程图;
图4是根据本说明书一些实施例所示的目标成像模式确定过程的示例性流程图;
图5是根据本说明书一些实施例所示的目标成像模式选定过程的示例性流程图;
图6是根据本说明书一些实施例所示的目标成像结果获得过程的示例性流程图;
图7是根据本说明书一些实施例所示的处理设备的示例性结构框图;
图8是根据本说明书一些实施例所示的超声成像方法的示例性流程图;
图9是根据本说明书一些实施例所示的超声成像方法的示例性流程图;
图10a至图10c是根据本说明书一些实施例所示的通过触屏和/或非触屏操作指令确定ROI的示例图;
图11是根据本说明书一些实施例所示的根据感兴趣区域确定成像条件数据的示例性流程图;
图12a至图12b是根据本说明书一些实施例所示的全局成像区域的发射所需焦点示例;
图13a至图13b是根据本说明书一些实施例所示的有效成像区域的发射所需焦点示例;
图14是根据本说明书一些实施例所示的判断成像条件数据符合何种优化成像模式并触发相应优化成像模式下成像操作的示例性流程图;
图15a至图15b是根据本说明书一些实施例所示的发射参数调整示例图;
图16a至图16c是根据本说明书一些实施例所示的发射参数调整示例图;
图17a至图17d是根据本说明书一些实施例所示的发射参数调整示例图;
图18是根据本说明书一些实施例所示的覆盖感兴趣区域的增强成像操作示例图;
图19是根据本说明书一些实施例所示的增强图像与全局图像的图像复合操作示例图;
图20a至图20c是根据本说明书一些实施例所示的增强图像与全局图像的图像复合操作所处操作节点示例图;
图21是根据本说明书一些实施例所示的优化成像设置界面示例图;
图22是根据本说明书一些实施例所示的处理设备的示例性结构框图;
图23是根据本说明书一些实施例所示的超声成像方法的示例性流程图;
图24是根据本说明书一些实施例所示的根据混合波成像模式进行相应混合波成像操作的示例性流程图;
图25是根据本说明书一些实施例所示的根据阵元指向性限制条件确定极限偏转角度和极限延迟时间的示例图;
图26是根据本说明书一些实施例所示的根据阵元指向性限制条件确定极限偏转角度和极限延迟时间的示例图;
图27a至图27d是根据本说明书一些实施例所示的发散波波束进行偏角扫描的效果示例图;
图28是根据本说明书一些实施例所示的根据阵元指向性限制条件确定极限偏转角度和极限延迟时间的示例图;
图29是根据本说明书一些实施例所示的混合波成像模式下焦点分布方式示例;
图30是根据本说明书一些实施例所示的第一混合波成像模式的发射成像示意图;
图31是根据本说明书一些实施例所示的混合波成像模式下焦点分布方式示例;
图32是根据本说明书一些实施例所示的第二混合波成像模式的发射成像示意图;
图33a至图33c是根据本说明书一些实施例所示的混合波成像模式中超声波波束的声压分布示例图;
图34是根据本说明书一些实施例所示的处理设备的示例性结构框图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
超声成像效果可以和多个因素相关,包括但不限于成像区域的图像质量、帧率等。在超声成像 中,图像质量和帧率可以互相影响。例如,衡量图像质量的图像信噪比,可以与发射波形的脉冲重复频率(Pulse Repetition Frequency,PRF)成反比。又如,通过增加发射焦点个数或成像线密度可以改善图像空间分辨率和/或图像均匀性等图像质量指标,但同时图像帧率会降低。用户(如医生或其他专业超声人员)在不同场景或针对不同对象的超声成像时,或者不同厂家在超声设备改进测试时,对于图像质量或帧率方面的具体调整方式可能会有差异,因此,有必要综合考虑图像质量或帧率等因素进行超声成像。
根据本说明书的一些实施例,可以将具体成像操作与用户的成像需求关联,使得在多个场景下,可以根据用户的成像需求进行相应成像操作。例如,可以根据与成像需求有关的信息确定相应目标成像模式,根据确定的目标成像模式进行相应成像操作,获得与成像需求匹配的成像结果,从而提高综合成像效率,提高用户体验。
图1所示为根据本说明书一些实施例所示的超声成像系统100的应用场景示意图。
如图1所示,在应用场景中可以包括超声设备110、处理设备120、存储设备130、终端140和/或网络150。
超声设备110可以用于对对象执行扫查,以进行诊断成像。超声设备110可以用于查看对象的身体内部组织的图像信息,以辅助医生进行疾病诊断。超声设备110可以通过探头将较高频率的声波(例如超声波)发送至对象以产生超声图像。在一些实施例中,对象可以包括生物对象和/或非生物对象。例如,对象可以包括人身体的特定部分,例如颈部、胸部、腹部等,或其组合。又例如,对象可以是超声设备110待扫描的病人。在一些实施例中,超声图像可包括亮度模式(B模式)图像、彩色模式(C模式)图像、运动模式(M模式)图像、多普勒模式(D模式)图像和弹性成像模式(E模式)图像中的至少一个。在一些实施例中,超声图像可以包括二维(2D)图像或三维(3D)图像。
超声设备110可以用于数据获取、处理和/或输出、定位等功能。超声设备110可以包含一个或多个子功能设备(例如单个传感设备或多个传感设备组成的传感系统设备)。在一些实施例中,超声设备110可以包括但不限于超声发射单元(例如,包括超声换能器等)、超声成像单元、射频感应单元、NFC通信单元、图像采集单元、图像显示单元、音频输出单元等或其任意组合。示例性地,超声成像单元可以用于接收信号的处理,包括滤波、解调、波束合成等超声成像过程可能涉及的数据处理。示例性地,图像显示单元可以用于优化成像图像的显示。示例性地,超声设备110可以由其信息输入模块(图1中未示出)采集成像对象信息和/或接收成像操作指令信息,例如,预设需求参数选定指令,或者输入与成像需求有关的信息的用户指令,等等。示例性地,超声设备110也可以通过网络150接收来自终端140或处理设备120发送的成像对象信息和/或成像操作指令信息,例如,预设需求参数选定指令,或者输入与成像需求有关信息的用户指令等,或可以将中间成像结果数据或目标成像图像发送至处理设备120、存储设备130或终端140。
处理设备120可以包括单个服务器,或服务器组。服务器组可以是集中式的,也可以是分布式的(例如,处理设备120可以是分布式系统)。在一些实施例中,处理设备120可以是本地的,也可以是远程的。例如,处理设备120可以经由网络150访问存储在超声设备110、终端140和/或存储设备130中的信息和/或数据。又例如,处理设备120可以直接连接到超声设备110、终端140和/或存储设备130以访问存储的信息和/或数据。在一些实施例中,处理设备120可以在云平台上实施。仅作为示例,该云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。在一些实施例中,处理设备120可以在包括一个或以上组件的计算设备上实现。
在一些实施例中,处理设备120可以处理与成像需求有关的信息和/或数据以执行本说明书描述的一个或以上功能。例如,处理设备120可以基于与成像需求有关的信息确定目标成像模式。在一些实施例中,处理设备120可以包括处理设备700、处理设备2200和/或处理设备3400。处理设备700、处理设备2200和/或处理设备3400可以配置成一个或多个处理设备。例如,处理设备700、处理设备2200和处理设备3400中两个或多个的功能可以在同一个处理设备上实现。又如,处理设备700、处理设备2200和/或处理设备3400中的一个功能可以在多个处理设备上实现。
在一些实施例中,处理设备120可包括一个或以上处理引擎(例如,单核处理引擎或多核处理引擎)。处理设备120可以包括中央处理单元(CPU)、专用集成电路(ASIC)、专用指令集处理器(ASIP)、图形处理单元(GPU)、物理处理单元(PPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、控制器、微控制器单元、精简指令集计算机(RISC)、微处理器等或其任意组合。在一些实施例中,处理设备120可以集成在超声设备110和/或终端140中。
在一些实施例中,超声设备110、终端140和/或其他可能的系统组成部分中可以包括处理设备120,例如可以将处理设备120或能实现处理设备120功能的模块集成在超声设备110、终端140和/或其他可能的系统组成部分中。
在一些实施例中,超声成像系统100的一个或者多个组件可以通过网络150传送数据至超声成像系统100的其他组件。例如,处理设备120可以通过网络150获取终端140、超声设备110和/或存储设备130中的信息和/或数据,或者可以通过网络150将信息和/或数据发送到终端140、超声设备110和/或存储设备130。
存储设备130可以用于存储数据和/或指令,数据指对信息的数字化表示,可以包括各种类型,比如二进制数据、文本数据、图像数据、视频数据等。指令指可控制设备或器件执行特定功能的程序。例如,存储设备130可以存储预设需求参数、与成像需求有关的信息数据、目标成像模式数据、目标成像模式控制程序数据、目标成像结果数据、成像条件数据(如第一条件等)、发射参数数据(如第一发射参数等)、混合波回波数据(如第一混合波回波数据等)、用户输入指令(如触屏操作指令等)和/或预设机器学习算法等等超声成像过程中可能涉及的各类数据和/或程序。
存储设备130可以包括一个或多个存储组件,每个存储组件可以是一个独立的设备,也可以是其他设备的一部分。在一些实施例中,存储设备130可包括随机存取存储器(RAM)、只读存储器(ROM)、大容量存储器、可移动存储器、易失性读写存储器等或其任意组合。示例性的,大容量储存器可以包括磁盘、光盘、固态磁盘等。在一些实施例中,所述存储设备130可在云平台上实现。仅作为示例,所述云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
终端140指用户所使用的一个或多个终端设备或软件。终端140可以包括处理单元、显示单元、输入/输出单元、感知单元、存储单元等。感知单元可以包括但不限于光传感器、距离传感器、加速度传感器、陀螺仪传感器、声音探测器等或其任意组合。
在一些实施例中,终端140可以是移动设备140-1、平板计算机140-2、膝上型计算机140-3、台式计算机140-4等其他具有输入和/或输出功能的设备中的一种或其任意组合。在一些实施例中,使用终端140的可以是一个或多个用户,可以包括直接使用服务的用户,如超声诊断医生或超声检测人员等,也可以包括其他相关用户,如医院医疗系统端用户等。
上述示例仅用于说明所述终端140设备范围的广泛性而非对其范围的限制。
网络150可以连接系统的各组成部分和/或连接系统与外部资源部分。网络150使得各组成部分之间,以及与系统之外其他部分之间可以进行通讯,促进数据和/或信息的交换。在一些实施例中,网络150可以是有线网络或无线网络中的任意一种或多种。例如,网络150可以包括电缆网络、光纤网络、电信网络、互联网、局域网络(LAN)、广域网络(WAN)、无线局域网络(WLAN)、城域网(MAN)、公共交换电话网络(PSTN)、蓝牙网络、紫蜂网络(ZigBee)、近场通信(NFC)、设备内总线、设备内线路、线缆连接等或其任意组合。各部分之间的网络连接可以是采用上述一种方式,也可以是采取多种方式。在一些实施例中,网络可以是点对点的、共享的、中心式的等各种拓扑结构或者多种拓扑结构的组合。在一些实施例中,网络150可以包括一个或以上网络接入点。例如,网络150可以包括有线或无线网络接入点,例如基站和/或网络交换点,通过这些进出超声成像系统100的一个或多个组件可连接到网络150上以交换数据和/或信息。
图2所示为根据本说明书一些实施例所示的超声设备110的应用场景示意图。
超声设备110可以包括发射波束形成器111、发射控制器112、接收控制器113、存储器114、处理器115、显示器116、输入设备117和/或探头118。
输入设备117可以包括但不限于键盘、鼠标、手写板和触摸屏等装置,还可通过语音及手势等作为输入指令对系统进行控制。
在一些实施例中,当与成像需求相关的用户指令通过输入设备117传输到处理器115时,处理器115可以将指令解析并确定相应的目标成像模式,并将目标成像模式相应参数需求,下发给发射波束形成器111,发射波束形成器111可以根据参数需求计算延迟时间、偏转角度、和/或阵元相应参数等发射参数,发射控制器112可以根据发射参数形成目标成像模式的相应扫查序列(或扫描序列),产生驱动电压信号激励探头118中换能器阵元振动形成相应超声波。
声波在介质中传播时遇到不均匀界面时可以产生反射信号,探头118的换能器阵元可以接收介质反射的振动波,接收控制器113可以将机械波转换为电信号和/或存储在存储器114中,处理器115可以按照相应成像模式对应的操作方式和/或用户实时输入或选定的处理选项或调整选项,将电信号转换为图像,和/或将图像输出到显示器116上。
其中,发射波束形成器111不限于硬件电路,如FPGA(可编程门阵列)及DSP(数字信号处理),同时还可以是数字波束形成器;用于发射超声波的换能器阵元阵列可以是一维阵列,也可以是根据相应目标成像模式(如第二目标成像模式中的第一混合波成像模式或第二混合波成像模式等)设置的多维阵列。在某些目标成像模式中,不同种波束类型和/或不同发射参数(如发射频率等)的不同波束可以不同时发射,可以每次发射一种波并完成接收回波后再进行下一次发射,这样不会造成回波信号的干 扰。使用多维阵列(例如二维阵列)可以有利于利用多列阵元不同的宽度等阵元相关参数,使不同列阵元分别适用于相应波束,从而满足多成像需求场景,并提升整体成像效率。
应当理解,图1所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包括在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本说明书的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
并且,需要注意的是,对于图1的超声成像系统100、图2的超声设备110的描述,仅为描述方便,并不能把本说明书限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接。
在一些实施例中,图7中披露的成像模式确定模块710、成像操作模块720,和/或,图22中披露的感兴趣区域确定模块2210、成像条件数据确定模块2220、优化成像图像生成模块2230,和/或,图34披露的混合波成像模式确定模块3410、混合波成像操作模块3420可以在超声设备110、处理设备120中实现。在一些实施例中,感兴趣区域确定模块2210和成像条件数据确定模块2220可以是成像模式确定模块710的子模块。在一些实施例中,优化成像图像生成模块2230可以是成像操作模块720的子模块。在一些实施例中,混合波成像模式确定模块3410可以是成像模式确定模块710的子模块,混合波成像操作模块3420可以是成像操作模块720的子模块。
在一些实施例中,图7中披露的成像模式确定模块710、成像操作模块720,和/或,图22中披露的感兴趣区域确定模块2210、成像条件数据确定模块2220、优化成像图像生成模块2230,和/或,图34披露的混合波成像模式确定模块3410、混合波成像操作模块3420,可以是一个系统中的不同模块,也可以是一个模块实现上述的两个或两个以上模块的功能。例如,各个模块可以共用一个存储模块,各个模块也可以分别具有各自的存储模块。诸如此类的变形,均在本说明书的保护范围之内。
图3所示为根据本说明书一些实施例所示的超声成像方法300的示例性流程图。在一些实施例中,超声成像方法300可以由处理设备700、超声设备110和/或处理设备120来执行。在一些实施例中,过程300可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程300。在一些实施例中,过程300可以由图7中的一个或多个模块执行。
如图3所示,超声成像方法300可以包括以下步骤中的一个或多个。
310步骤,可以根据与成像需求有关的信息确定目标成像模式。在一些实施例中,310步骤可以由成像模式确定模块710来执行。
320步骤,根据目标成像模式,进行相应成像操作,获得相应目标成像结果。在一些实施例中,320步骤可以由成像操作模块720来执行。
在一些实施例中,成像需求可以至少包括与图像质量和/或帧率有关的需求。在一些实施例中,目标成像模式可以包括第一目标成像模式和/或第二目标成像模式。在一些实施例中,第一目标成像模式可以用于对局部成像区域进行优化成像。在一些实施例中,第二目标成像模式可以利用不同发射波束类型和/或不同发射频率的混合波进行成像。
成像需求可以指不同用户(如超声检测人员、超声诊断医生等)在某一成像场景下的相应成像要求。与成像需求有关的信息可以指任何能反映或指示成像需求的信息,例如,图像参数信息。在一些实施例中,成像需求可以包括与图像质量和/或帧率有关的需求。在一些实施例中,与成像需求有关的信息可以包括空间分辨率、对比分辨率、时间分辨率、图像信噪比、帧频、帧数、成像速度、成像时间或其他任何可行的能够反映图像质量和/或帧率有关需求的指标(或称成像需求参数)。在一些实施例中,前述成像场景可以包括在图像质量和/或帧率方面具有不同成像需求的场景,例如对肿瘤等病变组织区域图像质量要求较高的成像诊断场景,再例如,对帧率要求较高的心脏造影成像场景、血管检测扫描成像场景,等等。
在一些实施例中,成像需求可以通过相应成像需求等级或具体数值来表征,例如,根据图像质量依次由高到低可以设置为“图像质量一级”、“图像质量二级”、“图像质量三级”等等,又如,根据帧率高低可以设置为“帧率一级”、“帧率二级”,再如,图像质量或帧率可以用具体的图像信噪比数值或 成像时间数值来表征,等等。
在一些实施例中,310步骤可以实施为以下过程:根据预设需求参数和/或用户输入指令,获取成像需求有关的信息;根据成像需求有关的信息,从第一目标成像模式和/或第二目标成像模式中确定目标成像模式。
在一些实施例中,预设需求参数可以包括图像质量参数和/或帧率参数。在一些实施例中,图像质量参数可以包括空间分辨率、对比分辨率、时间分辨率、图像信噪比,和/或其他任何可行的能够体现图像质量的相应指标参数。在一些实施例中,帧率参数可以包括帧频、帧数、成像速度、成像时间,和/或其他任何可行的能够体现帧频的指标参数。
在一些实施例中,预设需求参数可以预存在超声设备110、处理设备120、存储设备130和/或终端140中。在一些实施例中,预设需求参数可以从超声设备110、处理设备120、存储设备130和/或终端140实时获取。在一些实施例中,预设需求参数可以以多个需求参数选项的样式供用户选取,例如,在超声设备110的显示器116触控界面上,图像质量参数菜单具有空间分辨率、对比分辨率、时间分辨率、图像信噪比等多个选项,帧率参数菜单具有帧频、帧数、成像速度、成像时间等多个选项。
在一些实施例中,可以根据用户输入指令获取与成像需求有关的信息。在一些实施例中,输入指令可以是按键输入指令、鼠标输入指令、文字输入指令、语音指令、触屏指令、手势指令、脑电输入指令、眼动输入指令或其他任何可行的输入指令数据。在一些实施例中,用户输入指令可以包含图像质量和/或帧率有关需求的多种信息内容,例如,用户可以通过触屏指令选定图像质量需求等级为“一级”或“三级”的成像需求信息,再例如,用户可以通过语音指令输入“帧率一级,图像质量二级”的成像需求信息,再例如,用户可以通过文字输入指令输入图像信噪比数值和/或帧率的具体需求数值。在一些实施例中,用户可以输入成像部位和/或成像目的等信息,超声成像系统100可以通过成像部位和/或成像目的等信息,自动匹配出相应的与成像需求有关的信息。例如,用户可以选择成像部位为心脏,超声成像系统100可以自动匹配出“帧率一级”的成像需求信息。
在一些实施例中,可以根据用户输入指令自动识别指令包含的成像需求有关的信息。在一些实施例中,可以根据识别到用户输入指令相应信息,选定前述预设需求参数。在一些实施例中,可以根据超声成像系统100记录的用户输入指令更新预设需求参数。
在一些实施例中,与成像需求有关的信息可以通过在超声成像系统100中,进行相应成像需求参数设置或调整来获取。成像需求参数是作为与成像需求有关的信息的表征数据参数,即成像需求参数包含所有与成像需求有关的信息。在一些实施例中,可以在超声成像系统100的成像需求参数设置界面,进行成像需求参数的设置和调整。在一些实施例中,前述成像需求参数可以包括图像质量指标数据和/或帧率指标数据。在一些实施例中,与成像需求有关的信息可以通过人工输入需求信息的方式获取,例如通过实时接收用户的成像需求调整指令等。
在一些实施例中,可以根据特定成像区域特点,获取与成像需求有关的信息,例如,当针对作为局部成像区域的感兴趣区域(ROI,Region of Interesting)成像时,可以根据感兴趣区域确定成像条件数据,根据成像条件数据确定与成像需求有关的信息。在一些实施例中,感兴趣区域和非感兴趣区域的成像条件数据可以相同或不同,相应地,与感兴趣区域和非感兴趣区域的成像需求有关的信息也可以相同或不同。示例性地,可以根据ROI类型确定成像需求信息,当确定ROI类型为肿瘤等病变组织时,获取图像质量需求等级为“一级”的需求信息,当确定ROI类型为心脏检测区域或血流速度较快等血管组织区域时,获取“帧率一级”的需求信息,等等。示例性地,可以根据ROI大小确定成像需求信息,当覆盖ROI区域的有效成像区域面积较小时,可以获取“ROI图像质量一级,ROI帧率一级”和/或“非ROI图像质量二级,非ROI帧率一级”的需求信息,等等。
在一些实施例,可以根据检测对象的组织运动信息(例如,组织运动特征),获取与成像需求有关的信息。在一些实施例中,可以获取检测对象(如患者的某一器官等)的组织运动信息,根据组织运动信息,确定成像条件数据(如混合波束的发射参数),根据成像条件数据确定与成像需求有关的信息。在一些实施例中,为了更好地满足用户特定场景的成像需求,可以将图像质量和/或帧率要求与待扫描部位的组织运动信息一起,作为确定混合波成像模式的依据信息,或者根据待扫描(或扫查)部位的组织运动信息确定相应图像质量和/或帧率的具体成像需求信息(例如,在某一特定检测对象的心脏造影成像场景中,可以将作为帧率参数的成像时间设定在一特定阈值范围内,以满足在该特定场景下的最佳帧率)。在一些实施例中,前述用户特定场景可以是组织运动信息较有显著特点的成像场景,或对帧率要求较高的功能组织成像场景,例如心脏造影成像场景、血管检测扫描成像场景等等。关于成像条件数据的更多描述请见本说明书中其他地方(例如,图8至图21及相应描述)。
在一些实施例中,可以创建多种成像场景的相应组织运动信息与成像需求信息(即与成像需求有关的信息)之间的映射关系表。在一些实施例中,可以根据前述映射关系表设置成像需求信息识别程 序,由此可以根据成像需求信息识别程序,和/或某一场景或多个场景的组织运动信息,获取相应成像需求信息。
在一些实施例中,成像需求信息识别程序可以包括预设机器学习识别模型,通过将组织运动信息输入预设机器学习识别模型,可以计算得到成像需求信息。在一些实施例中,预设机器学习识别模型可以是通过模型预训练得到的机器学习分类模型。在一些实施例中,该机器学习分类模型的训练流程可以包括以下步骤:
获取组织运动信息的训练样本数据及其成像需求信息标签数据;将组织运动信息的训练样本数据及其成像需求信息标签数据输入待训练模型,输出计算结果数据;根据计算结果数据和成像需求信息标签数据更新模型参数,并不断训练直至得到期望模型,即机器学习分类模型。
在一些实施例中,组织运动信息的训练样本数据、成像需求信息标签数据可以从超声成像历史记录数据中获取,例如,可以根据超声设备110对多种检测对象的多种成像场景累积的超声成像历史记录数据中获取。根据能够反映用户实际成像需求的训练样本数据及其标签数据进行训练得到的机器学习分类模型,在进行成像需求信息获取时,精确度和适应性会更高,更能满足成像用户的实际成像需求,同时提高了用户成像体验。
在一些实施例中,根据前述成像需求有关的信息,从第一目标成像模式和/或第二目标成像模式中进行选择,以便确定目标成像模式。在一些实施例中,可以根据获取的成像需求有关的信息进行满足模式条件的判断,当满足关注局部成像区域优化成像的模式条件时,选定第一目标成像模式;当不满足关注局部成像区域优化成像的模式条件,选定第二目标成像模式。
目标成像模式是指可以满足成像需求的成像模式。在一些实施例中,目标成像模式可以包括第一目标成像模式和/或第二目标成像模式。
第一目标成像模式可以覆盖全局成像区域,和/或根据全局成像区域中的局部成像区域特点进行相应优化成像操作。全局成像区域是指超声成像图像中具有较大范围的超声成像区域,以便超声检测或诊断可以查看较大范围的图像信息,包括一个或多个ROI和/或外围区域。例如,针对某一病变组织或器官进行超声成像时,获得的成像图像不仅可以包含用于超声检测或诊断的ROI,还可以包含这些ROI之外的相关外围区域。在一些实施例中,全局成像区域可以是或包括超声探头所能检测到的最大范围的成像区域。在一些实施例中,全局成像区域可以是或包括用户设置的成像区域。在一些实施例中,全局成像区域可以包括局部成像区域。局部成像区域是指全局成像区域中的一个或多个感兴趣区域。在一些实施例中,可以对全局成像区域内的局部成像区域进行增强成像,以便进行声波能量补偿。在一些实施例中,局部成像区域可以包括一个或多个ROI,即感兴趣区域。
在一些实施例中,第一目标成像模式可以包括第一优化成像模式、第二优化成像模式中的至少一个。在一些实施例中,第一优化成像模式可以用于进行覆盖全局成像区域的发射参数调整操作,第二优化成像模式可以用于进行覆盖局部成像区域的增强成像与覆盖全局成像区域的非增强成像的同步操作。
发射参数是指在超声成像时可以影响发射过程或成像效果的相应参数。在一些实施例中,发射参数可以至少包括发射模式、发射孔径参数、发射焦点参数、发射偏角、发射频率、发射波形、增益(即增益调节)中的至少一种。在一些实施例中,发射模式可以包括聚焦发射、发散波发射、宽波束发射、平面波发射、单阵元发射中的至少一种或两种及以上发射模式的混合发射,或者其他任何可行的发射模式。在一些实施例中,发射孔径参数可以是发射孔径位置或发射阵元组合方式、发射孔距、接收孔距或其他任何可行的发射孔径参数。在一些实施例中,发射焦点参数可以包括发射焦点个数、发射焦点位置、发射焦点深度或其他任何可行的发射焦点参数。在一些实施例中,发射波形可以是正弦波形、冲击波形、多种频率叠加的任意形状的波形或其他任何可行的发射波形。
示例性地,在某一对帧频要求较高的场景下(例如心脏检查),也许不能大幅度牺牲帧频,意味着要进行有效成像区域成像时,可增加的发射次数有限,这种情况下可以选择将焦点设于有效成像区域之外进行成像。若有效成像区域范围较宽,可以通过扩大发射孔径和/或增加发射偏角来扩大有效发射区域;若有效成像区域在近场区域(例如,离探头比较近的区域),可以提高有效成像区域发射的发射频率,使得高频声波对近场产生满足预期的成像效果。
有关过程300及步骤310、320的更多描述可参见图8至图21、图23至33及相关描述,在此不再赘述。
图4所示为根据本说明书一些实施例所示的目标成像模式确定过程400的示例性流程图。在一些实施例中,过程400可以由处理设备700、超声设备110和/或处理设备120来执行。在一些实施例中,过程400可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程400。在一些实施例中,过程400可以由图7、图 22和/或图34中的一个或多个模块执行。在一些实施例中,图3中的步骤310可以根据过程400执行。
在一些实施例中,过程400可以包括以下步骤中的一个或多个。
步骤311,根据局部成像区域确定成像条件数据;
步骤312,根据成像条件数据,从第一优化成像模式、第二优化成像模式中选定目标成像模式。
成像条件数据是指用于确定当前局部成像区域(如选定ROI)适用于何种优化成像模式的数据。在一些实施例中,成像条件数据可以包括能够反映当前局部成像区域特征(如ROI区域大小等)的相应参数数据。在一些实施例中,成像条件数据可以包括局部成像区域面积值。在一些实施例中,成像条件数据可以包括局部成像区域面积与全局成像区域面积的比值。在一些实施例中,成像条件数据可以包括局部成像区域的有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的关系数据。有效成像区域是指包含局部成像区域的实际成像区域,以便保障局部成像区域内的成像效果。在一些实施例中,有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的关系数据,可以包括有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的差值、比值或其他任何可能的两者关系数据。
在一些实施例中,成像条件数据可以包括局部成像区域的发射条件参数。在一些实施例中,成像条件数据可以包括局部成像区域的发射条件参数或有效成像区域的发射条件参数。发射条件参数是指示满足何种优化成像模式的相应条件参数。在一些实施例中,发射条件参数可以是当前选定局部成像区域发射所需的焦点个数、发射次数或发射间隔(即上次发射接收至下次发射开始的时间间隔)等等。在一些实施例中,可以根据历史记录数据确定不同局部成像区域在一个或多个发射模式下所需焦点个数、发射次数、发射时间等等。例如,根据预设成像条件计算程序,计算得到当前局部成像区域发射所需焦点个数与全局成像区域发射所需焦点个数的比值,这里发射可以是聚焦发射、发散波发射、宽波束发射或其他任何可能波形的发射模式,也可以是前述几种发射模式的混合发射模式。
在一些实施例中,成像条件数据可以由预设成像条件计算程序根据历史选定的局部成像区域的特征数据,预先计算并存储在成像条件数据确定模块420、存储设备130或超声设备110中。在一些实施例中,成像条件数据可以根据当前选定的局部成像区域,触发预设成像条件计算程序进行实时计算。
在一些实施例中,可以根据ROI确定成像条件数据,其更多描述可参见图11及相关描述,在此不再赘述。
图5所示为根据本说明书一些实施例所示的目标成像模式选定过程500的示例性流程图。在一些实施例中,过程500可以由处理设备700、超声设备110和/或处理设备120来执行。在一些实施例中,过程500可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程500。在一些实施例中,过程500可以由图7、图22和/或图34中的一个或多个模块执行。在一些实施例中,图4中的步骤312可以根据过程500执行。
在一些实施例中,过程500可以包括以下步骤中的一个或多个。
步骤3121,响应于成像条件数据满足第一条件,确定目标成像模式为第一优化成像模式。
步骤3122,响应于成像条件数据不满足第一条件,确定目标成像模式为第二优化成像模式。
第一条件是指成像条件数据满足特定阈值范围的判断条件。在一些实施例中,第一条件可以是局部成像区域面积与全局成像区域面积的比值大于设定的阈值。在一些实施例中,第一条件可以是局部成像区域的有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的关系数据小于设定的阈值。在一些实施例中,第一条件可以是ROI的有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的关系数据小于设定的阈值,例如,可以是ROI的有效成像区域的所需发射次数与全局成像区域的所需发射次数之间的比值小于阈值。
在一些实施例中,响应于关系数据小于阈值,可以触发第一优化成像模式下的成像操作,包括但不限于:在满足帧频要求条件下调整发射参数,使得感兴趣区域的声波能量得到增强。
在一些实施例中,响应于关系数据不小于阈值,可以触发第二优化成像模式下的成像操作,包括但不限于:覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作,以分别得到关于感兴趣区域的增强图像以及关于全局成像区域的全局图像;对增强图像与全局图像进行图像复合操作。在一些实施例中,当关系数据等于阈值时,可以根据需要触发第一优化成像模式下的成像操作或者触发第二优化成像模式下的成像操作。
有关步骤3121、步骤3122的更多描述可参见图14及相关描述,在此不再赘述。
第二目标成像模式是指利用不同发射波束类型和/或不同发射频率的混合波实现优化成像的混合波成像模式。混合波成像模式是指可对扫描对象进行不同种发射波束类型和/或不同发射频率的混合波混合成像的成像模式。在一些实施例中,发射波束类型可以包括聚焦波和/或非聚焦波,和/或其他任何可行的波束类型。在一些实施例中,非聚焦波可以包括平面波、发散波、宽波束或其他任何可行的非 聚焦波束类型。在一些实施例中,混合波成像模式可以包括同一发射频率、不同发射波束类型的成像模式,例如发散波、聚焦波均以同一发射频率(例如7.5MHz)的混合波成像模式。在一些实施例中,混合波成像模式可以是不同发射频率、同一发射波束类型的成像模式,例如发射频率分别为7.5MHz和5MHz的两聚焦波或两非聚焦波的混合波成像模式。在一些实施例中,混合波成像模式可以是不同发射频率、不同发射波束类型的成像模式,例如,发射频率为7.5MHz的发散波、发射频率为10MHz的聚焦波以及发射频率为5MHz的平面波的混合波成像模式。需要注意的是,对于混合波成像模式中,不同种发射波束类型和/或不同发射频率相应发射波束的触发发射次数不作特别限定,例如在一特定混合波发射模式下,同一发射频率的平面波可以在多个不同的时间节点或周期进行多次触发成像,也可仅在一个时间节点或周期进行一次触发成像,再例如,不同发射频率的发散波可以在不同的时间节点或周期触发两次或多次,再例如,不同发射频率的发散波、聚焦波、平面波可以分别进行一次触发成像。另外,需要说明的是,对于混合波成像模式中,不同种发射波束类型和/或不同发射频率相应波束触发成像的先后次序也不作特别限定,例如,先触发发散波再触发聚焦波,再例如,首先触发发射频率为7.5MHz的发散波,然后触发发射频率为10MHz的聚焦波,再触发发射频率为5MHz的平面波,等等。
在一些实施例中,第二目标成像模式可以包括第一混合波成像模式、第二混合波成像模式中的至少一个。在一些实施例中,第一混合波成像模式可以用于进行全孔径混合发射操作,第二混合波成像模式可以用于进行移动孔径混合发射操作。
在一些实施例中,全孔径混合发射操作可以是聚焦波和/或非聚焦波发射时阵元所有孔径都参与发射的发射操作,以覆盖较大范围的扫描区域,在综合了非聚焦波成像速度快、覆盖面积广、声场均匀及发射次数较少使得帧率提高的同时,通过聚焦波能量加强提高图像质量,从而更有效地满足用户预期成像需求。在一些实施例中,全孔径混合发射操作可以是非聚焦波发射时所有孔径都参与发射,聚焦波发射时局部孔径(即部分孔径)参与发射(例如可以聚焦发射于侧重图像质量的某一特定区域或感兴趣区域),使得能够合理配置资源,在满足用户成像需求的同时,节省成本。
在一些实施例中,移动孔径混合发射操作可以是聚焦波和/或非聚焦波发射时,阵元的所有孔径或局部孔径根据相应混合发射次序规则进行发射的发射操作。在一些实施例中,移动孔径混合发射操作可以是聚焦波(例如聚焦波)、非聚焦波(例如发散波)均采用局部孔径根据相应混合发射次序进行发射的操作。在一些实施例中,移动孔径混合发射操作过程中,聚焦波、非聚焦波可以根据相应混合发射次序进行交替发射。在一些实施例中,混合发射的次序,规则或程序可以包括聚焦波、非聚焦波的各自发射时间节点设置和/或交替发射时间间隔设置等。移动孔径混合发射操作,可以通过不同混合波束在相应发射次序或规则下进行特定组合序列的发射,可以综合利用多种波束各自优势在重要区域(如感兴趣区域)进行发射扫描,获得更丰富维度的混合波回波数据(例如多种波束的回波信号数据、回波图像或成像数据等),便于后续回波信号复合或图像复合处理,从而为满足不同用户不同场景的个性化成像需求提供保障。
图6所示为根据本说明书一些实施例所示的目标成像结果获得过程600的示例性流程图。在一些实施例中,过程600可以由处理设备700、超声设备110和/或处理设备120来执行。在一些实施例中,过程600可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程600。在一些实施例中,过程600可以由图7、图22和/或图34中的一个或多个模块执行。在一些实施例中,当目标成像模式为第二目标成像模式时,图3中的步骤320可以根据过程600执行。
在一些实施例中,过程600可以包括以下步骤中的一个或多个。
步骤321,根据第一混合波成像模式的第一发射参数,执行第一超声波的全孔径发射操作,及执行第二超声波的全孔径发射操作或局部孔径发射操作,获得第一混合波回波数据,并基于第一混合波回波数据确定目标成像结果。
步骤322,根据第二混合波成像模式的第二发射参数,执行第一超声波的移动孔径发射操作,及执行第二超声波的全孔径发射操作或局部孔径发射操作,获得第二混合波回波数据,并基于第二混合波回波数据确定目标成像结果。
在一些实施例中,可以根据混合波成像模式触发第一混合波成像模式下的混合波成像操作,包括但不限于:确定一个或多个第一焦点的位置(或称第一焦点位置);根据第一焦点位置确定第一混合波成像模式的第一发射参数;根据第一混合波成像模式的第一发射参数,执行第一超声波的全孔径发射操作,及执行第二超声波的全孔径发射操作或局部孔径发射操作,获得第一混合波回波数据。在一些实施例中,第一焦点位置可以满足第一焦点边界条件。
在一些实施例中,可以根据混合波成像模式触发第二混合波成像模式下的混合波成像操作,包括但不限于:确定一个或多个第二焦点的位置(或称第二焦点位置);根据第二焦点位置确定第二混合 波成像模式的第二发射参数;根据第二混合波成像模式的第二发射参数,执行第一超声波的移动孔径发射操作和/或第二超声波的全孔径发射操作或局部孔径发射操作,获得第二混合波回波数据。在一些实施例中,第二焦点位置可以满足第二焦点边界条件。
有关步骤321、步骤322的更多描述可参见图24及相关描述,在此不再赘述。
图7是根据本说明书一些实施例所示的处理设备700的示例性结构框图。
如图7所示,处理设备700可以包括成像模式确定模块710和成像操作模块720。成像模式确定模块710,可以用于根据与成像需求有关的信息确定目标成像模式;成像操作模块720,可以用于根据目标成像模式,进行相应成像操作,获得相应目标成像结果。其中,成像需求可以至少包括与图像质量和/或帧率有关的需求,目标成像模式可以包括第一目标成像模式和/或第二目标成像模式,第一目标成像模式可以用于对局部成像区域进行优化成像,和/或,第二目标成像模式可以利用不同发射波束类型和/或不同发射频率的混合波进行成像。有关成像模式确定模块710执行相应功能、成像操作模块720执行相应功能的更多描述可参见图1至图6相关描述,在此不再赘述。
本说明书一些实施例提供的一种超声成像系统,可以包括:至少一个存储介质,其存储有至少一组指令;以及至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:根据与成像需求有关的信息确定目标成像模式;根据目标成像模式,进行相应成像操作,获得相应目标成像结果;其中,成像需求至少包括与图像质量和/或帧率有关的需求,目标成像模式包括第一目标成像模式和/或第二目标成像模式,第一目标成像模式用于对局部成像区域进行优化成像,和/或,第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。有关超声成像系统更多描述可参见图1至图6相关描述,在此不再赘述。
本说明书一些实施例提供的一种超声成像设备,可以包括处理器,该处理器可以用于执行如前述任一实施例所述的超声成像方法(参见图1至图6相关描述),在此不再赘述。
本说明书一些实施例提供的非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:可以执行如前述任一实施例所述的超声成像方法(参见图1至图6相关描述),在此不再赘述。
图8是根据本说明书一些实施例所示的超声成像方法800的示例性流程图。图9是根据本说明书一些实施例所示的超声成像方法900的另一示例性流程图。在一些实施例中,过程800可以由处理设备2200、超声设备110和/或处理设备120执行。在一些实施例中,过程800可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程800。在一些实施例中,过程800可以由图7、图22和/或图34中的一个或多个模块执行。如图8和图9所示,在一些实施例中,过程800或过程900可以包括以下步骤中的一个或多个。在一些实施例中,图8的过程800可以根据图9的过程900来实现。
步骤810,在初始成像图像上确定感兴趣区域,初始成像图像可以包括全局成像区域。在一些实施例中,步骤810可以由感兴趣区域确定模块2210执行。
步骤820,根据感兴趣区域确定成像条件数据。在一些实施例中,步骤820可以由成像条件数据确定模块2220执行。
步骤830,判断成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像。在一些实施例中,优化成像模式可以至少包括第一优化成像模式和/或第二优化成像模式。第一优化成像模式可以进行覆盖全局成像区域的发射参数调整操作。第二优化成像模式可以进行覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作。在一些实施例中,步骤830可以由优化成像图像生成模块2230执行。
在一些实施例中,步骤830可以通过以下步骤中的一个或多个来执行。
步骤831,判断成像条件数据符合何种优化成像模式,然后根据判断结果确定触发第一优化成像模式还是触发第二优化成像模式。
当确定触发第一优化成像模式,进入步骤832a:进行覆盖全局成像区域的发射参数调整操作,以生成相应优化成像图像。当确定触发第二优化成像模式,进入步骤832b:进行覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作,生成相应优化成像图像。
通过综合考虑成像质量与帧频、发射时间等影响整体成像效率的相互关联的因素,针对不同成像状况的成像需求或诊断需求,根据选定ROI的相应成像条件数据进行分析判断,确定其符合何种优化成像模式,并触发相应优化成像模式,从而高适应性地提供相应成像方案,提高成像效率,满足多种不同成像需求。
初始成像图像是指在进行优化成像之前的初步成像图像,其中初始成像图像可以包括全局成像区域。
在一些实施例中,感兴趣区域确定模块2210可以获取初始成像图像。
在一些实施例中,初始成像图像可以由超声设备110生成。在一些实施例中,超声设备110可以向待检测目标发射超声脉冲,接收待检测目标反射的超声回波信号,并对接收到的超声回波信号进行成像处理后输出初始成像图像。在一些实施例中,前述成像处理可以包括滤波处理、解调处理、波束合成处理、复合成像处理(例如线复合、频率复合、空间复合等等)、包络处理、对数成像处理以及图像后处理(例如灰度处理、斑噪抑制、边缘细化等)中的至少一种或几种。在一些实施例中,可以由感兴趣区域确定模块2210的初始成像子模块(图22中未示出)生成初始成像图像。
在一些实施例中,初始成像图像可以从处理设备120、存储设备130或终端140中获取,例如可以由存储设备130存储预生成的初始成像图像,再例如,可以从患者用户终端、超声检测或诊断用户终端(例如某一患者存储有历史超声检测结果的用户终端、某一超声检测人员的用户终端、某一诊断医生的用户终端)获取相应初始超声图像。
在一些实施例中,初始成像图像可以从超声成像系统100中任何可能的系统组成部分中获取,例如,云端服务器或后台系统。在一些实施例中,初始成像图像可以从超声成像系统100之外的其他系统获取,例如可以从与超声成像系统100具有业务或数据关联的某个或某些医院医疗系统中获取。需要说明的是,初始成像图像的获取方式以上仅作为示例,本说明书实施例不对其特别限制。
在一些实施例中,可以利用人工智能自动识别算法、自动跟踪算法、以及触屏和/或非触屏操作指令中的至少一种确定ROI。其中,通过人工智能自动识别算法或自动跟踪算法具有确定ROI速度快、效率高的优点;通过触屏和/或非触屏操作指令则能满足确定ROI时的动态调整以及用户对确定ROI的个性化需求,提高交互性。在一些实施例中,可以利用人工智能自动识别算法、自动跟踪算法、以及触屏和/或非触屏操作指令中的一种或几种结合方式确定ROI,具体可以根据实际需求进行多种组合方式的相应设置,以便综合利用各自方式的优点,提高确定ROI的效率,满足多种不同场景的用户ROI选定需求。
在一些实施例中,ROI可以是全局成像区域中的任意区域。在一些实施例中,ROI可以由多个局部ROI组成。在一些实施例中,ROI可以是封闭形状(如一个矩形)或非封闭形状(如一条线段)。在一些实施例中,前述封闭形状可以是规则形状(如正方形)或不规则形状。
在一些实施例中,可以利用预设机器学习算法(例如深度学习算法)进行ROI的自动识别,从而确定ROI。在一些实施例中,可以利用预设目标检测模型对初始选定或绘制的ROI进行追踪记录,即便在探头变动了情况下,依旧可以实现对ROI的自动跟踪,从而提高ROI确定的效率。在一些实施例中,前述的预设目标检测模型可以是SSD(Single Shot MultiBox Detector)、Faster R-CNN(Faster Region-Convolutional Neural Network)、YOLO(You Only Look Once)或其他任何可行的目标检测模型。
在一些实施例中,可以利用预设特征检测方法和/或预设特征匹配方法,进行图像特征(例如特征点、特征线、特征区域等)的检测和/或匹配而确定ROI。在一些实施例中,前述预设特征检测方法可以是SIFT(ScaleInvariant Feature Transform,尺度不变特征转换)算子、SURF(Speeded Up Robust Feature,加速稳健特征)算子、FAST(Features from Accelerated Segment Test,加速分割测试获得特征)、LBP(Local Binary Pattern,局部二值模式)算子、HOG(Histogram of Oriented Gradient,梯度直方图)算子或其他任何可行的特征检测方法,预设特征匹配方法可以是RANSAC(RANdom SAmple Consensus,随机抽样一致)算法、ORB(Oriented FAST and Rotated BRIEF,快速特征点提取和描述)算法或其他任何可行的特征检测方法。
在一些实施例中,可以直接使用预设模板匹配方法在初始成像图像中找到与ROI匹配的区域,和/或通过跟踪ROI来确定ROI。在一些实施例中,前述预设模板匹配方法可以是基于轮廓的模板匹配算法、基于边缘梯度的模板匹配算法或其他任何可行的模板匹配算法。
在一些实施例中,可以通过触屏和/或非触屏操作指令确定ROI。在一些实施例中,触屏和/或非触屏操作指令可以包括触屏绘制操控指令、轨迹球操控指令、隔空手势绘制操控指令和/或其他任何可行的输入操作指令。
图10a至图10c是根据本说明书一些实施例所示的通过触屏和/或非触屏操作指令确定ROI的示例图,其中每幅图像最外侧边界线包围的区域(即初始成像图像展示的整个图像区域)均可以视为初始成像图像的全局成像区域。
示例性地,如图10a所示,当超声检测用户或医生用户的感兴趣区域是一片区域时,感兴趣区域确定模块2210接收超声检测用户或医生用户输入的触屏操作指令(如手动绘制等),并根据触屏操作指令在有效成像区域内(如图中实线所示)绘制一条首尾相接的线,即构成一个封闭形状,绘制的轨迹线(如图中虚线所示)即为ROI的边界。这里,ROI的封闭形状可以是任意规则形状或不规则形状。
其中,有效成像区域是指包含ROI的实际成像区域,以便保障ROI内的成像效果。在一些实 施例中,有效成像区域的面积可以与ROI面积相等。在一些实施例中,有效成像区域的面积可以大于ROI面积。在一些实施例中,有效成像区域的面积与ROI面积的比值范围可以为1.5至2.0(例如1.8),以避免ROI边缘的成像不完整,同时减少非ROI区域的成像,防止冗余计算,以降低计算量。在一些实施例中,有效成像区域可以是封闭形状(如一个椭圆)或非封闭形状(如一条弯曲线段)。在一些实施例中,前述封闭形状可以是规则形状(如菱形)或不规则形状。在一些实施例中,有效成像区域的封闭形状或非封闭形状可以与ROI的封闭形状或非封闭形状近似或一致。
示例性地,如图10b所示,当超声检测用户或医生用户感兴趣的区域是一个细长区域时,感兴趣区域确定模块2210接收超声检测用户或医生用户输入的非触屏操作指令(如轨迹球或隔空手势绘制指令等),并根据非触屏操作指令在有效成像区域内(如图中实线所示)绘制覆盖ROI的一条弯曲线段(当不方便绘制封闭形状时)。在一些实施例中,可以利用轨迹球进行ROI关键点标记或直接绘制ROI的相应形状。
示例性地,如图10c所示,当超声检测用户或医生用户对待选定的ROI实现随机或动态调整时,感兴趣区域确定模块2210可以接收到超声检测用户或医生用户输入的触屏和/或非触屏操作指令(如手动触屏点击、轨迹球点击或非触屏默认选项指令选定等),图像显示及操控界面可以默认出现一个如图中实线框出的常规形状(如矩形、圆形或椭圆等规则形状),其后根据接收的触屏划动指令或隔空划动指令沿着图示箭头方向调整至图中虚线框所示区域,以便通过相应操作指令根据用户(简洁起见,以下可能包含超声检测用户、患者用户、诊断用户或医生用户等任何可能的成像需求用户人群,简称用户)需求调整ROI区域大小。例如,当使用轨迹球选定ROI时,可以首先按下确定键,确定起始点,在图像显示及操控界面可以出现一个以该起始点为中心的默认矩形区域,然后以这个矩形区域为基准滚动轨迹球,此时绘制的区域随轨迹球的滚动扩大或缩小,最后按下确定键确定终点,即ROI选定完成。
在一些实施例中,有效成像区域在图像显示及操控界面的确定方式可以与ROI类似,具体可参见前述ROI具体选定方式及其过程,在此不再赘述。
需要注意的是,前述ROI或有效成像区域的确定方式仅仅是示例性的,不应理解为对本说明书的限定,在不脱离本说明书发明构思的情况下,可以采用任何可行的方式来确定ROI或有效成像区域。
在步骤820中,可以根据感兴趣区域确定成像条件数据。
在一些实施例中,成像条件数据可以包括能够反映当前选定ROI特征(如ROI区域大小等)的相应参数数据。在一些实施例中,成像条件数据可以包括ROI面积值。在一些实施例中,成像条件数据可以包括ROI面积与全局成像区域面积的比值。
在一些实施例中,成像条件数据可以包括ROI的发射条件参数。在一些实施例中,成像条件数据可以包括ROI的发射条件参数和/或有效成像区域的发射条件参数。发射条件参数是指示满足何种优化成像模式的相应条件参数。在一些实施例中,发射条件参数可以是当前选定ROI发射所需的焦点个数、发射次数或发射间隔(即上次发射接收至下次发射开始的时间间隔)等等。在一些实施例中,可以根据历史记录数据确定不同ROI在相应发射模式(例如聚焦发射模式)下所需焦点个数、发射次数、发射时间等等。
在一些实施例中,成像条件数据可以包括ROI的发射条件数据与全局成像区域的发射条件数据之间的关系数据。在一些实施例中,ROI的发射条件数据与全局成像区域的发射条件数据之间的关系数据,可以包括ROI的发射条件数据与全局成像区域的发射条件数据之间的差值、比值或其他任何可能的两者关系数据,例如根据预设成像条件计算程序,计算得到的当前ROI发射所需焦点个数与全局成像区域发射所需焦点个数的比值。这里的发射可以包括聚焦发射、发散波发射、宽波束发射或其他任何可能波形的发射模式,也可以是不同发射波束类型和/或不同发射频率的混合波发射。
在一些实施例中,成像条件数据可以包括ROI的有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的关系数据。在一些实施例中,ROI的有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的关系数据,可以包括ROI的有效成像区域的发射条件数据与全局成像区域的发射条件数据之间的差值、比值或其他任何可能的两者关系数据。
在一些实施例中,第一优化成像模式和/或第二优化成像模式可以包括:利用不同发射波束类型和/或不同发射频率的混合波进行成像操作,发射波束类型至少可以包括聚焦波和/或非聚焦波。在一些实施例中,可以根据成像条件数据,确定在第一优化成像模式或第二优化成像模式中,具体采用何种发射波束类型和/或何种发射频率的混合波进行成像操作。在一些实施例中,可以根据ROI的发射条件数据与全局成像区域的发射条件数据之间的关系数据,确定在第一优化成像模式或第二优化成像模式中,具体采用何种发射波束类型和/或何种发射频率的混合波进行成像操作。在一些实施例中,混合波 的成像操作可以包括全孔径混合发射操作和/或移动孔径混合发射操作。
示例性地,如果选定ROI面积值或ROI面积与全局成像区域面积的比值较小时,说明ROI区域或ROI在全局成像区域中的占比较小,可以通过第二优化成像模式,进行覆盖ROI的聚焦波增强成像与覆盖全局成像区域的非聚焦波(如平面波)的非增强成像的同步操作,聚焦波与非聚焦波的发射频率可以相等或不等。示例性地,当前选定ROI所需的焦点个数与全局成像区域所需焦点个数的比值较大时,说明ROI区域如果采用某种发射,如采用聚焦波,所需发射次数或发射时间较多,可以通过第一优化成像模式在全局成像区域内调整发射参数,例如将ROI的发射频率调高,或者通过第二优化成像模式,在全局成像区域采用非聚焦波(如发散波)发射的非增强成像同时,进一步只在ROI进行聚焦波的增强成像。
通过在第一优化成像模式和/或所述第二优化成像模式中,结合利用混合波成像,能够更高效地满足多种场景(尤其针对不同区域的成像需求不同的复杂成像场景)的成像需求,进一步在整体上提高成像效率,并且更合理地配置发射资源,提高用户体验。
在一些实施例中,成像条件数据可以由预设成像条件计算程序根据历史选定的ROI区域的特征数据,预先计算并存储在成像条件数据确定模块2220、存储设备130或超声设备110中。在一些实施例中,可以根据当前选定ROI区域,触发预设成像条件计算程序进行实时计算。
图11是根据本说明书一些实施例所示的根据感兴趣区域确定成像条件数据的示例性流程图。在一些实施例中,过程1100可以由处理设备2200、超声设备110和/或处理设备120来执行。在一些实施例中,过程1100可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程1100。在一些实施例中,过程1100可以由图7、图22和/或图34中的一个或多个模块执行。在一些实施例中,图8中的步骤820可以根据过程1100执行。
如图11所示,过程1100可以包括以下步骤中的一个或多个。
步骤821、根据感兴趣区域计算感兴趣区域的有效成像区域。
步骤822、根据有效成像区域计算覆盖有效成像区域的第一发射条件参数。
步骤823、确定有效成像区域的第一发射条件参数与全局成像区域的第二发射条件参数之间的关系数据。
在一些实施例中,第一发射条件参数、第二发射条件参数可以分别至少包括焦点个数或发射次数。由于焦点个数或发射次数是最能反映成像时发射条件的数据参数,当至少选取焦点个数或发射次数,作为有效成像区域的第一发射条件参数以及全局成像区域的第二发射条件参数,再获取两者的关系数据,能够精准高效地确定成像条件数据,保障数据获取的可靠性。在一些实施例中,第一发射条件参数、第二发射条件参数还可以分别包括发射间隔等。
参照图10a,在一些实施例中,ROI选定之后,可以根据有效成像区域面积与ROI面积的预设比值范围(如1.5至1.8)或预设比值,计算得到有效成像区域面积,然后根据有效成像区域面积,通过触屏和/或非触屏操作指令确定有效成像区域,如图10a中所示的实线矩形等满足面积需求的规则形状。
参照图10b,在一些实施例中,当选定ROI为非封闭形状,例如一条非封闭线段,通过触屏和/或非触屏操作指令,可以根据预设面积倍数,将该非封闭形状在预设面积倍数阈值范围内(如1.8至2.0,或者大于2.0)进行加粗,从而确定有效成像区域,如图10b中所示的实线长条形状等满足面积需求的不规则形状。
因此,根据选定ROI确定的有效成像区域,只要其向外扩展的形状区域满足预设面积要求即可,具体形状是封闭形状还是非封闭形状,或者说规则形状或不规则形状,可以根据超声检测用户或医生用户的具体需求选择。
在一些实施例中,可以通过计算公式(1)计算得到覆盖有效成像区域发射所需焦点个数,可以以Sroi来表示:
Figure PCTCN2021138274-appb-000001
其中,Worg为全局成像区域的宽度,Wroi为有效成像区域的宽度,Sorg为全局成像区域所需发射次数,ts为比例系数。
图12a是根据本说明书一些实施例所示的全局成像区域的发射所需焦点示例。图12b是根据本说明书一些实施例所示的有效成像区域的发射所需焦点示例。这里以聚焦发射模式为例,图12b所示的实线框区域为ROI的有效成像区域,焦点分布在有效成像区域内,并采用线扫的成像方式。在一些实施例中,有效成像区域的宽度Wroi可以根据前述有效成像区域计算方式计算得到。在一些实施例中, 全局成像区域的宽度Worg、全局成像区域所需发射次数Sorg可以与初始成像图像的宽度以及发射次数相等。
图13a和图13b是根据本说明书一些实施例所示的有效成像区域的发射所需焦点示例。与图12a、图12b所示的焦点分布于有效成像区域内的方式不同,图13a、图13b所示的焦点分布于有效成像区域之外,同时选择适当发射孔径,使得声波能量更多覆盖在有效成像区域内,这与焦点分布于有效成像区域内相比,所需发射次数更少。如图13a中焦点F1所示,此时需要的焦点个数较少。
在一些实施例中,可以通过以下方式确定有效成像区域对应的发射焦点位置:可以以有效成像区域的中心(即图13a中矩形区域的中心)建立一个椭圆,该椭圆长轴和短轴可以分别是矩形区域的宽和高的1.5-2倍;焦点可以位于有效成像区域的下方且在椭圆上均匀分布,且最两边的焦点之间的距离可以大于有效成像区域的宽;可以选择有效成像区域正上方的阵列作为发射孔径,此时换能器阵元的指向性较好。本示例中以发射孔径的尺寸要略大于有效成像区域的宽度为例,实际的发射孔径尺寸可以根据实际期望效果决定和设置。
在一些实施例中,每次发射可以覆盖至少部分有效成像区域,如图13b所示,假设白色阴影区AF是焦点F的有效发射区域,有效成像区域可以表示为Aroi,则两个区域的交集则是焦点F的发射可以进行成像的区域(后续称为焦点F的实际成像区域)(如13b中黑色线段围起来的区域AF1)。其他焦点的实际成像区域可以按照同样或类似的方式计算。当所有焦点的实际成像区域的并集为Aroi时,超声发射则可以覆盖有效成像区域。在一些实施例中,满足上述条件所需的焦点个数可以计算如下:计算中间的焦点在有效成像区域内能覆盖上的最小长度,即焦点的两条照射边界和有效成像区域的边界相交后得到的线段mn,具体地可以通过以下公式(2)计算Lmn:
Figure PCTCN2021138274-appb-000002
其中,Ls为焦点F1到有效成像区域最近边界的距离,Lt为焦点F1到换能器的距离,发射孔径的尺寸为St。
进一步地,有效成像区域所需发射次数可以通过公式(3)来计算:
Figure PCTCN2021138274-appb-000003
其中,Wroi为有效成像区域的宽度,ts与公式(1)中相同,同样也为比例系数。
在一些实施例中,由于超声系统中影响帧频的主要参数可以包括检测深度和/或一帧图像成像需要的发射次数,则可以通过公式(4)来计算系统最大帧频(最大帧频表示为forg):
Figure PCTCN2021138274-appb-000004
其中,h为检测深度,Sorg为一帧覆盖全局成像区域的初始成像图像所需发射次数,c为声波在介质中传播的速度,即声速。
根据公式(1)或公式(3)可以计算得到有效成像区域所需发射次数Sroi,若进行有效成像区域成像,可以通过公式(5)计算系统最小帧频(最小帧频表示为froi):
Figure PCTCN2021138274-appb-000005
在一些实施例中,有效成像区域优化成像后的帧频与全局成像区域帧频的比值(表示为r),即有效成像区域的第一发射条件参数与全局成像区域的第二发射条件参数之间的关系数据,可以通过公式(6)计算得到:
Figure PCTCN2021138274-appb-000006
图14是根据本说明书一些实施例所示的判断成像条件数据符合何种优化成像模式并触发相应优化成像模式下成像操作的示例性流程图。在一些实施例中,过程1400可以由处理设备2200、超声设备110和/或处理设备120来执行。在一些实施例中,过程1400可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程1400。在一些实施例中,过程1400可以由图7、图22和/或图34中的一个或多个模块执行。在一些实施例中,图8中的步骤830可以根据过程1400执行。
在一些实施例中,过程1400可以包括以下步骤中的一个或多个。
步骤831,判断有效成像区域的第一发射条件参数与全局成像区域的第二发射条件参数之间的关系数据是否小于阈值。
步骤832a,响应于关系数据小于阈值,触发第一优化成像模式下的成像操作。在一些实施例中,第一优化成像模式下的成像操作可以包括:在满足帧频要求条件下调整发射参数,使得感兴趣区域 的声波能量得到增强。
步骤832b,响应于关系数据不小于阈值,触发第二优化成像模式下的成像操作。在一些实施例中,第二优化成像模式下的成像操作可以包括:覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作,以分别得到关于感兴趣区域的增强图像以及关于全局成像区域的全局图像;对增强图像与全局图像进行图像复合操作。
在一些实施例中,步骤832a中,响应于关系数据小于阈值,触发第一优化成像模式下的成像操作,可以包括:在满足帧频要求条件下调整发射参数,维持全局成像区域的原有声波能量的同时,使得感兴趣区域的声波能量得到增强。
在一些实施例中,步骤832a中,响应于关系数据小于阈值,触发第一优化成像模式下的成像操作,可以包括:在满足帧频要求条件下调整发射参数,使得包含感兴趣区域的全局成像区域的声波能量都得到增强。
由于根据有效成像区域与全局成像区域之间发射条件参数的关系数据与阈值的大小关系,可以确定当前选定ROI的有效成像区域,属于较大面积区域还是属于较小面积区域,根据其面积区域特点触发相应优化成像模式。
例如,当关系数据小于阈值,表明当前有效成像区域面积较大,若进行覆盖感兴趣区域的有效成像区域增强可能会增加发射次数或延长发射时间,从而影响帧频,因此可以通过第一优化成像模式覆盖全局成像区域的基础上,针对感兴趣区域内调整相应发射参数,在不损失全局成像区域内感兴趣区域之外其他区域所需声波能量的同时,尽可能地增加感兴趣区域的声波能量,或者全局成像区域的声波能量,既能在提高图像成像质量的同时不降低帧频,又能实现全局成像区域的全局成像和动态调整,从而提高成像效率。当关系数据大于阈值,表明当前有效成像区域面积较小,覆盖感兴趣区域的增强成像并不会导致发射次数过多或发射时间过长,在覆盖感兴趣区域的增强成像操作时,可以同时进行覆盖全局成像区域的非增强成像操作,也可以将发射次数或发射时间控制在合理范围内,最终在提高图像成像质量的同时同样能够保障帧频,使得最终的成像效率得到较大提高。
在一些实施例中,步骤831中,可以判断通过公式(6)计算得到的关系数据r是否小于阈值T。在一些实施例中,可以根据具体成像需求进行阈值T的大小设置。在一些实施例中,前述成像需求可以是作为确定阈值T关键参数的帧频要求,例如最低帧频要求等。在不同成像场景,帧频要求可以有所不同,例如颈动脉的检查对帧频要求较低,最低帧频可以不低于20fps(frame per second),而心脏检查对帧频要求较高,最低帧频可以不低于50fps。
示例性地,假设对全局成像区域进行成像时,检测深度为10cm,采用聚焦发射,每帧需要发射128次,则此时超声系统可以达到的最大帧频为60fps,在进行局部成像优化后,若要求成像帧频不小于40fps,则阈值
Figure PCTCN2021138274-appb-000007
则理论上最大可以实现的有效成像区域的发射次数为63。根据上述计算公式(6):
Figure PCTCN2021138274-appb-000008
Sorg=128,计算得到Sroi=63,说明有效成像区域的发射次数不能超过63。
在一些实施例中,可以通过调整比例系数ts,来实现成像质量与帧频之间的平衡,也就是说,ts为可变量,可以根据不同需求进行相应设置和实时调整。在一些实施例中,当用户更关注成像质量时,可以适当增大该比例系数ts。在一些实施例中,当用户对帧频要求较高,则可以适当减小该比例系数ts。
示例性地,若初始ts设为1,此时发射次数刚好可以覆盖整个有效成像区域,若对成像质量要求更高,可适当提高ts至1.2至1.5,但是会损失帧频;若对帧频有较高要求,也可以适当调低该参数至0.8左右。例如,假设用线阵进行全局成像区域成像,全局成像区域的宽度为5cm,计算得到的有效成像区域的宽度为1.5cm,则通过公式(1)计算得到,覆盖有效成像区域至少需要的发射次数为:
Figure PCTCN2021138274-appb-000009
假设在上述阈值t计算的相同条件下,通过增加发射次数可以改善成像质量,在不影响帧频的情况下,ts可以提高到1.2至1.6。若继续提高ts,系统可以提醒,当前状态会降低最低帧频,需要医生选择是否继续提高该比例系数。
在一些实施例中,执行上述步骤832a时,当响应于关系数据小于阈值,触发第一优化成像模式下的成像操作中,在满足帧频要求下调整发射参数,可以对一种发射参数单独调整或几种发射参数组合调整。
在一些实施例中,发射参数可以至少包括发射模式、发射孔径参数、发射焦点参数、发射偏角、发射频率、发射波形、增益(即增益调节)中的至少一种。在一些实施例中,发射模式可以包括不同发射频率的聚焦发射、发散波发射、宽波束发射、平面波发射、单阵元发射中的至少一种或两种及以上发射模式的混合发射,或者其他任何可行的发射模式。在一些实施例中,发射孔径参数可以是发射孔径位 置或发射阵元组合方式、发射孔距、接收孔距或其他任何可行的发射孔径参数。在一些实施例中,发射焦点参数可以包括发射焦点个数、发射焦点位置、发射焦点深度或其他任何可行的发射焦点参数。在一些实施例中,发射波形可以是正弦波形、冲击波形、多种频率叠加的形状任意的波形或其他任何可行的发射波形。
示例性地,在某一对帧频要求较高的场景下(例如心脏检查),不能大幅度牺牲帧频,意味着要进行有效成像区域成像时,可增加的发射次数有限,此时选择将焦点设于有效成像区域之外进行成像,若此时有效成像区域范围较宽,可以通过扩大发射孔径以及增加发射偏角来扩大有效发射区域;若有效成像区域在近场区域(离探头比较近的区域),可以提高有效成像区域发射的发射频率,使得高频声波对近场产生满足预期的成像效果。
图15a和图15b是根据本说明书一些实施例所示的发射参数调整示例图。如图15a所示,采用无偏角的聚焦发射方式,焦点在有效成像区域宽度W范围内水平分布,为了保证边缘的成像效果,可以适当扩大焦点分布范围,如宽度W的1.2到1.5倍范围,焦点纵向位置在有效成像区域深度的L倍数的位置,即
Figure PCTCN2021138274-appb-000010
其中L取值可以为2至3,至于焦点个数的计算方法可以通过前述公式(1)、(2)、(3)、(4)、(5)、(6)中的一个或几个来计算。如图15b所示,还可以将图15a所示位于有效成像区域(图15a中矩形区域所示)下方的焦点位置,调整至有效成像区域上方,使得焦点位置更靠近换能器的发射阵元,以调整声波在覆盖全局发射区域的各个区域能量分布。
参照图13a、图13b,也可以通过控制程序实现多维度焦点调节,在多个维度空间(例如二维空间等)调整焦点位置(例如,在横向或纵向等维度上调整焦点位置)。例如,由图13a、图13b所示的焦点位置分布可以调整至图15a或图15b所示的焦点位置分布,从而满足多种成像场景的焦点调整需求,最终提高成像效率。
通过对发射模式、发射孔径参数、发射焦点参数、发射偏角、发射频率、发射波形、和/或增益等中一个参数维度调整或多个参数维度混合调整,能够更好地实现覆盖全局成像区域的预期成像需求,在实现全局成像区域动态显示及调整的同时,还能提高整体的成像效率,满足用户多元化的成像需求。
在一些实施例中,调整发射参数可以包括:对感兴趣区域之外的区域中的焦点分布进行分析,以确定满足预设焦点分布条件的待补偿区域;增加发射以对待补偿区域进行声波能量的补偿。
由于在传统超声成像中,很少会从全局角度关注整个全局成像区域的焦点分布情况及其成像效果,尤其对于感兴趣区域之外的区域缺乏关注,感兴趣区域之外的区域中的焦点分布就较为稀疏。因此,在本说明书的一些实施例中,可以对感兴趣区域之外的区域中的焦点分布进行焦点稀疏分析,以便对确定满足预设焦点稀疏分布条件的待补偿区域,通过调整相应发射参数来增加发射,以对待补偿区域进行声波能量的补偿,使得在第一优化成像模式下生成覆盖全局成像区域的优化成像图像,尽可能增强感兴趣区域声波能量的同时,又不损失其他区域声波能量的合理需求,实现图像质量、帧频等参数之间的相对均衡,提高成像效率,达到相应成像效果,从而满足预期成像需求。
在一些实施例中,可以在执行待补偿区域进行声波能量的补偿时,根据不同声波能量补偿需求进行相应发射参数调整,包括单独调整一种发射参数或组合调整多种发射参数,例如调整发射模式,或者同时调整发射模式与发射偏角等等。
图16a至图16c是根据本说明书一些实施例所示的发射参数调整示例图。示例性地,在进行声波能量补偿的调整发射参数操作时,在覆盖全局成像区域的初始发射模式基础上,除了使用聚焦发射模式,也可以采用如16a所示的发散波发射模式、如图16b所示的宽波束发射模式、如图16c所示的平面波发射模式或其他任何可行的发射模式。
需要注意的是,覆盖全局成像区域的初始发射模式并不局限于聚焦发射一种发射模式。在一些实施例中,根据不同成像需求,初始发射模式可以是聚焦发射、发散波发射、宽波束发射、平面波发射、单阵元发射中的至少一种或两种及以上发射模式的混合发射,或者其他任何可行的发射模式。在一些实施例中,根据不同成像需求,进行声波能量补偿的发射模式可以是聚焦发射、发散波发射、宽波束发射、平面波发射、单阵元发射中的至少一种或两种及以上发射模式的混合发射,或者其他任何可行的发射模式。
由于各种发射模式具有各自发射优势,例如,聚焦发射具有聚焦声波能量强的特点,宽波束、发散波、平面波等具有发射覆盖面积广的特点,在进行声波补偿时,可以根据具体场景的成像需求,进行一种发射模式的补偿或多种发射模式的混合选取,从而提高成像效率,达到预期成像效果,以满足用户的个性化成像需求。
图17a至图17d是根据本说明书一些实施例所示的发射参数调整示例图。如图17a和图17b所示,当选定ROI面积过大或跨越区域范围较广时,若采用覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作的第二优化成像模式,需要增加的发射次数较多,会影响帧频,可以采用 满足帧频要求条件下调整发射参数的第一优化成像模式。
图17a所示的为初始成像图像的焦点分布情况,其中焦点在同一水平线上均匀分布,假设医生选择图17b中位于全局成像区域上部的实线长条形区域为ROI区域,该区域几乎横跨整个水平范围,根据ROI区域特点,可以将原横跨范围内的焦点移到ROI区域内,ROI区域外的焦点也在移动前与移动后的位置之间均匀分布。
如图17c所示,对于ROI之外的下部焦点分布较稀疏区域,可以适当增加发射,通过附加宽波束发射模式,进行声波能量补偿操作。在调整焦点位置后的初始发射模式基础上,又在全局成像区域外增设多个焦点,使得通过附加发射模式的能量补偿可以集中于全局成像区域的下部区域,从而补偿下部区域因焦点上移后导致的能量缺失,达到该种全局成像区域的预期优化成像效果。
如图17d所示,当选定ROI位于全局成像区域下部时,意味着发射时更多焦点集中在远场,可以通过附加发散波发射模式来补偿近场的能量,以便实现该种全局成像区域的预期优化成像效果。
在一些实施例中,在步骤832b中,当响应于关系数据不小于阈值,触发第二优化成像模式下的成像操作,覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作,可以包括:通过交替发射方式对感兴趣区域进行增强成像,以及对全局成像区域进行非增强成像,以分别得到关于感兴趣区域的增强图像以及关于全局成像区域的全局图像。在一些实施例中,交替发射方式可以是根据同一阵列发射阵元在预设间隔时间点,交替发射得到感兴趣区域的增强图像以及关于全局成像区域的全局图像。
在一些实施例中,ROI的增强成像操作可以采用常规成像方式,例如与初始成像图像的成像过程类似,具体可参见初始成像图像的相关描述,在此不再赘述。在一些实施例中,ROI的增强成像操作可以采用聚焦发射模式,实现ROI区域内的声波能量增强。在一些实施例中,ROI的增强成像操作可以采用上述步骤832a中第一优化成像模式下全局成像区域或感兴趣区域的调整发射参数的类似成像操作,具体可参见第一优化成像模式下全局成像区域或感兴趣区域的调整发射参数的成像操作相关描述,在此不再赘述。在一些实施例中,全局成像区域的非增强成像操作可以采用常规成像方式,例如与初始成像图像的成像过程类似,具体可参见初始成像图像的相关描述,在此不再赘述。在一些实施例中,全局成像区域的非增强成像操作可以采用上述步骤832a中第一优化成像模式下全局成像区域或感兴趣区域的调整发射参数的类似成像操作,具体可参见第一优化成像模式下全局成像区域或感兴趣区域的调整发射参数的成像操作相关描述,在此不再赘述。
图18是根据本说明书一些实施例所示的覆盖感兴趣区域的增强成像操作1800示例图。在一些实施例中,过程1800可以由处理设备2200、超声设备110和/或处理设备120来执行。在一些实施例中,过程1800可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程1800。在一些实施例中,过程1800可以由图7、图22和/或图34中的一个或多个模块执行。
在一些实施例中,过程1800可以包括以下步骤中的一个或多个。
步骤910、根据发射孔径和焦点F位置,计算焦点F的发射边界和有效发射区域。
步骤920、选取有效成像区域中的目标点坐标(x,y)。
步骤930、判断该目标点是否在焦点F的有效发射区域内。
步骤940、若在,则进入步骤960进行波束合成,若不在,则遍历下一个目标点,重复步骤920至步骤940的操作,直到所有的目标点遍历完毕。
步骤950、得到焦点F下在有效成像区域中的波束合成结果。
对所有焦点进行同样或类似的操作,最后将所有焦点F下的波束合成结果进行复合,得到覆盖感兴趣区域的波束合成结果,从而获得感兴趣区域的增强图像。
在一些实施例中,得到关于感兴趣区域的增强图像以及关于全局成像区域的全局图像之后,可以将ROI的增强图像直接代替全局图像上的ROI区域,仅对两者边缘重叠部分做边缘过渡处理,如加权复合过渡处理,保障两者之间不存在明显的分界线,最终获得第二优化成像模式下的优化成像图像。
在一些实施例中,对增强图像与全局图像进行图像复合操作,可以具体按如下示例方式实施:对增强图像与全局图像进行加权复合、频域复合、边缘增强中的一种或多种操作。
图19是根据本说明书一些实施例所示的增强图像与全局图像的图像复合操作示例图。如图19所示,在一些实施例中,图像复合操作可以包括对增强图像与全局图像进行加权复合操作。示例性地,权重参数可以设置以ROI区域为原点的高斯权重,最终复合得到第二优化成像模式下的优化成像图像。优化成像图像的图像细节的成像质量,与初始成像图像相比,可以获得显著提升。
在一些实施例中,图像复合操作可以包括对增强图像与全局图像进行频域复合操作。示例性地,可以使用增强图像的高频信息和全局图像的低频信息结果做混合。可以对包含有效成像区域的全局图 像和增强图像做二维傅里叶变换(或小波变换等其他变换),获取两张图像的频域信息,对低频能量高的图像进行低通滤波,对高频信号强的图像进行高通滤波,再进行傅里叶反变换得到滤波后的图像,再将两张图像进行线性或非线性复合。这样复合后的图像可以同时保留较强的低频信号和高频信号,包含更丰富的色彩和纹理信息,能够获得成像效果较优异的优化成像图像。
在一些实施中,图像复合操作可以包括对增强图像与全局图像进行边缘增强操作。示例性地,可以利用边缘提取算子(Roberts算子、Sobel算子、Prewitt算子、Kirsch算子、Robinson算子等)或者其他边缘提取方法,从增强图像(或全局图像的有效成像区域)中提取纹理信息,然后将纹理信息复合到全局图像的有效成像区域(或增强图像上),进而获取更多的细节信息,提高图像质量,同样能够保障优化成像图像的良好成像效果。
通过交替发射方式对感兴趣区域进行增强成像,以及对全局成像区域进行非增强成像,以分别得到关于感兴趣区域的增强图像以及关于全局成像区域的全局图像,然后再对增强图像与全局图像进行加权复合、频域复合、边缘增强中的一种或多种操作的图像复合操作,实现了覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作,不仅可以提高成像效率,还能够保障最终优化成像图像的全局区域动态显示及动态调整功能,便于超声检测或超声诊断时查看ROI与其他区域之间的关系,满足用户个性化和多元化的成像图像查看及调整需求。
图20a至图20c是根据本说明书一些实施例所示的增强图像与全局图像的图像复合操作所处操作节点示例图。在一些实施例中,增强图像与全局图像的图像复合操作所处操作节点可以设置于如图20a的增强图像波束合成及复合之后、取包络操作之前。在一些实施例中,波束合成及复合中的复合操作可以包括复合成像处理,例如线复合、频率复合、空间复合等等。在一些实施例中,增强图像与全局图像的图像复合操作所处操作节点可以设置于图20b所示的取包络操作之后、对数压缩之前。在一些实施例中,增强图像与全局图像的图像复合操作所处操作节点可以设置于图20c所示的两图像各自成像之后、最终成像之前,由于在此操作节点增强图像与全局图像均已各自成像为细节较完整的图像,此时进行两者图像复合操作能够获取较佳的图像复合效果,最终提高成像效率,优化成效效果。
在一些实施例中,上述超声成像方法还可以包括:根据优化成像图像、帧频要求、和/或接收的指令,对成像条件数据和/或发射参数进行调整,以便用户优化成像图像实际效果、动态帧频要求或接受的其他操作指令,实现在优化成像图像上的进一步改良,满足用户更高成像需求,提高用户体验。
图21是根据本说明书一些实施例所示的优化成像设置界面示例图。如图21所示,示例性地,当执行步骤810至步骤830完成之后,用户查看得到的优化成像图像之后,希望对更关注的局部图像区域(例如之前选定ROI内的局部区域或之前选定ROI外的局部区域)作进一步改良调整,此时可以通过成像条件数据设置菜单选项的下一级菜单中选择“发射条件参数设置”(图21中未示出),进行成像条件数据的重新设置,或者重新选定ROI区域,重复执行前述步骤810至步骤830。
示例性地,当帧频要求在超声成像过程中发生实时变动时,用户也可以通过优化成像设置界面的成像条件数据设置菜单选项和/或发射参数设置菜单选项,进行实时调整,以便最终优化成像图像满足用户帧频需求。
示例性地,用户在检测或诊断过程中,超声探头发生移动或用户重新选定ROI区域时,会接收到探头检测信号发生变化或绘制ROI区域的相应操作指令,这些操作指令也可以触发优化成像设置界面弹出,以便于用户根据新的成像需求,对相应成像条件数据参数或发射参数进行调整设置。
示例性地,在成像过程中,用户可以根据当前优化成像模式需要,通过额外指令输入,通过优化成像设置界面上的优化成像模式切换菜单选项,进行优化成像模式切换功能操作,例如从第一优化成像模式切换至第二优化成像模式。
应当注意的是,上述有关流程800的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程800进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。
图22是根据本说明书一些实施例所示的处理设备2200的示例性结构框图。如图22所示,处理设备2200可以包括感兴趣区域确定模块2210、成像条件数据确定模块2220和/或优化成像图像生成模块2230。
在一些实施例中,感兴趣区域确定模块2210,可以用于在初始成像图像上确定感兴趣区域,其中初始成像图像可以包括全局成像区域。至于感兴趣区域确定模块2210执行在初始成像图像上确定感兴趣区域的具体过程及更多描述,可参见前述任一实施例所述超声成像方法800相关内容描述,在此不再赘述。
在一些实施例中,成像条件数据确定模块2220,可以用于根据感兴趣区域确定成像条件数据。至于成像条件数据确定模块2220执行根据感兴趣区域确定成像条件数据的具体过程及更多描述,可参 见前述任一实施例所述超声成像方法800相关内容描述,在此不再赘述。
在一些实施例中,优化成像图像生成模块2230可以用于判断成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像。其中,优化成像模式可以至少包括第一优化成像模式和第二优化成像模式。至于优化成像图像生成模块2230执行判断并最终生成优化成像图像的具体过程及更多描述,可参见前述任一实施例所述超声成像方法800相关内容描述,在此不再赘述。
本说明书一些实施例提供的一种超声成像系统,可以包括:至少一个存储介质,其存储有至少一组指令;以及至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使系统:在初始成像图像上确定感兴趣区域,初始成像图像包括全局成像区域;根据感兴趣区域确定成像条件数据;判断成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,第一优化成像模式指覆盖全局成像区域的发射参数调整操作,第二优化成像模式指覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作。有关超声成像系统的更多描述,可参见图8至图21相关描述,在此不再赘述。
另外,本说明书一些实施例还提供了一种超声成像设备,包括处理器,该处理器用于执行如前述任一实施例所述的超声成像方法800的相应流程,具体可参见图8至图21相关描述,在此不再赘述。
另外,本说明书一些实施例还提供了非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:可以执行如前述任一实施例所述的超声成像方法800的相应流程,具体可参见图8至图21相关描述,在此不再赘述。
本说明书一些实施例提供的超声成像方法、系统、设备及计算机可读存储介质,至少具有以下有益效果:(1)综合考虑图像成像质量与帧频、发射时间等影响整体成像效率的彼此影响关系因素,针对不同成像状况的成像需求或诊断需求,根据选定ROI的相应成像条件数据进行分析判断,确定其符合何种优化成像模式,并触发适用的相应优化成像模式,从而高适应性地提供相应成像方案,既可以提高成像效率,又能满足多种不同成像需求,从而在克服以往技术方案缺陷的同时,提供最佳成像方案;(2)支持适应性增强感兴趣区域(以下均简称ROI)与其之外其他区域可同时动态显示、动态调整的全局区域的成像模式,便于用户在检测或诊断时查看及调整成像图像,可以提高用户体验;(3)由于进行感兴趣区域选定或成像条件数据计算等超声成像过程涉及的计算,即可以通过预先设置方式计算并存储,还可以仅在用户需要时提供交互方式(如交互界面等)以供用户动态调整之后再计算,既可以减少计算量,又能满足用户成像时的实时交互以及动态调整需求,进一步提高用户体验。
图23是根据本说明书一些实施例所示的超声成像方法2300的示例性流程图。在一些实施例中,过程2300可以由超声设备110、处理设备120和/或处理设备3400执行。在一些实施例中,过程2300可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程2300。在一些实施例中,过程2300可以由图7、图22和/或图34中的一个或多个模块执行。在一些实施例中,过程2300可以包括以下步骤中的一个或多个。
步骤2310,根据与成像需求有关的信息确定相应混合波成像模式。在一些实施例中,步骤2310可以由混合波成像模式确定模块3410执行。
步骤2320,根据混合波成像模式,进行相应混合波成像操作,获得相应成像结果。在一些实施例中,步骤2320可以由混合波成像操作模块3420执行。
在一些实施例中,成像需求可以包括与图像质量和/或帧率有关的需求。在一些实施例中,与成像需求有关的信息可以包括空间分辨率、对比分辨率、时间分辨率、图像信噪比、帧频、成像速度、成像时间或其他任何可行的能够反映图像质量和/或帧率有关需求的指标(或称成像需求参数)。在一些实施例中,与成像需求有关的信息可以通过在超声系统中,进行相应成像需求参数的设置或调整来获取。在一些实施例中,与成像需求有关的信息可以通过人工输入方式获取,例如通过实时接收用户的成像需求指令等。
在一些实施例中,发射波束类型可以包括聚焦波和/或非聚焦波,和/或其他任何可行的波束类型。在一些实施例中,非聚焦波可以包括平面波、发散波、宽波束或其他任何可行的非聚焦波束类型。在一些实施例中,混合波成像模式可以包括同一发射频率、不同发射波束类型的成像模式,例如发散波、聚焦波均以同一发射频率(例如8MHz)的混合波成像模式。在一些实施例中,混合波成像模式可以是不同发射频率、同一发射波束类型的成像模式,例如发射频率分别为8MHz和4MHz的两聚焦波或两非聚焦波的混合波成像模式。在一些实施例中,混合波成像模式可以是不同发射频率、不同发射波束类型的成像模式,例如,发射频率为8MHz的发散波、发射频率为10MHz的聚焦波以及发射频率为5MHz的平面波的混合波成像模式。需要注意的是,对于混合波成像模式中,不同种发射波束类型和/或不同 发射频率相应发射波束的发射次数不作特别限定,例如在一特定混合波发射模式下,同一发射频率的平面波可以在多个不同的时间节点或周期进行多次发射成像,也可仅在一个时间节点或周期进行一次发射成像,再例如,不同发射频率的发散波可以在不同的时间节点或周期发射两次或多次,再例如,不同发射频率的发散波、聚焦波、平面波分别进行一次发射成像。另外,需要说明的是,对于混合波成像模式中,不同种发射波束类型和/或不同发射频率相应波束发射成像的先后次序也不作特别限定,例如,先发射发散波再发射聚焦波,再例如,首先发射频率为8MHz的发散波,然后发射频率为10MHz的聚焦波,再发射频率为5MHz的平面波,等等。
在一些实施例中,混合波成像模式可以包括第一混合波成像模式和/或第二混合波成像模式。在一些实施例中,第一混合波成像模式可以包括全孔径混合发射操作,第二混合波成像模式可以包括移动孔径混合发射操作。
在一些实施例中,全孔径混合发射操作可以是聚焦波和/或非聚焦波发射时阵元所有孔径都参与发射的发射操作,以覆盖较大范围的扫描区域,在综合了非聚焦波成像速度快、覆盖面积广、声场均匀及发射次数较少使得帧率提高的同时,通过聚焦波能量加强提高图像质量,从而更有效地满足用户预期成像需求。在一些实施例中,全孔径混合发射操作可以是非聚焦波发射时所有孔径都参与发射,聚焦波发射时局部孔径(即部分孔径)参与发射(例如可以聚焦发射于侧重图像质量的某一特定区域或感兴趣区域),使得能够合理配置资源,在满足用户成像需求的同时,节省成本。
在一些实施例中,移动孔径混合发射操作可以是聚焦波和/或非聚焦波发射时,阵元的所有孔径或局部孔径根据相应混合发射次序规则进行发射的发射操作。在一些实施例中,移动孔径混合发射操作可以是聚焦波(例如聚焦波)、非聚焦波(例如发散波)均采用局部孔径根据相应混合发射次序进行发射的发射操作。在一些实施例中,移动孔径混合发射操作过程中,聚焦波、非聚焦波可以根据相应混合发射次序程序进行交替发射。在一些实施例中,混合发射的次序,规则或程序可以包括聚焦波、非聚焦波的各自发射时间节点设置和/或交替发射时间间隔设置等。移动孔径混合发射操作方式,可以通过不同混合波束在相应设定发射次序或规则下进行特定组合序列的发射,可以综合利用多种波束各自优势在重要区域(如感兴趣区域)进行发射扫描,获得更丰富维度的混合波回波数据(例如多种波束的回波信号数据、回波图像或成像数据等),便于后续回波信号复合或图像复合处理,从而为满足不同用户不同场景的个性化成像需求提供保障。
图24是根据本说明书一些实施例所示的根据混合波成像模式进行相应混合波成像操作的示例性流程图。在一些实施例中,过程2400可以由处理设备3400、超声设备110和/或处理设备120来执行。在一些实施例中,过程2400可以以程序或指令的形式存储在存储装置(如存储设备130)中,当超声成像系统100(如处理设备120)执行该程序或指令时,可以实现过程2400。在一些实施例中,过程2400可以由图7、图22和/或图34中的一个或多个模块执行。在一些实施例中,图23中的步骤2320可以根据过程2400执行。
如图24所示,步骤2320中,根据混合波成像模式,进行相应混合波成像操作,获得相应成像结果,可以包括以下两个分支步骤中的至少一个:
步骤2321,根据混合波成像模式触发第一混合波成像模式下的混合波成像操作,可以包括:确定第一焦点位置,第一焦点位置满足第一焦点边界条件;根据第一焦点位置确定第一混合波成像模式的第一发射参数;根据第一混合波成像模式的第一发射参数,执行第一超声波的全孔径发射操作,及执行第二超声波的全孔径发射操作或局部孔径发射操作,获得第一混合波回波数据。
步骤2322,根据混合波成像模式触发第二混合波成像模式下的混合波成像操作,可以包括:确定第二焦点位置,第二焦点位置满足第二焦点边界条件;根据第二焦点位置确定第二混合波成像模式的第二发射参数;根据第二混合波成像模式的第二发射参数,执行第一超声波的移动孔径发射操作及第二超声波的全孔径发射操作或局部孔径发射操作,获得第二混合波回波数据。
在一些实施例中,第一焦点位置可以包括第一混合波成像模式下每种发射波束各自的至少部分(例如所有)焦点排布位置和/或至少部分(例如所有)焦点各自位置,第二焦点位置可以包括第二混合波成像模式下每种发射波束各自的至少部分(例如所有)焦点排布位置和/或至少部分(例如所有)焦点各自位置。在一些实施例中,第一焦点可以包括实焦点和/或虚焦点,第二焦点可以包括实焦点和/或虚焦点。在一些实施例中,第一焦点可以位于成像区域内和/或成像区域外,第二焦点可以位于成像区域内和/或成像区域外。在一些实施例中,第一焦点的数量可以是一个或多个,第二焦点的数量可以是一个或多个。示例性地,第一焦点或第二焦点可以包括位于成像区域内的多个(例如10个)聚焦波实焦点以及位于成像区域外的多个(例如8个)发散波虚焦点。
在一些实施例中,第一发射参数可以包括第一混合波成像模式下至少部分(例如所有)焦点各自的延迟时间和/或偏转角度,第二发射参数可以包括第二混合波成像模式下至少部分(例如所有)焦 点各自的延时和/或偏角。在一些实施例中,第一超声波可以是非聚焦波,第二超声波可以是聚焦波。在一些实施例中,第一混合波回波数据或第二混合波回波数据可以包括不同波束各自回波数据或不同波束各自回波复合数据。在一些实施例中,不同波束各自回波数据可以包括相应波束的回波信号数据或回波图像数据。在一些实施例中,不同波束各自回波复合数据可以是相应波束的回波信号经过波束合成的回波复合数据。
在一些实施例中,可以单独触发(或执行)第一混合波成像模式或第二混合波成像模式。在一些实施例中,可以同时触发第一混合波成像模式与第二混合波成像模式。
通过触发第一混合波成像模式或第二混合波成像模式,在各自混合波成像模式下,根据全孔径发射操作或移动孔径发射操作相应发射特点,通过相适应的焦点边界条件,确定能够有效执行全孔径发射操作或移动孔径发射操作的相应焦点位置及发射参数,为在多种不同用户成像需求情况下,更有利地进行混合波的全孔径发射操作或移动孔径发射操作,从而保障成像效率。
在一些实施例中,混合波成像模式的混合波成像操作可以进一步包括:对全局成像区域中的不同局部成像区域,采用不同发射波束类型和/或不同发射频率的混合波进行成像。在一些实施例中,可以对全局成像区域中的不同局部成像区域采用第一混合波成像模式和/或第二混合波成像模式进行成像,例如某一局部成像区域采用第一混合波成像模式,另一局部成像区域采用第二混合波成像模式。由此可以根据局部成像区域的具体成像需求,来设定采用何种混合波成像模式,可以进一步提高成效效率,满足复杂场景的成像需求。
在一些实施例中,混合波成像模式的混合波成像操作还可以包括:根据感兴趣区域进行覆盖全局成像区域的发射参数调整操作,或者,覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作。在一些实施例中,可以根据成像条件数据,确定在第一混合波成像模式或第二混合波成像模式中,具体采用根据感兴趣区域进行覆盖全局成像区域的发射参数调整操作,还是覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作。在一些实施例中,可以根据ROI的发射条件数据与全局成像区域的发射条件数据之间的关系数据,确定在第一混合波成像模式或第二混合波成像模式中,具体采用根据感兴趣区域进行覆盖全局成像区域的发射参数调整操作,还是覆盖感兴趣区域的增强成像与覆盖全局成像区域的非增强成像的同步操作。
示例性地,如果选定ROI发射所需的焦点个数、发射次数或发射间隔较小时,可以在第二混合波成像模式下进行覆盖ROI的增强成像与覆盖全局成像区域的非增强成像的同步操作。示例性地,当ROI面积值或ROI面积与全局成像区域面积的比值较大时,说明ROI区域或ROI在全局成像区域中的占比较大,可以在第一混合波成像模式下进行覆盖全局成像区域的发射参数调整操作。
通过在不同混合波成像模式下,进一步结合不同区域(即根据感兴趣区域的成像条件数据等特点)的相应成像操作,能够更高效地满足多种场景(尤其不同区域需求不同的复杂成像场景)的成像需求,进一步在整体上提高成像效率,并且更合理地配置发射资源,提高用户体验。
在一些实施例中,第一焦点边界条件和/或第二焦点边界条件通过以下方式获取:根据阵元指向性限制条件确定第一混合波成像模式和/或第二混合波成像模式下发射波束的极限偏转角度和/或极限延迟时间;根据极限偏转角度和/或极限延迟时间,在成像区域内外确定焦点分布的第一焦点边界条件和/或第二焦点边界条件。
在一些实施例中,阵元指向性限制条件可以是根据阵元指向性函数确定的限制条件。在一些实施例中,前述阵元指向性函数可以采用体现发射阵元(或换能器)辐射声场或者接收阵元(或换能器)灵敏度的空间分布函数(指向性图或者方向特性函数)。在一些实施例中,可以通过设置或调整阵元相应参数(例如,阵元孔径、阵元中心距、阵元宽度、阵元数量或阵元发射频率等),改变阵元指向性限制条件。在一些实施例中,可以通过阵元指向性函数计算,确定第一混合波成像模式和/或第二混合波成像模式下发射波束的极限偏转角度和/或极限延迟时间。在一些实施例中,第一混合波成像模式与第二混合波成像模式的阵元指向性限制条件可以相同。在一些实施例中,第一混合波成像模式与第二混合波成像模式的阵元指向性限制条件可以不同。在一些实施例中,第一混合波成像模式下与第二混合波成像模式下发射波束的极限偏转角度和/或极限延迟时间可以相同。在一些实施例中,第一混合波成像模式下与第二混合波成像模式下发射波束的极限偏转角度和/或极限延迟时间可以不同。
图25和图26是根据本说明书一些实施例所示的根据阵元指向性限制条件确定极限偏转角度和极限延迟时间的示例图。图27a至图27d是根据本说明书一些实施例所示的发散波波束进行偏角扫描的效果示例图。图28是根据本说明书一些实施例所示的根据阵元指向性限制条件确定极限偏转角度和极限延迟时间的示例图。需要说明的是,图25至图28所示示例中的极限偏转角度、极限延迟时间的计算方式,在第一混合波成像模式和/或第二混合波成像模式下均可以采用。
具体地如图25和图26所示,分别以平面波波束和发散波波束为例,当阵元阵列的定向面及声 束扫描在XOZ平面上时,对每个阵元施加统一激励信号,产生的平面波束主瓣声束方向与Z轴正方向一致,此时声束的偏转角度为0。若给相邻阵元施加相等时间差的延迟时间,则平面波束方向将发生偏转,波束方向与阵列的法线形成的偏转角度为θp,则该阵元阵列产生波束的声场指向性函数Ds可以通过公式(7)表示:
Figure PCTCN2021138274-appb-000011
其中,N为阵元数目,d是阵元间距,θp是波束偏转角度,λ为发射声波的波长。
进而可以推导出指向性函数Ds极大值出现时对应的极限偏转角度,可以通过公式(8)计算得到:
θi=arcsin(sinθ p±lλ/d)     (8)
当l=0时,θp为主极大方向,l=1,2,…,对应的θi为各栅瓣极大值出现的方向,则波束方向偏转时由于指向性限制而存在最大偏转角度。
在一些实施例中,偏转角度θp可以在0至12度(包括12度)之间取值。在一些实施例中,延迟时间可以在0至20微秒(包括20微秒)之间取值。
如图25所示,平面波垂直向Z轴正方向发射时,矩形实线区域为有效成像区域,进行偏角发射时,虚线平行四边形区域为有效成像区域。与图26所示的发散波相比可知,在满足上述阵元指向性限制条件前提下,使用同样的波束偏转角度,发散波相比平面波覆盖的有效成像范围更大,因而在一些实施例中,成像过程优选地可以结合使用发散波进行偏角扫描。
在一些实施例中,平面波波束的偏转角度可以满足上述阵元指向性限制条件,使得在最大偏转角度内波束的主瓣,能够在波束偏转方向上保持良好的声场特性,以减少超声成像伪影的存在,从而提高成像质量。
如图27a至图27d所示,当扫描对象的被测介质中存在较大的异质组织时,不同角度的发射波束在介质表面能够引起的回声信号也不同,其中图27a、27b、27c中垂直于波束方向的界面会形成较强的回声信号,因而图像中垂直于波束的轮廓较为明显,当如图27d中使用多角度波束进行发射并合成一幅图像时,图像中能够包含更多的边界信息。因此,在一些实施例中,可以以高能量的聚焦波束线扫描图像作为基础图像,以发散波波束形成图像作为偏角图像来补充介质边界信息并抑制随机噪声,既能保障图像质量,又能提高成像帧率。
下面以发散波波束、聚焦波波束为例,说明极限偏转角度、极限延迟时间的计算方式示例,图28所示的延迟时间为未归零延迟时间。
具体地,发散波波束的延迟时间可以通过公式(9)计算得到:
Figure PCTCN2021138274-appb-000012
聚焦波波束的延迟时间可以通过公式(10)计算得到:
Figure PCTCN2021138274-appb-000013
其中Ei为孔径中第i个阵元,FDi为虚焦点,FFi为实焦点,c为声波在介质中传播的速度,即声速;当以点O为发射孔径中心,FDiO为发散波发射波束方向时,OFFi为聚焦波发射波束方向,过O点分别以虚焦点FDi和实焦点FFi为圆心画弧线,得到发散波和聚焦波的波阵面参考线,阵元Ei的延迟时间可以由波阵面参考线上到阵元的法向距离GDEi及波阵面参考点GD的Z坐标决定。
具体地,进行发散波的延迟时间计算时,若GD的Z坐标为负,计算出的延迟时间为负,则此时GDEi距离距越大则最先发射;若GD的Z坐标为正,计算出的延迟时间为正,GDEi距离距越小则最先发射,形成的波阵面在成像区域内呈扩散趋势;而聚焦波的延迟时间计算与之相反,形成的波阵面在成像区域内呈汇聚趋势。
假设虚实焦点关于X轴对称,且均使用全孔径进行发射,以延时参考点为孔径中心,在符合相应指向性要求情况下,由于波阵面到每个阵元的距离均相同,将延迟时间进行归零(即平移到零时刻)之后,聚焦波和发散波的最大延迟时间可以是相同的。也就是说,最大延迟时间与发射波束类型无关,由未归零延迟时间的最大值和最小值的差值、焦点到最近阵元和最远阵元之距离之和、焦点到孔径中心的距离共同决定。具体地,发散波波束的归零后极限延迟时间,可以通过公式(11)计算得到:
Delay Divergingmax=(E jF Di+E nF Di-2×OF Di)÷c      (11)
聚焦波波束的归零后极限延迟时间,可以通过公式(12)计算得到:
Delay Focalmax=(E jF Fi+E nF Fi-2×OF Fi)÷c      (12)
其中,Ej为距离焦点最近的阵元,En为距离焦点最远的阵元。
在一些实施例中,在第一混合波成像模式和/或第二混合波成像模式下,极限偏转角度和/或极限延迟时间确定之后,可以在成像区域外确定焦点分布的第一焦点边界条件和/或第二焦点边界条件。
在一些实施例中,考虑到第一混合波成像模式下全孔径发射操作的特点,第一焦点边界条件可以包括:成像区域外的非聚焦波的焦点位于第一边界线段上、第二边界线段上,和/或位于远离阵元阵列且第一边界线段与第二边界线段包围形成的V形区域,第一边界线段的延长线和第二边界线段的延长线分别经过阵元阵列第二端点和阵元阵列第一端点,并且与垂直于阵元阵列的直线的夹角为极限偏转角度。
在一些实施例中,可以将非聚焦波的所有焦点均布置于第一边界线段以及第二边界线段,以便保障非聚焦波波束发射时,在其极限偏转角度或极限延迟时间的阵元指向性限制条件下,非聚焦波的所有焦点的发射均能进行全孔径发射操作,使得每个焦点每次发射时都能覆盖较广的扫描范围(例如至少能够覆盖成像区域或大于成像区域的更广区域)。在一些实施例中,可以将非聚焦波的一部分焦点布置于第一边界线段以及第二边界线段,其余焦点布置于远离阵元阵列且位于第一边界线段与第二边界线段包围形成的V形区域,此种布置方式可以保证非聚焦波的部分焦点发射能进行全孔径发射操作,由于非聚焦波本身具有覆盖范围广的特点,即使部分焦点进行全孔径发射操作,整体成像效果依然能够在图像质量和帧率方面提升,以满足用户响应成像需求。
在一些实施例中,可以将聚焦波均匀或不均匀地布置于成像区域内,使得聚焦波的焦点在发射时执行全孔径发射操作或局部孔径发射操作。在一些实施例中,聚焦波执行全孔径发射操作可以包括:聚焦波的最外侧两实焦点可以对应阵元阵列的两端阵元,且所有阵元均设置相应发射实焦点,即聚焦波执行全孔径发射时的成像区域可以覆盖所有阵列阵元。在一些实施例中,在执行全孔径发射操作时,聚焦波可以根据设置的实焦点以预定次序逐线扫描。在一些实施例中,在执行全孔径发射操作时,聚焦波可以根据设置的实焦点,与非聚焦波根据设置的虚焦点交替发射。
在一些实施例中,聚焦波执行局部孔径发射操作可以包括:聚焦波的最外侧两实焦点可以对应阵元阵列的两端阵元,且只有局部(或部分)阵元均设置相应发射实焦点,即聚焦波执行局部孔径发射时的成像区域可以覆盖特定部分阵列阵元。在一些实施例中,聚焦波执行局部孔径发射操作可以包括:聚焦波的最外侧两实焦点可以对应阵元阵列的非两端阵元,且只有局部(或部分)阵元均设置相应发射实焦点,即聚焦波执行局部孔径发射时的成像区域可以覆盖特定部分阵列阵元。在一些实施例中,在执行局部孔径发射操作时,聚焦波可以根据设置的实焦点以预定次序逐线发射(或逐线扫描),例如,参与发射的每个阵元可以按每个实焦点逐线发射。在一些实施例中,在执行局部孔径发射操作时,聚焦波可以根据设置的实焦点,与非聚焦波根据设置的虚焦点交替发射。
在第一混合波成像模式下,根据第一焦点边界条件布置相应焦点位置,能够在满足其极限偏转角度或极限延迟时间的阵元指向性限制条件下,使得非聚焦波全部焦点或部分焦点都能覆盖较广的发射扫描范围,示例性地通过非聚焦波所有焦点发射得到的回波数据作为基础图像,将聚焦波所有焦点发射得到的回波数据作为加强图像,显然能够保障成像区域内较高图像质量的同时,很大程度上减少发射次数,降低发射时间从而提高成像速度,整体成像的帧率显然也会提升,提高了整体成像效率,能够满足用户的高成像需求(例如需要高帧率成像的心脏等运动组织成像场景等)。
图29是根据本说明书一些实施例所示的混合波成像模式下焦点分布方式示例。在图29中,一排或多排换能器阵元阵列(即一维阵元阵列或多维阵元阵列)沿X轴排布,聚焦波焦点位于阵元阵列上方(即X轴下方),非聚焦波(如发散波等)焦点位于阵元阵列下方(即X轴上方)。示例性地,可以根据第一焦点边界条件确定第一混合波成像模式的焦点位置、焦点的偏转角度和/或延迟时间。
如图29所示,使用发散波进行发射时,阵元指向性限制条件决定了在不发生声波混叠的角度满足sin(︱θ︱)≤λ/2l,λ是声波的波长,l是换能器中的阵元宽度。为了获得较强的回波信号,选择使用所有阵元进行全孔径发射,示例性地,确定第一焦点边界条件的第一边界线段、第二边界线段,可以包括:则过阵元阵列第二端点En、阵元阵列第一端点E1分别作与Z轴负方向夹角为θ(即极限偏转角度)的连线AM和BL,连线的交点为FDc。焦点到孔径边界的连线与Z轴正方向的夹角小于等于最大偏向角时,孔径覆盖的范围为有效成像区域,则连线交点FDc为临界点,AFDc和BFDc分别为左右边界,即第一边界线段和第二边界线段,当且仅当焦点位于AFDcB包围形成的V形区域(远离阵元阵列方向)范围内(包含第一边界线段的边界和第二边界线段的边界)时,能够使用全孔径发射来覆盖阵元下方的全部矩形区域,若焦点不在该区域内,则焦点到孔径边界的连线与Z轴负方向的连线(垂直直线AE1、BEn)即角度有可能大于θ。
当焦点位于AFDcB区域内部时,如焦点FDj',该焦点与孔径中心O的连线交AM于FDj,距离FDj'O>FDjO,但此时焦点FDj'O与换能器阵列的边界连线所覆盖的有效成像范围变小,选择第一边界线段和第二边界线段上的点作为焦点能够保证每次发射都能够覆盖较大的成像区域。因此设置焦点时,可以选择将焦点放置在第一边界线段AFDc和第二边界线段BFDc上,也可以通过下述直线方程组的形式计算出设置的虚焦点FDj'与孔径中心O的连线在边界线AFDc上的焦点FDj,并使用计算出的焦点FDj来计算发射延迟时间。当以FDi为焦点进行发射时,焦点FDi指向孔径中心O的方向为波束主方向,与Z轴正方向之间的夹角α为波束的偏转角度,阵列上方的不同焦点位置将提供具有不同偏转角度的发射波束。
假设FDj'的坐标为(XFDj',YFDj'),探头阵元个数为N,阵元间距为d,则直线OFDj'与AM的直线方程组可以表示为公式(13):
Figure PCTCN2021138274-appb-000014
在一些实施例中,将位于阵元阵列上方(X轴上方)的焦点以虚焦点进行确定设置,将位于阵元阵列下方(X轴下方)的焦点以实焦点进行确定设置,示例性地可以如图29所示的在成像区域内均匀布置对应局部阵元阵列的若干实焦点,在根据实焦点发射时,可以以逐线发射或交替发射方式进行局部孔径发射操作。在一些实施例中,可以根据虚焦点个数确定偏转角度个数,以便设置或调整一幅图像中能够获取的介质的边界信息的量。在一些实施例中,可以根据实焦点个数设置或调整发射线密度,以便通过接受线密度来实现基础图像的图像质量或帧率调整,从而作用于最终成像图像。
在一些实施例中,孔径阵元个数可以由公式(14)计算得到:
孔径阵元个数=聚焦深度/(聚焦系数×阵元间距)     (14)
在一些实施例中,聚焦波波束使用实焦点进行逐线扫描发射(例如从阵元阵列的一端到另一端等),形成基础图像,非聚焦波波束使用虚焦点发射形成叠加图像。
在一些实施例中,上述步骤2320中,根据混合波成像模式,进行相应混合波成像操作,获得相应成像结果,可以包括以下步骤中的一个或多个。
对第一混合波回波数据和/或第二混合波回波数据进行复合操作,复合操作包括线复合、空间复合、频率复合、图像复合中的至少一种或几种的组合。
在一些实施例中,可以根据第一混合波回波数据和/或第二混合波回波数据的相干性信息,进行线复合、空间复合、频率复合、图像复合中的至少一种或几种的组合的操作。在一些实施例中,可以利用任何可行的方式或手段进行线复合、空间复合、频率复合、图像复合中的至少一种或几种的组合的操作,本说明书实施例不对其特别限制。
根据不同用户在不同成像场景的成像需求,通过单独或组合采用线复合、空间复合、频率复合、图像复合等图像复合操作的合理配置,能够获得更多偏角扫描信息,并可以有效抑制随机噪声,从而无论在图像质量上还是帧率上都能提高成像效率。
图30是根据本说明书一些实施例所示的第一混合波成像模式的发射成像示意图。结合图29和图30,在一些实施例中,聚焦波可以使用局部孔径发射,而发散波可以使用全孔径发射,可以先进行聚焦波逐线扫描,再进行发散波逐偏角扫描。聚焦波每次发射的回波数据仅通过波束合成形成m条线(如图30中m取值为4),每条线对应一个阵元和一个实焦点,所有的n*m条线最终合成一幅线扫描图像;而发散波使用全孔径发射且阵元探头覆盖有效成像区域,单次发射就可以合成一幅图像(由发散波波束的n*m条线构成)。
在一些实施例中,第一混合波回波数据的复合操作可以包括:考虑相邻发射之间的相关性,每次发射计算累加权重,通过设置相应加权系数进行相干复合或非相干复合,和/或获得成像图像。在一些实施例中,可以采用图像与图像复合的方式进行前述相干复合或非相干复合。
示例性地,假设聚焦波焦点个数为n,发散波焦点个数为k,每个焦点都对应一次发射,发散波的k个相邻发射存在相互覆盖或重叠区域,则可利用其相干性,使用解调后的复数数据进行相邻发射之间的相干复合,可使用如相位相干系数、符号相干系数、短阶空间相干系数等相干方法计算得到每个像素的加权系数,将加权系数应用在相干叠加中以利用相邻发射之间的相干性,所有的发散波偏角(偏转角度)图像复合成一幅图像。而聚焦波束的n次相邻发射不涉及区域的覆盖或重叠,所有的线合成一幅图像。最后,将发散波图像与聚焦波图像在实数域内进行非相干复合,至此获得最终的成像图像。
在一些实施例中,考虑到第二混合波成像模式下全孔径发射操作的特点,第二焦点边界条件可以包括:成像区域外的非聚焦波的焦点位于第一边界点和第二边界点之间,第一边界点位于第一参考线 和第二参考线上,第一参考线经过成像区域内的第一端实焦点且与经过阵元阵列第一端点的垂直直线的夹角为极限偏转角度,第二参考线经过阵元阵列第二端点且与经过阵元阵列第二端点的垂直直线的夹角为极限偏转角度;第二边界点位于第三参考线和第四参考线上,第三参考线经过成像区域内的第二端实焦点且与经过阵元阵列第二端点的垂直直线的夹角为极限偏转角度,第四参考线经过阵元阵列第一端点且与经过阵元阵列第一端点的垂直直线的夹角为极限偏转角度。
在一些实施例中,可以将非聚焦波的至少部分(例如所有)焦点布置于第一边界点和第二边界点之间,以便保障非聚焦波波束发射时,在其极限偏转角度或极限延迟时间的阵元指向性限制条件下,非聚焦波的所有焦点的发射均能进行局部孔径的移动孔径发射操作,使得每个焦点每次发射时都能覆盖预定的扫描范围。在一些实施例中,可以将非聚焦波的两端焦点布置于第一边界点以及第二边界点,其余焦点布置于第一边界点与第二边界点之间的区域,此种布置方式可以保证非聚焦波的所有焦点发射能进行局部孔径发射操作,由于非聚焦波本身具有覆盖范围广的特点,即使焦点进行局部孔径的移动孔径发射操作,尽管在覆盖成像区域范围上相比全孔径发射操作稍小,但整体成像效果依然能够在图像质量和帧率方面提升,并满足用户响应成像需求。
在一些实施例中,可以将聚焦波均匀或不均匀地布置于成像区域内,使得聚焦波的焦点在发射时执行全孔径发射操作或局部孔径发射操作。在一些实施例中,聚焦波执行全孔径发射操作可以包括:聚焦波的最外侧两实焦点可以对应阵元阵列的两端阵元,且所有阵元均设置相应发射实焦点,即聚焦波执行全孔径发射时的成像区域可以覆盖所有阵列阵元。在一些实施例中,在执行全孔径发射操作时,聚焦波可以根据设置的实焦点以预定次序逐线扫描。在一些实施例中,在执行全孔径发射操作时,聚焦波可以根据设置的实焦点,与非聚焦波根据设置的虚焦点交替发射。
在一些实施例中,聚焦波执行局部孔径发射操作可以包括:聚焦波的最外侧两实焦点可以对应阵元阵列的两端阵元,且只有局部(或部分)阵元均设置相应发射实焦点,即聚焦波执行局部孔径发射时的成像区域可以覆盖特定部分阵列阵元。在一些实施例中,聚焦波执行局部孔径发射操作可以包括:聚焦波的最外侧两实焦点可以对应阵元阵列的非两端阵元,且只有局部(或部分)阵元设置相应发射实焦点,即聚焦波执行局部孔径发射时的成像区域可以覆盖特定部分阵列阵元。在一些实施例中,在执行局部孔径发射操作时,聚焦波可以根据设置的实焦点以预定次序逐线发射。在一些实施例中,在执行局部孔径发射操作时,聚焦波可以根据设置的实焦点,非聚焦波可以根据设置的虚焦点发射。在一些实施例中,聚焦波和非聚焦波可以交替发射。
在第二混合波成像模式下,根据第二焦点边界条件布置相应焦点位置,能够在满足其极限偏转角度或极限延迟时间的阵元指向性限制条件下,使得非聚焦波全部焦点或部分焦点都能覆盖预定的发射扫描范围。示例性地,可以通过聚焦波所有焦点发射得到的回波数据作为基础图像,将非聚焦波所有焦点发射得到的回波数据作为加强图像,也能够保障成像区域内较高图像质量的同时,减少发射次数,降低发射时间从而提高成像速度,提到整体成像的帧率,提高整体成像效率,满足用户的特定成像需求。
图31是根据本说明书一些实施例所示的混合波成像模式下焦点分布方式示例。在图31中,一排或多排换能器阵元阵列(即一维阵元阵列或多维阵元阵列)沿X轴排布,聚焦波焦点位于阵元阵列上方(X轴下方)。示例性地,可以如图31所示在成像区域内均匀布置对应局部阵元阵列的若干实焦点(如图31中的FF1、FFi、FFn等实焦点所示)。在根据实焦点发射时,可以以逐线发射或交替发射方式进行局部孔径发射操作。示例性地,区别于按照阵元阵列的阵元排列次序(如从左到右)依次发射,根据实焦点的交替方式可以采用实焦点交叉发射方式,例如先根据最左端的第一个实焦点发射,然后第二个实焦点发射,其后进行第二个实焦点发射,依次类推。非聚焦波(如发散波等)焦点位于阵元阵列下方(即X轴上方)。示例性地,可以根据第二焦点边界条件确定第二混合波成像模式的焦点位置、焦点的偏转角度或延迟时间。
如图31所示,成像区域外(X轴上方)的非聚焦波的焦点位于第一边界点U和第二边界点V之间,第一边界点U位于第一参考线UFFn和第二参考线BL上,第一参考线UFFn经过成像区域内的第二端实焦点FFn且与经过阵元阵列第二端点En的垂直直线的夹角为极限偏转角度θ,第二参考线BL经过阵元阵列第一端点E1且与经过阵元阵列第一端点E1的垂直直线的夹角为极限偏转角度θ;第二界点V位于第三参考线FF1V和第四参考线AM上,第三参考线FF1V经过成像区域内(X轴下方)的第一端实焦点FF1且与经过阵元阵列第一端点E1的垂直直线的夹角为极限偏转角度θ,第四参考线AM经过阵元阵列第二端点En且与经过阵元阵列第二端点En的垂直直线的夹角为极限偏转角度θ。
示例性地,第一边界点U和第二边界点V的确定可以包括:经过阵元阵列第一端点E1画一条垂直于阵元阵列(即图中X轴)的直线E1FF1,再以与直线E1FF1夹角为θ在成像区域外(即z轴负方向)确定第二参考线BL,经过阵元阵列第二端点En画一条垂直于阵元阵列的直线EnFFn,再以与直线E1FF1夹角为θ在成像区域外(即z轴负方向)确定第四参考线AM,再过第一端实焦点(即 最左侧实焦点)FF1作BL的平行线(即第三参考线FF1V)使得与第四参考线AM相交于点V,再过第二端实焦点(即最右侧实焦点)FFn作AM(即第四参考线)的平行线(即第一参考线UFFn)使得与第二参考线BL相交于点U,确定的点U和点V即为非聚焦波的第二焦点边界条件的第一边界点和第二边界点,示例性地非聚焦波的所有虚焦点可以在点U和点V之间连线均匀或非均匀分布,从而虚焦点能够在阵元指向性限制条件的限制之下,使得有效成像区域能够覆盖到所有的实焦点,即直线UL和VM下方的交集区域。
在一些实施例中,可以在作为第一边界点和第二边界点的点U和点V之间均等分配其他虚焦点。在一些实施例中,虚实焦点的数目可以相同。
在一些实施例中,可以连接最左侧的实焦点FF1与最左侧的虚焦点U,连线与换能器阵列相交于点P,将P设置非聚焦波发射时孔径的中心,聚焦波以距离焦点最近的阵元为聚焦波发射时的孔径的中心,垂直向下发射且聚焦于实焦点FF1。也即,焦点与孔径中心的连线为波束的主方向,如聚焦波的第一条发射线的孔径中心为E1,则E1FF1为聚焦波的主方向,垂直向下;P为非聚焦波(如发散波)的孔径中心,则UP为非聚焦波的主方向;以U点、V点之间的任一虚焦点为焦点时,需要移动孔径中心P的位置,使得FDi、P、FF1在一条直线上。如此以U点、V点之间(包括U点、V点)的任一虚焦点为焦点,非聚焦波波束的中心波束均穿过实焦点FF1,使得两种波束能够在实焦点处形成良好的声场分布。
图32是根据本说明书一些实施例所示的第二混合波成像模式的发射成像示意图。在一些实施例中,如图32所示,发射时采用聚焦波和发散波交替发射的方式,例如,焦点发射顺序可以设为:实焦点TF1、虚焦点TD1、实焦点TF2、虚焦点TD2…。在进行波束合成和/或空间复合时,聚焦波束TFi可以形成m条接收线,而发散波束TDi可以形成的扫描线数可以由其孔径阵元垂直下方区域下的实焦点个数决定。如果孔径阵元下方包含k个实焦点,则发散波束TDi一次可以合成k*m条线。
在一些实施例中,第二混合波回波数据的复合操作可以包括:根据第二混合波回波数据的相干性信息,确定第二混合波回波数据的权重系数;和/或根据第二混合波回波数据的权重系数,进行相干复合和/或非相干复合。
在一些实施例中,与全孔径发射操作相应复合不同,移动孔径发射发散波时波束主方向中心可以通过实焦点区域,进行相干复合可以采用第一种相干复合方式和/或第二种相干复合方式。
第一种相干复合方式可以采用相邻发射之间的复合,如取TF1合成的m条线,再从TD1合成的k*m条线中对应位置的带偏角信息(即偏转角度信息)的m条线,由于这两次为相邻发射,则可对这位置重叠的m条线计算其相干系数(即相干性信息),如可使用相位相干系数、符号相干系数、短阶空间相干系数等,通过相干系数可以确定各自的权重系数,再通过加权相干叠加复合可以得到新的m条线作为复合图像中的组成部分。在一些实施例中,可以对相邻发射的回波数据进行复合。如图32所示,示例中为聚焦波与发散波交替发射,可以进行聚焦波与发散波的扫描线(即回波数据)之间的相干复合,比如TF1与TD1复合,TD1与TF2复合,所以n个实焦点和n个虚焦点可以进行2*n-1次复合,最终可以通过相干复合合成具有m*n条线的一幅复合图像。
第二种相干复合方式可以采用虚焦点发射之间的复合,发散波以虚焦点发射每次可形成多条线,不同发射之间可以存在交叉重叠区域,可在重叠区域内计算每个像素的相干系数,通过相干系数可以确定各自权重系数,再通过计算相干加权系数后复合可以得到相干复合的发散波图像。通过发散波的相干复合可以抑制无回声区域的随机噪声,同时能够提供介质在偏角扫描下的不同信息。
通过相干复合方式得到的图像中可以得到多个偏角扫描下的信息,而且复合过程可以抑制一部分随机噪声,加强介质在偏角扫描下的信息量。在一些实施例中,可以在此基础上,将两个相干复合图像再通过相应权重配置进行非相干复合,能够进一步提升系统的成像速度,整体上提高成像效率,能够满足用户对于图像质量、帧率的相关成像需求。
在一些实施例中,在步骤2320中,可以根据混合波成像模式,进行相应混合波成像操作,获得相应成像结果,可以包括以下步骤中的一个或多个。
根据混合波成像模式触发第三混合波成像模式下的混合波成像操作,可以包括:分别发射第一发射频率的非聚焦波、第二发射频率的聚焦波、和/或第三发射频率的谐波,获得相应的第一非聚焦波成像数据、第二聚焦波成像数据和/或第三谐波成像数据;和/或对第一非聚焦波成像数据、第二聚焦波成像数据和/或第三谐波成像数据,进行相干复合和/或非相干复合的图像复合操作。
在一些实施例中,第三混合波成像模式下的混合波成像操作可以包括:根据成像需求相关的信息预设两个或多个(例如三个)不同发射频率(例如中心频率,分别用f1、f2、f3表示)发射超声波,其中以f1为中心频率发射N1(N1>=1)帧的宽波束并接收成像,并对N1帧非聚焦波图像进行帧平均处理,获得第一非聚焦波成像数据;以f2为中心频率发射聚焦波波束信号并接收成像,获得第二聚焦 波成像数据;以f3为中心频率先后发射幅度相同、两个相位差为180度的聚焦波波束信号并接收,并将这两个脉冲的接收信号求和进行谐波成像,获得第三谐波成像数据;和/或进行相干复合或非相干复合的图像复合操作,得到复合后的成像图像。
示例性地,第三混合波成像模式下的混合波成像操作可以包括以下步骤中的一个或多个。超声阵元探头依次发射并接收N1帧的第一发射频率(例如7.5MHz)的宽波束信号,将接收到的N1帧射频数据进行成像,并将得到的N1帧数据进行平均得到图像I1。超声阵元探头发射第二发射频率(例如10MHz)的聚焦波波束信号,并将接收到的射频数据进行成像,得到图像I2。超声阵元探头依次发射并接收幅度相同、相位差为180度、频率为第三发射频率(例如5MHz)的聚焦波波束信号,并将接收的两组射频信号进行求和;然后将求和后的数据进行成像,得到图像I3。可以将图像I1、I2、I3进行非相干加权复合得到图像Image。在一些实施例中,图像Image可以采用公式(15)计算:
Image=w1*I1+w2*I2+w3*I3     (15)
其中,w1、w2和w3表示权重系数,且w1、w2、w3都为正数。
在一些实施例中,w1、w2、w3可以是根据经验进行取值的经验常数,其取值范围不受特别限制。在一些实施例中,用户可以根据具体成像需求或期望成像效果,对w1、w2、w3的大小进行调整。例如,如果用户希望在保证整幅图像清晰的情况下聚焦区域的质量更好,可以将w1、w2、w3彼此之间的差值设定在较小范围,例如,w1=1,w2=1.5,w3=1.5。
图33a至图33c是根据本说明书一些实施例所示的混合波成像模式中超声波波束的声压分布示例图。在一些实施例中,声压分布状况图可以通过Field II仿真得到。
图33a示出了7.5MHz宽波束声压分布状况。图33b示出了10MHz聚焦波束声压分布状况,图中虚线区域为声压较大区域,意味着较大频率的聚焦波束下图像深度为浅层区域的衰减小、信息保留更多。图33c示出了5MHz谐波声压分布状况,图中虚线区域为声压较大的区域,可以看到谐波成像模式下图像深度为较深层区域衰减小、信息保留更多。由三者的声压分布状况可知,将不同频率混合波在混合波成像模式下进行图像复合操作后,较大频率成分可以提高图像浅层区域的图像质量,复合谐波频率成分可以提高图像深层区域的空间分辨率,使得在不损失分辨率的基础上减少斑点噪声,提高最终成像的图像质量;同时,由于宽波束成像发射可以覆盖整个成像区域,通过一次发射和接收就能获取整个成像区域的回波数据,与传统单纯聚焦成像相比,可以减少超声波的发射次数,极大程度上提高成像的帧率。
在一些实施例中,可以通过频率及超声波波束类型的多种组合设置,针对性实现多个成像场景的个性化图像质量以及帧率需求。例如,如果更关注图像质量,则可以混合不同频率的同一种波束类型(例如宽波束),从而很大程度上提高用户的成像操作体验。
在一些实施例中,可以获取检测对象(如患者的某一器官等)的组织运动信息,根据组织运动信息,确定聚焦波和/或所述非聚焦波的参数。在一些实施例中,可以利用示踪剂、追踪剂或造影剂追踪检测对象组织,从而获取其组织运动信息。在一些实施例中,可以通过阵元探头上设置的传感器(如位置传感器等),检测并获取检测对象的组织运动信息。在一些实施例中,检测对象的组织运动信息可以是组织边界的运动速度。在一些实施例中,聚焦波和/或非聚焦波的参数可以是聚焦波和/或非聚焦波各自的所需发射焦点数量和/或两者比例参数。
在一些实施例中,为了更好地满足用户特定场景的成像需求,可以将图像质量和/或帧率要求与待扫描部位的组织运动信息一起作为确定混合波成像模式的依据,或者根据待扫描(或扫查)部位的组织运动信息确定相应图像质量和/或帧率的具体成像需求信息,再根据成像需求信息进行混合波成像模式的调整,例如调整聚焦波发射与非聚焦波发射的比例等等。在一些实施例中,前述用户特定场景可以包括组织运动信息较有显著特点的成像场景,或对帧率要求较高的功能组织成像场景,例如心脏造影成像场景、血管检测扫描成像场景等等。
在一些实施例中,超声成像系统100或处理设备3400,可以自适应调整发射波束,在成像扫查时,如果阵元探头处的位置传感器探测到阵元探头位置相对稳定时,可以先通过发射几次全孔径发散波对回波信号进行分析,提取扫查部位的组织运动速度信息。在一些实施例中,可以通过选择的扫查部位及速度信息,估算该扫查部位所需的帧率。若需要较高的成像帧率,则后续发射中可以减少聚焦波线扫描的发射次数,多增加非聚焦波扫描的次数,并根据扫查部位的组织运动信息,自动调节发射聚焦波和非聚焦波的比例,从而实现帧率的自动控制和/或动态调整。
示例性地,心脏造影成像场景中,超声成像系统100或处理设备3400,可以获取适配的阵元探头和/或待扫查部位的系统预设参数。当阵元探头位于被测部位时,阵元探头的位置传感器和/或温度传感器可以将信号反馈到系统。系统可以以最高帧率进行发散波成像,得到不同时刻的组织图像。可以通过对每帧图像中的反射边界进行检测,估计组织边界的位移大小s,通过位移距离与帧间隔时间t, 估算出组织边界的运动速度v=s÷t,即为单位时间内的组织位移。假设系统需要跟踪的最小位移为h,可以得到最小位移的时间为tmin=h/s,则形成一帧图像的最大时间为tmin。据此,系统可通过控制发散波与聚焦波的比例,保证形成一帧的时间不超过tmin,假设形成一张聚焦波图像需要的时间为tF,形成一张发散波图像需要的时间为tD,且系统控制用于复合的发散波图像为x个,聚焦波图像为y个,通过调节x和y的值,保证x*tD+y*tF<tmin。而当在扫查间隙由于某些外界因素引起被测者的心跳加速或者心跳变缓,即组织运动信息发生变化,则系统可以通过回调重复上述流程,进行自动帧率调节,最大化系统的调节及优化成像性能。
在一些实施例中,血流检测与2D扫描可能需要不同中心频率的发射脉冲,因而系统发射时可以对两种发射进行双工发射,对接收数据进行相应的处理。由于两种发射可以不同时进行,且血流检测需要多次发射才能检出一次血流,那么检测到的血流可以不与2D背景实时一致。
示例性地,血管检测扫描成像场景中,超声成像系统100或处理设备3400,可以使用混合发射,通过发散波进行血流检测。可以发射多次发散波对发散波覆盖的有效区域的至少部分点(例如所有点)进行血流检测,而不是仅检测出一条线上的血流变化,这样可有效提升血流检测的帧率,缩小与2D模式的时间差距,最终实现融合,从而实现功能成像与2D扫描成像的帧率匹配,提升功能成像与2D扫描成像之间的实时一致性。
可以将混合波成像模式应用于对帧率要求较高或组织运动信息具有显著特点的相应场景。例如,非聚焦波(如发散波)一次发射就可以形成一幅范围较广的图像数据,结合非聚焦波与聚焦波的方式能够显著减少系统在混合波成像模式下的发射次数;通过使用聚焦波对整个区域进行成像或多次发射聚焦波,同样也能够获取到图像中每一个点在时间上的相位变化信息,从而可以用于评估心脏组织运动或血管血流,能够保证成像图像的质量。
图34是根据本说明书一些实施例所示的处理设备3400的示例性结构框图。如图34所示,处理设备3400可以包括混合波成像模式确定模块3410、和/或混合波成像操作模块3420。混合波成像模式确定模块3410,可以用于根据与成像需求有关的信息确定相应混合波成像模式。混合波成像操作模块3420,可以用于根据混合波成像模式,进行相应混合波成像操作,获得相应成像结果。至于处理设备3400执行超声成像流程或混合波成像模式确定模块3410的混合波成像模式确定流程、混合波成像操作模块3420的混合波成像操作流程,可以参见上述任一实施例所述的超声成像方法2300相关描述,在此不再赘述。
本说明书一些实施例提供的一种超声成像系统,可以包括:至少一个存储介质,其存储有至少一组指令;以及至少一个处理器,被配置为与至少一个存储介质通信,其中,当执行所述至少一组指令时,至少一个处理器被指示为系统:根据与成像需求有关的信息确定相应混合波成像模式;根据混合波成像模式,进行相应混合波成像操作,获得相应成像结果;其中,成像需求至少包括与图像质量和/或帧率有关的需求,混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,发射波束类型至少包括聚焦波和/或非聚焦波。
另外,本说明书一些实施例还提供了一种超声成像设备,包括处理器,该处理器用于执行如前述任一实施例所述的超声成像方法2300的相应流程,具体可参见图23至图33相关描述,在此不再赘述。
另外,本说明书一些实施例还提供了非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,至少一组指令指示至少一个处理器:可以执行如前述任一实施例所述的超声成像方法2300的相应流程,具体可参见图23至图33相关描述,在此不再赘述。
本说明书一些实施例提供的超声成像方法、系统、设备及计算机可读存储介质,至少具有以下有益效果:(1)通过综合考虑包含图像质量和/或帧率在内的用户关注成像需求,通过混合波发射及其多重复合手段的利用,进行有效资源配置,确定最佳混合波成像模式,然后在该混合波成像模式完成成像操作,得到优化的成像结果,可以提高整体成像效率,满足用户的预期成像需求,很大程度上提高用户体验;(2)通过混合波成像模式中的全孔径混合发射操作,覆盖较大范围的扫描区域,在综合了非聚焦波成像速度快、覆盖面积广、声场均匀及发射次数较少使得帧率提高的同时,可以通过聚焦波能量加强提高图像质量;(3)通过混合波成像模式中的移动孔径操作方式,既可以根据用户成像需求,结合利用多种波束各自优势在重要区域(如感兴趣区域)进行发射扫描,又能够获得更丰富维度的混合波回波数据,便于后续回波信号复合或图像复合处理,可以为满足不同用户不同场景的个性化成像需求提供保障;(4)根据不同用户在不同成像场景的成像需求,通过单独或组合采用线复合、空间复合、频率复合、图像复合等图像复合操作的合理配置,能够获得更多偏角扫描信息,并可以有效抑制随机噪声,从而在图像质量上还是帧率上都能提高成像效率。
综上所述,本说明书实施例提供的超声成像方法、系统、设备及计算机可读存储介质,至少具 有以下有益效果:
(1)通过综合考虑包含图像质量和/或帧率在内的等影响整体成像效率的彼此影响关系因素,从用户关注成像需求角度出发,通过局部成像区域优化成像、混合波发射及其结合手段的利用,针对不同成像状况的成像需求,进行有效资源配置,确定最佳混合波成像模式,从而高适应性地提供相应成像方案,并得到优化的成像结果,既提高了整体成像效率,又满足了用户多种预期成像需求,很大程度上提高了用户体验;(2)针对不同成像状况的成像需求或诊断需求,根据选定ROI的相应成像条件数据进行分析判断,确定其符合何种优化成像模式,并触发适用的相应优化成像模式,从而高适应性地提供相应成像方案,既提高了成像效率,又能满足多种不同成像需求,从而在克服以往技术方案缺陷的同时,提供最佳成像方案;(3)支持适应性增强感兴趣区域与其之外其他区域可同时动态显示、动态调整的全局区域的成像模式,更便于用户在检测或诊断时查看及调整成像图像,较大程度提高了用户体验;(4)由于进行感兴趣区域选定或成像条件数据计算等超声成像过程涉及的计算,即可以通过预先设置方式计算并存储,还可以仅在用户需要时提供交互方式以供用户动态调整之后再计算,既保障了较小计算量,又能满足用户成像时的实时交互以及动态调整需求,进一步提高了用户体验;(5)通过混合波成像模式中的全孔径混合发射操作,覆盖较大范围的扫描区域,在综合了非聚焦波成像速度快、覆盖面积广、声场均匀及发射次数较少使得帧率提高的同时,通过聚焦波能量加强提高图像质量;(6)通过混合波成像模式中的移动孔径操作方式,既根据用户成像需求,结合利用多种波束各自优势在侧重区域进行有利发射扫描,又能够获得更丰富维度的混合波回波数据,便于后续回波信号复合或图像复合处理,为满足不同用户不同场景的个性化成像需求提供保障;(7)根据不同用户在不同成像场景的成像需求,通过单独或组合采用线复合、空间复合、频率复合、图像复合等图像复合操作的合理配置,能够获得更多偏角扫描信息,并可以有效抑制随机噪声,从而无论在图像质量上还是帧率上都能提高成像效率。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (34)

  1. 一种超声成像方法,在至少一个机器上执行,所述至少一个机器中的每一个机器具有至少一个处理器和一个存储器,所述方法包括:
    根据与成像需求有关的信息确定目标成像模式;
    根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
  2. 根据权利要求1所述的方法,所述根据与成像需求有关的信息确定目标成像模式,包括:
    根据预设需求参数和/或用户输入指令,获取所述成像需求有关的信息;
    根据所述成像需求有关的信息,从所述第一目标成像模式和/或第二目标成像模式中确定目标成像模式。
  3. 根据权利要求2所述的方法,其中:
    所述第一目标成像模式包括第一优化成像模式、第二优化成像模式中的至少一个,所述第一优化成像模式用于进行覆盖全局成像区域的发射参数调整操作,所述全局成像区域包括所述局部成像区域,所述第二优化成像模式用于进行覆盖所述局部成像区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作,和/或
    所述第二目标成像模式包括第一混合波成像模式、第二混合波成像模式中的至少一个,所述第一混合波成像模式用于进行全孔径混合发射操作,所述第二混合波成像模式用于进行移动孔径混合发射操作。
  4. 根据权利要求3所述的方法,所述根据与成像需求有关的信息确定目标成像模式,包括:
    根据所述局部成像区域确定成像条件数据;
    根据所述成像条件数据,从所述第一优化成像模式、所述第二优化成像模式中选定所述目标成像模式。
  5. 根据权利要求4所述的方法,根据所述成像条件数据,从所述第一优化成像模式、所述第二优化成像模式中选定所述目标成像模式,包括:
    响应于所述成像条件数据满足第一条件,确定所述目标成像模式为所述第一优化成像模式;
    响应于所述成像条件数据不满足所述第一条件,确定所述目标成像模式为所述第二优化成像模式。
  6. 根据权利要求3所述的方法,所述目标成像模式为所述第二目标成像模式,所述根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果,包括:
    根据所述第一混合波成像模式的第一发射参数,执行第一超声波的全孔径发射操作,及执行第二超声波的全孔径发射操作或局部孔径发射操作,获得第一混合波回波数据,并基于所述第一混合波回波数据确定所述目标成像结果;和/或
    根据所述第二混合波成像模式的第二发射参数,执行所述第一超声波的移动孔径发射操作,及执行所述第二超声波的全孔径发射操作或局部孔径发射操作,获得第二混合波回波数据,并基于所述第二混合波回波数据确定所述目标成像结果。
  7. 一种超声成像方法,在至少一个机器上执行,所述至少一个机器中的每一个机器具有至少一个处理器和一个存储器,所述方法包括:
    在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;
    根据所述感兴趣区域确定成像条件数据;
    判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
  8. 根据权利要求7所述的方法,所述在初始成像图像上确定感兴趣区域,包括:
    通过人工智能自动识别算法、自动跟踪算法、以及触屏和/或非触屏操作指令中的至少一种确定所述感兴趣区域。
  9. 根据权利要求7或8所述的方法,所述根据所述感兴趣区域确定成像条件数据,包括:
    根据所述感兴趣区域计算所述感兴趣区域的有效成像区域;
    根据所述有效成像区域计算覆盖所述有效成像区域的第一发射条件参数;
    确定所述有效成像区域的第一发射条件参数与所述全局成像区域的第二发射条件参数之间的关系数据;
    其中,所述第一发射条件参数、第二发射条件参数分别至少包括焦点个数或发射次数。
  10. 根据权利要求9所述的方法,所述判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,包括:
    判断所述关系数据是否小于阈值;
    响应于所述关系数据小于所述阈值,触发所述第一优化成像模式下的成像操作,包括:在满足帧频要求条件下调整所述发射参数,使得所述感兴趣区域的声波能量得到增强;
    响应于所述关系数据不小于所述阈值,触发所述第二优化成像模式下的成像操作,包括:
    覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作,以分别得到关于所述感兴趣区域的增强图像以及关于所述全局成像区域的全局图像;
    对所述增强图像与所述全局图像进行图像复合操作。
  11. 根据权利要求10所述的方法,其中:
    所述发射参数包括发射模式、发射孔径参数、发射焦点参数、发射偏角、发射频率、发射波形、增益中的至少一种;
    所述发射模式包括聚焦发射、发散波发射、宽波束发射、平面波发射、单阵元发射中的至少一种或两种及以上发射模式的混合发射。
  12. 根据权利要求10或11所述的方法,所述调整发射参数,包括:
    对所述感兴趣区域之外的区域中的焦点分布进行分析,以确定满足预设焦点分布条件的待补偿区域;
    增加发射以对所述待补偿区域进行声波能量的补偿。
  13. 根据权利要求10-12任一项所述的方法,所述覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作,包括:
    通过交替发射方式对所述感兴趣区域进行增强成像,以及对所述全局成像区域进行非增强成像;
    所述对所述增强图像与所述全局图像进行图像复合操作包括:对所述增强图像与所述全局图像进行加权复合、频域复合、边缘增强中的一种或多种操作。
  14. 根据权利要求10-13任一项所述的方法,所述方法包括:
    根据所述优化成像图像、所述帧频要求、和/或接收的指令,对所述成像条件数据和/或发射参数进行调整。
  15. 根据权利要求7-14任一项所述的方法,所述第一优化成像模式和/或所述第二优化成像模式包括:利用不同发射波束类型和/或不同发射频率的混合波进行成像操作,所述发射波束类型至少包括聚焦波和/或非聚焦波。
  16. 一种超声成像方法,在至少一个机器上执行,所述至少一个机器中的每一个机器具有至少一个处理器和一个存储器,所述方法包括:
    根据与成像需求有关的信息确定相应混合波成像模式;
    根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
  17. 根据权利要求16所述的方法,所述混合波成像模式包括第一混合波成像模式和/或第二混合波成像模式,所述第一混合波成像模式包括全孔径混合发射操作,所述第二混合波成像模式包括移动孔径混合发射操作。
  18. 根据权利要求16所述的方法,所述混合波成像模式包括第一混合波成像模式和第二混合波成像模式,所述根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果,包括:
    根据所述第一混合波成像模式的第一发射参数,执行第一超声波的全孔径发射操作,及执行第二超声波的全孔径发射操作或局部孔径发射操作,获得第一混合波回波数据;和/或
    根据所述第二混合波成像模式的第二发射参数,执行所述第一超声波的移动孔径发射操作,及执行所述第二超声波的全孔径发射操作或局部孔径发射操作,获得第二混合波回波数据。
  19. 根据权利要求18所述的方法,所述根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果,进一步包括:
    对所述第一混合波回波数据和/或所述第二混合波回波数据进行复合操作,所述复合操作包括线复合、空间复合、频率复合、图像复合中的至少一种。
  20. 根据权利要求19所述的方法,所述第二混合波回波数据的复合操作包括:
    根据所述第二混合波回波数据的相干性信息,确定所述第二混合波回波数据的权重系数;
    根据所述第二混合波回波数据的权重系数,进行相干复合和/或非相干复合。
  21. 根据权利要求16-20任一项所述的方法,所述根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果,包括:
    根据所述混合波成像模式触发第三混合波成像模式下的混合波成像操作:
    分别发射第一发射频率的非聚焦波、第二发射频率的聚焦波、第三发射频率的谐波,获得相应的第一非聚焦波成像数据、第二聚焦波成像数据和第三谐波成像数据;
    对所述第一非聚焦波成像数据、第二聚焦波成像数据和第三谐波成像数据,进行相干复合和/或非相干复合的图像复合操作。
  22. 根据权利要求21所述的方法,所述混合波成像操作包括发射聚焦波和非聚焦波进行成像,所述聚焦波与所述非聚焦波的频率不同。
  23. 根据权利要求16-22任一项所述的方法,所述方法还包括:
    获取检测对象的组织运动信息;
    根据所述组织运动信息,确定所述聚焦波和/或所述非聚焦波的参数。
  24. 根据权利要求16-23任一项所述的方法,所述混合波成像操作进一步包括对全局成像区域中的不同局部成像区域采用不同发射波束类型和/或不同发射频率的混合波进行成像。
  25. 根据权利要求16-23任一项所述的方法,所述混合波成像操作还包括:根据感兴趣区域进行覆盖全局成像区域的发射参数调整操作,或者,覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
  26. 一种超声成像系统,包括:
    至少一个存储介质,其存储有至少一组指令;以及
    至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:
    根据与成像需求有关的信息确定目标成像模式;
    根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
  27. 一种超声成像系统,包括:
    成像模式确定模块,用于根据与成像需求有关的信息确定目标成像模式;
    成像操作模块,用于根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
  28. 一种非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:
    根据与成像需求有关的信息确定目标成像模式;
    根据所述目标成像模式,进行相应成像操作,获得相应目标成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述目标成像模式包括第一目标成像模式和/或第二目标成像模式,所述第一目标成像模式用于对局部成像区域进行优化成像,和/或,所述第二目标成像模式利用不同发射波束类型和/或不同发射频率的混合波进行成像。
  29. 一种超声成像系统,包括:
    至少一个存储介质,其存储有至少一组指令;以及
    至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:
    在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;
    根据所述感兴趣区域确定成像条件数据;
    判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
  30. 一种超声成像系统,包括:
    感兴趣区域确定模块,用于在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;
    成像条件数据确定模块,用于根据所述感兴趣区域确定成像条件数据;
    优化成像图像生成模块,用于判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
  31. 一种非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:
    在初始成像图像上确定感兴趣区域,所述初始成像图像包括全局成像区域;
    根据所述感兴趣区域确定成像条件数据;
    判断所述成像条件数据符合何种优化成像模式,并触发相应优化成像模式下的成像操作,生成优化成像图像,所述优化成像模式至少包括第一优化成像模式和第二优化成像模式,其中,所述第一优化成像模式指覆盖所述全局成像区域的发射参数调整操作,所述第二优化成像模式指覆盖所述感兴趣区域的增强成像与覆盖所述全局成像区域的非增强成像的同步操作。
  32. 一种超声成像系统,包括:
    至少一个存储介质,其存储有至少一组指令;以及
    至少一个处理器,被配置为与所述至少一个存储介质通信,其中,当执行所述至少一组指令时,所述至少一个处理器被指示为使所述系统:
    根据与成像需求有关的信息确定相应混合波成像模式;
    根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
  33. 一种超声成像系统,包括:
    混合波成像模式确定模块,用于根据与成像需求有关的信息确定相应混合波成像模式;
    混合波成像操作模块,用于根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
  34. 一种非暂时性计算机可读存储介质,包括至少一组指令,其中,当由计算机设备的至少一个处理器执行时,所述至少一组指令指示所述至少一个处理器:
    根据与成像需求有关的信息确定相应混合波成像模式;
    根据所述混合波成像模式,进行相应混合波成像操作,获得相应成像结果;
    其中,所述成像需求至少包括与图像质量和/或帧率有关的需求,所述混合波成像操作至少利用不同发射波束类型和/或不同发射频率的混合波进行成像,所述发射波束类型至少包括聚焦波和/或非聚焦波。
PCT/CN2021/138274 2021-09-24 2021-12-15 超声成像方法和系统 WO2023045119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/810,330 US20230099970A1 (en) 2021-09-24 2022-06-30 Method and system for ultrasonic imaging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111124331.2A CN114027872B (zh) 2021-09-24 2021-09-24 一种超声成像方法、系统及计算机可读存储介质
CN202111124331.2 2021-09-24
CN202111250486.0A CN114027873B (zh) 2021-10-26 2021-10-26 一种超声成像方法、装置及计算机可读存储介质
CN202111250486.0 2021-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/810,330 Continuation US20230099970A1 (en) 2021-09-24 2022-06-30 Method and system for ultrasonic imaging

Publications (1)

Publication Number Publication Date
WO2023045119A1 true WO2023045119A1 (zh) 2023-03-30

Family

ID=85719953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138274 WO2023045119A1 (zh) 2021-09-24 2021-12-15 超声成像方法和系统

Country Status (2)

Country Link
US (1) US20230099970A1 (zh)
WO (1) WO2023045119A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749569B1 (en) * 2003-01-07 2004-06-15 Esaote S.P.A. Method and apparatus for ultrasound imaging
CN103156636A (zh) * 2011-12-15 2013-06-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN111417347A (zh) * 2017-11-28 2020-07-14 北京深迈瑞医疗电子技术研究院有限公司 一种造影成像方法以及超声成像设备
CN111839589A (zh) * 2020-07-30 2020-10-30 深圳开立生物医疗科技股份有限公司 超声造影成像一键优化方法、系统、设备及计算机介质
CN112638270A (zh) * 2018-09-19 2021-04-09 深圳迈瑞生物医疗电子股份有限公司 一种多工模式下的超声成像方法和超声成像系统
CN112890866A (zh) * 2019-12-03 2021-06-04 深圳迈瑞生物医疗电子股份有限公司 超声成像方法、系统及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749569B1 (en) * 2003-01-07 2004-06-15 Esaote S.P.A. Method and apparatus for ultrasound imaging
CN103156636A (zh) * 2011-12-15 2013-06-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法
CN111417347A (zh) * 2017-11-28 2020-07-14 北京深迈瑞医疗电子技术研究院有限公司 一种造影成像方法以及超声成像设备
CN112638270A (zh) * 2018-09-19 2021-04-09 深圳迈瑞生物医疗电子股份有限公司 一种多工模式下的超声成像方法和超声成像系统
CN112890866A (zh) * 2019-12-03 2021-06-04 深圳迈瑞生物医疗电子股份有限公司 超声成像方法、系统及计算机可读存储介质
CN111839589A (zh) * 2020-07-30 2020-10-30 深圳开立生物医疗科技股份有限公司 超声造影成像一键优化方法、系统、设备及计算机介质

Also Published As

Publication number Publication date
US20230099970A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7252206B2 (ja) 画像アーチファクト特定及び除去のための深層学習ネットワークを有する超音波システム
US11304677B2 (en) Ultrasonic blood flow parameter displaying method, and ultrasonic imaging system therefor
JP6608126B2 (ja) 超音波診断装置
CN104825187B (zh) 超声波诊断装置、图像处理装置以及图像处理方法
US6824517B2 (en) Ultrasound quantification in real-time using acoustic data in more than two dimensions
JP5637880B2 (ja) 超音波診断装置及び画像生成制御プログラム
JP2003204963A (ja) 複数の2dスライスから画像を作成するための超音波診断方法及び装置
US20130184582A1 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image parallel display method
CN102247171A (zh) 超声波诊断装置、超声波图像处理装置以及医用图像诊断装置
JP6576947B2 (ja) 鏡面反射体を追跡するための超音波画像化システムおよび方法
WO2018058606A1 (zh) 超声血流运动谱的显示方法及其超声成像系统
JP2021536276A (ja) 超音波画像による脂肪層の識別
JP2009011468A (ja) 超音波診断装置
US10575823B2 (en) Medical diagnostic apparatus, medical image processing apparatus and medical image processing method
WO2007135884A1 (ja) 超音波診断装置及び超音波診断方法
JP2018140073A (ja) 超音波診断装置、画像処理装置、及び画像処理プログラム
JP7337806B2 (ja) 診断検査のための組織固有のプリセットを備える超音波撮像システム
WO2023045119A1 (zh) 超声成像方法和系统
JP2012245092A (ja) 超音波診断装置
CN114027872B (zh) 一种超声成像方法、系统及计算机可读存储介质
JP5943234B2 (ja) 超音波診断装置および超音波診断装置制御プログラム
JP2013009832A (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
CN114027873B (zh) 一种超声成像方法、装置及计算机可读存储介质
JP2013013650A (ja) 超音波画像処理装置
RU2782874C2 (ru) Интеллектуальная ультразвуковая система для обнаружения артефактов изображений

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE