WO2023044954A1 - 一种超导磁传动系统 - Google Patents

一种超导磁传动系统 Download PDF

Info

Publication number
WO2023044954A1
WO2023044954A1 PCT/CN2021/122091 CN2021122091W WO2023044954A1 WO 2023044954 A1 WO2023044954 A1 WO 2023044954A1 CN 2021122091 W CN2021122091 W CN 2021122091W WO 2023044954 A1 WO2023044954 A1 WO 2023044954A1
Authority
WO
WIPO (PCT)
Prior art keywords
hts
rotor core
temperature superconducting
prime mover
superconducting
Prior art date
Application number
PCT/CN2021/122091
Other languages
English (en)
French (fr)
Inventor
宋运兴
李亮
郑恒康
刘梦宇
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2023044954A1 publication Critical patent/WO2023044954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention belongs to the technical field of superconducting electromagnetic devices, and more specifically relates to a superconducting magnetic transmission system.
  • high-temperature superconducting (HTS) bulk materials in the superconducting state can capture more than ten times the magnetic field strength of permanent magnets of the same size, and more than a thousand times the energy density of permanent magnets;
  • high-temperature superconducting (HTS) wires have high current-carrying density, low energy consumption, and do not generate Joule heat when flowing in a superconducting state. Due to the above significant advantages, high temperature superconducting materials are widely used in basic scientific research, medical and health, transportation, defense industry, electrical engineering and other fields.
  • the barrel magnetic coupler is divided into two types according to the arrangement position of the permanent magnet and the conductor: the permanent magnet built-in barrel magnetic coupler shown in Figure 1 and the permanent magnet built-in barrel magnetic coupler shown in Figure 2.
  • the permanent magnet 5 in Figure 1 is connected to the rotor core 6 on the prime mover side, and rotates under the drive of the prime mover to generate a rotating magnetic field to cut the conductor layer 3, thereby inducing an eddy current, which is subjected to the Lorentz force under the synthetic magnetic field to drive the load
  • the side rotor core 2 rotates to realize magnetic force transmission.
  • the permanent magnet 5 in FIG. 2 is connected to the rotor core 6 on the prime mover side, and is driven to rotate by the prime mover to generate a rotating magnetic field to cut the conductor layer 3 .
  • the permanent magnet 5 in Fig. 3 is fixed on the rotor core 6 on the prime mover side, and the prime mover drives the permanent magnet 5 to rotate to generate a rotating magnetic field, which induces eddy currents on the conductor layer 3, thereby driving the rotor core 2 on the load side to rotate.
  • the magnetic transmission system is developing in the direction of high power.
  • the permanent magnets in the magnetic transmission system are made of permanent magnet materials such as NdFeB, and the residual magnetism does not exceed 2T. limit.
  • the conductor layer in the magnetic transmission system is generally made of high-conductivity materials such as copper and aluminum. Due to the existence of resistance, eddy current Joule heat will be generated to cause temperature rise. In high-power magnetic transmission equipment, the temperature rise caused by eddy current loss has become a prominent problem. Excessive temperature rise will affect the working state of the permanent magnet, and even cause demagnetization. At the same time, the insulation and mechanical properties of the material will be reduced, which will affect the reliable operation of the system. .
  • the purpose of the present invention is to provide a superconducting magnetic transmission system, aiming at solving the problem of excessive temperature rise caused by eddy current loss and limitation of permanent magnet remanence in the existing magnetic transmission system, resulting in power density and output Torque limited problem.
  • the present invention provides a superconducting magnetic transmission system, which includes a transmission body, the transmission body includes a rotor on the prime mover side and a rotor on the load side, wherein the core surface of the rotor on the prime mover side is laid along the circumferential direction There are a plurality of HTS high-temperature superconducting magnetic poles, and the remanence directions of adjacent HTS high-temperature superconducting magnetic poles are oppositely set; the iron core surface of the load-side rotor is fixed with an HTS high-temperature superconducting closed conductor layer, and the HTS high-temperature superconducting closed conductor layer There is an air gap between the HTS high temperature superconducting magnetic pole;
  • the HTS high temperature superconducting magnetic poles When the external prime mover drives the rotor core on the prime mover side to rotate, the HTS high temperature superconducting magnetic poles generate a rotating magnetic field, and the rotating magnetic field acts on the HTS high temperature superconducting closed conductor layer to induce a current, and the induced current is in the magnetic field Under the action of Lorentz force, the rotor on the load side is driven to drive the external load to rotate to realize magnetic transmission.
  • the superconducting magnetic transmission system uses HTS high-temperature superconducting magnetic poles to replace existing permanent magnets, and can capture characteristics much higher than the magnetic field of existing permanent magnets to increase the air gap magnetic density and increase the eddy current of the conductor layer, thereby improving The power density and output torque of the magnetic transmission system; in addition, the use of HTS high-temperature superconducting wire as the conductor layer can avoid eddy current loss and heat caused by resistance, thereby reducing the temperature rise in the body and improving the operation reliability of the magnetic transmission system.
  • a cooling mechanism is also included, and the cooling mechanism realizes forced convection cooling by passing cooling gas, so as to keep the temperature of the transmission body below the critical transition temperature of the high-temperature superconducting material.
  • the cooling mechanism includes a heat exchanger, a cooling circuit, a low-temperature Dewar and an air pump, the low-temperature Dewar is arranged on the periphery of the transmission body, and the heat exchanger communicates with the cooling circuit through the cooling circuit.
  • the low temperature Dewar is connected, and the air pump is arranged on the cooling circuit.
  • both the prime mover side rotor core and the load side rotor core adopt a cylindrical structure, and the prime mover side rotor core and the load side rotor core are arranged in a coaxial ring structure.
  • the load-side rotor core is arranged in the prime mover-side rotor core, and the HTS high-temperature superconducting magnetic poles are fixed on the inner surface of the prime mover-side rotor core and arranged along the circumferential direction, The remanence direction of the HTS high temperature superconducting magnetic pole is arranged radially; the HTS high temperature superconducting closed conductor layer is fixed on the outer surface of the load side rotor core.
  • the HTS high-temperature superconducting magnetic pole adopts high-temperature superconducting block material or high-temperature superconducting excitation winding, wherein the high-temperature superconducting block material is made of YBCO superconducting block material, attached to the original on the inner surface of the motor-side rotor core; the high-temperature superconducting excitation winding is made of REBCO or BSCCO superconducting tape, and is reciprocally laid on the inner surface of the prime mover-side rotor core in an axially parallel manner, and The ends are connected at intervals to form a unidirectional current loop with a reciprocating structure.
  • the high-temperature superconducting block material is made of YBCO superconducting block material, attached to the original on the inner surface of the motor-side rotor core
  • the high-temperature superconducting excitation winding is made of REBCO or BSCCO superconducting tape, and is reciprocally laid on the inner surface of the prime mover
  • the HTS high temperature superconducting conductor layer is a non-insulated pie coil structure wound by REBCO or BSCCO superconducting tape.
  • the non-insulated pie coil structure is sheathed on the outer surface of the load-side rotor core by solder casting.
  • the prime mover side rotor core is arranged in the load side rotor core, and the HTS high temperature superconducting magnetic poles are fixed on the outer surface of the prime mover side rotor core and arranged along the circumferential direction,
  • the residual magnetism direction of the HTS high temperature superconducting magnetic pole is set along the radial direction; the HTS high temperature superconducting closed conductor layer is fixed on the inner surface of the load side rotor core.
  • the rotor core on the prime mover side and the rotor core on the load side both adopt a disc structure, and the rotor core on the prime mover side and the rotor core on the load side are arranged in an axially opposite structure; wherein, The HTS high temperature superconducting magnetic poles are fixed on the side wall of the rotor core on the prime mover side, and the remanence direction of the HTS high temperature superconducting magnetic poles is set opposite to the axial direction; the HTS high temperature superconducting closed conductor layer is fixed on the on the side wall of the rotor core on the load side.
  • Fig. 1 is a structural schematic diagram of a permanent magnet external cylindrical magnetic transmission system provided by the prior art
  • Fig. 2 is a structural schematic diagram of a permanent magnet built-in cylindrical magnetic transmission system provided by the prior art
  • Fig. 3 is a structural schematic diagram of a disk-type magnetic transmission system provided by the prior art
  • Fig. 4 is a schematic structural view of the cooling mechanism provided by the present invention.
  • Fig. 5 is a schematic structural view of the superconducting magnetic transmission system provided by the first embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a superconducting magnetic transmission system provided by the second embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a superconducting magnetic transmission system provided by a third embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a superconducting magnetic transmission system provided by a fourth embodiment of the present invention.
  • 1 represents the bearing
  • 2 represents the rotor core on the load side
  • 3 represents the existing conductor layer
  • 4 represents the air gap
  • 5 represents the existing permanent magnet
  • 6 represents the rotor core on the prime mover side
  • 7 represents the HTS high temperature superconducting magnetic pole
  • 8 Denotes HTS high-temperature superconducting closed conductor layer
  • 9 denotes a low-temperature Dewar
  • 10 denotes a heat exchanger
  • 11 denotes a cooling circuit
  • 12 denotes an air pump.
  • the invention provides a superconducting magnetic transmission system, which includes a transmission body, and the transmission body includes a prime mover side rotor and a load side rotor, wherein the iron core of the prime mover side rotor is connected with an external prime mover through a bearing, and the iron core of the prime mover side rotor A plurality of HTS high temperature superconducting magnetic poles are laid on the surface along the circumferential direction, and the remanence directions of adjacent HTS high temperature superconducting magnetic poles are set in opposite directions; the iron core of the load-side rotor is connected to the external load through bearings, and the surface of the iron core of the load-side rotor is fixed with HTS high-temperature superconducting magnetic poles.
  • the superconducting closed conductor layer, an air gap is left between the HTS high temperature superconducting closed conductor layer and the HTS high temperature superconducting magnetic pole.
  • the HTS high-temperature superconducting magnetic poles When the external prime mover drives the rotor core on the prime mover side to rotate, the HTS high-temperature superconducting magnetic poles generate a rotating magnetic field, and the rotating magnetic field acts on the HTS high-temperature superconducting closed conductor layer to induce a current, and the induced current is affected by the Lorentz force in the magnetic field , drive the rotor on the load side to drive the external load to rotate, and realize magnetic transmission.
  • the present invention compared with existing permanent magnets made of permanent magnet materials such as NdFeB, the present invention adopts HTS high-temperature superconducting magnetic poles, that is, magnetic poles made of high-temperature superconducting (HTS) materials, In the superconducting state, the magnetic field strength that can be captured can reach dozens of times that of existing permanent magnets of the same size, and the energy density can reach more than a thousand times that of existing permanent magnets; compared with existing resistive materials such as copper and aluminum
  • HTS high-temperature superconducting closed conductor layer namely adopts the conductor layer made of high-temperature superconducting (HTS) wire rod, has high current-carrying density, low energy consumption, does not flow when superconducting state characteristic of Joule heating.
  • the HTS high-temperature superconducting magnetic poles provided in this embodiment can use high-temperature superconducting blocks or high-temperature superconducting excitation windings, wherein the high-temperature superconducting blocks can be made of pure YBCO high-temperature superconducting blocks; high-temperature superconducting excitation
  • the winding can be made of REBCO or BSCCO high temperature superconducting tape.
  • the HTS high temperature superconducting closed conductor layer can be made of REBCO or BSCCO high temperature superconducting tape.
  • the superconducting magnetic transmission system uses HTS high-temperature superconducting magnetic poles to replace existing permanent magnets, and can capture characteristics much higher than the magnetic field of existing permanent magnets to increase the air gap magnetic density and increase the eddy current of the conductor layer, thereby improving The power density and output torque of the magnetic transmission system; in addition, the use of HTS high-temperature superconducting wire as the conductor layer can avoid eddy current loss and heat caused by resistance, thereby reducing the temperature rise in the body and improving the operation reliability of the magnetic transmission system.
  • the superconducting magnetic transmission system provided by the present invention also includes a cooling mechanism for Take away the heat generated by mechanical friction and hysteresis loss in the body, and keep the temperature of the body below the critical transition temperature of the high-temperature superconducting material, so as to maintain the HTS high-temperature superconducting magnetic pole and the HTS high-temperature superconducting closed conductor layer of superconductivity.
  • the cooling mechanism can realize forced convection cooling by passing cooling gas, so as to keep the temperature of the transmission body below the critical transition temperature of the high-temperature superconducting material.
  • the cooling mechanism may include a heat exchanger 10, a cooling circuit 11, a low-temperature Dewar 9, and an air pump 12.
  • the low-temperature Dewar 9 is arranged on the periphery of the transmission body.
  • the Dewars 9 are connected, and the air pump 12 is arranged on the cooling circuit 11 .
  • the working principle of the cooling mechanism provided by the present invention is: the heat exchanger 10 cools the circulating gas medium, and the cold air is introduced into the low-temperature Dewar 9 through the cooling circuit 11, the transmission body is cooled by forced convection, and the gas is heated by the air pump 12. pressure.
  • slots can also be made on the rotor on the prime mover side and the rotor on the load side to allow the gas to flow inside to achieve a better cooling effect.
  • Fig. 5 is a schematic structural diagram of the superconducting magnetic transmission system provided by the first embodiment of the present invention.
  • the superconducting magnetic transmission system adopts an external cylindrical structure, that is, the rotor core 6 on the prime mover side and the rotor core 2 on the load side in this system both adopt a cylindrical structure, and the rotor core 6 on the prime mover side and the rotor core 2 on the load side are in the same structure.
  • Shaft annular structure is set, wherein, the load side rotor core 2 is set inside the prime mover side rotor core 6, this embodiment calls the load side rotor core 2 the inner rotor core, and the prime mover side rotor core 6 the outer rotor core.
  • the transmission body in the superconducting magnetic transmission system provided by this embodiment includes bearing 1, inner rotor core, HTS high temperature superconducting closed conductor layer 8, air gap 4, HTS high temperature superconducting magnetic pole 7, outer rotor core from inside to outside and cryogenic Dewar 9.
  • the HTS high temperature superconducting closed conductor layer 8 provided in this embodiment can be a non-insulated cake-shaped coil structure wound by superconducting tapes such as REBCO or BSCCO.
  • superconducting tapes such as REBCO or BSCCO.
  • multiple single cakes or The double cake coil is coaxially sleeved on the outer periphery of the inner rotor core, and is fixed by the coil skeleton or by slotting on the core.
  • it can be formed as a whole by solder pouring, and the HTS high temperature superconducting closed conductor layer 8 rotates synchronously with the inner rotor core.
  • the inner surface of the outer rotor core is provided with an open slot, and the HTS high-temperature superconducting magnetic pole 7 is fixed therein.
  • the HTS high-temperature superconducting magnetic pole 7 can be a high-temperature superconducting block material, and the high-temperature superconducting block material is made of pure HTS material (such as pure YBCO A long block-shaped structure made of block material) is attached to the inner surface of the outer rotor core and rotates synchronously with it.
  • the residual magnetism produced by HTS high-temperature superconducting magnetic pole 7 after magnetization is much higher than that of existing permanent magnets.
  • the magnetization process can be carried out before or after being installed on the outer rotor core, along the circumferential direction
  • the high-temperature superconducting block 7 can be selected according to actual needs, the remanence direction of the HTS high-temperature superconducting pole 7 is along the radial direction, and the remanence direction of the adjacent HTS high-temperature superconducting block 7 is opposite.
  • Cooling gas is introduced into the air gap 4 and the periphery of the outer rotor core to cool down, and through the forced convection heat dissipation, the heat generated by mechanical friction and hysteresis loss in the body is taken away, so that the body is kept at a temperature below the superconducting transition temperature region to maintain the superconductivity of the HTS material.
  • Its cooling mechanism is shown in Figure 4.
  • the circulating gas medium is cooled by the heat exchanger 10, and the cold air is introduced into the low-temperature Dewar 9 through the cooling circuit 11.
  • the device is cooled by forced convection, and the gas is pressurized by the air pump 12.
  • slots can also be made on the inner and outer rotors to allow gas to flow inside to achieve better cooling effects.
  • the external prime mover transmits mechanical power to the magnetic transmission system through the outer rotor core, and the HTS high temperature superconducting magnetic pole 7 moving with the outer rotor core generates a rotating magnetic field with several pole pairs.
  • the resulting rotating magnetic field It will act on the HTS closed conductor layer 8 to generate an induced electromotive force, and the induced eddy current will be acted on by a synthetic magnetic field to generate a Lorentz force to drive the inner rotor to rotate to complete the magnetic transmission process.
  • the air gap magnetic density can be greatly increased, thereby increasing the power density and output torque; in addition, after the conductor layer uses HTS superconducting wires, the current carrying capacity of the conductor can be greatly improved, Induction of eddy current density, and avoid resistance heating, greatly reduce the temperature rise of the body, and improve the stability of the system operation.
  • Fig. 6 is a schematic structural diagram of a superconducting magnetic transmission system provided by the second embodiment of the present invention.
  • the structure of the superconducting magnetic transmission system is the same as the superconducting magnetic transmission system provided in the first embodiment, that is, it adopts an external cylindrical structure.
  • this embodiment please refer to the detailed introduction in the first embodiment, and this embodiment will not be repeated.
  • the HTS high-temperature superconducting magnetic pole 7 provided by this embodiment is a high-temperature superconducting excitation winding
  • the high-temperature superconducting excitation winding can be made of HTS high-temperature superconducting conductors (such as REBCO and BSCCO strips).
  • the high-temperature superconducting excitation winding is reciprocally laid on the outer rotor core in an axially parallel manner, and connected at intervals at the ends, so that it forms a unidirectional current loop with a reciprocating structure, and its current flow is shown in Figure 6
  • Figure 6 As shown by the crosses and dots in , when a direct current is applied, a radial magnetic field with several pole pairs can be generated.
  • this structure can greatly improve the air gap magnetic density.
  • the external prime mover transmits mechanical power to the magnetic transmission system through the outer rotor core, and the rotating magnetic field generated by the high-temperature superconducting excitation winding moving with the outer rotor core will act on the HTS high-temperature superconducting closed conductor layer 8
  • the induced electromotive force is generated, and the excited eddy current is acted on by the synthetic magnetic field, and the Lorentz force is generated to drive the inner rotor core to rotate, completing the magnetic force transmission process.
  • the high temperature superconducting field winding provided in this embodiment can be set accordingly according to the design requirements, for example, it can be set in the outer rotor core in the external cylindrical magnetic transmission system provided in this embodiment and the first embodiment
  • the inner surface can also be set on the outer surface of the inner rotor core in the built-in cylindrical magnetic transmission system provided in the subsequent third embodiment, or on the outer surface of the rotor core on the prime mover side in the disc type magnetic transmission system provided in the subsequent fourth embodiment.
  • the specific location can be set according to the actual structure of the magnetic transmission system, which is not limited in this embodiment.
  • Fig. 7 is a schematic structural diagram of a superconducting magnetic transmission system provided by a third embodiment of the present invention.
  • the superconducting magnetic transmission system adopts a built-in cylindrical structure, that is, the rotor core 6 on the prime mover side and the rotor core 2 on the load side in the system both adopt a cylindrical structure, and the rotor core 6 on the prime mover side and the rotor core 2 on the load side are in the same structure.
  • Shaft annular structure arrangement wherein, the rotor core 6 on the prime mover side is set inside the rotor core 2 on the load side.
  • the rotor core 6 on the prime mover side is called the inner rotor core
  • the rotor core 2 on the load side is called the outer rotor core.
  • the HTS high temperature superconducting magnetic poles 7 are fixed on the outer surface of the inner rotor core and arranged in the circumferential direction, the residual magnetic direction of the HTS high temperature superconducting magnetic poles 7 is set along the radial direction; the HTS high temperature superconducting closed conductor layer 8 is fixed on the inner surface of the outer rotor core On the surface.
  • the external prime mover transmits mechanical power to the magnetic transmission system through the inner rotor core, and the HTS high-temperature superconducting magnetic pole 7 moving with the inner rotor core generates a rotating magnetic field with several pole pairs.
  • the resulting rotating magnetic field It will act on the HTS high temperature superconducting closed conductor layer 8 to generate an induced electromotive force, and the excited eddy current will be acted on by a synthetic magnetic field to generate a Lorentz force to drive the inner rotor to rotate to complete the magnetic force transmission process.
  • Fig. 8 is a schematic structural diagram of a superconducting magnetic transmission system provided by a fourth embodiment of the present invention.
  • the superconducting magnetic transmission system adopts a disk structure, that is, both the prime mover side rotor core 6 and the load side rotor core 2 in the system adopt a disk structure, and the prime mover side rotor core 6 and the load side rotor core 2 are axially opposite to each other.
  • the HTS high-temperature superconducting magnetic pole 7 is fixed on the side wall of the rotor core 6 on the prime mover side, and the remanence direction of the HTS high-temperature superconducting magnetic pole 7 is set opposite to the axial direction; the HTS high-temperature superconducting closed conductor layer 8 is fixed on the load On the side wall of the side rotor core 2 , there is an air gap 4 between the HTS high temperature superconducting magnetic pole 7 and the HTS high temperature superconducting closed conductor layer 8 .
  • the external prime mover transmits mechanical power to the magnetic transmission system through the rotor core 6 on the prime mover side, and the HTS high temperature superconducting magnetic pole 7 moving with the rotor core 6 on the prime mover side generates a rotating magnetic field with several pole pairs.
  • the resulting rotating magnetic field will act on the HTS high temperature superconducting closed conductor layer 8 to generate an induced electromotive force, and the excited eddy current will be acted on by the synthesized magnetic field to generate Lorentz force to drive the rotor core on the load side to rotate to complete the magnetic force transmission process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

本发明公开了一种超导磁传动系统,包括原动机侧转子和负载侧转子,原动机侧转子的铁心表面沿周向铺设有多个HTS高温超导磁极,相邻HTS高温超导磁极的剩磁方向相反设置;负载侧转子的铁心表面固定有HTS高温超导闭合导体层,HTS高温超导闭合导体层和HTS高温超导磁极之间留有气隙;当外部原动机带动原动机侧转子铁心转动时,HTS高温超导磁极产生旋转磁场,旋转磁场在HTS高温超导闭合导体层上作用感应出电流,感应电流在磁场中受到洛伦兹力的作用,驱动负载侧转子带动外部负载转动,实现磁力传动。本发明利用HTS高温超导磁极替换现有永磁体,利用HTS高温超导线材作为导体层,能大幅提高系统功率密度和输出转矩,降低系统温升,有效提高磁传动系统运行可靠性。

Description

一种超导磁传动系统 【技术领域】
本发明属于超导电磁装置技术领域,更具体地,涉及一种超导磁传动系统。
【背景技术】
众所周知,跟永磁体相比,高温超导(HTS)块材在超导状态下能够俘获的磁场强度可达同等尺寸永磁体的数十倍以上,能量密度可达永磁体的千倍以上;跟铜、铝等阻性材料相比,高温超导(HTS)线材载流密度高、能耗低、在超导态通流时不会产生焦耳热。由于以上显著优点,高温超导材料在基础科学研究、医疗卫生、交通运输、国防工业、电工等领域被广泛应用。
当前存在两种不同类型的超导磁传动系统,如图1和图2所示的筒式磁力耦合器以及图3所示的盘式磁力耦合器。筒式磁力耦合器按永磁体与导体布置位置的不同分为两类:图1所示的永磁体外置式筒式磁力耦合器和图2所示的永磁体内置式筒式磁力耦合器。图1中的永磁体5与原动机侧转子铁心6相连,在原动机的驱动下旋转,产生旋转磁场切割导体层3,从而感应涡流,该涡流在合成磁场下受到洛伦兹力作用,带动负载侧转子铁心2旋转,实现磁力传递。图2中的永磁体5与原动机侧转子铁心6相连,被原动机带动旋转产生旋转磁场切割导体层3。图3中的永磁体5固定在原动机侧转子铁心6上,原动机带动永磁体5旋转,产生旋转磁场,在导体层3上感应涡流,从而驱动负载侧转子铁心2旋转。根据输出转矩公式:T=∫J×(v×B)dV和涡流损耗功率公式:P=ρJ 2可知,提高电流密度J和磁通密度B可以增大输出转矩,减小导体层电阻率ρ可以减小涡流损耗。
目前磁传动系统朝着大功率方向发展,磁传动系统中的永磁体采用钕 铁硼等永磁材料,其剩磁不超过2T,剩磁的限制导致磁传动系统的功率密度和输出转矩受限。另一方面,磁传动系统中的导体层一般选用铜和铝等高电导率材料,由于电阻的存在,将会产生涡流焦耳热从而引发温升。在大功率磁传动设备中,涡流损耗导致的温升成为突出问题,过高的温升会影响永磁体的工作状态,甚至导致退磁,同时降低材料的绝缘和机械性能,将影响系统的可靠运行。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种超导磁传动系统,旨在解决现有磁传动系统中由于涡流损耗导致的过高温升和受到永磁体剩磁限制导致功率密度和输出转矩受限的问题。
为实现上述目的,本发明提供了一种超导磁传动系统,包括传动本体,所述传动本体包括原动机侧转子和负载侧转子,其中,所述原动机侧转子的铁心表面沿周向铺设有多个HTS高温超导磁极,相邻HTS高温超导磁极的剩磁方向相反设置;所述负载侧转子的铁心表面固定有HTS高温超导闭合导体层,所述HTS高温超导闭合导体层和所述HTS高温超导磁极之间留有气隙;
当外部原动机带动所述原动机侧转子铁心转动时,所述HTS高温超导磁极产生旋转磁场,所述旋转磁场在所述HTS高温超导闭合导体层上作用感应出电流,感应电流在磁场中受到洛伦兹力的作用,驱动所述负载侧转子带动外部负载转动,实现磁力传动。
本发明提供的超导磁传动系统,利用HTS高温超导磁极替换现有永磁体,能俘获远高于现有永磁体磁场的特性来提高气隙磁密并增大导体层的涡流,进而提高磁传动系统功率密度和输出转矩;另外,利用HTS高温超导线材作为导体层,能避免因电阻带来的涡流损耗发热,从而降低本体内的温升,提高磁传动系统的运行可靠性。
在其中一个实施例中,还包括冷却机构,所述冷却机构采用通入冷却气体的方式实现强迫对流冷却,使所述传动本体的温度保持至高温超导材料的临界转变温度以下。
在其中一个实施例中,所述冷却机构包括换热器、冷却回路、低温杜瓦和气泵,所述低温杜瓦设置在所述传动本体外围,所述换热器通过所述冷却回路与所述低温杜瓦相连通,所述气泵设置在所述冷却回路上。
在其中一个实施例中,所述原动机侧转子铁心和所述负载侧转子铁心均采用筒式结构,所述原动机侧转子铁心和所述负载侧转子铁心成同轴环形结构设置。
在其中一个实施例中,所述负载侧转子铁心设置在所述原动机侧转子铁心内,所述HTS高温超导磁极固定在所述原动机侧转子铁心的内表面上并沿周向排列,所述HTS高温超导磁极的剩磁方向沿径向设置;所述HTS高温超导闭合导体层固定在所述负载侧转子铁心的外表面上。
在其中一个实施例中,所述HTS高温超导磁极采用高温超导块材或高温超导励磁绕组,其中,所述高温超导块材采用YBCO超导块材制成,附着在所述原动机侧转子铁心的内表面上;所述高温超导励磁绕组采用REBCO或BSCCO超导带材制成,按轴向平行的方式往复铺设在所述原动机侧转子铁心的内表面上,并在端部间隔连接,形成往复结构的单向电流回路。
在其中一个实施例中,所述HTS高温超导导体层为采用REBCO或BSCCO超导带材绕制成的无绝缘饼式线圈结构。
在其中一个实施例中,所述无绝缘饼式线圈结构通过焊锡浇筑套设在所述负载侧转子铁心的外表面上。
在其中一个实施例中,所述原动机侧转子铁心设置在所述负载侧转子铁心内,所述HTS高温超导磁极固定在所述原动机侧转子铁心的外表面上并沿周向排列,所述HTS高温超导磁极的剩磁方向沿径向设置;所述HTS高温超导闭合导体层固定在所述负载侧转子铁心的内表面上。
在其中一个实施例中,所述原动机侧转子铁心和所述负载侧转子铁心均采用盘式结构,所述原动机侧转子铁心和所述负载侧转子铁心成轴向相对结构设置;其中,所述HTS高温超导磁极固定在所述原动机侧转子铁心的侧壁上,所述HTS高温超导磁极的剩磁方向沿轴向相反设置;所述HTS高温超导闭合导体层固定在所述负载侧转子铁心的侧壁上。
【附图说明】
图1是现有技术提供的永磁体外置式筒式磁传动系统的结构示意图;
图2是现有技术提供的永磁体内置式筒式磁传动系统的结构示意图;
图3是现有技术提供的盘式磁传动系统的结构示意图;
图4是本发明提供的冷却机构的结构示意图;
图5是本发明第一实施例提供的超导磁传动系统的结构示意图;
图6是本发明第二实施例提供的超导磁传动系统的结构示意图;
图7是本发明第三实施例提供的超导磁传动系统的结构示意图;
图8是本发明第四实施例提供的超导磁传动系统的结构示意图。
图中,1表示轴承,2表示负载侧转子铁心,3表示现有导体层,4表示气隙,5表示现有永磁体,6表示原动机侧转子铁心,7表示HTS高温超导磁极,8表示HTS高温超导闭合导体层,9表示低温杜瓦,10表示换热器,11表示冷却回路,12表示气泵。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种超导磁传动系统,包括传动本体,传动本体包括原动机侧转子和负载侧转子,其中,原动机侧转子的铁心通过轴承与外部原 动机相连,原动机侧转子的铁心表面沿周向铺设有多个HTS高温超导磁极,相邻HTS高温超导磁极的剩磁方向相反设置;负载侧转子的铁心通过轴承与外部负载相连,负载侧转子的铁心表面固定有HTS高温超导闭合导体层,HTS高温超导闭合导体层和HTS高温超导磁极之间留有气隙。
当外部原动机带动原动机侧转子铁心转动时,HTS高温超导磁极产生旋转磁场,旋转磁场在HTS高温超导闭合导体层上作用感应出电流,感应电流在磁场中受到洛伦兹力的作用,驱动负载侧转子带动外部负载转动,实现磁力传动。
在本实施例中,相比于现有采用钕铁硼等永磁材料等制成的永磁体,本发明采用HTS高温超导磁极,即采用由高温超导(HTS)材料制成的磁极,在超导状态下能够俘获的磁场强度可达同等尺寸现有永磁体的数十倍以上,能量密度可达现有永磁体的千倍以上;相比于现有采用铜、铝等阻性材料制成的导体层,本发明采用HTS高温超导闭合导体层,即采用高温超导(HTS)线材制成的导体层,具有载流密度高、能耗低、在超导态通流时不会产生焦耳热的特点。
具体地,本实施例提供的HTS高温超导磁极可采用高温超导块材或高温超导励磁绕组,其中,高温超导块材可采用纯YBCO高温超导块材制成;高温超导励磁绕组可采用REBCO或BSCCO高温超导带材制成。HTS高温超导闭合导体层可采用REBCO或BSCCO高温超导带材制成。
本发明提供的超导磁传动系统,利用HTS高温超导磁极替换现有永磁体,能俘获远高于现有永磁体磁场的特性来提高气隙磁密并增大导体层的涡流,进而提高磁传动系统功率密度和输出转矩;另外,利用HTS高温超导线材作为导体层,能避免因电阻带来的涡流损耗发热,从而降低本体内的温升,提高磁传动系统的运行可靠性。
考虑到HTS材料的超导电性受温度影响较大,为维持HTS高温超导磁极和HTS高温超导闭合导体层的超导电性,本发明提供的超导磁传动系统 还包括冷却机构,用于带走本体内的机械摩擦产热和磁滞损耗造成的发热,使本体的温度保持至高温超导材料的临界转变温度以下的温度区域,以维持HTS高温超导磁极和HTS高温超导闭合导体层的超导电性。
进一步地,该冷却机构可采用通入冷却气体的方式实现强迫对流冷却,使传动本体的温度保持至高温超导材料的临界转变温度以下。具体地,可参阅图4,该冷却机构可包括换热器10、冷却回路11、低温杜瓦9和气泵12,低温杜瓦9设置在传动本体外围,换热器10通过冷却回路11与低温杜瓦9相连通,气泵12设置在冷却回路11上。
本发明提供的冷却机构的工作原理为:换热器10将循环气体介质冷却,并将冷气通过冷却回路11导入低温杜瓦9中,采用强迫对流方式冷却该传动本体,使用气泵12对气体加压。当然,也可以在原动机侧转子和负载侧转子上开槽让气体在内部进行流动,达到更好的冷却效果。
为更清楚地说明本发明提供的技术方案,以下举例说明:
图5是本发明第一实施例提供的超导磁传动系统的结构示意图。该超导磁传动系统采用外置式筒式结构,即该系统中的原动机侧转子铁心6和负载侧转子铁心2均采用筒式结构,原动机侧转子铁心6和负载侧转子铁心2成同轴环形结构设置,其中,负载侧转子铁心2设置在原动机侧转子铁心6内,本实施例称负载侧转子铁心2为内转子铁心,原动机侧转子铁心6为外转子铁心。
则本实施例提供的超导磁传动系统中的传动本体由内往外依次包括轴承1、内转子铁心、HTS高温超导闭合导体层8、气隙4、HTS高温超导磁极7、外转子铁心和低温杜瓦9。
其中,本实施例提供的HTS高温超导闭合导体层8可以是由REBCO或BSCCO等超导带材绕制的无绝缘饼式线圈结构,根据轴向长度的要求,可以将多个单饼或双饼线圈同轴套设在内转子铁心的外周,并通过线圈骨架或在铁心上开槽将其固定。为进一步降低涡流损耗,可采用焊锡浇筑将其形 成为一个整体,HTS高温超导闭合导体层8与内转子铁心同步旋转。
在外转子铁心的内表面设有开口槽,HTS高温超导磁极7固定其中,HTS高温超导磁极7可为高温超导块材,该高温超导块材为采用由纯HTS材料(如纯YBCO块材)制成的长条形块状结构,附着于外转子铁心的内表面上,跟随其同步旋转。HTS高温超导磁极7与HTS高温超导闭合导体层8之间有气隙4间隔。
HTS高温超导磁极7充磁后产生的剩磁远高于现有永磁体,其冲磁过程可在安装到外转子铁心之前进行,也可在安装到外转子铁心之后进行,沿着周向的高温超导块材7可根据实际需求选定,HTS高温超导磁极7的剩磁方向沿着径向,且相邻的HTS高温超导块7材剩磁方向相反。
气隙4和外转子铁心的外围通入冷却气体进行降温,通过强迫对流散热作用,带走本体内的机械摩擦产热和磁滞损耗造成的发热,使本体保持在超导转变温度以下的温度区域,以维持HTS材料的超导电性。其冷却机构如图4所示,通过换热器10将循环气体介质冷却,并将冷气通过冷却回路11导入低温杜瓦9中,采用强迫对流方式冷却该装置,使用气泵12对气体加压。进一步地,也可以在内外转子上开槽,让气体在内部流动,达到更好的冷却效果。
磁传动系统运行时,由外部原动机通过外转子铁心向磁传动系统传输机械功率,随外转子铁心运动的HTS高温超导磁极7产生具有若干极对数的旋转磁场,由此产生的旋转磁场会在HTS高温超导闭合导体层8上作用产生感生电动势,感应的涡流受到合成磁场的作用,产生洛伦兹力带动内转子旋转,完成磁力传动过程。由于采用HTS高温超导磁极替代现有永磁体,可以大幅增加气隙磁密,从而提高功率密度和输出转矩;另外,导体层采用了HTS超导线材之后,可以大幅提高导体载流能力、感应涡流密度,并且避免电阻发热,极大降低了本体温升,并提高了系统运行稳定性。
图6是本发明第二实施例提供的超导磁传动系统的结构示意图。该超 导磁传动系统与第一实施例中提供的超导磁传动系统的结构相同,即采用外置式筒式结构,具体可参照第一实施例中的详细介绍,本实施例不再赘述。
本实施例与上述第一实施例区别在于,本实施例提供的HTS高温超导磁极7为高温超导励磁绕组,该高温超导励磁绕组可采用由HTS高温超导导体(如REBCO和BSCCO带材等)制成的,高温超导励磁绕组按轴向平行的方式往复铺设在外转子铁心上,并在端部间隔连接,使其形成往复结构的单向电流回路,其电流流向如图6中的叉号和点所示,在通以直流电时,能够产生具有若干极对数的径向磁场。
相比现有永磁体,该结构能够大幅提高气隙磁密。磁传动系统运行时,由外部原动机通过外转子铁心向磁传动系统传输机械功率,随外转子铁心运动的高温超导励磁绕组产生的旋转磁场,会在HTS高温超导闭合导体层8上作用产生感生电动势,激发的涡流受到合成磁场的作用,产生洛伦兹力带动内转子铁心旋转,完成磁力传动过程。
需要说明的是,本实施例提供的高温超导励磁绕组可根据设计需要进行相应设置,比如可设置在本实施例和第一实施例提供的外置式筒式磁传动系统中的外转子铁心的内表面,也可以设置在后续第三实施例提供的内置式筒式磁传动系统中内转子铁心的外表面,或设置在后续第四实施例提供的盘式磁传动系统中原动机侧转子铁心的侧壁上,具体其位置可根据实际磁传动系统的结构形态进行相应设置,本实施例不作限制。
图7是本发明第三实施例提供的超导磁传动系统的结构示意图。该超导磁传动系统采用内置式筒式结构,即该系统中的原动机侧转子铁心6和负载侧转子铁心2均采用筒式结构,原动机侧转子铁心6和负载侧转子铁心2成同轴环形结构设置,其中,原动机侧转子铁心6设置在负载侧转子铁心2内,本实施例称原动机侧转子铁心6为内转子铁心,负载侧转子铁心2为外转子铁心。HTS高温超导磁极7固定在内转子铁心的外表面上并沿 周向排列,HTS高温超导磁极7的剩磁方向沿径向设置;HTS高温超导闭合导体层8固定在外转子铁心的内表面上。
磁传动系统运行时,由外部原动机通过内转子铁心向磁传动系统传输机械功率,随内转子铁心运动的HTS高温超导磁极7产生具有若干极对数的旋转磁场,由此产生的旋转磁场会在HTS高温超导闭合导体层8上作用产生感生电动势,激发的涡流受到合成磁场的作用,产生洛伦兹力带动内转子旋转,完成磁力传动过程。
需要说明的是,本实施例提供的HTS高温超导磁极7和HTS高温超导闭合导体层8制成所采用的材料、其结构、以及其分别在原动机侧转子铁心6和负载侧转子铁心2的设置方式可参照前述第一实施例和第二实施例,本实施例不再赘述。
图8是本发明第四实施例提供的超导磁传动系统的结构示意图。该超导磁传动系统采用盘式结构,即该系统中的原动机侧转子铁心6和负载侧转子铁心2均采用盘式结构,原动机侧转子铁心6和负载侧转子铁心2成轴向相对结构设置;其中,HTS高温超导磁极7固定在原动机侧转子铁心6的侧壁上,HTS高温超导磁极7的剩磁方向沿轴向相反设置;HTS高温超导闭合导体层8固定在负载侧转子铁心2的侧壁上,HTS高温超导磁极7和HTS高温超导闭合导体层8之间存在气隙4。
磁传动系统运行时,由外部原动机通过原动机侧转子铁心6向磁传动系统传输机械功率,随原动机侧转子铁心6运动的HTS高温超导磁极7产生具有若干极对数的旋转磁场,由此产生的旋转磁场会在HTS高温超导闭合导体层8上作用产生感生电动势,激发的涡流受到合成磁场的作用,产生洛伦兹力带动负载侧转子铁心旋转,完成磁力传动过程。
需要说明的是,本实施例提供的HTS高温超导磁极7和HTS高温超导闭合导体层8制成所采用的材料、其结构、以及其分别在原动机侧转子铁心6和负载侧转子铁心2的设置方式可参照前述第一实施例和第二实施例, 本实施例不再赘述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超导磁传动系统,其特征在于,包括传动本体,所述传动本体包括原动机侧转子和负载侧转子,其中,所述原动机侧转子的铁心表面沿周向铺设有多个HTS高温超导磁极,相邻HTS高温超导磁极的剩磁方向相反设置;所述负载侧转子的铁心表面固定有HTS高温超导闭合导体层,所述HTS高温超导闭合导体层和所述HTS高温超导磁极之间留有气隙;
    当外部原动机带动所述原动机侧转子铁心转动时,所述HTS高温超导磁极产生旋转磁场,所述旋转磁场在所述HTS高温超导闭合导体层上作用感应出电流,感应电流在磁场中受到洛伦兹力的作用,驱动所述负载侧转子带动外部负载转动,实现磁力传动。
  2. 根据权利要求1所述的超导磁传动系统,其特征在于,还包括冷却机构,所述冷却机构采用通入冷却气体的方式实现强迫对流冷却,使所述传动本体的温度保持至高温超导材料的临界转变温度以下。
  3. 根据权利要求2所述的超导磁传动系统,其特征在于,所述冷却机构包括换热器、冷却回路、低温杜瓦和气泵,所述低温杜瓦设置在所述传动本体外围,所述换热器通过所述冷却回路与所述低温杜瓦相连通,所述气泵设置在所述冷却回路上。
  4. 根据权利要求3所述的超导磁传动系统,其特征在于,所述原动机侧转子铁心和所述负载侧转子铁心均采用筒式结构,所述原动机侧转子铁心和所述负载侧转子铁心成同轴环形结构设置。
  5. 根据权利要求4所述的超导磁传动系统,其特征在于,所述负载侧转子铁心设置在所述原动机侧转子铁心内,所述HTS高温超导磁极固定在所述原动机侧转子铁心的内表面上并沿周向排列,所述HTS高温超导磁极的剩磁方向沿径向设置;所述HTS高温超导闭合导体层固定在所述负载侧转子铁心的外表面上。
  6. 根据权利要求5所述的超导磁传动系统,其特征在于,所述HTS高温超导磁极采用高温超导块材或高温超导励磁绕组,其中,所述高温超导块材采用YBCO超导块材制成,附着在所述原动机侧转子铁心的内表面上;所述高温超导励磁绕组采用REBCO或BSCCO超导带材制成,按轴向平行的方式往复铺设在所述原动机侧转子铁心的内表面上,并在端部间隔连接,形成往复结构的单向电流回路。
  7. 根据权利要求5所述的超导磁传动系统,其特征在于,所述HTS高温超导导体层为采用REBCO或BSCCO超导带材绕制成的无绝缘饼式线圈结构。
  8. 根据权利要求7所述的超导磁传动系统,其特征在于,所述无绝缘饼式线圈结构通过焊锡浇筑套设在所述负载侧转子铁心的外表面上。
  9. 根据权利要求3所述的超导磁传动系统,其特征在于,所述原动机侧转子铁心设置在所述负载侧转子铁心内,所述HTS高温超导磁极固定在所述原动机侧转子铁心的外表面上并沿周向排列,所述HTS高温超导磁极的剩磁方向沿径向设置;所述HTS高温超导闭合导体层固定在所述负载侧转子铁心的内表面上。
  10. 根据权利要求3所述的超导磁传动系统,其特征在于,所述原动机侧转子铁心和所述负载侧转子铁心均采用盘式结构,所述原动机侧转子铁心和所述负载侧转子铁心成轴向相对结构设置;其中,所述HTS高温超导磁极固定在所述原动机侧转子铁心的侧壁上,所述HTS高温超导磁极的剩磁方向沿轴向相反设置;所述HTS高温超导闭合导体层固定在所述负载侧转子铁心的侧壁上。
PCT/CN2021/122091 2021-09-24 2021-09-30 一种超导磁传动系统 WO2023044954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111122772.9 2021-09-24
CN202111122772.9A CN113890306A (zh) 2021-09-24 2021-09-24 一种超导磁传动系统

Publications (1)

Publication Number Publication Date
WO2023044954A1 true WO2023044954A1 (zh) 2023-03-30

Family

ID=79006626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122091 WO2023044954A1 (zh) 2021-09-24 2021-09-30 一种超导磁传动系统

Country Status (2)

Country Link
CN (1) CN113890306A (zh)
WO (1) WO2023044954A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426025A (en) * 1987-07-20 1989-01-27 Hitachi Ltd High-temperature superconductive electromagnetic coupling
CN1988324A (zh) * 2005-12-23 2007-06-27 中国科学院电工研究所 一种高速磁阻电机
CN102969873A (zh) * 2012-11-16 2013-03-13 清华大学 一种高温超导电机
CN103312124A (zh) * 2013-06-25 2013-09-18 北京交通大学 一种阵列式转子磁极结构的高温超导同步电动机
CN106533096A (zh) * 2016-11-21 2017-03-22 华中科技大学 一种全超导磁齿轮电机及其应用
CN109639103A (zh) * 2019-02-19 2019-04-16 南京邮电大学 旋转极靴式高温超导同步电机
CN113067421A (zh) * 2021-03-29 2021-07-02 东南大学 一种采用直流超导励磁的场调制型外转子游标电机及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478983U (zh) * 2009-06-22 2010-05-19 余亚莉 一种筒型传动轴永磁耦合装置
CN101931308B (zh) * 2009-06-22 2012-09-26 余亚莉 一种筒型传动轴永磁耦合装置
CN104883015B (zh) * 2015-05-06 2017-09-19 东南大学 双定子超导励磁场调制电机
CN106026779B (zh) * 2016-07-18 2018-07-31 西南交通大学 一种基于超导块材与超导线圈组合构建混合型磁悬浮状态的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426025A (en) * 1987-07-20 1989-01-27 Hitachi Ltd High-temperature superconductive electromagnetic coupling
CN1988324A (zh) * 2005-12-23 2007-06-27 中国科学院电工研究所 一种高速磁阻电机
CN102969873A (zh) * 2012-11-16 2013-03-13 清华大学 一种高温超导电机
CN103312124A (zh) * 2013-06-25 2013-09-18 北京交通大学 一种阵列式转子磁极结构的高温超导同步电动机
CN106533096A (zh) * 2016-11-21 2017-03-22 华中科技大学 一种全超导磁齿轮电机及其应用
CN109639103A (zh) * 2019-02-19 2019-04-16 南京邮电大学 旋转极靴式高温超导同步电机
CN113067421A (zh) * 2021-03-29 2021-07-02 东南大学 一种采用直流超导励磁的场调制型外转子游标电机及应用

Also Published As

Publication number Publication date
CN113890306A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
JP5448296B2 (ja) チューブ状電気機械
US7492073B2 (en) Superconducting rotating machines with stationary field coils
CN101951128B (zh) 一种高温超导电机
WO2016177023A1 (zh) 双定子超导励磁场调制电机
US20200251971A1 (en) Radial-Gap Type Superconducting Synchronous Machine, Magnetizing Apparatus, and Magnetizing Method
CN102610360B (zh) 用于磁化稀土永磁体的系统和方法
US8008826B2 (en) Brushless motor/generator with trapped-flux superconductors
CN106533096B (zh) 一种全超导磁齿轮电机及其应用
EP2611007A2 (en) A superconductive synchronous motor generator
JP5043955B2 (ja) 超伝導同期電動機
KR101922688B1 (ko) 초전도 자석 회전형 직류 유도 가열 장치
WO2023044954A1 (zh) 一种超导磁传动系统
WO2022160514A1 (zh) 无换向装置超导直流电机
KR20100044396A (ko) 폐회로를 이루는 초전도 계자코일 및 이를 이용한 초전도 모터의 운전방법
DK2487695T3 (en) System and method for magnetization of the rare earth permanent magnets
JP6462490B2 (ja) 超伝導モーター及び超伝導発電機
CN101771331B (zh) 横向磁通超导同步电机
US7291958B2 (en) Rotating back iron for synchronous motors/generators
Sugyo et al. Bi-2223 field-poles without iron core for an axial type of HTS propulsion motor
KR20140043794A (ko) 전기 기기 및 이의 작동 방법
CN203482079U (zh) 一种双电枢绕组超导电机
JP2011250503A (ja) 超電導モータ
CN207706028U (zh) 一种永磁式超导磁体无线充能电源
CN202444402U (zh) 一种超导磁体磁极圆筒型同步直线电机
CN217606641U (zh) 一种用于磁悬浮电磁推进的高温超导磁体及磁悬浮列车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE