WO2023044699A1 - Textile seperation methods - Google Patents

Textile seperation methods Download PDF

Info

Publication number
WO2023044699A1
WO2023044699A1 PCT/CN2021/120092 CN2021120092W WO2023044699A1 WO 2023044699 A1 WO2023044699 A1 WO 2023044699A1 CN 2021120092 W CN2021120092 W CN 2021120092W WO 2023044699 A1 WO2023044699 A1 WO 2023044699A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosolvent
textile substrate
textile
spandex
blended
Prior art date
Application number
PCT/CN2021/120092
Other languages
French (fr)
Inventor
Edwin Yee Man KEH
Lei Yao
Alex Chan
Un Teng LAM
Shi GAO
Original Assignee
The Hong Kong Research Institute Of Textiles And Apparel Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Hong Kong Research Institute Of Textiles And Apparel Limited filed Critical The Hong Kong Research Institute Of Textiles And Apparel Limited
Priority to PCT/CN2021/120092 priority Critical patent/WO2023044699A1/en
Priority to CN202180102079.7A priority patent/CN117897438A/en
Publication of WO2023044699A1 publication Critical patent/WO2023044699A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure relates to a method of separating spandex from blended textile substrates, facilitating the recycling and reuse of textile materials from pre-and post-consumer textile waste.
  • Textile waste is discharged in landfills or incinerated unless its constituents can be effectively separated for recycling and reuse.
  • Spandex containing textile blends cannot be directly processed by existing textile recycling technology at a commercial or industrial scale.
  • BR 9301022 Three of them (BR 9301022, WO 2013032408 and JP 2011088943) are related to the separation of spandex from polyamide (nylon) .
  • the other two patents CN 106279755 and WO 2018150028 are related to the separation of spandex and polyester.
  • BR 9301022 provides a method for the removal and recovery of nylon by dissolution in 5%formic acid.
  • removal of spandex from nylon is achieved by thermal degradation at 150-260°C, and in JP 2011088943 by the dissolution of spandex in 85%N-methylpyrrolidone aqueous solution.
  • polyester-spandex blends provides method of the removal of spandex by alcoholysis at high temperature and pressure (285°C and 5 MPa) and by depolymerisation of polyester at 165°C as in CN 106279755 and WO 2018150028, respectively.
  • the present disclosure relates to the separation of spandex from other textile materials, particularly polyester (PET) , nylon, and cotton (and their blends) . It is the aim of this study to develop a more environmentally friendly method to remove spandex from the blended textile substrate by using biosolvents, while keeping the other constituent materials intact.
  • Biosolvents are derived from renewable biomass and are being studied as safer and more sustainable alternatives than petroleum-based solvents.
  • a method of separating spandex from a blended textile substrate comprising spandex and at least one other textile polymer comprising: contacting the blended textile substrate with a biosolvent at a temperature between 80°C to 150°C thereby forming a treated textile substrate comprising the at least one other textile polymer and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
  • the at least one other textile polymer is selected from the group consisting of cotton, viscose, lyocell, nylon, polyester and blends thereof.
  • the at least one other textile polymer comprises cotton.
  • the blended textile substrate is a woven textile substrate, non-woven textile substrate, a knitted textile substrate, or a mixture thereof.
  • the biosolvent is a ketone, an ester, a carboxylic acid, an alcohol, an aldehyde, or a mixture thereof.
  • the biosolvent comprises between 5-7 carbon atoms.
  • the biosolvent is dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone, ethyl lactate, furfural, furfuryl alcohol, levulinic acid, or a mixture thereof.
  • the biosolvent is dihydrolevoglucosenone, ethyl levulinate and gamma-valerolactone, or a mixture thereof.
  • the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 20 to about 1: 100, respectively.
  • the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively.
  • the temperature is 120°C to 140°C and the step of contacting the blended textile substrate with the biosolvent occurs at atmospheric pressure.
  • the treated textile substrate contains less than 1%by weight of spandex.
  • the method further comprises the step of separating the spandex from the biosolvent extract solution thereby forming a recovered biosolvent and a recovered spandex.
  • the recovered biosolvent is reused in the method.
  • the average molecular weight of the at least one other textile polymer in the treated textile substrate is substantially unchanged from the average molecular weight of the at least one other textile polymer in the blended textile substrate.
  • the method comprises: contacting the blended textile substrate with a biosolvent selected from the group consisting of dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone and mixtures thereof, wherein the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively; at a temperature between 120°C to 140°C thereby forming a treated textile substrate and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
  • a biosolvent selected from the group consisting of dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone and mixtures thereof, wherein the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively; at a temperature between 120°C to 140°C thereby forming a treated textile substrate and a biosolvent extract
  • the step of contacting the blended textile substrate with the biosolvent is conducted for 1-3 hours.
  • the at least one other textile polymer is PET, nylon, cotton, or blends thereof.
  • the method further comprises the step of separating the spandex from the biosolvent extract solution thereby forming a recovered biosolvent and a recovered spandex; and optionally reusing the recovered biosolvent in the method.
  • the molecular weight of at least one other textile polymer in the treated textile substrate is substantially unchanged from the molecular weight of the at least one other textile polymer in the blended textile substrate.
  • Figure 1 depicts a flow diagram for the spandex separating process according to certain embodiments of the methods described herein
  • Figure 2 depicts a Fourier-transform infrared spectroscopy (FTIR) spectrum of untreated and treated samples of (A) polyester, (B) nylon, and (C) cotton samples.
  • FTIR Fourier-transform infrared spectroscopy
  • Patent law e.g., they can mean “includes” , “included” , “including” , and the like; and that terms such as “consisting essentially of” and “consists essentially of” have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the present invention.
  • the present disclosure provides a method of separating spandex from a blended textile substrate comprising spandex and at least one other textile polymer, the method comprising: contacting the blended textile substrate with a biosolvent at a temperature between 80°C to 150°C thereby forming a treated textile substrate comprising the at least one other textile polymer and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
  • the blended textile substrate can comprise spandex and at least one textile polymer.
  • the at least one textile polymer can be any textile polymer known in the art.
  • Exemplary textile polymers include, but are not limited to, cotton, viscose, lyocell, modal, cellulose triacetate, cupro, linen, hemp, ramie, bamboo, sisal, polyester [such as polyethylene terephthalate (PET) ] , nylon, cashmere, merino wool, mohair, qiviut, angora, alpaca, llama, camel hair, vicuna, aralac, silk, acrylic, and elastolefin.
  • PET polyethylene terephthalate
  • the at least one textile polymer is selected from the group consisting of cotton, viscose, lyocell, nylon, polyester, and blends thereof.
  • the blended textile substrate comprises nylon and at least one textile polymer selected from the group consisting of PET, cotton, and nylon.
  • the blended textile substrate may comprise spandex in the amount between about 0.1%and about 30%, about 0.1%and about 25%, about 0.1%and about 20%, about 1%and about 20%, about 1%and about 15%, about 1%and about 10%, or about 1%and about 5%by weight.
  • the blended textile substrate is a woven textile substrate, non-woven textile substrate, a knitted textile substrate, or a mixture thereof.
  • the size of the blended textile substrate may also be optionally reduced prior to being subjected to the method described herein.
  • the size of the blended textile substrate can be mechanically reduced using any method known in the art, such as by cutting, tearing, breaking, shredding, and/or other mechanical size reduction techniques.
  • the reduction of the size of the blended textile substrate can increase the surface area of the blended textile substrate and assist in the isolation of spandex.
  • the size of the blended textile substrate is reduced by using a textile opening machine.
  • the blended textile substrate is cleaned prior to being subjected to the methods described herein.
  • the blended textile substrate can be cleaned using any method known in the art, such as by washing in a solvent and/or directed air flow to remove, e.g., non-fibrous material.
  • Biosolvents are derived from biomass, typically from cellulosic biomass, such as corn stover, saw grass or wood dust by different chemical processes. This emerging class of solvents is often investigated as alternative and replacement to traditional petroleum-based solvents as they offer advantages, such as being renewable and biodegradable. Because of the excellent solvating power of biosolvents for a wide range of chemicals, more applications for biosolvents in chemical processes are emerging.
  • the biosolvent comprises an organic solvent having or more functional groups selected from a ketone, an ester, a carboxylic acid, an alcohol, an aldehyde, and a mixture of biosolvents thereof.
  • the biosolvent comprises at least 3 carbon atoms, at least 4 carbon atoms, or at least 5 carbon atoms.
  • the biosolvent can comprise between 3-30 carbon atoms, 3-20 carbon atoms, 3-10 carbon atoms, 5-10 carbon atoms, 5-7 carbon atoms, 5-6 carbon atoms, or 6-7 carbon atoms.
  • biosolvents include, but are not limited to dihydrolevoglucosenone, a levulinate C 1 -C 6 alkyl ester, such as methyl levulinate, ethyl levulinate, or propyl levulinate, gamma-valerolactone, a lactate C 1 -C 6 alkyl ester, such as methyl lactate, ethyl lactate, and propyl lactate, furfural, furfuryl alcohol, levulinic acid, or a mixture thereof.
  • the biosolvent is selected from the group consisting of dihydrolevoglucosenone, ethyl levulinate and gamma-valerolactone, and mixtures thereof.
  • the blended textile substrate and the biosolvent can be present in a ratio of about 1: 10 to about 1: 100; about 4: 50 to about 1: 100; about 3: 50 to about 1: 100; about 2: 50 to about 1: 100; about 3: 100 to about 1: 100; or about 1: 50, respectively.
  • the step of contacting the blended textile substrate with a biosolvent can occur at a temperature between about 80°C to about 150°C, about 90°C to about 150°C, about 100°C to about 150°C, about 110°C to about 150°C, about 120°C to about 150°C, about 120°C to about 140°C, about 120°C, or about 140°C.
  • the amount of time that the blended textile substrate and the biosolvent are allowed to remain in contact for can depend on a number of parameters, such as the composition of the blended textile substrate, the surface area of the blended textile substrate, the choice of biosolvent, the temperature that the biosolvent extraction step is conducted at, and the mass ratio of the blended textile substrate to the biosolvent.
  • the selection of the appropriate time that the blended textile substrate and the biosolvent are allowed to remain in contact is well within the skill of a person of ordinary skill in the art.
  • the blended textile substrate and the biosolvent are allowed to remain in contact for about 30 minutes to about 5 hours, about 1 hour to about 5 hours, about 1 hour to about 4 hours, about 1 hour to about 3 hours, about 1.5 hour to about 3 hours, about 2.5 hour to about 3 hours, about 1.5 hours, about 2.5 hours, or about 2.9 hours.
  • the treated textile substrate can be separated from the biosolvent extraction solution by filtration.
  • the treated textile substrate can then be optionally washed water and dried.
  • the treated textile substrate can comprise less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5%, less than about 0.1%by weight of spandex.
  • the spandex can be recovered from the biosolvent extraction solution by any number of methods, such as by distilling the biosolvent from the biosolvent extraction solution thereby yielding the recovered spandex.
  • Blended textile substrates such as reclaimed garments and textiles typically incorporate a variety of dyes and/or chemical finishes and may be contaminated with other materials, such as dirt, grease, and the like.
  • the blended textile substrate can optionally be processed in one or more pre-treatment stage (s) to remove dyes, finishes, contaminants (oils, grease, etc. ) and the like from blended textile substrate. Processing to remove non-textile components, such as buttons, zippers, fasteners, and the like may take place, if desired, prior to the methods described herein.
  • the method described herein advantageously produces recovered textile materials from the blended textile substrate with relatively unchanged molecular weights and the FTIR data of the recovered textile materials (Figure 2) show no substantial decomposition products.
  • the process flow diagram is presented in Figure 1.
  • the dissolution temperature can be kept below the respective boiling point of the biosolvent.
  • the treated solid material will be collected by filtration and drying. Used solvent can be recovered by vacuum evaporation for re-use.
  • Spandex typically constitutes less than 25%by mass of textile blends, and in many cases lower than 5%by mass, it is therefore more logical to focus on the recovery of the higher volume (and hence higher value) among the constituent materials (e.g. PET, nylon and cotton) .
  • the dissolution of spandex with some degree of degradation of spandex can be accepted. Residual spandex collected during the solvent recovery process can be potentially used as adhesive. Zero waste is generated by this treatment process.
  • spandex can be dissolved in polar aprotic solvents, such as dimethylformamide (DMF) and dimethylacetamide (DMAc) , which are both potential carcinogens.
  • polar aprotic biosolvents used in the methods described herein include Cyrene TM (dihydrolevoglucosenone) , ethyl levulinate and gamma-valerolactone,
  • Fabric was first opened by fabric opening machine. Solid to liquid ratio was kept at 1: 50. After treatment, rinsing of samples with the same solvent at room temperature during the filtration step is performed to remove surface residue. Recovered material is dried by vacuum drying at 100°C for 1.5 hours. Composition of the original sample and recovered sample are determined according to AATCC 20A-2018. Molecular weight of the recovered material is by gel permeation chromatography (GPC) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Knitting Of Fabric (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Provided herein is a method of separating spandex from textile blends using biosolvents. The recovered material is of high purity while the chemical structure and molecular weight remain substantially unaffected by the treatment.

Description

TEXTILE SEPERATION METHODS
TECHNICHAL FIELD
The present disclosure relates to a method of separating spandex from blended textile substrates, facilitating the recycling and reuse of textile materials from pre-and post-consumer textile waste.
BACKGROUND
Textile waste is discharged in landfills or incinerated unless its constituents can be effectively separated for recycling and reuse. Spandex containing textile blends cannot be directly processed by existing textile recycling technology at a commercial or industrial scale.
There are four major types of elastomeric textile fibers and it is widely accepted that spandex is dominates the overall stretch yarn market with a reported market share of about 67%. Spandex was first invented in 1959 and its popularity has grown rapidly since then. The name ‘spandex’ is commonly used in the US and many other countries, while the term ‘elastane’ is preferred in Europe. Spandex is defined as a long chain synthetic polymer containing at least 85 wt%of segmented polyurethane that includes alternating soft polyester segments and hard polyurethane-urea segments. Spandex is well known by its exceptionally high elasticity (typically up to 500-600%) , lightweight and good abrasion resistance. These superior performances have resulted in its wide applications in different apparel products. Typically, the addition of 1-25%spandex in apparel is sufficient to bring comfort and stretch. The popularity of spandex in apparel and increasing amount of spandex containing apparel waste has created a need to develop methods for recovering spandex from waste apparel.
To meet this need, a number of methods for separating spandex from textile blends have been developed. Three of them (BR 9301022, WO 2013032408 and JP 2011088943) are related to the separation of spandex from polyamide (nylon) . The other two patents CN 106279755 and WO 2018150028 are related to the separation of spandex and polyester. BR 9301022 provides a method for the removal and recovery of nylon by dissolution in 5%formic acid. In WO 2013032408, removal of spandex from nylon is achieved by thermal degradation at 150-260℃, and in JP 2011088943 by the dissolution of spandex in 85%N-methylpyrrolidone aqueous solution. The two patents for polyester-spandex blends provides method of the removal of spandex by alcoholysis at high temperature and pressure (285℃ and 5 MPa) and by depolymerisation of polyester at 165℃ as in CN 106279755 and WO 2018150028, respectively.
None of the patents mentioned teach methods for separating spandex from cotton-spandex blends, which is one of the most common blends used in apparel, in some cases rely on toxic solvents for separation, and/or involve the depolymerisation of certain constituents.
There is thus a need to develop effective and environmentally friendly methods for separating spandex from pre-and post-consumer textile waste.
SUMMARY
The present disclosure relates to the separation of spandex from other textile materials, particularly polyester (PET) , nylon, and cotton (and their blends) . It is the aim of this study to develop a more environmentally friendly method to remove spandex from the blended textile substrate by using biosolvents, while keeping the other constituent materials intact. Biosolvents are derived from renewable biomass and are being studied as safer and more sustainable alternatives than petroleum-based solvents.
In a first aspect, provided herein is a method of separating spandex from a blended textile substrate comprising spandex and at least one other textile polymer, the method comprising: contacting the blended textile substrate with a biosolvent at a temperature between 80℃ to 150℃ thereby forming a treated textile substrate comprising the at least one other textile polymer and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
In certain embodiments, the at least one other textile polymer is selected from the group consisting of cotton, viscose, lyocell, nylon, polyester and blends thereof.
In certain embodiments, the at least one other textile polymer comprises cotton.
In certain embodiments, the blended textile substrate is a woven textile substrate, non-woven textile substrate, a knitted textile substrate, or a mixture thereof.
In certain embodiments, the biosolvent is a ketone, an ester, a carboxylic acid, an alcohol, an aldehyde, or a mixture thereof.
In certain embodiments, the biosolvent comprises between 5-7 carbon atoms.
In certain embodiments, the biosolvent is dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone, ethyl lactate, furfural, furfuryl alcohol, levulinic acid, or a mixture thereof.
In certain embodiments, the biosolvent is dihydrolevoglucosenone, ethyl levulinate and gamma-valerolactone, or a mixture thereof.
In certain embodiments, the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 20 to about 1: 100, respectively.
In certain embodiments, the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively.
In certain embodiments, the temperature is 120℃ to 140℃ and the step of contacting the blended textile substrate with the biosolvent occurs at atmospheric pressure.
In certain embodiments, the treated textile substrate contains less than 1%by weight of spandex.
In certain embodiments, the method further comprises the step of separating the spandex from the biosolvent extract solution thereby forming a recovered biosolvent and a recovered spandex.
In certain embodiments, the recovered biosolvent is reused in the method.
In certain embodiments, the average molecular weight of the at least one other textile polymer in the treated textile substrate is substantially unchanged from the average molecular weight of the at least one other textile polymer in the blended textile substrate.
In certain embodiments, the method comprises: contacting the blended textile substrate with a biosolvent selected from the group consisting of dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone and mixtures thereof, wherein the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively; at a temperature between 120℃ to 140℃ thereby forming a treated textile substrate and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
In certain embodiments, the step of contacting the blended textile substrate with the biosolvent is conducted for 1-3 hours.
In certain embodiments, the at least one other textile polymer is PET, nylon, cotton, or blends thereof.
In certain embodiments, the method further comprises the step of separating the spandex from the biosolvent extract solution thereby forming a recovered biosolvent and a recovered spandex; and optionally reusing the recovered biosolvent in the method.
In certain embodiments, the molecular weight of at least one other textile polymer in the treated textile substrate is substantially unchanged from the molecular weight of the at least one other textile polymer in the blended textile substrate.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects and features of the present disclosure will become apparent from the following description of the disclosure, when taken in conjunction with the accompanying drawings.
Figure 1 depicts a flow diagram for the spandex separating process according to certain embodiments of the methods described herein
Figure 2 depicts a Fourier-transform infrared spectroscopy (FTIR) spectrum of untreated and treated samples of (A) polyester, (B) nylon, and (C) cotton samples.
DETAILED DESCRIPTION
Throughout the present disclosure, unless the context requires otherwise, the word "comprise" or variations such as "comprises" or "comprising" , will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. It is also noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as “comprises” , “comprised” , “comprising” and the like can have the meaning attributed to it in U.S. Patent law; e.g., they can mean “includes” , “included” , “including” , and the like; and that terms such as “consisting essentially of” and “consists essentially of” have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the present invention.
Furthermore, throughout the present disclosure and claims, unless the context requires otherwise, the word “include” or variations such as “includes” or “including” , will be understood to imply the inclusion of a stated integer or group of integers, but not the exclusion of any other integer or group of integers.
The use of the singular herein includes the plural (and vice versa) unless specifically stated otherwise. In addition, where the use of the term "about" is before a quantitative value, the present teachings also include the specific quantitative value itself, unless specifically stated otherwise.  As used herein, the term "about" refers to a ±10%, ±7%, ±5%, ±3%, ±1%, or ±0%variation from the nominal value unless otherwise indicated or inferred.
The present disclosure provides a method of separating spandex from a blended textile substrate comprising spandex and at least one other textile polymer, the method comprising: contacting the blended textile substrate with a biosolvent at a temperature between 80℃ to 150℃ thereby forming a treated textile substrate comprising the at least one other textile polymer and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
The blended textile substrate can comprise spandex and at least one textile polymer. The at least one textile polymer can be any textile polymer known in the art. Exemplary textile polymers include, but are not limited to, cotton, viscose, lyocell, modal, cellulose triacetate, cupro, linen, hemp, ramie, bamboo, sisal, polyester [such as polyethylene terephthalate (PET) ] , nylon, cashmere, merino wool, mohair, qiviut, angora, alpaca, llama, camel hair, vicuna, aralac, silk, acrylic, and elastolefin. In certain embodiments, the at least one textile polymer is selected from the group consisting of cotton, viscose, lyocell, nylon, polyester, and blends thereof. In certain embodiments, the blended textile substrate comprises nylon and at least one textile polymer selected from the group consisting of PET, cotton, and nylon.
The blended textile substrate may comprise spandex in the amount between about 0.1%and about 30%, about 0.1%and about 25%, about 0.1%and about 20%, about 1%and about 20%, about 1%and about 15%, about 1%and about 10%, or about 1%and about 5%by weight.
The blended textile substrate is a woven textile substrate, non-woven textile substrate, a knitted textile substrate, or a mixture thereof.
The size of the blended textile substrate may also be optionally reduced prior to being subjected to the method described herein. The size of the blended textile substrate can be mechanically reduced using any method known in the art, such as by cutting, tearing, breaking, shredding, and/or other mechanical size reduction techniques. Advantageously, the reduction of the size of the blended textile substrate can increase the surface area of the blended textile substrate and assist in the isolation of spandex. In certain embodiments, the size of the blended textile substrate is reduced by using a textile opening machine.
In certain embodiments, the blended textile substrate is cleaned prior to being subjected to the methods described herein. The blended textile substrate can be cleaned using any method known in the art, such as by washing in a solvent and/or directed air flow to remove, e.g., non-fibrous material.
Biosolvents are derived from biomass, typically from cellulosic biomass, such as corn stover, saw grass or wood dust by different chemical processes. This emerging class of solvents is often investigated as alternative and replacement to traditional petroleum-based solvents as they offer advantages, such as being renewable and biodegradable. Because of the excellent solvating power of biosolvents for a wide range of chemicals, more applications for biosolvents in chemical processes are emerging.
In certain embodiments, the biosolvent comprises an organic solvent having or more functional groups selected from a ketone, an ester, a carboxylic acid, an alcohol, an aldehyde, and a mixture of biosolvents thereof. In certain embodiments, the biosolvent comprises at least 3 carbon atoms, at least 4 carbon atoms, or at least 5 carbon atoms. The biosolvent can comprise between 3-30 carbon atoms, 3-20 carbon atoms, 3-10 carbon atoms, 5-10 carbon atoms, 5-7 carbon atoms, 5-6 carbon atoms, or 6-7 carbon atoms.
Exemplary biosolvents include, but are not limited to dihydrolevoglucosenone, a levulinate C 1-C 6 alkyl ester, such as methyl levulinate, ethyl levulinate, or propyl levulinate, gamma-valerolactone, a lactate C 1-C 6 alkyl ester, such as methyl lactate, ethyl lactate, and propyl lactate, furfural, furfuryl alcohol, levulinic acid, or a mixture thereof. In certain embodiments, the biosolvent is selected from the group consisting of dihydrolevoglucosenone, ethyl levulinate and gamma-valerolactone, and mixtures thereof.
The blended textile substrate and the biosolvent can be present in a ratio of about 1: 10 to about 1: 100; about 4: 50 to about 1: 100; about 3: 50 to about 1: 100; about 2: 50 to about 1: 100; about 3: 100 to about 1: 100; or about 1: 50, respectively.
The step of contacting the blended textile substrate with a biosolvent can occur at a temperature between about 80℃ to about 150℃, about 90℃ to about 150℃, about 100℃ to about 150℃, about 110℃ to about 150℃, about 120℃ to about 150℃, about 120℃ to about 140℃, about 120℃, or about 140℃.
In general, the amount of time that the blended textile substrate and the biosolvent are allowed to remain in contact for can depend on a number of parameters, such as the composition  of the blended textile substrate, the surface area of the blended textile substrate, the choice of biosolvent, the temperature that the biosolvent extraction step is conducted at, and the mass ratio of the blended textile substrate to the biosolvent. The selection of the appropriate time that the blended textile substrate and the biosolvent are allowed to remain in contact is well within the skill of a person of ordinary skill in the art. In certain embodiments, the blended textile substrate and the biosolvent are allowed to remain in contact for about 30 minutes to about 5 hours, about 1 hour to about 5 hours, about 1 hour to about 4 hours, about 1 hour to about 3 hours, about 1.5 hour to about 3 hours, about 2.5 hour to about 3 hours, about 1.5 hours, about 2.5 hours, or about 2.9 hours.
The treated textile substrate can be separated from the biosolvent extraction solution by filtration. The treated textile substrate can then be optionally washed water and dried. In certain embodiments, the treated textile substrate can comprise less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5%, less than about 0.1%by weight of spandex.
The spandex can be recovered from the biosolvent extraction solution by any number of methods, such as by distilling the biosolvent from the biosolvent extraction solution thereby yielding the recovered spandex.
Blended textile substrates, such as reclaimed garments and textiles typically incorporate a variety of dyes and/or chemical finishes and may be contaminated with other materials, such as dirt, grease, and the like. The blended textile substrate can optionally be processed in one or more pre-treatment stage (s) to remove dyes, finishes, contaminants (oils, grease, etc. ) and the like from blended textile substrate. Processing to remove non-textile components, such as buttons, zippers, fasteners, and the like may take place, if desired, prior to the methods described herein.
As demonstrated in the examples below, the method described herein advantageously produces recovered textile materials from the blended textile substrate with relatively unchanged molecular weights and the FTIR data of the recovered textile materials (Figure 2) show no substantial decomposition products.
The process flow diagram is presented in Figure 1. The dissolution temperature can be kept below the respective boiling point of the biosolvent. The treated solid material will be collected by filtration and drying. Used solvent can be recovered by vacuum evaporation for re-use. Spandex typically constitutes less than 25%by mass of textile blends, and in many cases  lower than 5%by mass, it is therefore more logical to focus on the recovery of the higher volume (and hence higher value) among the constituent materials (e.g. PET, nylon and cotton) . With this concept in mind, the dissolution of spandex with some degree of degradation of spandex can be accepted. Residual spandex collected during the solvent recovery process can be potentially used as adhesive. Zero waste is generated by this treatment process. For petroleum-based solvent, spandex can be dissolved in polar aprotic solvents, such as dimethylformamide (DMF) and dimethylacetamide (DMAc) , which are both potential carcinogens. Some examples of polar aprotic biosolvents used in the methods described herein include Cyrene TM (dihydrolevoglucosenone) , ethyl levulinate and gamma-valerolactone,
EXAMPLES
Example 1
Fabric was first opened by fabric opening machine. Solid to liquid ratio was kept at 1: 50. After treatment, rinsing of samples with the same solvent at room temperature during the filtration step is performed to remove surface residue. Recovered material is dried by vacuum drying at 100℃ for 1.5 hours. Composition of the original sample and recovered sample are determined according to AATCC 20A-2018. Molecular weight of the recovered material is by gel permeation chromatography (GPC) .
Figure PCTCN2021120092-appb-000001
Figure PCTCN2021120092-appb-000002
Figure PCTCN2021120092-appb-000003
Figure PCTCN2021120092-appb-000004
Example 2
To confirm if the chemical structure and molecular weight of polyester, nylon and cotton is affected by the treatment, textile samples of 100%purity (without spandex) were tested at the same conditions as the separation treatment. The chemical structure of the recovered samples was analyzed by FTIR as shown in Figure 2. Molecular weights of the material before and after treatment were checked. No change in both chemical peaks and decrease in molecular weight was observed.
Figure PCTCN2021120092-appb-000005
Figure PCTCN2021120092-appb-000006

Claims (20)

  1. A method of separating spandex from a blended textile substrate comprising spandex and at least one other textile polymer, the method comprising: contacting the blended textile substrate with a biosolvent at a temperature between 80℃ to 150℃ thereby forming a treated textile substrate comprising the at least one other textile polymer and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
  2. The method of claim 1, wherein the at least one other textile polymer is selected from the group consisting of cotton, viscose, lyocell, nylon, polyester and blends thereof.
  3. The method of claim 1, wherein the at least one other textile polymer comprises cotton.
  4. The method of claim 1, wherein the blended textile substrate is a woven textile substrate, non-woven textile substrate, a knitted textile substrate, or a mixture thereof.
  5. The method of claim 1, wherein the biosolvent is a ketone, an ester, a carboxylic acid, an alcohol, an aldehyde, or a mixture thereof.
  6. The method of claim 5, wherein the biosolvent comprises between 5-7 carbon atoms.
  7. The method of claim 1, wherein the biosolvent is dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone, ethyl lactate, furfural, furfuryl alcohol, levulinic acid, or a mixture thereof.
  8. The method of claim 1, wherein the biosolvent is dihydrolevoglucosenone, ethyl levulinate and gamma-valerolactone, or a mixture thereof.
  9. The method of claim 1, wherein the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 20 to about 1: 100, respectively.
  10. The method of claim 1, wherein the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively.
  11. The method of claim 1, wherein the temperature is 120℃ to 140℃ and the step of contacting the blended textile substrate with the biosolvent occurs at atmospheric pressure.
  12. The method of claim 1, wherein the treated textile substrate contains less than 1%by weight of spandex.
  13. The method of claim 1 further comprising the step of separating the spandex from the biosolvent extract solution thereby forming a recovered biosolvent and a recovered spandex.
  14. The method of claim 13, wherein the recovered biosolvent is reused in the method.
  15. The method of claim 13, wherein the average molecular weight of the at least one other textile polymer in the treated textile substrate is substantially unchanged from the average molecular weight of the at least one other textile polymer in the blended textile substrate.
  16. The method of claim 1, wherein the method comprises: contacting the blended textile substrate with a biosolvent selected from the group consisting of dihydrolevoglucosenone, ethyl levulinate, gamma-valerolactone and mixtures thereof, wherein the blended textile substrate and the biosolvent are present in a mass ratio of about 1: 50, respectively; at a temperature between 120℃ to 140℃ thereby forming a treated textile substrate and a biosolvent extract solution comprising the biosolvent and at least a portion of the spandex in the blended textile substrate; and separating the biosolvent extract solution and the treated textile substrate.
  17. The method of claim 16, wherein the step of contacting the blended textile substrate with the biosolvent is conducted for 1-3 hours.
  18. The method of claim 16, wherein the at least one other textile polymer is PET, nylon, cotton, or blends thereof.
  19. The method of claim 16 further comprising the step of separating the spandex from the biosolvent extract solution thereby forming a recovered biosolvent and a recovered spandex; and optionally reusing the recovered biosolvent in the method.
  20. The method of claim 16, wherein the molecular weight of at least one other textile polymer in the treated textile substrate is substantially unchanged from the molecular weight of the at least one other textile polymer in the blended textile substrate.
PCT/CN2021/120092 2021-09-24 2021-09-24 Textile seperation methods WO2023044699A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/120092 WO2023044699A1 (en) 2021-09-24 2021-09-24 Textile seperation methods
CN202180102079.7A CN117897438A (en) 2021-09-24 2021-09-24 Textile separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120092 WO2023044699A1 (en) 2021-09-24 2021-09-24 Textile seperation methods

Publications (1)

Publication Number Publication Date
WO2023044699A1 true WO2023044699A1 (en) 2023-03-30

Family

ID=85719136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120092 WO2023044699A1 (en) 2021-09-24 2021-09-24 Textile seperation methods

Country Status (2)

Country Link
CN (1) CN117897438A (en)
WO (1) WO2023044699A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9301022A (en) * 1993-04-28 1994-11-22 Nastrotec Ind Textil Ltda Separation process of nylon and lycra in thin stockings, fabrics, lace and elastic lycra tapes
CN1526863A (en) * 2003-09-25 2004-09-08 东华大学 Waste polyurethane fober regenerating and reusing method
JP2011088943A (en) * 2009-10-20 2011-05-06 Toray Ind Inc Recycling method for nylon 6 product
WO2013032408A1 (en) * 2011-09-02 2013-03-07 Aquafil S.P.A. Method of polyamide fiber recycling from elastomeric fabrics
CN106283228A (en) * 2016-08-15 2017-01-04 宁波大发化纤有限公司 The method that the polyurethane contained in Waste Polyester textile carries out Direct-spinning of PET Fiber is removed in a kind of alcoholysis
CN106279755A (en) * 2016-08-15 2017-01-04 宁波大发化纤有限公司 The polyurethane contained in alcoholysis removal Waste Polyester textile is for the method for polyester spinning melts
CN110573561A (en) * 2017-02-20 2019-12-13 斯威尔Ivf股份有限公司 Polyester textile waste recycling
CN110790980A (en) * 2019-10-22 2020-02-14 宁波大发化纤有限公司 Separation and impurity removal method for blending material in waste polyester fiber product
WO2021021031A1 (en) * 2019-07-30 2021-02-04 Lai Trillion Process for separating and recovering polymers and/or fibers from solid composite materials or liquid mixtures
CN112323152A (en) * 2020-10-20 2021-02-05 宁波大发化纤有限公司 Method for preparing regenerated polyester staple fiber from spandex-containing waste polyester textile

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9301022A (en) * 1993-04-28 1994-11-22 Nastrotec Ind Textil Ltda Separation process of nylon and lycra in thin stockings, fabrics, lace and elastic lycra tapes
CN1526863A (en) * 2003-09-25 2004-09-08 东华大学 Waste polyurethane fober regenerating and reusing method
JP2011088943A (en) * 2009-10-20 2011-05-06 Toray Ind Inc Recycling method for nylon 6 product
WO2013032408A1 (en) * 2011-09-02 2013-03-07 Aquafil S.P.A. Method of polyamide fiber recycling from elastomeric fabrics
CN106283228A (en) * 2016-08-15 2017-01-04 宁波大发化纤有限公司 The method that the polyurethane contained in Waste Polyester textile carries out Direct-spinning of PET Fiber is removed in a kind of alcoholysis
CN106279755A (en) * 2016-08-15 2017-01-04 宁波大发化纤有限公司 The polyurethane contained in alcoholysis removal Waste Polyester textile is for the method for polyester spinning melts
CN110573561A (en) * 2017-02-20 2019-12-13 斯威尔Ivf股份有限公司 Polyester textile waste recycling
WO2021021031A1 (en) * 2019-07-30 2021-02-04 Lai Trillion Process for separating and recovering polymers and/or fibers from solid composite materials or liquid mixtures
CN110790980A (en) * 2019-10-22 2020-02-14 宁波大发化纤有限公司 Separation and impurity removal method for blending material in waste polyester fiber product
CN112323152A (en) * 2020-10-20 2021-02-05 宁波大发化纤有限公司 Method for preparing regenerated polyester staple fiber from spandex-containing waste polyester textile

Also Published As

Publication number Publication date
CN117897438A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
CN102199310B (en) Method for recycling cotton-containing components in waste cotton-polyester blended fabrics
NL2009851C2 (en) Processing of cotton-polyester waste texile.
JP2023055696A (en) Treatment method for textile-based material
JP2011088943A (en) Recycling method for nylon 6 product
WO2017019802A1 (en) Methods and systems for processing mixed textile feedstock, isolating constituent molecules, and regenerating cellulosic and polyester fibers
WO2013032408A1 (en) Method of polyamide fiber recycling from elastomeric fabrics
CN110790980A (en) Separation and impurity removal method for blending material in waste polyester fiber product
EP4251393A1 (en) Modular textile recycling system and processes
WO2021021031A1 (en) Process for separating and recovering polymers and/or fibers from solid composite materials or liquid mixtures
WO1998035998A1 (en) Carpet recycling process for nylon containing carpeting_
WO2020130825A1 (en) Method for removal of polyurethane fibres from a fabric or yarn comprising polyurethane fibres and cellulose-based fibres
US6140463A (en) Process for recycling and recovery of purified nylon polymer
WO2023044699A1 (en) Textile seperation methods
CN103374144A (en) Method for extracting polyester material from waste textiles or similar wastes containing polyester
US20230147533A1 (en) Textile separation methods
JP2008179816A (en) Recycling method for nylon 6 product
JP2004521153A (en) How to extract nylon from waste material
JP2008239985A (en) Method for recycling nylon 6 product
JP7024037B1 (en) Polyamide fiber recovery method, recycled polyamide product manufacturing method, and silicone solution
JP5832364B2 (en) Method for separating and collecting base fabric and resin layer from laminate sheet of base fabric and resin layer
JP7461404B2 (en) How to collect polyester fabrics
Wang et al. Efficient recycling of polyester and microcrystalline cellulose through one-step extraction from waste polyester-cotton blended fabrics with deep eutectic solvents
JP2023551806A (en) Raw material engineering of polyester waste for recycling process
JP2008031388A (en) Chemical recycling method of resin finished nylon 6 fiber
CN116023708A (en) Method for treating waste fabrics containing polyester and elastic fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102079.7

Country of ref document: CN