WO2023042325A1 - Leaning vehicle - Google Patents

Leaning vehicle Download PDF

Info

Publication number
WO2023042325A1
WO2023042325A1 PCT/JP2021/034048 JP2021034048W WO2023042325A1 WO 2023042325 A1 WO2023042325 A1 WO 2023042325A1 JP 2021034048 W JP2021034048 W JP 2021034048W WO 2023042325 A1 WO2023042325 A1 WO 2023042325A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
state
idling stop
stop
wheel
Prior art date
Application number
PCT/JP2021/034048
Other languages
French (fr)
Japanese (ja)
Inventor
陽至 日野
昇代 上田
桂介 井出
圭哉 藤森
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/034048 priority Critical patent/WO2023042325A1/en
Priority to PCT/JP2022/033418 priority patent/WO2023042706A1/en
Priority to TW111134644A priority patent/TWI827254B/en
Priority to FR2209316A priority patent/FR3126959A1/en
Publication of WO2023042325A1 publication Critical patent/WO2023042325A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to lean vehicles.
  • a motorcycle having an idling stop function for example, is known as a lean vehicle.
  • a lean vehicle For example, in the motorcycle disclosed in Patent Literature 1, when the number of rotations of the engine drops below a set value, the engine transitions from the operating state to the idling stop state. The engine in the idling stop state is restarted according to the operation of the clutch lever, for example. The motorcycle shown in Patent Document 1 cannot be restarted in response to the operation of the clutch lever when the side stand as an all-wheel-grounding self-standing mechanism is deployed in the idling stop state.
  • a stand is an example of a self-supporting mechanism that allows a stopped vehicle to stand on its own.
  • the self-sustaining mechanism includes a non-all-wheel grounding self-supporting mechanism and an all-wheels grounding self-supporting mechanism.
  • a non-all-wheel-grounded self-standing mechanism is, for example, a main stand. When the main stand is deployed, some of the wheels of the lean vehicle leave the ground. In other words, the main stand allows the lean vehicle to stand on its own in a state where some of the wheels are off the ground.
  • the all-wheel-grounded self-standing mechanism is, for example, a side stand. The side stand can be deployed while maintaining a state in which all of the plurality of wheels provided in the lean vehicle are grounded. A side stand is often used as a simpler means than a main stand.
  • Patent Literature 1 describes that "restart control repeats the flow of FIG. 5 when the idling stop mode selection switch 67 is ON".
  • FIG. 5 of Patent Document 1 shows restart control.
  • the restart control shown in FIG. 5 is repeatedly executed. This is described in paragraph [0085] of Patent Document 1, "If the restart conditions (including the stand) are not satisfied (step S13 No), the restart control is terminated (previously executed). Return to step S11.".
  • the present inventors have considered independent implementation of the process of the idling stop function including restarting by means of the clutch lever and the process of supporting the side stand as an all-wheel-grounded independent mechanism. Due to the independently implemented process, once the side stand is deployed, the engine will not start until the engine start switch is operated. In other words, once the side stand is deployed, the engine will not start even if the side stand is retracted, for example, by operating the clutch lever. That is, once the stand is unfolded, the engine can be started by an operation similar to that of a vehicle that does not have an idling stop function, for example. This can also be applied to a lean vehicle having an all-wheel-grounded self-standing mechanism other than the side stand.
  • a lean vehicle has the following configuration.
  • a lean vehicle constructed so as not to stand on its own only with a plurality of wheels that are in contact with the ground when traveling,
  • the lean vehicle is the plurality of wheels; an all-wheel-grounding self-standing mechanism configured to allow the vehicle body to stand on its own with the plurality of wheels in contact with the ground during operation, but not to allow the vehicle body to stand on its own when not in operation;
  • a detection device for detecting whether or not the all-wheel-grounded self-standing mechanism is operating; an engine having a crankshaft through which power generated by combustion operation is output; a clutch lever that operates the clutch in accordance with a rider's operation; a clutch sensor that detects the operation of the clutch lever; a starter-generator that drives the crankshaft when the engine is started and generates power by being driven by the crankshaft during combustion operation of the engine; an engine start switch for starting the engine in response to an operation by the rider; a controller for controlling the operation of the engine and the starter-generator, characterized by:
  • a forced stop control unit that implements an engine forced stop start process
  • the idling stop control unit puts the engine into an idling stop state in which operation is stopped based on the establishment of an idling stop condition other than the state of the all-wheel grounding self-supporting mechanism. and restarting the engine based on the detection result of the operation by the clutch sensor in the idling stop state
  • the forced stop control unit performs the engine forced stop start process as a process independent of the idling stop restart process, thereby operating the engine when the operation of the all-wheel grounding independent mechanism is detected. is forcibly stopped, the forced stop state of the operation of the engine is maintained at least until the engine start switch is operated, and the engine is started based on at least the operation of the engine start switch. .
  • the lean vehicle of (1) includes a plurality of wheels, an all-wheel-grounded independent mechanism, a detection device, an engine, a clutch lever, a clutch sensor, a starter generator, an engine start switch, a control device, Prepare.
  • a plurality of wheels are provided on a vehicle body provided in the lean vehicle.
  • the plurality of wheels includes drive wheels.
  • the all-wheel-grounded self-standing mechanism is, for example, a side stand.
  • the all-wheel grounding type self-standing mechanism is configured to make the vehicle body stand alone with a plurality of wheels grounded during operation.
  • the all-wheel-grounded self-supporting mechanism does not allow the vehicle body to self-support when not in operation.
  • An engine outputs power produced by combustion. Power is output through the crankshaft.
  • a clutch provided in a lean vehicle cuts the transmission of power from the crankshaft to the drive wheels by operating.
  • the clutch lever operates the clutch according to the rider's operation.
  • the clutch sensor detects the operation of the clutch lever.
  • the starter generator drives the crankshaft when the engine is started.
  • the starter-generator is driven by the crankshaft to generate electricity during the combustion operation of the engine.
  • the engine start switch is operated by the rider.
  • the engine is configured to start in response to operation of an engine start switch.
  • a controller controls the operation of the engine and the starter-generator.
  • the control device includes an idling stop control section and a forced stop control section.
  • the idling stop control unit implements an idling stop restart process.
  • the idling stop restart process is a process for idling stop and restart of the engine.
  • the idling stop control unit puts the engine into an idling stop state and restarts the engine by executing an idling stop restart process.
  • the idling stop control unit puts the engine into an idling stop state in which the operation is stopped based on the establishment of the idling stop condition other than the state of the all-wheel-grounded independent mechanism.
  • the engine is restarted in the idling stop state based on the detection result of the operation by the clutch sensor.
  • the forced stop control section implements the engine forced stop start process.
  • the forced engine stop start process is a process for stopping and starting the engine under conditions different from idling stop and restart.
  • the forced stop control unit executes the engine forced stop start process independently from the idling stop restart process.
  • the forced stop control section forcibly stops the operation of the engine and starts the engine by executing the forced engine stop start process.
  • the forced stop control section forcibly stops the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected.
  • the forced stop of the operation of the engine here may mean stopping the operation of the engine under any circumstances. Any situation referred to herein may include that an idling stop restart process is in progress.
  • Forcibly stopping the operation of the engine may mean stopping the operation of the forced engine stop start process even during the execution of the idling stop restart process.
  • the forced stop control unit starts the forcibly stopped engine based on at least the operation of the engine start switch.
  • the forced stop control section maintains the forced stop state of the operation of the engine at least until the engine start switch is operated. It should be noted that there may be a case where the condition for forcibly stopping the engine is satisfied while the engine is stopped. Under the circumstances where the engine is stopped by the idling stop restart process, there may be cases where the conditions for the forced stop of the engine are satisfied. Also in this case, the engine may be forcibly stopped after the condition is established. The forced stop state of the engine thus generated may also be maintained at least until the engine start switch is operated.
  • the forced engine stop start process is performed independently of the idling stop restart process. For this reason, the engine enters the idling stop state based on the establishment of conditions other than the state of the all-wheel grounding type self-supporting mechanism, whereas the operation of the engine is forcibly stopped when the all-wheels grounding type self-supporting mechanism operates. be. Further, when the all-wheel-grounded self-supporting mechanism operates, the stopped state of the engine operation is maintained at least until the engine start switch is operated. Therefore, once the all-wheel grounding type self-supporting mechanism operates, even if the operation of the all-wheels grounding type self-supporting mechanism stops after that, the operation of the clutch lever will not start the engine.
  • the engine of the lean vehicle in (1) has, for example, an idling stop function, including the state in which the operation of the all-wheel-grounded self-supporting mechanism is stopped, once the all-wheel-grounding self-supporting mechanism operates. It can be started by the same operation as a vehicle that does not. Therefore, while having the idling stop function, the engine can be started under the same conditions and operation as those of a vehicle without the idling stop function.
  • a lean vehicle can employ the following configuration.
  • the lean vehicle of (1) The plurality of wheels includes drive wheels that drive the lean vehicle by output from the engine;
  • the forced stop control unit performs the engine forced stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and The operation of the engine is maintained in a stopped state until the operation of the all-wheel grounding self-supporting mechanism is stopped and the engine start switch is operated in a state in which the transmission of output to the drive wheels is cut off, and the engine is driven by the engine.
  • the engine is started based on the simultaneous establishment of both the stop of the operation of the all-wheel-grounding self-supporting mechanism and the operation of the engine start switch in a state in which the transmission of power to the wheels is cut off.
  • the lean vehicle of (2) According to the lean vehicle of (2), power transmission from the engine to the drive wheels is cut off when the engine is started. Therefore, the resistance that the engine receives from the driving wheels when starting the engine is suppressed. Therefore, according to the lean vehicle of (2), the engine can be started in a short period of time under the same conditions and operation as the vehicle without the idling stop function, compared to the case without such a configuration. .
  • a lean vehicle can employ the following configuration.
  • the all-wheel grounding type self-standing mechanism is a side stand that operates by being deployed,
  • the idling stop control unit puts the engine in the idling stop state in which the operation is stopped based on the establishment of the idling stop condition other than the state of the side stand, and the restarting the engine based on the detection result of the operation by the clutch sensor in an idling stop state;
  • the forced stop control unit executes the engine forced stop start process to forcibly stop the operation of the engine when the deployment of the side stand is detected, and at least the engine start switch is operated.
  • the stopped state of the operation of the engine is maintained until , and the engine is started based on at least the operation of the engine start switch.
  • the all-wheel-grounded independent mechanism in the lean vehicle is a side stand.
  • the side stand allows the vehicle body to stand on its own when unfolded. That is, the side stand operates as an all-wheel-grounded self-standing mechanism.
  • the side stand stops operating as an all-wheel-grounded self-standing mechanism.
  • the engine will not start until at least the engine start switch is operated. For example, after the side stand is deployed, the engine starts when the engine start switch is operated with the side stand retracted.
  • the engine of the lean vehicle in (3) can be started by the same operation as a vehicle without an idling stop function, including the state where the side stand is retracted. Therefore, while having the idling stop function, the engine can be started under the same conditions and operation as those of a vehicle without the idling stop function.
  • a lean vehicle can employ the following configuration.
  • a lean vehicle according to any one of (1) to (3) The lean vehicle includes an accelerator grip that outputs an acceleration request for the lean vehicle by operation,
  • the idling stop control unit implements the idling stop restart process, and the idling stop state in which the operation of the engine is stopped based on the establishment of the idling stop condition other than the state of the all-wheel grounding self-supporting mechanism.
  • the forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start.
  • the stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
  • the engine is restarted when the acceleration request is not output from the accelerator grip and the clutch sensor outputs the operation detection result. According to the lean vehicle of (4), it is possible to suppress a sudden increase in the rotational speed after the engine is restarted.
  • a lean vehicle can employ the following configuration.
  • the engine comprises a crankcase housing the crankshaft,
  • the starter-generator is mounted within the crankcase and lubricated with oil.
  • the starter generator is cooled with oil. Therefore, it is possible to omit the mounting of cooling fans and fins for the starter generator. Also, a wall for partitioning the arrangement space of the starter generator and the arrangement space of the crankshaft can be omitted. Since the starter generator has the function of driving the crankshaft when the engine is started, it tends to be larger than a generator dedicated to power generation. However, according to the configuration of (5), an increase in size of the unit including the generator and the engine is suppressed.
  • the starter generator while suppressing the size increase of the vehicle that does not have the starter generator and the idling stop function, the starter generator also has the same conditions and operation as the vehicle that does not have the idling stop function. You can start the engine.
  • a lean vehicle can employ the following configuration.
  • the control device includes a switching element that controls current flowing through the starter generator,
  • the starter generator includes a stator core including slots and a plurality of teeth alternately arranged in a circumferential direction, and a current supplied through the switching element wound around the teeth, and the generated current is supplied to the switching element.
  • a stator having multi-phase windings for supplying elements, and a rotor arranged in the circumferential direction with an air gap from the stator and having magnetic pole portions larger than 2/3 of the number of the slots.
  • the angular velocity based on the electrical angle period in which the tooth passes through the pole pair formed by the magnetic pole is equal to or less than 2/3 of the number of slots, for example.
  • the impedance of the windings is greater than in configurations with pole pieces equal to or less than, for example, 2/3 the number of slots. Therefore, after the engine is restarted, the generated current is suppressed by the higher impedance of the windings in the rotation speed region where the starter-generator functions as a generator. Therefore, the current supplied to the switching element is suppressed during power generation. Therefore, in the lean vehicle of (6), the structure for heat dissipation in the control device can be simplified and the size can be reduced.
  • the starter generator also suppresses the enlargement of the vehicle that does not have the idling stop function, and the starter generator also has the same conditions and operation as the vehicle that does not have the idling stop function. can be started.
  • a lean vehicle can employ the following configuration.
  • the starter-generator has a stator fixed in position with respect to the engine and having windings, and a permanent magnet provided with an air gap with respect to the stator.
  • a rotor provided in The engine outputs a signal indicating detection of the position of the rotor to the control device when the engine is restarted based on a detection result of operation by the clutch sensor or operation of the engine start switch. It further comprises a rotor position sensing device having a sensing winding different from the windings.
  • the rotor position detection device outputs a signal indicating detection of the rotor position by the detection winding. Therefore, the rotor position detection device can operate at a higher temperature than, for example, a Hall element. Therefore, the structure for heat insulation in the unit including the starter generator and the engine can be simplified and miniaturized. Therefore, according to the configuration of (7), the starter generator also suppresses the enlargement of the vehicle that does not have the idling stop function, and the starter generator also has the same conditions and operation as the vehicle that does not have the idling stop function. can be started.
  • a lean vehicle can employ the following configuration.
  • the lean vehicle includes a multi-stage transmission that changes a gear ratio between the engine and the drive wheels in multiple stages including a neutral state,
  • the idling stop control unit detects the clutch sensor in the idling stop state, whether the multi-speed transmission is in the neutral state or not in the neutral state.
  • the forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start.
  • the stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
  • the engine is restarted based on the detection result of the clutch sensor regardless of whether the multi-speed transmission is in the neutral state or not in the idling stop state.
  • the lean vehicle of (8) simplifies the operation from the idling stop state to the start of the lean vehicle, and once the all-wheel grounding type self-supporting mechanism operates, the operation of the all-wheels grounding self-supporting mechanism stops thereafter.
  • the engine can be started by the same operation as a vehicle without an idling stop function.
  • a lean vehicle can employ the following configuration.
  • (9) A lean vehicle according to any one of (1) to (8),
  • the lean vehicle includes an idling stop switch that stops the engine in response to an operation by a rider,
  • the control device switches the engine to the idling stop state when the clutch sensor detects the operation of the clutch lever and when the idling stop switch is operated. do.
  • the clutch sensor detects the operation of the clutch lever, and the engine is stopped when the idling stop switch is operated by the rider. Therefore, it is possible to prevent the engine from stopping when the clutch lever is operated to change gears, for example.
  • a lean vehicle can employ the following configuration. (10) A lean vehicle according to any one of (1) to (8), By executing the idling stop restart process, the idling stop control unit stops the operation of the clutch lever when the lean vehicle is stopped and the multi-speed transmission is in a neutral state. stop the engine and The forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start. The stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
  • the engine stops without operating the clutch lever. Therefore, according to the lean vehicle of (10), the operation for the idling stop state can be simplified, and once the all-wheel grounding type self-supporting mechanism operates, the operation of the all-wheels grounding self-supporting mechanism is stopped thereafter. It can be started by the same operation as a vehicle that does not have an idling stop function, for example. Therefore, while having the idling stop function with a simpler operation, the engine can be started under the same conditions and operation as those of a vehicle without the idling stop function when the all-wheel-grounded independent mechanism operates.
  • a lean vehicle can employ the following configuration.
  • (11) A lean vehicle according to any one of (1) to (10),
  • the idling stop control unit performs the idling stop restart process, and when the idling stop preparation condition is satisfied during operation of the engine, causes the display device to display that the preparation state is in place, and
  • an idling stop condition other than the state of the all-wheel grounding self-supporting mechanism is satisfied, displaying that the idling stop state is in effect
  • the forced stop control section forcibly stops the display on the display device by executing the forced engine stop start process, when the operation of the all-wheel-grounded independent mechanism is detected.
  • the idling stop state, the idling stop preparation state, and other states are reported in different manners. This makes it easy to identify whether the engine is in an idling stop state, a preparatory state, or a stopped state due to the operation of the all-wheel-grounded self-standing mechanism.
  • a lean vehicle is configured to be able to turn in a lean posture.
  • a lean vehicle is configured, for example, to turn in a tilted attitude toward the inside of a curve. That is, the lean vehicle is configured to lean in the front-rear direction including the traveling direction and in the left-right direction that intersects the vertical direction. This allows the lean vehicle to counteract the centrifugal force applied to the vehicle during turns.
  • Lean vehicles are required to be compact so that they can lean easily when turning.
  • a lean vehicle usually has the property of self-steering. For example, a steering wheel provided in a lean vehicle has a characteristic of turning in the leaning direction of left and right.
  • a lean vehicle is provided with a self-supporting mechanism in order to stand on its own when the vehicle is stopped. Note that the lean vehicle is configured not to stand on its own, for example, only with a plurality of wheels, at least when the all-wheel-grounded self-supporting mechanism is not in operation.
  • the lean vehicle may, for example, be configured so as not to stand on its own with only a plurality of wheels even when the all-wheel-grounded self-supporting mechanism is in operation.
  • the all-wheel-grounded self-standing mechanism is, for example, a side stand.
  • the lean vehicle may be configured to stand on its own by only a plurality of wheels, for example, when the all-wheel-grounded self-supporting mechanism is in operation.
  • a lean vehicle is included in a straddle-type vehicle.
  • a straddled vehicle is a vehicle in which the rider sits astride a saddle. Examples of lean vehicles include scooter, moped, off-road, and on-road motorcycles.
  • the lean vehicle is not limited to a motorcycle, and may be, for example, a tricycle.
  • a motor tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the driving wheels of the lean vehicle may be the rear wheels or the front wheels.
  • a so-called trike which is a saddle-riding vehicle with three wheels, does not lean.
  • An ATV All-Terrain Vehicle
  • Lean vehicles therefore do not include either trikes or ATVs.
  • a plurality of wheels that are in contact with the ground during running includes driving wheels.
  • a plurality of wheels that touch the ground when running may include non-driving wheels.
  • motorcycles typically have two wheels that touch the ground when running.
  • a motorized tricycle has three wheels that touch the ground when running.
  • the plurality of wheels includes drive wheels that drive the lean vehicle with power from the engine. Note that all of the plurality of wheels may be driving wheels.
  • a "lean vehicle configured not to stand on its own only with a plurality of wheels” does not stand on its own while stopped without support from a stand-alone mechanism different from the wheels and support from a rider, for example.
  • a "lean vehicle configured not to stand on its own with only a plurality of wheels” is, for example, a lean vehicle that does not stand on its own while at a stop only with a plurality of wheels.
  • motorcycles are usually not self-supporting while parked due to only two wheels.
  • Lean vehicles with more than two wheels also typically do not stand on their own while parked with only three wheels.
  • a trike having three wheels will stand on its own while parked on only three wheels, with no support from a stand-up mechanism separate from the wheels and no support from the rider.
  • a "lean vehicle configured not to be self-supporting by only a plurality of wheels” does not include, for example, trikes.
  • the self-supporting mechanism includes an all-wheel-grounded self-supporting mechanism and a non-all-wheels-grounding self-supporting mechanism. Both the all-wheel grounding type self-supporting mechanism and the non-all-wheels grounding type self-supporting mechanism are capable of switching between an operating state in which the vehicle body is self-supporting and a non-operating state in which the vehicle body is not self-supported.
  • the inactive state is a state in which motion has ceased.
  • Both the all-wheel-grounded self-supporting mechanism and the non-all-wheel-grounding self-supporting mechanism can be switched between an operating state and a non-operating state according to operation.
  • the non-all-wheel-grounding self-standing mechanism is configured to make the vehicle body self-sustaining in a state in which at least one of the plurality of wheels of the lean vehicle does not touch the ground.
  • a non-all-wheel-grounded self-standing mechanism is, for example, a main stand.
  • the all-wheel grounding self-standing mechanism is configured to make the vehicle stand on its own with all wheels grounded.
  • the all-wheel-grounded self-standing mechanism is, for example, a side stand.
  • the main stand is not included in the all-wheel-grounded self-standing mechanism.
  • the all-wheel-grounded self-standing mechanism is not limited to the side stand.
  • the all-wheel-grounded self-sustaining mechanism may be, for example, a tilt lock mechanism that is provided in a tricycle and that operates according to operation.
  • the tilt lock mechanism When the tilt lock mechanism operates, the vehicle body is supported only by all wheels with respect to the ground and stands on its own. All wheels are grounded in both the active and inactive states of the all-wheel-grounded self-supporting mechanism. For this reason, the switching operation between the operating state and the non-operating state in the all-wheel grounding self-standing mechanism can be performed while all the wheels are grounded. Therefore, the operation of the all-wheel-grounded self-supporting mechanism is easier than the operation of the non-all-wheel-grounded self-supporting mechanism.
  • the lean vehicle may include both the all-wheel-grounded self-supporting mechanism and the non-all-wheel-grounding self-supporting mechanism, or may include only the all-wheel-grounding self-supporting mechanism.
  • the detection device is configured to detect whether or not the all-wheel-grounded self-standing mechanism is operating.
  • the all-wheel-grounding self-standing mechanism is a side stand
  • examples of the detection device include a side stand position sensor or a tilt lock sensor that detects the deployed state or retracted state of the side stand.
  • the unfolded state is a state in which the side stand operates.
  • the stowed state is a non-operating state in which the operation of the side stand is stopped.
  • the side stand is put into the operative state by, for example, receiving the operation of the rider's foot and being unfolded from the stowed state.
  • the engine is an internal combustion engine.
  • the engine outputs, for example, the power produced by the combustion of a fuel-air mixture as torque and rotational speed of the crankshaft.
  • the engine is, for example, a 4-stroke engine.
  • An engine for example, has a high load region and a low load region during four strokes.
  • the high load region refers to a region in one combustion cycle of the engine in which the load torque is higher than the average value of the load torque in one combustion cycle.
  • the low load range refers to a range other than the high load range in one combustion cycle. Taking the rotation angle of the crankshaft as a reference, the low load range is wider than, for example, the high load range.
  • the compression stroke has a high load region and an overlap.
  • a four-stroke engine having a high-load region and a low-load region is, for example, a single-cylinder engine, a two-cylinder engine, a three-cylinder unequal-combustion engine, or a four-cylinder unequal-combustion engine.
  • the engine may be, for example, a four-stroke engine that does not have a high load region and a low load region between four strokes.
  • the clutch switches connection and disconnection of power transmission from the crankshaft to the drive wheels. That is, the clutch switches between a connected state and a disconnected state of the output from the crankshaft of the engine.
  • the clutch switches between a connected state and a disconnected state according to the rider's operation. More specifically, the clutch lever is directly operated by the rider.
  • the clutch switches between a connected state and a disconnected state according to the operation of the clutch lever received from the rider. More specifically, when the clutch lever is operated, the clutch operates and becomes disengaged. When the operation of the clutch lever stops, the clutch is engaged.
  • a clutch lever is provided on a handlebar provided in a lean vehicle and is operated by a rider's hand.
  • the operation of the clutch lever is, for example, the operation of the rider pulling the clutch lever rearward in a lean vehicle. Stopping the operation of the clutch lever is, for example, the return of the clutch lever forward by the rider reducing or stopping the clutch lever pull.
  • the clutch sensor detects, for example, whether or not the clutch lever has been operated.
  • the clutch sensor detects the operation of the clutch lever by directly detecting the position of the clutch lever.
  • the clutch sensor is not particularly limited, and may be provided in the clutch, for example.
  • the clutch sensor may detect the position of a clutch component that moves as the clutch lever is operated.
  • the idling stop control unit implements an idling stop restart process.
  • the idling stop restart process is a process for idling stop and restart.
  • the idling stop control unit puts the engine into an idling stop state based on the establishment of an idling stop condition other than the state of the all-wheel-grounded self-supporting mechanism.
  • the idling stop of the engine is to stop the combustion operation of the engine due to the establishment of the idling stop condition.
  • the idling stop condition is, for example, any one or a combination of the following conditions (A) to (E).
  • (A) The throttle opening is fully closed or substantially fully closed.
  • (B) The lean vehicle is stationary.
  • the idling stop conditions may include conditions other than the above conditions (A) to (E). Also, some of the conditions (A) to (E) can be set as conditions for a ready state in which idling stop is possible, and other parts can be divided into the operation of stopping the engine.
  • Restarting the engine means starting the engine in an idling stop state when a predetermined restart condition is satisfied.
  • the restart condition is, for example, operation of the clutch lever.
  • the restart condition may include conditions other than the operation of the clutch lever.
  • the restart condition is, for example, that the accelerator grip does not output an acceleration request and the clutch sensor is operated.
  • a process operates in response to input data.
  • the engine forced stop start process and the idling stop restart process each have a data input function and a control data output function.
  • Each process also has a process flow or data.
  • the forced engine stop start process is performed independently of the idling stop restart process. For example, the process flow of the engine forced stop start process itself is executed without being affected by the result of the process in the idling stop restart process.
  • the engine forced stop start process is performed by the idling stop restart It can be said that it is not performed independently from the start-up process.
  • a program of the engine forced stop start process may include only jump instructions, branch instructions, or subroutine instructions in this program. does not transition to the idling stop restart process program.
  • the forced engine stop start process and the idling stop restart process are implemented, for example, by hardware independent of each other.
  • the idling stop control section and the forced stop control section are configured by independent hardware.
  • the idling stop restart process is implemented by a computer as an idling stop controller having a processor and a program.
  • the forced stop control section is realized by wired logic different from the idling stop control section.
  • the hardware of the forced stop control unit and the idling stop control unit may be configured by electric circuits provided in different regions of a common circuit board. In this case, the hardware of the forced stop control unit and the hardware of the idling stop control unit are connected and integrated with each other.
  • the hardware of the forced stop control unit and the hardware of the idling stop control unit share part of the hardware such as the power supply circuit.
  • the hardware configuration of the control device is not particularly limited, and for example, the forced stop control section may be implemented as a relay circuit configured by an electromagnetic relay and a diode. Further, for example, the hardware of the forced stop control section and the hardware of the idling stop control section may be separated from each other.
  • the forced engine stop start process and the idling stop restart process may be independent software processes (tasks) executed by a common processor, for example. Process independence is not limited to hardware independence. For example, a single processor executes an operating system program capable of controlling multiple processes.
  • the operating system program may operate the above two processes as child processes sequentially by time division or task division. That is, the idling stop control section and the forced stop control section are configured by common hardware that executes different programs.
  • the forced engine stop start process is independent of the idle stop restart process. That is, the processing flow of the engine forced stop start process is not affected by the processing result of the idling stop restart process. For example, while the idling stop restart process program is being executed, the engine forced stop start process program is not executed without intervention of the operating system program such as task switch. Conversely, for example, while the program for the forced engine stop start process is being executed, the program for the idling stop restart process is not executed without the intervention of the operating system program.
  • the operation of the engine start switch means, for example, that the rider displaces the engine start switch.
  • the engine start switch is, for example, a switch different from an operation target for starting a lean vehicle.
  • the engine start switch is, for example, a switch that has a function exclusively for starting the engine. For example, even if a clutch lever operated to start a lean vehicle has a function to restart the engine, this clutch lever is not an engine start switch.
  • a clutch lever originally has a function for starting a lean vehicle.
  • the operating means for starting the lean vehicle has a function for starting the engine, so that the starting operation is possible regardless of the state of the engine.
  • the operation of the engine start switch is different from the operation for starting the lean vehicle.
  • the operation of the idling stop switch means, for example, that the rider displaces the idling stop switch.
  • the idling stop switch is a switch for stopping the engine operating in the idling stop preparation state.
  • Maintaining the forced stop state of the engine operation at least until the engine start switch is operated means that the forced stop state of the engine operation is not released until the engine start switch is operated. For example, even if the operation of the all-wheel-grounding self-sustaining mechanism is stopped and the clutch lever is operated, the forced stop state of the operation of the engine is not released. Maintaining the forced stop state of the engine operation at least until the engine start switch is operated means, for example, the forced stop state of the engine operation by a combination of operation of the engine start switch and conditions other than this operation.
  • At least the engine start switch is operated as a condition for canceling the forcibly stopped state of the operation of the engine, for example, (a) the operation of the all-wheel-grounding self-supporting mechanism is stopped and the clutch lever is The fact that it is being operated and the state that the engine start switch is being operated overlap in terms of time. Further, at least the engine start switch being operated means, for example, that (b) the multi-speed transmission is in the neutral state and the state in which the engine start switch is operated overlaps in terms of time. Further, the fact that at least the engine start switch is operated means that either (a) or (b) above is satisfied.
  • the state in which the transmission of the output from the engine to the drive wheels is disconnected is, for example, the case where the multi-speed transmission is in the neutral state or the clutch is in the power disconnected state.
  • Starting the engine based on at least the operation of the engine start switch includes, for example, starting the engine upon operation of the engine start switch and establishment of other conditions.
  • a condition for starting the engine at least the operation of the engine start switch may be equal to, for example, the above-described condition for canceling the forcible stop state of the operation of the engine.
  • a lean vehicle for example, is equipped with a multi-speed transmission that converts the speed of the output from the engine and transmits it to the drive wheels.
  • the multi-stage transmission is configured to change the gear ratio in multiple stages according to the operation of the shift pedal.
  • the multi-speed transmission is, for example, a manual multi-speed transmission.
  • a lean vehicle is equipped with, for example, a lamp as a display device.
  • the display device is not particularly limited, and may be, for example, a device with a displaceable indicator or a device that emits sound.
  • the rotor has more magnetic pole pieces than 2/3 of the number of slots.
  • the rotor has more pole pieces than slots.
  • a larger inductance is obtained.
  • the rotor has 4/3 or more pole pieces than the number of slots. In this case, a larger inductance can be obtained while suppressing complication of control.
  • the rotor is not particularly limited, and may have, for example, 2/3 the number of slots or fewer magnetic pole portions.
  • the present invention while having an idling stop function in a lean vehicle, it is possible to start the engine under the same conditions and operations as in a vehicle that does not have an idling stop function with respect to the operation of the all-wheel-grounded independent mechanism.
  • FIG. 1 is a diagram showing the configuration of a lean vehicle according to a first embodiment
  • FIG. FIG. 2 is a state transition diagram showing state transitions and a hierarchical structure relating to stop and start of the engine of the lean vehicle shown in FIG. 1 ; It is a figure which shows the display apparatus in the 1st application example of the lean vehicle of 1st Embodiment.
  • FIG. 7 is a diagram showing an all-wheel-grounded self-standing mechanism in a second application example of the lean vehicle of the first embodiment;
  • FIG. 1 is a diagram showing the configuration of a lean vehicle 1 according to the first embodiment.
  • Part (a) of FIG. 1 is a side view schematically showing the lean vehicle 1.
  • FIG. Part (b) of FIG. 1 is an enlarged view showing a part of the lean vehicle 1 .
  • Part (c) of FIG. 1 is a chart showing the process of the control device 60 of the lean vehicle 1 .
  • the lean vehicle 1 shown in FIG. 1 is configured to turn in a tilted posture toward the inside of a curve when traveling.
  • the lean vehicle 1 is, for example, a motorcycle.
  • the lean vehicle 1 includes a vehicle body 1 ⁇ /b>A, a plurality of wheels 14 and 15 , a clutch 25 , a clutch lever 122 , a clutch sensor 123 , an all-wheel-grounded independent mechanism 101 , and a detection device 102 .
  • the lean vehicle 1 also includes an engine 10 , a starter generator 20 , an engine start switch 121 , a control device 60 , an accelerator grip 124 and an idling stop switch 125 .
  • the clutch lever 122 , the engine start switch 121 and the accelerator grip 124 are provided on the handlebar 12 .
  • the lean vehicle 1 comprises two wheels 14,15. Wheel 14 is the front wheel. Wheel 15 is the rear wheel.
  • the wheels 15 function as drive wheels that drive the lean vehicle 1 by the output from the engine 10 . That is, the wheels 14, 15 include drive wheels.
  • the wheels 15 are hereinafter also referred to as drive wheels 15 . Both of the plurality of wheels 14, 15 are grounded during running.
  • the lean vehicle 1 is configured so as not to stand on its own due to only the plurality of wheels 14 and 15 when the vehicle is stopped.
  • the engine 10 outputs power generated by combustion.
  • the engine 10 has a crankshaft 11 .
  • the engine 10 outputs power as rotational force of the crankshaft 11 .
  • the clutch 25 switches between a connected state in which the rotational force of the crankshaft 11 is transmitted to the drive wheels 15 and a disconnected state in which the rotational force is interrupted, depending on the operation.
  • Clutch 25 operates according to the operation of clutch lever 122 .
  • the clutch lever 122 is directly operated by a rider riding in the lean vehicle 1 . More specifically, when the clutch lever 122 is operated, the clutch 25 operates and becomes disengaged.
  • the operation of the clutch lever 122 is an operation of pulling the clutch lever 122 toward the rear of the lean vehicle 1 by the rider.
  • Stopping the operation of the clutch lever 122 is, for example, returning the clutch lever 122 forward by reducing or stopping the pulling force of the clutch lever 122 by the rider.
  • Clutch sensor 123 detects an operation on clutch lever 122 .
  • the engine start switch 121 is a switch for starting the engine 10 according to the operation by the rider.
  • the idling stop switch 125 is a switch for putting the engine 10 into an idling stop state according to the operation by the rider.
  • the accelerator grip 124 is operated by the rider.
  • the accelerator grip 124 outputs an acceleration request for the lean vehicle 1 by operation.
  • the output power of the engine 10 is increased by outputting an acceleration request according to the operation of the accelerator grip 124 .
  • the all-wheel-grounded self-supporting mechanism 101 during operation makes the vehicle body 1A of the lean vehicle 1 self-supporting when the vehicle is stopped. At this time, all of the plurality of wheels 14 and 15 that were grounded during running are grounded.
  • the all-wheel grounding type self-supporting mechanism 101 when not in operation does not allow the vehicle body 1A to stand on its own.
  • the all-wheel-grounded self-standing mechanism 101 is, for example, a side stand.
  • the unfolded state of the side stand corresponds to the operating state of the all-wheel-grounding self-standing mechanism 101 .
  • the retracted state of the side stand corresponds to a state in which the operation of the all-wheel-grounding self-standing mechanism 101 is stopped, that is, a non-operating state.
  • the detection device 102 detects whether or not the all-wheel grounding self-standing mechanism 101 is operating.
  • the detection device 102 detects, for example, the unfolded state of the side stand as the all-wheel-grounding self-
  • the starter generator 20 drives the crankshaft 11 when the engine 10 is started. Further, the starter generator 20 is driven by the crankshaft 11 to generate electric power when the engine 10 is in combustion operation.
  • the starter/generator 20 is connected to the crankshaft 11 without, for example, a clutch mechanism.
  • the starter-generator 20 rotates, for example, at a speed that is a fixed ratio of the speed of the crankshaft 11 .
  • the starter generator 20 is directly connected to the crankshaft 11 . However, a configuration in which the starter generator 20 is connected to the crankshaft 11 via a power transmission member can also be adopted.
  • the lean vehicle 1 includes a display device 51.
  • the display device 51 shows three states regarding idling stop.
  • a first state is an idling stop state of the engine 10 .
  • the second state is a state in which the idling stop preparation condition is met while the engine 10 is operating (idling stop preparation state).
  • the third state indicates another state, that is, a state in which the idling stop preparation condition is not established and the idling stop state is not established.
  • Control device 60 controls the operation of engine 10 .
  • the control device 60 controls the output from the crankshaft 11 of the engine 10 by controlling the combustion operation of the engine 10 .
  • the control device 60 also includes a switching element 65 .
  • the switching element 65 controls the current flowing through the starter/generator 20 by turning on and off. More specifically, switching element 65 controls the current through winding 224 (see FIG. 5) of starter-generator 20 .
  • the control device 60 rotates the crankshaft 11 by causing the switching element 65 to supply current to the starter/generator 20 . Thereby, the control device 60 controls starting and stopping of the engine 10 .
  • the control device 60 includes an idling stop control section 61 (IS control section 61 ) and a forced stop control section 62 .
  • the idling stop control unit 61 carries out an idling stop restart process 61a.
  • the idling stop/restart process 61 a is a process of stopping and restarting the engine 10 .
  • the idling stop restart process 61a changes the state of the engine 10 to the idling stop state based on the establishment of the idling stop condition other than the state of the all-wheel-grounded independent mechanism 101 .
  • the idling stop state is a state in which the operation of the engine 10 is stopped.
  • the idling stop state is a state in which the engine 10 can be started by an operation other than the operation of the engine start switch 121 .
  • the idling stop restart process 61a restarts the engine 10 based on the detection result of the operation by the clutch sensor 123 in the idling stop state.
  • the idling stop control unit 61 is composed of a computer having a processor and a program (not shown).
  • the idling stop restart process 61a is a process implemented by executing a program.
  • the forced stop control section 62 implements an engine forced stop start process 62a.
  • the engine forced stop start process 62a stops and starts the engine 10 under conditions different from idling stop and restart.
  • the engine forced stop start process 62a is a process independent of the idling stop restart process 61a.
  • the forced stop control unit 62 in FIG. 1 is configured by wired logic.
  • the forced stop control unit 62 has neither a processor nor a program.
  • the engine forced stop start process 62a is a process in which input data is processed and output by each logic gate of wired logic.
  • the engine forced stop start process 62a forcibly stops the operation of the engine 10 by outputting forced stop state data. For example, data for a forced stop condition stops fuel injection or ignition of the engine 10 .
  • the engine forcible stop start process 62a forcibly stops the operation of the engine 10 when the operation of the all-wheel-grounded independent mechanism 101 is detected.
  • the forced engine stop start process 62a starts the engine 10 at least based on the operation of the engine start switch 121.
  • FIG. The forced engine stop start process 62a maintains the stopped state of the operation of the engine 10 at least until the engine start switch 121 is operated.
  • FIG. 2 is a state transition diagram showing state transitions and a hierarchical structure relating to the stop and start of the engine 10 of the lean vehicle 1 shown in FIG.
  • Ellipses in FIG. 2 indicate respective states
  • arrows indicate state transitions
  • rectangles indicate operations associated with the transitions. Also, transition conditions are shown beside the arrows.
  • the lean vehicle 1 has various states related to the operation of the engine 10 and braking (not shown).
  • Various states can be divided into groups M1 to M4.
  • One group is composed of states having relationships of mutual transition according to conditions.
  • Group M1 of basic control states of engine 10 relates to basic stop and start states of engine 10 .
  • a group M1 of basic control states of the engine 10 includes an engine operable state m11 and an engine operable state m12.
  • the all-wheel-grounded self-standing mechanism 101 operates, the operation of the engine 10 is forcibly stopped.
  • the state transitions to the engine inoperable state m12. In the engine inoperable state m12, the engine 10 is started on condition that at least the engine start switch 121 is operated.
  • Conditions other than the operation of the engine start switch 121 may be added to the starting of the engine 10 . Then, the state transitions to the engine operation permissible state m11. In the engine operation permissible state m11, the engine 10 performs combustion operation. In the engine operation disabled state m12, the state does not transition to the engine operation permitted state m11 simply by stopping the operation of the all-wheel-grounding self-supporting mechanism 101. FIG. In other words, once the all-wheel-grounding self-standing mechanism 101 operates, it does not transition to the engine operation permissible state m11 until at least the engine start switch 121 is operated. Note that the engine operation permissible state m11 also includes a state in which the engine 10 is not operating.
  • the engine 10 may stop in the engine operation permissible state m11 in which the all-wheel-grounding self-standing mechanism 101 does not operate.
  • the engine 10 may stop due to an engine stall caused by the operation timing of the clutch lever 122 or an operation of an engine kill switch (not shown).
  • the idling stop control state group M3 includes an engine operating state m31 and an idling stop state m32.
  • the state becomes the idling stop state m32.
  • the group M1 of the basic control state of the engine 10 and the group M3 of the idling stop control state are independent of each other.
  • the state of group M1 of the basic control state of the engine 10 is determined by the states of the all-wheel-grounding independent mechanism 101 and the engine start switch 121, and does not depend on the state of group M3 of the idling stop control state.
  • both groups M1 and M3 control the engine 10.
  • the control output of group M1 in the basic control state of engine 10 takes precedence. For example, even if the state in the group M3 of the idling stop control state is either the engine operating state m31 or the idling stop state m32, the operation of the engine 10 is forcibly stopped when the all-wheel grounding self-supporting mechanism 101 operates. be done. The state in which the operation of the engine 10 is forcibly stopped is the engine inoperable state m12. Then, the engine 10 does not start until at least the engine start switch 121 is operated. When at least the engine start switch 121 is operated, the engine 10 is started.
  • an idling stop restart process 61a performed by an idling stop control unit 61 (IS control unit 61) and an engine forced stop start process 62a performed by a forced stop control unit 62 are performed. explained.
  • the idling stop control unit 61 executes idling stop control and restart control.
  • the idling stop control determines whether the idling stop state (IS state) or the establishment of the idling stop preparation condition (IS preparation condition) is established (S11, S12).
  • the idling stop preparation condition is, for example, that the temperature of the engine 10 or the temperature of the cooling water is equal to or higher than a reference value, and that the vehicle has traveled at a speed equal to or higher than the reference speed since the previous engine start.
  • the state of the all-wheel-grounded independent mechanism 101 is not included in the idling stop preparation conditions.
  • the idling stop control unit 61 changes the control state to the idling stop preparation state (IS preparation state). (S13). Further, the idling stop control unit 61 causes the display device 51 to display a state in which the idling stop preparation condition is satisfied.
  • the idling stop control unit 61 stops the engine 10 (EG 10) (S15).
  • An idling stop operation is a rider's request to implement an idling stop.
  • the idling stop operation is, for example, any one or a combination of (A) to (E).
  • (A) The accelerator grip 124 does not output an acceleration request.
  • (B) The lean vehicle 1 is stopped.
  • (C) Operation of the clutch lever 122 is stopped while the multi-speed transmission 30 (see FIG. 5) is in the neutral state.
  • the idling stop switch 125 has been operated.
  • the multi-speed transmission 30 is not in the neutral state and the clutch lever 122 is operated.
  • the state of the all-wheel-grounded independent mechanism 101 is not included in the idling stop operation.
  • the idling stop operation is a combination of conditions (A), (B) and (C).
  • the engine 10 does not stop when the clutch lever 122 is operated to change gears.
  • a combination of conditions (A), (B), (D), and (E) can also be employed as the idling stop operation.
  • the idling stop preparation condition in this case is that the multi-speed transmission 30 is not in the neutral state. This combination simplifies the operation of the multi-speed transmission 30 .
  • the idling stop preparation condition it is also possible to employ the establishment of any combination of the conditions (A), (B) and (C) or the combination of the conditions (A), (B) and (D). .
  • the idling stop control unit 61 changes the control state to the idling stop state.
  • the idling stop control unit 61 causes the display device 51 to display the idling stop state.
  • the idling stop control unit 61 determines the idling stop state (IS state), the establishment of the restart preparation condition, and the operation of the clutch 25 (S21, S22, S23).
  • the restart preparation condition is, for example, that the accelerator grip 124 does not output an acceleration request.
  • the idling stop control unit 61 outputs an engine restart request ( S24).
  • the idling stop control unit 61 terminates the idling stop state (S25).
  • the idling stop control unit 61 changes the control state to active. Also, the idling stop control unit 61 stops displaying the idling stop state on the display device 51 .
  • the idling stop control unit 61 causes the display device 51 to display a state in which the idling stop permission condition is not met and the idling stop state is not established.
  • the idling stop control unit 61 restarts based on the operation of the clutch 25 regardless of whether the multi-stage transmission 30 (see FIG. 5) is in the neutral state or not in the neutral state. This simplifies the operation from the idling stop state to start.
  • the forced stop control unit 62 is composed of a wired logic circuit.
  • the forced stop control unit 62 has a stop holding state device 625 that holds and outputs forced stop state data.
  • the hold-stop state device 625 is composed of, for example, a flip-flop.
  • the stop holding state device 625 outputs forced stop state data when the engine is not stopped and when the all-wheel-grounded independent mechanism 101 is operating.
  • the stop holding state device 625 holds the data of the forced stop state at least until the operation of the all-wheel-grounding independent mechanism 101 stops and the clutch lever 122 is operated.
  • the forced stop control unit 62 causes the display device 51 to display a state in which neither the idling stop preparation condition is met nor the idling stop state is established while the forced stop state data is held.
  • the stop holding state device 625 outputting the forced stop state data to stop outputting the forced stop state data and start the engine 10
  • the forced stop control unit 62 keeps outputting forced stop state data until the engine start switch 121 is operated in a state in which transmission of output from the engine 10 to the drive wheels 15 is cut off. As a result, the stopped state of the engine 10 is maintained.
  • the forced stop control unit 62 stops outputting the forced stop state data when the transmission of the output from the engine 10 to the driving wheels 15 is cut off and the engine start switch 121 is operated. At this time, the forced stop control unit 62 also outputs engine start (EG start) data. More specifically, in order for the stop holding state device 625 to stop outputting the forced stop state data and start the engine 10, for example, either of the following conditions (a) and (b) is satisfied: There is a need. Condition (a) is that the operation of the all-wheel-grounding self-sustaining mechanism 101 is stopped, the clutch lever 122 is operated, and the engine start switch 121 is operated. Condition (b) is that the multi-speed transmission 30 is in the neutral state and the engine start switch 121 is operated.
  • the forced stop control unit 62 which outputs forced stop state data, indicates that the operation of the all-wheel-grounded independent mechanism 101 is stopped, the clutch lever 122 is operated, and the engine start switch 121 is operated. If so, data for starting the engine 10 is output.
  • the engine 10 When the stop holding state device 625 has stopped outputting the forced stop state data, the engine 10 will start when there is a request to restart the engine 10 . Engine 10 is restarted. Conversely, if the stop holding state device 625 is outputting data indicating a forced stop state, the engine 10 will not start even if there is a request to restart the engine 10 . As a result, the control for stopping the engine 10 by the forced stop control unit 62 has priority.
  • the forced stop control section 62 carries out the engine forced stop start process 62a.
  • the forced stop control unit 62 stops the engine 10 under conditions different from those for idling stop, and starts the engine 10 under conditions different from those for restart. In this manner, the forced stop control unit 62 performs the engine forced stop start process 62a independent of the idling stop restart process 61a.
  • the engine forced stop start process 62a is a process independent of the idling stop restart process 61a. Therefore, the engine 10 enters the idling stop state based on the establishment of conditions other than the state of the all-wheel-grounding self-standing mechanism 101 .
  • the engine forced stop start process 62a can forcibly stop the operation of the engine 10 based on the operation of the all-wheel-grounded independent mechanism 101.
  • FIG. Furthermore, the stopped state of the operation of the engine 10 can be maintained at least until the engine start switch 121 is operated. Therefore, once the all-wheel grounding self-supporting mechanism 101 operates, the engine 10 is not started by operating the clutch lever 122 even when the all-wheel grounding self-supporting mechanism 101 stops operating.
  • the engine 10 does not start until at least the engine start switch 121 is operated. That is, after the all-wheel grounding self-standing mechanism 101 is operated, the engine 10 is started based on at least the operation of the engine start switch 121 .
  • the engine 10 of the lean vehicle 1, once the all-wheel grounding type self-supporting mechanism 101 operates, after that, including the state in which the operation of the all-wheel grounding type self-supporting mechanism 101 is stopped, is a vehicle that does not have an idling stop function, for example. It can be started by a similar operation. Therefore, while having the idling stop function, the engine 10 can be started under the same conditions and operation as those of a vehicle without the idling stop function.
  • the engine 10 can be started in a short time.
  • FIG. 3 is a diagram showing a display device 51 in a first application example of the lean vehicle 1 of the first embodiment. As an explanation of this application example, portions different from the lean vehicle 1 of the first embodiment will be explained. Common parts are given the same reference numerals in the drawings, or their illustration and description are omitted.
  • the display device 51 shown in FIG. 3 indicates an idling stop state, a state in which the idling stop preparation condition is satisfied while the engine 10 is operating, and other states.
  • the display device 51 is a display lamp.
  • the display device 51 is a display lamp provided on the speedometer 50 .
  • the display device 51 displays a specific mark by lighting, for example. However, as the display device 51, for example, it is possible to employ a configuration in which a simple light is turned on instead of a specific mark.
  • the display device 51 displays that the idling stop preparation condition is met while the engine 10 is operating, for example, by turning on.
  • the display device 51 displays the idling stop state by blinking, for example.
  • the display device 51 for example, turns off the light to indicate that the idling stop preparation condition is not established and that the idling stop state is not the state.
  • the display device 51 lights up.
  • the display device 51 blinks.
  • the display device 51 is turned off.
  • the display device 51 is turned off.
  • the display device 51 does not turn on until at least the engine start switch 121 is operated to start the engine 10 and then the idling stop preparation condition is satisfied.
  • FIG. 4 is a diagram showing an all-wheel-grounded self-standing mechanism 101 in a second application example of the lean vehicle 1 of the first embodiment.
  • Part (a) of FIG. 4 shows a state in which the side stand as the all-wheel-grounding self-standing mechanism 101 is stored.
  • Part (b) of FIG. 4 shows a state in which the side stand is deployed.
  • the all-wheel grounding type self-standing mechanism 101 is a side stand.
  • a side stand as the all-wheel-grounded self-standing mechanism 101 is provided on the vehicle body 1A of the lean vehicle 1. As shown in FIG.
  • the side stand as the all-wheel-grounded self-standing mechanism 101 is deployed or retracted by the rider's operating force.
  • the side stand as the all-wheel-grounded self-standing mechanism 101 operates by being deployed as shown in part (b) of FIG. 4 . That is, by supporting the lean vehicle 1 on the ground, the lean vehicle 1 can stand on its own while the wheels 14 and 15 are in contact with the ground.
  • the side stand as the all-wheel-grounding self-supporting mechanism 101 completes its operation by retracting as shown in part (a) of FIG.
  • the all-wheel-grounded self-standing mechanism 101 is put into a non-operating state.
  • the all-wheel-grounded self-standing mechanism 101 has a detection device 102 .
  • the detection device 102 detects the state of the all-wheel-grounded self-standing mechanism 101 and transmits data of the detection result to the control device 60 .
  • the detection device 102 transmits to the control device 60 operation data indicating, for example, that the all-wheel-grounded self-sustaining mechanism 101 is in an operating state.
  • the engine 10 of the lean vehicle 1 can be started by the same operation as that of a vehicle without an idling stop function, for example, after the side stand as the all-wheel-grounding self-supporting mechanism 101 is deployed, including the stowed state. . That is, when the side stand as the all-wheel grounding self-standing mechanism 101 is retracted and the engine start switch 121 is operated, the engine 10 is started.
  • FIG. 5 is a diagram showing a schematic structure of the engine 10 and its peripheral devices in a third application example of the lean vehicle 1 of the first embodiment.
  • Part (a) of FIG. 5 is a side view of the engine 10, the starter/generator 20, and the multi-speed transmission 30.
  • FIG. Part (b) of FIG. 5 is a cross-sectional view taken along line XX′ of FIG. 5(a).
  • Part (c) of FIG. 5 is a cross-sectional view of the starter generator 20 .
  • the engine 10 of the lean vehicle 1 of this embodiment includes a crankcase 17 that accommodates the crankshaft 11 .
  • the starter generator 20 is provided inside the crankcase 17 . That is, the space in which the starter generator 20 is provided and the space in which the crankshaft 11 is provided are connected. The two spaces are not separated. Starter generator 20 and crankshaft 11 are lubricated with oil 18 .
  • the starter generator 20 is cooled with oil 18 . Therefore, cooling fans and fins for the starter generator 20 are omitted. Also, the wall between the arrangement space of the starter generator 20 and the arrangement space of the crankshaft 11 is omitted.
  • the starter generator 20 has a function of driving the crankshaft 11 when the engine 10 is started. Therefore, the starter generator 20 tends to be larger than, for example, a generator dedicated to power generation. However, in the lean vehicle 1, an increase in size of the unit 4 including the starter generator 20 and the engine 10 is suppressed.
  • the starter generator 20 is driven by current supplied via a switching element 65 provided in the control device 60 .
  • Rotational resistance of the starter generator 20 is suppressed by the lubrication by the oil 18 . Therefore, the supply current to the switching element 65 is suppressed when the engine 10 is restarted. Therefore, heat generation of the switching element 65 is also suppressed. Therefore, the heat insulation structure of the control device 60 can be simplified. That is, the control device 60 can be downsized.
  • the starter generator 20 has a stator 22 and a rotor 23 .
  • the stator 22 includes a stator core 223 and multi-phase windings 224 .
  • the stator core 223 has slots 221 and a plurality of teeth 222 alternately arranged in the circumferential direction.
  • a winding 224 is wound on the teeth 222 .
  • a current is supplied to winding 224 via switching element 65 .
  • the winding 224 supplies the generated current to the switching element 65 .
  • a rotor 23 of the starter generator 20 is provided on the crankshaft 11 so as to interlock with the rotation of the crankshaft 11 .
  • the rotor 23 has magnetic pole portions 232 that are circumferentially aligned with the stator 22 with a gap therebetween and that are more than two-thirds the number of the slots 221 .
  • the magnetic pole portion 232 is composed of the permanent magnet 231 .
  • the angular velocity based on the electrical angular period in the starter generator 20 is greater than in a configuration having magnetic pole portions 232 equal to or less than 2/3 of the number of slots 221, for example.
  • the electrical angle is an angle when the angle at which the tooth portion 222 passes through one pole pair is 360 degrees.
  • the angular velocity based on the electrical angle period is the angular velocity of the electrical angle at which the tooth portion 222 passes through the pole pair formed by the magnetic pole portion 232 .
  • the inductance of the windings 224 in the starter-generator 20 is greater than in configurations with pole pieces 232 equal to or less than two-thirds the number of slots 221, for example.
  • the generated current is suppressed by the larger inductance of the winding 224 in the rotation speed region where the starter generator 20 functions as a generator. Therefore, the current supplied to the switching element 65 is suppressed during power generation.
  • the structure for heat dissipation in the control device 60 can be simplified and miniaturized.
  • the engine 10 further includes a rotor position detection device 24 .
  • the rotor position detection device 24 has detection windings 241 that are different from the windings 224 of the stator 22 .
  • the rotor position detection device 24 outputs a signal indicating detection of the position of the rotor 23 to the control device 60 when the engine 10 is started with the multi-speed transmission 30 in the low gear position.
  • the detection winding 241 detects the position of the rotor 23 by magnetic action.
  • the sensing winding 241 can operate at higher temperatures than, for example, Hall elements. Therefore, the structure for dissipating heat in the crankcase 17 can be simplified, and the crankcase 17 can be miniaturized.
  • FIG. 6 is a chart showing the configuration and process of the control device 260 for the lean vehicle 1 according to the second embodiment. Portions in this embodiment that are common to those in the first embodiment are given the same reference numerals in the drawings, or illustration and description thereof are omitted.
  • the control device 260 shown in the second embodiment can be applied to the first, second, and third application examples described above.
  • the forced stop control unit 262 of the control device 260 in this embodiment is configured by a computer having a processor and programs (not shown).
  • the engine forced stop start process 262a performed by the control device 260 is performed by executing a program. These points are different from the first embodiment.
  • the engine forced stop start process 262a of the present embodiment is implemented by the processor sequentially executing a program. Therefore, there may be a slight deviation in the timing at which the signal is output with respect to the engine forced stop start process 62a (see FIG. 1) in the first embodiment. However, this output timing deviation is a deviation that can be ignored as control timing. Therefore, from the point of view of substantial control, it can be said that the timing of the output also coincides.
  • the contents of the control process of the forced engine stop start process 262a are the same as those of the forced engine stop start process 62a (see FIG. 1) in the first embodiment. That is, the forced stop control section 262 receives the same signals as the forced stop control section 62 (see FIG. 1) and outputs the same signals as the forced stop control section 62 . Further, as in the case of the first embodiment, the forced engine stop start process 262a of this embodiment is a process independent of the idling stop restart process 61a.
  • the engine forced stop start process 262a has forced stop control and return control.
  • the forced stop control determines whether or not the current state is the forced stop state (S31). In addition, the forced stop control unit 262 determines the operation of the all-wheel-grounded independent mechanism 101 . If the current state is not the forced stop state (No in S31) and the all-wheel-grounding self-supporting mechanism 101 is operating (Yes in S32), the forced stop control unit 262 changes the state to the forced stop state (S33). ). Then, the forced stop control unit 262 stops the engine 10 (EG stop S34). As a result, the operation of the engine 10 is forcibly stopped.
  • the forced stop control unit 262 determines whether or not the current state is the forced stop state (S41). If the current state is the forced stop state (Yes in S41), the forced stop control unit 262 determines whether or not the engine start switch 121 (EG start SW 121) has been operated (S42). If the engine start switch 121 has been operated (Yes in S42) and if the multi-speed transmission 30 is in the neutral state (N) (Yes in S43), the forced stop control unit 262 starts the engine 10 (S46). ). If the current state is not the forced stop state (No in S41), the forced stop control unit 262 performs an operation in response to the restart request (S48). If the current state is the forced stop state (Yes in S41), the control by the forced stop control unit 262 is not reflected. As a result, the control for stopping the engine 10 by the forced stop control unit 262 has priority.
  • the forced stop control unit 262 starts the engine 10 (S46) if the following conditions are satisfied.
  • the condition is that the operation of the all-wheel-grounding self-supporting mechanism 101 is stopped (Yes in S44) and the operation of the clutch lever 122 is detected (Yes in S45).
  • the forced stop control unit 262 terminates the forced stop state (S47).

Abstract

A leaning vehicle according to the present invention has an idling stopping function, and enables an engine to be started in accordance with an operation and a condition similar to those for a vehicle that does not have an idling stopping function for the movement of an all-wheel ground contact type self-standing mechanism. In a control device in the present invention: an idling stopping control unit, by execution of an idling stopping restart process, causes an engine to be in an idling stopping state where the movement thereof is stopped, on the basis of an establishment of an idling stopping condition other than in the state of the all-wheel ground contact type self-standing mechanism, and causes the engine to be restarted on the basis of a detection result of operation by a clutch sensor in the idling stopping state; and a forced stop control unit, by execution of an engine forced stop start process as a process independent of the idling stopping restart process, forcibly stops the movement of the engine upon detection of the movement of the all-wheel ground contact type self-standing mechanism, and maintains the state of forcibly stopping the movement of the engine until at least the engine start switch is operated.

Description

リーン車両lean vehicle
 本発明は、リーン車両に関する。 The present invention relates to lean vehicles.
 リーン車両として、例えばアイドリングストップ機能を有する自動二輪車が知られている。例えば、特許文献1に示す自動二輪車では、エンジンの回転数が設定値よりも低下すると、エンジンが運転状態からアイドリングストップ状態に遷移する。アイドリングストップ状態のエンジンは、例えばクラッチレバーの操作に応じて再始動する。
 特許文献1に示される自動二輪車は、アイドリングストップ状態で全輪接地型自立機構としてのサイドスタンドが展開されている場合、クラッチレバーの操作に応じた再始動ができない。
A motorcycle having an idling stop function, for example, is known as a lean vehicle. For example, in the motorcycle disclosed in Patent Literature 1, when the number of rotations of the engine drops below a set value, the engine transitions from the operating state to the idling stop state. The engine in the idling stop state is restarted according to the operation of the clutch lever, for example.
The motorcycle shown in Patent Document 1 cannot be restarted in response to the operation of the clutch lever when the side stand as an all-wheel-grounding self-standing mechanism is deployed in the idling stop state.
特開2016-156347号公報JP 2016-156347 A
 リーン車両では、アイドリングストップ機能を有しつつ、全輪接地型自立機構の動作について例えばアイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動することが望まれている。
 本発明の目的は、アイドリングストップ機能を有しつつ、全輪接地型自立機構の動作についてアイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動できるリーン車両を提供することである。
In a lean vehicle, it is desired that, while having an idling stop function, the engine is started under the same conditions and operations as those of a vehicle without an idling stop function with respect to the operation of the all-wheel-grounded independent mechanism.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lean vehicle that has an idling stop function and can start the engine under the same conditions and operations as a vehicle that does not have an idling stop function with respect to the operation of the all-wheel-grounded independent mechanism. .
 本発明者は、リーン車両のスタンドの機能について検討した。スタンドは、停止している車両を自立させる自立機構の一例である。自立機構には、非全輪接地型自立機構と、全輪接地型自立機構とがある。
 非全輪接地型自立機構は、例えばメインスタンドである。メインスタンドが展開されると、リーン車両に備えられる複数の車輪の一部が地面から離れる。つまり、メインスタンドは、複数の車輪の一部が地面から離れた状態でリーン車両を自立させる。
 全輪接地型自立機構は、例えばサイドスタンドである。サイドスタンドは、リーン車両に備えられる複数の車輪の全部が接地した状態を維持しながら展開することができる。サイドスタンドは、メインスタンドよりも簡便な手段として使用される場合が多い。
The inventors have studied the function of the stand of a lean vehicle. A stand is an example of a self-supporting mechanism that allows a stopped vehicle to stand on its own. The self-sustaining mechanism includes a non-all-wheel grounding self-supporting mechanism and an all-wheels grounding self-supporting mechanism.
A non-all-wheel-grounded self-standing mechanism is, for example, a main stand. When the main stand is deployed, some of the wheels of the lean vehicle leave the ground. In other words, the main stand allows the lean vehicle to stand on its own in a state where some of the wheels are off the ground.
The all-wheel-grounded self-standing mechanism is, for example, a side stand. The side stand can be deployed while maintaining a state in which all of the plurality of wheels provided in the lean vehicle are grounded. A side stand is often used as a simpler means than a main stand.
 本発明者は、クラッチレバーによる再始動を含むアイドリングストップ機能と全輪接地型自立機構の機能との関係に着目した。
 例えば、特許文献1は、「再始動制御は、アイドリングストップモード選択スイッチ67がONの場合には、図5のフローを繰り返し処理する」と説明している。特許文献1の図5には、再始動制御が示されている。図5に示される再始動制御は繰返し実行される。このことは、特許文献1の段落[0085]に、「(スタンド含む)再始動条件が満たされていない場合には(ステップS13 No)、再始動制御を終了させて(以前に実行された)ステップS11に戻る。」と記載されていることからも明らかである。
 特許文献1の技術では、スタンドが展開された場合、再始動条件は満たされなくなり(ステップS13でNo)、クラッチ操作に基づく再始動制御(ステップS14)は行なわれない。しかし、処理はステップS11に戻り、特許文献1の図5のフローの処理が繰り返される。この処理の繰り返しの期間中にスタンドが収納されると、再始動条件が満たされクラッチ操作に基づく再始動制御(ステップS14)が行なわれる。つまり、クラッチ操作に基づく再始動制御が再開する。
 このように、特許文献1では、再始動制御の中にスタンドの状態が条件として組み込まれている。このため、特許文献1の自動二輪車は、アイドリングストップ機能を有さない車両と同様の操作によりエンジンを始動することができない。
The inventor of the present invention focused on the relationship between the idling stop function including restarting by the clutch lever and the function of the all-wheel grounding self-sustaining mechanism.
For example, Patent Literature 1 describes that "restart control repeats the flow of FIG. 5 when the idling stop mode selection switch 67 is ON". FIG. 5 of Patent Document 1 shows restart control. The restart control shown in FIG. 5 is repeatedly executed. This is described in paragraph [0085] of Patent Document 1, "If the restart conditions (including the stand) are not satisfied (step S13 No), the restart control is terminated (previously executed). Return to step S11.".
In the technique of Patent Document 1, when the stand is deployed, the restart condition is no longer satisfied (No in step S13), and the restart control (step S14) based on clutch operation is not performed. However, the process returns to step S11, and the process of the flow of FIG. 5 of Patent Document 1 is repeated. When the stand is retracted during the repetition of this process, the restart condition is satisfied and the restart control (step S14) is performed based on the clutch operation. That is, restart control based on clutch operation is resumed.
Thus, in Patent Document 1, the state of the stand is included as a condition in the restart control. Therefore, the motorcycle of Patent Document 1 cannot start the engine by the same operation as a vehicle without an idling stop function.
 本発明者は、クラッチレバーによる再始動を含むアイドリングストップ機能のプロセスと、全輪接地型自立機構としてのサイドスタンドに対応するプロセスとを独立して実施させることを検討した。独立で実施されるプロセスにより、サイドスタンドが一度展開された場合、エンジン始動スイッチが操作されるまでエンジンが始動しない。つまり、サイドスタンドが一度展開された場合、その後、収納されても例えばクラッチレバーの操作ではエンジンが始動しない。つまり、スタンドが一度展開されると、例えばアイドリングストップ機能を有さない車両と同様の操作によりエンジンを始動することができる。
 このことは、サイドスタンド以外の全輪接地型自立機構を有するリーン車両にも適用できる。
The present inventors have considered independent implementation of the process of the idling stop function including restarting by means of the clutch lever and the process of supporting the side stand as an all-wheel-grounded independent mechanism. Due to the independently implemented process, once the side stand is deployed, the engine will not start until the engine start switch is operated. In other words, once the side stand is deployed, the engine will not start even if the side stand is retracted, for example, by operating the clutch lever. That is, once the stand is unfolded, the engine can be started by an operation similar to that of a vehicle that does not have an idling stop function, for example.
This can also be applied to a lean vehicle having an all-wheel-grounded self-standing mechanism other than the side stand.
 以上の目的を達成するために、本発明の一つの観点によれば、リーン車両は、次の構成を備える。 In order to achieve the above objects, according to one aspect of the present invention, a lean vehicle has the following configuration.
 (1) 走行時に接地する複数の車輪のみによって自立しないように構成されたリーン車両であって、
 前記リーン車両は、
 前記複数の車輪と、
 動作時に前記複数の車輪が接地した状態で車体を自立させる一方、非動作時には車体を自立させないように構成された全輪接地型自立機構と、
 前記全輪接地型自立機構が動作しているか否かを検出する検出装置と、
 クランク軸を有し、燃焼動作によって生じるパワーを、前記クランク軸を介して出力するエンジンと、
 ライダによる操作に応じてクラッチを動作させるクラッチレバーと、
 前記クラッチレバーの操作を検出するクラッチセンサと、
 前記エンジンの始動時に前記クランク軸を駆動し、前記エンジンの燃焼動作時に前記クランク軸に駆動され発電する始動発電機と、
 前記ライダによる操作に応じて前記エンジンを始動させるためのエンジン始動スイッチと、
 前記エンジン及び前記始動発電機の動作を制御する制御装置と
を備え、以下を特徴とする:
 前記制御装置は、前記エンジンのアイドリングストップ及び再始動のためのアイドリングストップ再始動プロセスを実施するアイドリングストップ制御部と、前記アイドリングストップ及び再始動とは異なる条件で前記エンジンを停止及び始動するためのエンジン強制停止始動プロセスを実施する強制停止制御部とを備え、
前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記全輪接地型自立機構の状態以外のアイドリングストップ条件の成立に基づいて、前記エンジンを動作が停止したアイドリングストップ状態にするとともに、前記アイドリングストップ状態で前記クラッチセンサによる操作の検出結果に基づいて前記エンジンを再始動し、
前記強制停止制御部は、前記アイドリングストップ再始動プロセスとは独立したプロセスとして前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の強制的な停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいて前記エンジンを始動する。
(1) A lean vehicle constructed so as not to stand on its own only with a plurality of wheels that are in contact with the ground when traveling,
The lean vehicle is
the plurality of wheels;
an all-wheel-grounding self-standing mechanism configured to allow the vehicle body to stand on its own with the plurality of wheels in contact with the ground during operation, but not to allow the vehicle body to stand on its own when not in operation;
a detection device for detecting whether or not the all-wheel-grounded self-standing mechanism is operating;
an engine having a crankshaft through which power generated by combustion operation is output;
a clutch lever that operates the clutch in accordance with a rider's operation;
a clutch sensor that detects the operation of the clutch lever;
a starter-generator that drives the crankshaft when the engine is started and generates power by being driven by the crankshaft during combustion operation of the engine;
an engine start switch for starting the engine in response to an operation by the rider;
a controller for controlling the operation of the engine and the starter-generator, characterized by:
The control device includes an idling stop control unit that performs an idling stop restart process for idling stop and restart of the engine, and a control unit for stopping and starting the engine under conditions different from the idling stop and restart. a forced stop control unit that implements an engine forced stop start process,
By executing the idling stop restart process, the idling stop control unit puts the engine into an idling stop state in which operation is stopped based on the establishment of an idling stop condition other than the state of the all-wheel grounding self-supporting mechanism. and restarting the engine based on the detection result of the operation by the clutch sensor in the idling stop state,
The forced stop control unit performs the engine forced stop start process as a process independent of the idling stop restart process, thereby operating the engine when the operation of the all-wheel grounding independent mechanism is detected. is forcibly stopped, the forced stop state of the operation of the engine is maintained at least until the engine start switch is operated, and the engine is started based on at least the operation of the engine start switch. .
 (1)のリーン車両は、複数の車輪と、全輪接地型自立機構と、検出装置と、エンジンと、クラッチレバーと、クラッチセンサと、始動発電機と、エンジン始動スイッチと、制御装置と、を備える。
 複数の車輪は、リーン車両に備えられた車体に設けられる。複数の車輪は、駆動輪を含む。全輪接地型自立機構は、例えばサイドスタンドである。全輪接地型自立機構は、動作時に複数の車輪が接地した状態で車体を自立させるように構成される。全輪接地型自立機構は、非動作時に車体を自立させない。エンジンは、燃焼によって生じるパワーを出力する。パワーはクランク軸を介して出力される。リーン車両に備えられるクラッチは、動作することによってクランク軸からの駆動輪への出力の伝達を切断する。クラッチレバーは、ライダの操作に応じてクラッチを動作させる。クラッチセンサは、クラッチレバーの操作を検出する。始動発電機は、エンジンの始動時にクランク軸を駆動する。始動発電機は、エンジンの燃焼動作時にクランク軸に駆動され発電する。エンジン始動スイッチは、ライダに操作される。エンジンは、エンジン始動スイッチの操作に応じて始動するように構成される。
 制御装置は、エンジン及び始動発電機の動作を制御する。制御装置は、アイドリングストップ制御部と、強制停止制御部とを備える。
 アイドリングストップ制御部は、アイドリングストップ再始動プロセスを実施する。アイドリングストップ再始動プロセスは、エンジンのアイドリングストップ及び再始動のためのプロセスである。アイドリングストップ制御部は、アイドリングストップ再始動プロセスを実施することにより、エンジンをアイドリングストップ状態にし、また、エンジンを再始動する。アイドリングストップ再始動プロセスにおいて、アイドリングストップ制御部は、全輪接地型自立機構の状態以外のアイドリングストップ条件の成立に基づいて、エンジンを、動作が停止したアイドリングストップ状態にする。また、アイドリングストップ再始動プロセスは、前記アイドリングストップ状態で、クラッチセンサによる操作の検出結果に基づいてエンジンを再始動する。
 強制停止制御部は、エンジン強制停止始動プロセスを実施する。エンジン強制停止始動プロセスは、アイドリングストップ及び再始動とは異なる条件でエンジンを停止及び始動するためのプロセスである。強制停止制御部は、エンジン強制停止始動プロセスを、アイドリングストップ再始動プロセスから独立して実施する。強制停止制御部は、エンジン強制停止始動プロセスを実施することにより、エンジンの動作を強制的に停止し、また、エンジンを始動する。
 エンジン強制停止始動プロセスにおいて、強制停止制御部は、全輪接地型自立機構の動作が検出された場合にエンジンの動作を強制的に停止する。ここでいうエンジンの動作の強制的な停止は、いかなる状況下であってもエンジンの動作を停止させることを意味してもよい。ここでいう、いかなる状況は、アイドリングストップ再始動プロセスの実施中であることを含んでもよい。エンジンの動作の強制的な停止とは、アイドリングストップ再始動プロセスの実施中においても、エンジン強制停止始動プロセスの動作を停止させることを意味してもよい。エンジン強制停止始動プロセスにおいて、強制停止制御部は、強制的に停止したエンジンを、少なくともエンジン始動スイッチの操作に基づいて始動する。エンジン強制停止始動プロセスにおいて、強制停止制御部は、少なくともエンジン始動スイッチが操作されるまで、エンジンの動作の強制的な停止状態を維持する。なお、エンジンが停止している状況下で、エンジンの強制的停止の条件が成立する場合があってもよい。アイドリングストップ再始動プロセスによりエンジンが停止している状況下で、エンジンの強制的停止の条件が成立する場合があってもよい。この場合においても、当該条件の成立後に、エンジンは、強制的な停止状態となってもよい。このように生じたエンジンの強制的な停止状態も、少なくともエンジン始動スイッチが操作されるまで維持されてもよい。
The lean vehicle of (1) includes a plurality of wheels, an all-wheel-grounded independent mechanism, a detection device, an engine, a clutch lever, a clutch sensor, a starter generator, an engine start switch, a control device, Prepare.
A plurality of wheels are provided on a vehicle body provided in the lean vehicle. The plurality of wheels includes drive wheels. The all-wheel-grounded self-standing mechanism is, for example, a side stand. The all-wheel grounding type self-standing mechanism is configured to make the vehicle body stand alone with a plurality of wheels grounded during operation. The all-wheel-grounded self-supporting mechanism does not allow the vehicle body to self-support when not in operation. An engine outputs power produced by combustion. Power is output through the crankshaft. A clutch provided in a lean vehicle cuts the transmission of power from the crankshaft to the drive wheels by operating. The clutch lever operates the clutch according to the rider's operation. The clutch sensor detects the operation of the clutch lever. The starter generator drives the crankshaft when the engine is started. The starter-generator is driven by the crankshaft to generate electricity during the combustion operation of the engine. The engine start switch is operated by the rider. The engine is configured to start in response to operation of an engine start switch.
A controller controls the operation of the engine and the starter-generator. The control device includes an idling stop control section and a forced stop control section.
The idling stop control unit implements an idling stop restart process. The idling stop restart process is a process for idling stop and restart of the engine. The idling stop control unit puts the engine into an idling stop state and restarts the engine by executing an idling stop restart process. In the idling stop restart process, the idling stop control unit puts the engine into an idling stop state in which the operation is stopped based on the establishment of the idling stop condition other than the state of the all-wheel-grounded independent mechanism. Further, in the idling stop restart process, the engine is restarted in the idling stop state based on the detection result of the operation by the clutch sensor.
The forced stop control section implements the engine forced stop start process. The forced engine stop start process is a process for stopping and starting the engine under conditions different from idling stop and restart. The forced stop control unit executes the engine forced stop start process independently from the idling stop restart process. The forced stop control section forcibly stops the operation of the engine and starts the engine by executing the forced engine stop start process.
In the engine forced stop start process, the forced stop control section forcibly stops the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected. The forced stop of the operation of the engine here may mean stopping the operation of the engine under any circumstances. Any situation referred to herein may include that an idling stop restart process is in progress. Forcibly stopping the operation of the engine may mean stopping the operation of the forced engine stop start process even during the execution of the idling stop restart process. In the engine forced stop start process, the forced stop control unit starts the forcibly stopped engine based on at least the operation of the engine start switch. In the forced engine stop start process, the forced stop control section maintains the forced stop state of the operation of the engine at least until the engine start switch is operated. It should be noted that there may be a case where the condition for forcibly stopping the engine is satisfied while the engine is stopped. Under the circumstances where the engine is stopped by the idling stop restart process, there may be cases where the conditions for the forced stop of the engine are satisfied. Also in this case, the engine may be forcibly stopped after the condition is established. The forced stop state of the engine thus generated may also be maintained at least until the engine start switch is operated.
 エンジン強制停止始動プロセスは、アイドリングストップ再始動プロセスとは独立して実施される。このため、全輪接地型自立機構の状態以外の条件の成立に基づいてエンジンがアイドリングストップ状態になるのに対し、全輪接地型自立機構の動作した場合にエンジンの動作が強制的に停止される。また、全輪接地型自立機構が動作した場合、エンジンの動作の停止状態が、少なくともエンジン始動スイッチが操作されるまで維持される。したがって、一旦全輪接地型自立機構が動作すると、その後、全輪接地型自立機構の動作が停止しても、クラッチレバーの操作によってエンジンが始動することはない。即ち、全輪接地型自立機構が動作した後は、少なくともエンジン始動スイッチが操作されるまで、エンジンが始動しない。全輪接地型自立機構が動作した後は、例えば、エンジン始動スイッチが操作されるとエンジンが始動する。
 このように、(1)のリーン車両のエンジンは、一旦全輪接地型自立機構が動作すると、その後、全輪接地型自立機構の動作が停止している状態も含め、例えばアイドリングストップ機能を有さない車両と同様な操作により始動できる。従って、アイドリングストップ機能を有しつつ、アイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動することができる。
The forced engine stop start process is performed independently of the idling stop restart process. For this reason, the engine enters the idling stop state based on the establishment of conditions other than the state of the all-wheel grounding type self-supporting mechanism, whereas the operation of the engine is forcibly stopped when the all-wheels grounding type self-supporting mechanism operates. be. Further, when the all-wheel-grounded self-supporting mechanism operates, the stopped state of the engine operation is maintained at least until the engine start switch is operated. Therefore, once the all-wheel grounding type self-supporting mechanism operates, even if the operation of the all-wheels grounding type self-supporting mechanism stops after that, the operation of the clutch lever will not start the engine. That is, after the all-wheel-grounding self-standing mechanism operates, the engine does not start until at least the engine start switch is operated. After the all-wheel-grounded self-standing mechanism operates, for example, when the engine start switch is operated, the engine starts.
In this way, the engine of the lean vehicle in (1) has, for example, an idling stop function, including the state in which the operation of the all-wheel-grounded self-supporting mechanism is stopped, once the all-wheel-grounding self-supporting mechanism operates. It can be started by the same operation as a vehicle that does not. Therefore, while having the idling stop function, the engine can be started under the same conditions and operation as those of a vehicle without the idling stop function.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (2) (1)のリーン車両であって、
 前記複数の車輪は、前記エンジンからの出力によって前記リーン車両を駆動する駆動輪を含み、
 前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、前記エンジンから前記駆動輪への出力の伝達が切断された状態で前記全輪接地型自立機構の動作の停止及び前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、前記エンジンから前記駆動輪への出力の伝達が切断された状態で前記全輪接地型自立機構の動作の停止及び前記エンジン始動スイッチの操作の双方が同時に成立することに基づいて前記エンジンを始動する。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(2) The lean vehicle of (1),
The plurality of wheels includes drive wheels that drive the lean vehicle by output from the engine;
The forced stop control unit performs the engine forced stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and The operation of the engine is maintained in a stopped state until the operation of the all-wheel grounding self-supporting mechanism is stopped and the engine start switch is operated in a state in which the transmission of output to the drive wheels is cut off, and the engine is driven by the engine. The engine is started based on the simultaneous establishment of both the stop of the operation of the all-wheel-grounding self-supporting mechanism and the operation of the engine start switch in a state in which the transmission of power to the wheels is cut off.
 (2)のリーン車両によれば、エンジンの始動時にエンジンから駆動輪への力の伝達は切断されている。このため、エンジンの始動時にエンジンが駆動輪から受ける抵抗が、抑制される。従って、(2)のリーン車両によれば、このような構成を有しない場合と比べて、アイドリングストップ機能を有さない車両と同様の条件及び操作により、短時間でエンジンを始動することができる。 According to the lean vehicle of (2), power transmission from the engine to the drive wheels is cut off when the engine is started. Therefore, the resistance that the engine receives from the driving wheels when starting the engine is suppressed. Therefore, according to the lean vehicle of (2), the engine can be started in a short period of time under the same conditions and operation as the vehicle without the idling stop function, compared to the case without such a configuration. .
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (3) (1)又は(2)のリーン車両であって、
 前記全輪接地型自立機構は、展開されることにより動作するサイドスタンドであり、
 前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記サイドスタンドの状態以外のアイドリングストップ条件の成立に基づいて、前記エンジンを動作が停止した前記アイドリングストップ状態にするとともに、前記アイドリングストップ状態で前記クラッチセンサによる操作の検出結果に基づいて前記エンジンを再始動し、
前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記サイドスタンドの展開が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいて前記エンジンを始動する。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(3) The lean vehicle of (1) or (2),
The all-wheel grounding type self-standing mechanism is a side stand that operates by being deployed,
By implementing the idling stop restart process, the idling stop control unit puts the engine in the idling stop state in which the operation is stopped based on the establishment of the idling stop condition other than the state of the side stand, and the restarting the engine based on the detection result of the operation by the clutch sensor in an idling stop state;
The forced stop control unit executes the engine forced stop start process to forcibly stop the operation of the engine when the deployment of the side stand is detected, and at least the engine start switch is operated. The stopped state of the operation of the engine is maintained until , and the engine is started based on at least the operation of the engine start switch.
 (3)のリーン車両における全輪接地型自立機構はサイドスタンドである。サイドスタンドは、展開されることにより車体を自立させる。即ち、サイドスタンドは、全輪接地型自立機構として動作する。サイドスタンドは、収納されることにより、サイドスタンドによる車体の自立を終了する。即ち、サイドスタンドは全輪接地型自立機構としての動作を停止する。少なくともエンジン始動スイッチが操作されるまで、エンジンが始動しない。例えば、サイドスタンドが展開された後は、サイドスタンドが収納された状態でエンジン始動スイッチが操作するとエンジンが始動する。
 このため、(3)のリーン車両のエンジンは、一旦サイドスタンドが展開されると、その後サイドスタンドが収納されている状態も含め、例えばアイドリングストップ機能を有さない車両と同様な操作により始動できる。従って、アイドリングストップ機能を有しつつ、アイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動することができる。
(3) The all-wheel-grounded independent mechanism in the lean vehicle is a side stand. The side stand allows the vehicle body to stand on its own when unfolded. That is, the side stand operates as an all-wheel-grounded self-standing mechanism. By retracting the side stand, the self-sustainability of the vehicle body by the side stand is terminated. That is, the side stand stops operating as an all-wheel-grounded self-standing mechanism. The engine will not start until at least the engine start switch is operated. For example, after the side stand is deployed, the engine starts when the engine start switch is operated with the side stand retracted.
Therefore, once the side stand is deployed, the engine of the lean vehicle in (3) can be started by the same operation as a vehicle without an idling stop function, including the state where the side stand is retracted. Therefore, while having the idling stop function, the engine can be started under the same conditions and operation as those of a vehicle without the idling stop function.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (4) (1)から(3)のいずれか1のリーン車両であって、
 前記リーン車両は、操作によって前記リーン車両の加速要求を出力するアクセルグリップを備え、
 前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記全輪接地型自立機構の状態以外のアイドリングストップ条件の成立に基づいて、前記エンジンを動作が停止した前記アイドリングストップ状態にするとともに、前記アクセルグリップが前記加速要求を出力せず、且つ、前記クラッチセンサが操作の検出結果を出力する場合に前記エンジンを再始動し、
前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいて前記エンジンを始動する。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(4) A lean vehicle according to any one of (1) to (3),
The lean vehicle includes an accelerator grip that outputs an acceleration request for the lean vehicle by operation,
The idling stop control unit implements the idling stop restart process, and the idling stop state in which the operation of the engine is stopped based on the establishment of the idling stop condition other than the state of the all-wheel grounding self-supporting mechanism. and restarting the engine when the accelerator grip does not output the acceleration request and the clutch sensor outputs an operation detection result,
The forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start. The stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
 (4)のリーン車両では、アクセルグリップから加速要求が出力されず、且つ、クラッチセンサが操作の検出結果を出力する場合にエンジンが再始動する。(4)のリーン車両によれば、エンジンの再始動後における回転速度の急な上昇を抑制することができる。 In the lean vehicle of (4), the engine is restarted when the acceleration request is not output from the accelerator grip and the clutch sensor outputs the operation detection result. According to the lean vehicle of (4), it is possible to suppress a sudden increase in the rotational speed after the engine is restarted.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (5) (1)から(4)のいずれか1のリーン車両であって、
 前記エンジンは、前記クランク軸を収容するクランクケースを備え、
 前記始動発電機は、前記クランクケース内に、オイルで潤滑されるよう設けられている。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(5) A lean vehicle according to any one of (1) to (4),
The engine comprises a crankcase housing the crankshaft,
The starter-generator is mounted within the crankcase and lubricated with oil.
 (5)のリーン車両によれば、始動発電機がオイルで冷却される。このため、始動発電機に対する冷却用のファンやフィンの取付けを省略することができる。また、始動発電機の配置空間とクランク軸の配置空間とを仕切るための壁を省略することができる。始動発電機は、エンジンの始動時にクランク軸を駆動する機能のため、発電専用の発電機と比べて大型化しやすい。しかし、(5)の構成によれば、発電機とエンジンを含むユニットの大型化が抑制される。このため、(5)の構成によれば、始動発電機もアイドリングストップ機能も有さない車両に対する大型化を抑えつつ、始動発電機もアイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動できる。 According to the lean vehicle of (5), the starter generator is cooled with oil. Therefore, it is possible to omit the mounting of cooling fans and fins for the starter generator. Also, a wall for partitioning the arrangement space of the starter generator and the arrangement space of the crankshaft can be omitted. Since the starter generator has the function of driving the crankshaft when the engine is started, it tends to be larger than a generator dedicated to power generation. However, according to the configuration of (5), an increase in size of the unit including the generator and the engine is suppressed. For this reason, according to the configuration of (5), while suppressing the size increase of the vehicle that does not have the starter generator and the idling stop function, the starter generator also has the same conditions and operation as the vehicle that does not have the idling stop function. You can start the engine.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (6) (1)から(5)のいずれか1のリーン車両であって、
 前記制御装置は、前記始動発電機を流れる電流を制御するスイッチング素子を備え、
 前記始動発電機は、スロットと周方向で交互に設けられた複数の歯部を備えるステータコア、及び、前記歯部に巻回され前記スイッチング素子を介して電流が供給され、発電した電流を前記スイッチング素子に供給する複数相の巻線を有するステータと、前記ステータと空隙を空けて前記周方向に並び且つ前記スロットの数の2/3より多い磁極部を有するロータとを備える。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(6) A lean vehicle according to any one of (1) to (5),
The control device includes a switching element that controls current flowing through the starter generator,
The starter generator includes a stator core including slots and a plurality of teeth alternately arranged in a circumferential direction, and a current supplied through the switching element wound around the teeth, and the generated current is supplied to the switching element. A stator having multi-phase windings for supplying elements, and a rotor arranged in the circumferential direction with an air gap from the stator and having magnetic pole portions larger than 2/3 of the number of the slots.
 (6)のリーン車両によれば、磁極部で形成される極対を歯部が通過する電気角周期に基づく角速度が、例えばスロットの数の2/3と等しい又はそれより少ない磁極部を有する構成の場合と比べて大きい。このため、巻線のインピーダンスは、例えばスロットの数の2/3と等しい又はそれより少ない磁極部を有する構成の場合と比べて大きい。このため、エンジンが再始動した後、始動発電機が発電機として機能する回転速度の領域において、より大きな巻線のインピーダンスによって発電電流が抑制される。従って、発電時においてスイッチング素子への供給電流が抑制される。このため、(6)のリーン車両では、制御装置における放熱のための構造をより簡潔にして小型化することができる。従って、(6)の構成によれば、始動発電機もアイドリングストップ機能を有さない車両に対する大型化を抑えつつ、始動発電機もアイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動できる。 According to the lean vehicle of (6), the angular velocity based on the electrical angle period in which the tooth passes through the pole pair formed by the magnetic pole is equal to or less than 2/3 of the number of slots, for example. Large compared to configuration. Thus, the impedance of the windings is greater than in configurations with pole pieces equal to or less than, for example, 2/3 the number of slots. Therefore, after the engine is restarted, the generated current is suppressed by the higher impedance of the windings in the rotation speed region where the starter-generator functions as a generator. Therefore, the current supplied to the switching element is suppressed during power generation. Therefore, in the lean vehicle of (6), the structure for heat dissipation in the control device can be simplified and the size can be reduced. Therefore, according to the configuration of (6), the starter generator also suppresses the enlargement of the vehicle that does not have the idling stop function, and the starter generator also has the same conditions and operation as the vehicle that does not have the idling stop function. can be started.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (7) (1)から(6)のいずれか1のリーン車両であって、
 前記始動発電機は、前記エンジンに対し位置が固定され巻線を有するステータと、前記ステータに対し空隙を介して設けられた永久磁石を有し前記クランク軸の回転と連動するように前記クランク軸に設けられたロータとを備え、
 前記エンジンは、前記クラッチセンサによる操作の検出結果又は前記エンジン始動スイッチの操作に基づいて前記エンジンが前記再始動する時に前記ロータの位置の検出を表す信号を前記制御装置に出力する、前記ステータの前記巻線とは異なる検出巻線を有するロータ位置検出装置を更に備える。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(7) A lean vehicle according to any one of (1) to (6),
The starter-generator has a stator fixed in position with respect to the engine and having windings, and a permanent magnet provided with an air gap with respect to the stator. a rotor provided in
The engine outputs a signal indicating detection of the position of the rotor to the control device when the engine is restarted based on a detection result of operation by the clutch sensor or operation of the engine start switch. It further comprises a rotor position sensing device having a sensing winding different from the windings.
 (7)のリーン車両によれば、ロータ位置検出装置は検出巻線によってロータの位置の検出を表す信号を出力する。このため、ロータ位置検出装置は、例えばホール素子と比べて高い温度で動作できる。従って、始動発電機とエンジンを含むユニットにおける断熱のための構造を簡潔にして小型化することができる。従って、(7)の構成によれば、始動発電機もアイドリングストップ機能を有さない車両に対する大型化を抑えつつ、始動発電機もアイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動できる。 According to the lean vehicle of (7), the rotor position detection device outputs a signal indicating detection of the rotor position by the detection winding. Therefore, the rotor position detection device can operate at a higher temperature than, for example, a Hall element. Therefore, the structure for heat insulation in the unit including the starter generator and the engine can be simplified and miniaturized. Therefore, according to the configuration of (7), the starter generator also suppresses the enlargement of the vehicle that does not have the idling stop function, and the starter generator also has the same conditions and operation as the vehicle that does not have the idling stop function. can be started.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (8) (1)から(7)のいずれか1のリーン車両であって、
 前記複数の車輪のうち、少なくとも1つの車輪は、前記エンジンから出力される動力を受け、前記リーン車両を駆動する駆動輪であり、
 前記リーン車両は、前記エンジンと前記駆動輪の間の変速比を、ニュートラル状態を含む多段階に変更する多段変速装置を備え、
 前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記アイドリングストップ状態で、前記多段変速装置がニュートラル状態である場合又はニュートラル状態でない場合の何れにおいても、前記クラッチセンサの検出結果に基づいて前記エンジンを再始動し、
前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいてエンジンを始動する。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(8) A lean vehicle according to any one of (1) to (7),
At least one of the plurality of wheels is a drive wheel that receives power output from the engine and drives the lean vehicle,
The lean vehicle includes a multi-stage transmission that changes a gear ratio between the engine and the drive wheels in multiple stages including a neutral state,
By executing the idling stop restart process, the idling stop control unit detects the clutch sensor in the idling stop state, whether the multi-speed transmission is in the neutral state or not in the neutral state. restarting the engine based on the results;
The forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start. The stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
 (8)のリーン車両では、アイドリングストップ状態で、多段変速装置がニュートラル状態である場合又はニュートラル状態でない場合の何れにおいても、クラッチセンサの検出結果に基づいてエンジンが再始動する。これにより、(8)のリーン車両は、アイドリングストップ状態からリーン車両の発進までの操作を簡便化しつつ、一旦全輪接地型自立機構が動作すると、その後全輪接地型自立機構の動作が停止している状態も含め、例えばアイドリングストップ機能を有さない車両と同様な操作により始動することができる。 In the lean vehicle of (8), the engine is restarted based on the detection result of the clutch sensor regardless of whether the multi-speed transmission is in the neutral state or not in the idling stop state. As a result, the lean vehicle of (8) simplifies the operation from the idling stop state to the start of the lean vehicle, and once the all-wheel grounding type self-supporting mechanism operates, the operation of the all-wheels grounding self-supporting mechanism stops thereafter. For example, the engine can be started by the same operation as a vehicle without an idling stop function.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (9) (1)から(8)のいずれか1つのリーン車両であって、
 前記リーン車両は、ライダによる操作に応じて前記エンジンを停止させるアイドリングストップスイッチを備え、
 前記制御装置は、前記多段変速装置が非ニュートラル状態である場合、前記クラッチセンサによって前記クラッチレバーの操作が検出され、且つ、前記アイドリングストップスイッチが操作された場合に前記エンジンを前記アイドリングストップ状態にする。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(9) A lean vehicle according to any one of (1) to (8),
The lean vehicle includes an idling stop switch that stops the engine in response to an operation by a rider,
When the multi-speed transmission is in a non-neutral state, the control device switches the engine to the idling stop state when the clutch sensor detects the operation of the clutch lever and when the idling stop switch is operated. do.
 (9)のリーン車両によれば、多段変速装置が非ニュートラル状態である場合、クラッチセンサによってクラッチレバーの操作が検出され、ライダによりアイドリングストップスイッチが操作された場合にエンジンを停止する。従って、例えば変速段を変更するためクラッチレバーが操作される際にエンジンの停止を抑制することができる。 According to the lean vehicle of (9), when the multi-speed transmission is in the non-neutral state, the clutch sensor detects the operation of the clutch lever, and the engine is stopped when the idling stop switch is operated by the rider. Therefore, it is possible to prevent the engine from stopping when the clutch lever is operated to change gears, for example.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (10) (1)から(8)のいずれか1つのリーン車両であって、
 前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記リーン車両が停止し、且つ前記多段変速装置がニュートラル状態である場合、前記クラッチレバーの操作が停止されることで前記エンジンを停止し、
前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することによって、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいてエンジンを始動する。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(10) A lean vehicle according to any one of (1) to (8),
By executing the idling stop restart process, the idling stop control unit stops the operation of the clutch lever when the lean vehicle is stopped and the multi-speed transmission is in a neutral state. stop the engine and
The forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start. The stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
 (10)のリーン車両によれば、リーン車両が停止し、且つ多段変速装置がニュートラル状態である場合には、クラッチレバーの操作なしでエンジンが停止する。従って、(10)のリーン車両によれば、アイドリングストップ状態のための操作を簡便化でき、一旦全輪接地型自立機構が動作すると、その後全輪接地型自立機構の動作が停止している状態も含め、例えばアイドリングストップ機能を有さない車両と同様な操作により始動できる。従って、より簡便な操作によるアイドリングストップ機能を有しつつ、全輪接地型自立機構が動作した場合には、アイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動できる。 According to the lean vehicle of (10), when the lean vehicle stops and the multi-speed transmission is in the neutral state, the engine stops without operating the clutch lever. Therefore, according to the lean vehicle of (10), the operation for the idling stop state can be simplified, and once the all-wheel grounding type self-supporting mechanism operates, the operation of the all-wheels grounding self-supporting mechanism is stopped thereafter. It can be started by the same operation as a vehicle that does not have an idling stop function, for example. Therefore, while having the idling stop function with a simpler operation, the engine can be started under the same conditions and operation as those of a vehicle without the idling stop function when the all-wheel-grounded independent mechanism operates.
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (11) (1)から(10)のいずれか1つのリーン車両であって、
 前記アイドリングストップ状態と、前記アイドリングストップ状態への遷移が可能なアイドリングストップ準備条件が成立したアイドリングストップ準備状態と、を示す表示装置を備え、
 前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することによって、前記エンジンの動作中に前記アイドリングストップ準備条件が成立した場合、前記表示装置に前記準備状態であることを表示させ、前記全輪接地型自立機構の状態以外のアイドリングストップ条件が成立した場合、前記アイドリングストップ状態であることを表示させ、
前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することによって、前記全輪接地型自立機構の動作が検出された場合、前記表示装置に表示を強制的に停止させる。
According to one aspect of the present invention, a lean vehicle can employ the following configuration.
(11) A lean vehicle according to any one of (1) to (10),
A display device that indicates the idling stop state and an idling stop preparation state in which an idling stop preparation condition that allows transition to the idling stop state is satisfied,
The idling stop control unit performs the idling stop restart process, and when the idling stop preparation condition is satisfied during operation of the engine, causes the display device to display that the preparation state is in place, and When an idling stop condition other than the state of the all-wheel grounding self-supporting mechanism is satisfied, displaying that the idling stop state is in effect,
The forced stop control section forcibly stops the display on the display device by executing the forced engine stop start process, when the operation of the all-wheel-grounded independent mechanism is detected.
 (11)のリーン車両によれば、アイドリングストップ状態と、アイドリングストップ準備状態と、その他の状態が、互いに異なる態様で報知される。これによって、エンジンがアイドリングストップ状態であるか、準備状態であるか、又は、全輪接地型自立機構の動作による停止状態であるかが、識別されやすい。 According to the lean vehicle of (11), the idling stop state, the idling stop preparation state, and other states are reported in different manners. This makes it easy to identify whether the engine is in an idling stop state, a preparatory state, or a stopped state due to the operation of the all-wheel-grounded self-standing mechanism.
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「及び/又は」は一つの、又は複数の関連した列挙された構成物のあらゆる又は全ての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」及び/又はそれらの等価物は広く使用され、直接的及び間接的な取り付け、接続及び結合の両方を包含する。更に、「接続された」及び「結合された」は、物理的又は機械的な接続又は結合に限定されず、直接的又は間接的な電気的接続又は結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。本発明の説明においては、多数の技術及び工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせを全て繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び請求項の範囲内にあることを理解して読まれるべきである。 The terminology used in this specification is for the purpose of defining specific examples only and is not intended to limit the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed constructs. As used herein, the use of the terms "including," "comprising," or "having," and variations thereof, refers to the described features, steps, operations, While specifying the presence of elements, components and/or their equivalents, it may include one or more of steps, actions, elements, components and/or groups thereof. As used herein, the terms "attached", "connected", "coupled" and/or their equivalents are used broadly to refer to direct and indirect attachment, connection and includes both bindings. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings. Unless defined otherwise, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant art and this disclosure, and are not expressly defined herein. not be interpreted in an idealized or overly formal sense unless explicitly stated. In describing the present invention, it is understood that numerous techniques and processes are disclosed. Each of these has individual benefits, and each can also be used with one or more, or possibly all, of the other disclosed techniques. Therefore, for the sake of clarity, this description refrains from unnecessarily repeating all possible combinations of the individual steps. Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the invention and claims.
 本明細書では、新しいリーン車両について説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細無しに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。 This specification describes a new lean vehicle. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without these specific details. This disclosure should be considered exemplary of the invention and is not intended to limit the invention to the specific embodiments illustrated by the following drawings or description.
 リーン車両は、リーン姿勢で旋回可能に構成されている。リーン車両は、例えばカーブの内方向に傾いた姿勢で旋回するように構成される。即ち、リーン車両は、進行方向を含む前後方向、及び鉛直方向と交わる左右方向に傾くように構成されている。これにより、リーン車両は、旋回時に車体に加わる遠心力に対抗する。リーン車両は、旋回に応じてリーンしやすいよう、小型化が求められる。リーン車両は、通常、セルフステアの特性を有する。例えば、リーン車両が備えるステアリングは、左右のうちリーンする方向に向く特性を有する。この結果、走行中の車体の左右方向における移動が、リーンによる重心の移動に追従する。このため、走行中のリーン車両は、自立状態を維持しやすい。これに対し、リーン車両が停車している場合、リーン車両は、自立装置の動作無しで自立状態を維持することができない。リーン車両は、停車している場合に自立するため、自立機構を備える。なお、リーン車両は、例えば、少なくとも全輪接地型自立機構の非動作時に、複数の車輪のみによって自立しないように構成されている。リーン車両は、例えば、全輪接地型自立機構の動作時にも、複数の車輪のみによって自立しないように構成されていてもよい。この場合、全輪接地型自立機構は、例えば、サイドスタンドである。また、リーン車両は、例えば、全輪接地型自立機構の動作時には、複数の車輪のみによって自立するように構成されてもよい。
 リーン車両は、鞍乗型車両に含まれる。鞍乗型車両(straddled vehicle) とは、ライダがサドルに跨って着座する形式のビークルをいう。
 リーン車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、リーン車両は、自動二輪車に限定されず、例えば、自動三輪車等であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。リーン車両の駆動輪は、後輪であってもよく、前輪であってもよい。
 なお、いわゆるトライクは、3つの車輪を有する鞍乗型車両であるが、リーンしない。また、ATV(All-Terrain Vehicle)は鞍乗型車両であるが、リーンしない。従ってリーン車両は、トライク又はATVのいずれも含まない。
A lean vehicle is configured to be able to turn in a lean posture. A lean vehicle is configured, for example, to turn in a tilted attitude toward the inside of a curve. That is, the lean vehicle is configured to lean in the front-rear direction including the traveling direction and in the left-right direction that intersects the vertical direction. This allows the lean vehicle to counteract the centrifugal force applied to the vehicle during turns. Lean vehicles are required to be compact so that they can lean easily when turning. A lean vehicle usually has the property of self-steering. For example, a steering wheel provided in a lean vehicle has a characteristic of turning in the leaning direction of left and right. As a result, the lateral movement of the vehicle body during running follows the movement of the center of gravity caused by leaning. For this reason, the lean vehicle that is running tends to maintain the self-sustaining state. On the other hand, when the lean vehicle is stopped, the lean vehicle cannot maintain the self-supporting state without the operation of the self-supporting device. A lean vehicle is provided with a self-supporting mechanism in order to stand on its own when the vehicle is stopped. Note that the lean vehicle is configured not to stand on its own, for example, only with a plurality of wheels, at least when the all-wheel-grounded self-supporting mechanism is not in operation. The lean vehicle may, for example, be configured so as not to stand on its own with only a plurality of wheels even when the all-wheel-grounded self-supporting mechanism is in operation. In this case, the all-wheel-grounded self-standing mechanism is, for example, a side stand. Also, the lean vehicle may be configured to stand on its own by only a plurality of wheels, for example, when the all-wheel-grounded self-supporting mechanism is in operation.
A lean vehicle is included in a straddle-type vehicle. A straddled vehicle is a vehicle in which the rider sits astride a saddle.
Examples of lean vehicles include scooter, moped, off-road, and on-road motorcycles. Also, the lean vehicle is not limited to a motorcycle, and may be, for example, a tricycle. A motor tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels. The driving wheels of the lean vehicle may be the rear wheels or the front wheels.
A so-called trike, which is a saddle-riding vehicle with three wheels, does not lean. An ATV (All-Terrain Vehicle) is a straddle-type vehicle, but does not lean. Lean vehicles therefore do not include either trikes or ATVs.
 「走行時に接地する複数の車輪」は、駆動輪を含む。「走行時に接地する複数の車輪」は、非駆動輪を含んでもよい。例えば、自動二輪車は、通常、走行時に接地する2つの車輪を有する。自動三輪車は、走行時に接地する3つの車輪を有する。複数の車輪は、エンジンからの出力によってリーン車両を駆動する駆動輪を含む。なお、複数の車輪の全てが駆動輪であってもよい。
 「複数の車輪のみによって自立しないように構成されたリーン車両」は、例えば、車輪とは異なる自立機構による支持も、ライダによる支持もない状態では停車中に自立しない。「複数の車輪のみによって自立しないように構成されたリーン車両」は、例えば、複数の車輪のみによっては、停車中に自立しないリーン車両である。例えば、自動二輪車は、通常、2つの車輪のみによって停車中に自立しない。3つ以上の車輪を有するリーン車両もまた、通常、3つの車輪のみによって停車中に自立しない。
 これに対し、例えば、3つの車輪を有するトライクは、車輪とは異なる自立機構による支持も、ライダによる支持もない状態で、3つの車輪のみによって停車中に自立する。「複数の車輪のみによって自立しないように構成されたリーン車両」は、例えばトライクを含まない。
 自立機構は、全輪接地型自立機構と、非全輪接地型自立機構とを含む。全輪接地型自立機構、及び非全輪接地型自立機構の何れも、車体を自立させる動作状態と、車体を自立させない非動作状態との切り替えが可能である。非動作状態は、動作が停止した状態である。全輪接地型自立機構又は非全輪接地型自立機構の何れも、操作に応じて動作状態と非動作状態との切り替えが可能である。
 非全輪接地型自立機構は、リーン車両が有する複数の車輪の少なくとも一つが接地しない状態で車体を自立させるように構成されている。非全輪接地型自立機構は、例えばメインスタンドである。
 全輪接地型自立機構は、全ての車輪が接地した状態で車体を自立させるように構成されている。全輪接地型自立機構は、例えばサイドスタンドである。メインスタンドは、全輪接地型自立機構に含まれない。全輪接地型自立機構としてのサイドスタンドが動作する場合、車体は、全ての車輪と全輪接地型自立機構自体に支持され、自立する。
 全輪接地型自立機構は、サイドスタンドに限定されない。全輪接地型自立機構は、例えば、三輪車に備えられ、操作に応じて動作するチルトロック機構でもよい。チルトロック機構が動作する場合、車体は、地面に対し全ての車輪のみに支持され、自立する。
 全ての車輪は、全輪接地型自立機構の動作状態と非動作状態のいずれでも接地している。このため、全輪接地型自立機構における動作状態と非動作状態の切替え操作は、全ての車輪が接地した状態で可能である。従って、全輪接地型自立機構の操作は、非全輪接地型自立機構の操作よりも容易である。
 なお、リーン車両は、全輪接地型自立機構及び非全輪接地型自立機構の両方を備えていてもよく、全輪接地型自立機構のみを備えていてもよい。
"A plurality of wheels that are in contact with the ground during running" includes driving wheels. "A plurality of wheels that touch the ground when running" may include non-driving wheels. For example, motorcycles typically have two wheels that touch the ground when running. A motorized tricycle has three wheels that touch the ground when running. The plurality of wheels includes drive wheels that drive the lean vehicle with power from the engine. Note that all of the plurality of wheels may be driving wheels.
A "lean vehicle configured not to stand on its own only with a plurality of wheels" does not stand on its own while stopped without support from a stand-alone mechanism different from the wheels and support from a rider, for example. A "lean vehicle configured not to stand on its own with only a plurality of wheels" is, for example, a lean vehicle that does not stand on its own while at a stop only with a plurality of wheels. For example, motorcycles are usually not self-supporting while parked due to only two wheels. Lean vehicles with more than two wheels also typically do not stand on their own while parked with only three wheels.
In contrast, for example, a trike having three wheels will stand on its own while parked on only three wheels, with no support from a stand-up mechanism separate from the wheels and no support from the rider. A "lean vehicle configured not to be self-supporting by only a plurality of wheels" does not include, for example, trikes.
The self-supporting mechanism includes an all-wheel-grounded self-supporting mechanism and a non-all-wheels-grounding self-supporting mechanism. Both the all-wheel grounding type self-supporting mechanism and the non-all-wheels grounding type self-supporting mechanism are capable of switching between an operating state in which the vehicle body is self-supporting and a non-operating state in which the vehicle body is not self-supported. The inactive state is a state in which motion has ceased. Both the all-wheel-grounded self-supporting mechanism and the non-all-wheel-grounding self-supporting mechanism can be switched between an operating state and a non-operating state according to operation.
The non-all-wheel-grounding self-standing mechanism is configured to make the vehicle body self-sustaining in a state in which at least one of the plurality of wheels of the lean vehicle does not touch the ground. A non-all-wheel-grounded self-standing mechanism is, for example, a main stand.
The all-wheel grounding self-standing mechanism is configured to make the vehicle stand on its own with all wheels grounded. The all-wheel-grounded self-standing mechanism is, for example, a side stand. The main stand is not included in the all-wheel-grounded self-standing mechanism. When the side stand as an all-wheel-grounded self-standing mechanism operates, the vehicle body is supported by all the wheels and the all-wheel-grounded self-standing mechanism itself and stands on its own.
The all-wheel-grounded self-standing mechanism is not limited to the side stand. The all-wheel-grounded self-sustaining mechanism may be, for example, a tilt lock mechanism that is provided in a tricycle and that operates according to operation. When the tilt lock mechanism operates, the vehicle body is supported only by all wheels with respect to the ground and stands on its own.
All wheels are grounded in both the active and inactive states of the all-wheel-grounded self-supporting mechanism. For this reason, the switching operation between the operating state and the non-operating state in the all-wheel grounding self-standing mechanism can be performed while all the wheels are grounded. Therefore, the operation of the all-wheel-grounded self-supporting mechanism is easier than the operation of the non-all-wheel-grounded self-supporting mechanism.
Note that the lean vehicle may include both the all-wheel-grounded self-supporting mechanism and the non-all-wheel-grounding self-supporting mechanism, or may include only the all-wheel-grounding self-supporting mechanism.
 検出装置は、全輪接地型自立機構が動作しているか否かを検出するように構成されている。全輪接地型自立機構がサイドスタンドである場合、検出装置としては、例えば、サイドスタンドの展開状態または収納状態を検出するサイドスタンド位置センサ、又はチルトロックセンサが挙げられる。展開状態は、サイドスタンドが動作する状態である。収納状態は、サイドスタンドの動作が停止した非動作状態である。サイドスタンドは、例えばライダの足の操作を受け収納状態の位置から展開されることにより、動作状態になる。 The detection device is configured to detect whether or not the all-wheel-grounded self-standing mechanism is operating. When the all-wheel-grounding self-standing mechanism is a side stand, examples of the detection device include a side stand position sensor or a tilt lock sensor that detects the deployed state or retracted state of the side stand. The unfolded state is a state in which the side stand operates. The stowed state is a non-operating state in which the operation of the side stand is stopped. The side stand is put into the operative state by, for example, receiving the operation of the rider's foot and being unfolded from the stowed state.
 エンジンは、内燃機関である。エンジンは、例えば、燃料と空気の混合気の燃焼によって生じるパワーをクランク軸のトルク及び回転速度として出力する。
 エンジンは、例えば、4ストロークエンジンである。エンジンは、例えば、4ストロークの間に高負荷領域と低負荷領域とを有する。高負荷領域とは、エンジンの1燃焼サイクルのうち、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも高い領域をいう。低負荷領域とは、1燃焼サイクルにおける高負荷領域以外の領域をいう。クランク軸の回転角度を基準として見ると、低負荷領域は、例えば、高負荷領域より広い。圧縮行程は、高負荷領域と重なりを有する。高負荷領域と低負荷領域とを有する4ストロークエンジンは、例えば、単気筒エンジン、2気筒エンジン、不等間隔燃焼型3気筒エンジン、又は、不等間隔燃焼型4気筒エンジンである。
 但し、エンジンは、例えば、4ストロークの間に高負荷領域と低負荷領域とを有さない4ストロークエンジンでもよい。
The engine is an internal combustion engine. The engine outputs, for example, the power produced by the combustion of a fuel-air mixture as torque and rotational speed of the crankshaft.
The engine is, for example, a 4-stroke engine. An engine, for example, has a high load region and a low load region during four strokes. The high load region refers to a region in one combustion cycle of the engine in which the load torque is higher than the average value of the load torque in one combustion cycle. The low load range refers to a range other than the high load range in one combustion cycle. Taking the rotation angle of the crankshaft as a reference, the low load range is wider than, for example, the high load range. The compression stroke has a high load region and an overlap. A four-stroke engine having a high-load region and a low-load region is, for example, a single-cylinder engine, a two-cylinder engine, a three-cylinder unequal-combustion engine, or a four-cylinder unequal-combustion engine.
However, the engine may be, for example, a four-stroke engine that does not have a high load region and a low load region between four strokes.
 クラッチは、クランク軸から駆動輪への出力の伝達の接続及び切断を切替える。即ち、クラッチは、エンジンのクランク軸からの出力の接続状態及び切断状態を切替える。クラッチは、ライダの操作に応じて接続状態及び切断状態を切替える。より詳細には、クラッチレバーがライダの操作を直接受ける。クラッチは、クラッチレバーがライダから受ける操作に応じて接続状態及び切断状態を切替える。より詳細には、クラッチレバーが操作を受けると、クラッチが動作して切断状態となる。クラッチレバーの操作が停止すると、クラッチは接続状態となる。クラッチレバーは、リーン車両に備えられたハンドルバーに設けられており、ライダの手によって操作される。クラッチレバーの操作は、例えば、ライダがクラッチレバーをリーン車両における後方に向かって引く操作である。クラッチレバーの操作の停止は、例えば、ライダがクラッチレバーを引く力を弱めるか又は引くことを止めることによってクラッチレバーが前方に戻ることである。
 クラッチセンサは、例えば、クラッチレバーが操作を受けたか否かを検出する。クラッチセンサは、クラッチレバーの位置を直接検出することでクラッチレバーの操作を検出する。クラッチセンサは、特に限定されず、例えば、クラッチに設けられてもよい。クラッチセンサは、クラッチレバーの操作に伴い移動するクラッチの部品の位置を検出してもよい。
The clutch switches connection and disconnection of power transmission from the crankshaft to the drive wheels. That is, the clutch switches between a connected state and a disconnected state of the output from the crankshaft of the engine. The clutch switches between a connected state and a disconnected state according to the rider's operation. More specifically, the clutch lever is directly operated by the rider. The clutch switches between a connected state and a disconnected state according to the operation of the clutch lever received from the rider. More specifically, when the clutch lever is operated, the clutch operates and becomes disengaged. When the operation of the clutch lever stops, the clutch is engaged. A clutch lever is provided on a handlebar provided in a lean vehicle and is operated by a rider's hand. The operation of the clutch lever is, for example, the operation of the rider pulling the clutch lever rearward in a lean vehicle. Stopping the operation of the clutch lever is, for example, the return of the clutch lever forward by the rider reducing or stopping the clutch lever pull.
The clutch sensor detects, for example, whether or not the clutch lever has been operated. The clutch sensor detects the operation of the clutch lever by directly detecting the position of the clutch lever. The clutch sensor is not particularly limited, and may be provided in the clutch, for example. The clutch sensor may detect the position of a clutch component that moves as the clutch lever is operated.
 アイドリングストップ制御部は、アイドリングストップ再始動プロセスを実施する。アイドリングストップ再始動プロセスは、アイドリングストップ及び再始動のためのプロセスである。
 アイドリングストップ制御部は、全輪接地型自立機構の状態以外のアイドリングストップ条件の成立に基づいて、エンジンをアイドリングストップ状態にする。
 エンジンのアイドリングストップは、アイドリングストップ条件の成立によってエンジンの燃焼動作が停止することである。アイドリングストップの条件は、例えば、以下の条件(A)から(E)の何れか一つ又は複数の組合せである。
 (A) スロットル開度が全閉又は実質的に全閉であること。
 (B) リーン車両が停止していること。
 (C) 多段変速装置がニュートラル状態でクラッチレバーの操作が停止したこと。
 (D) アイドリングストップスイッチが操作されたこと。
 (E) 多段変速装置がニュートラル状態でなく、クラッチレバーが操作されたこと。
 アイドリングストップの条件は、上記の条件(A)から(E)以外の条件を含んでいてもよい。また、条件(A)から(E)の一部は、アイドリングストップが可能な準備状態のための条件とし、他の一部は、エンジンを停止する操作に分けることも可能である。
The idling stop control unit implements an idling stop restart process. The idling stop restart process is a process for idling stop and restart.
The idling stop control unit puts the engine into an idling stop state based on the establishment of an idling stop condition other than the state of the all-wheel-grounded self-supporting mechanism.
The idling stop of the engine is to stop the combustion operation of the engine due to the establishment of the idling stop condition. The idling stop condition is, for example, any one or a combination of the following conditions (A) to (E).
(A) The throttle opening is fully closed or substantially fully closed.
(B) The lean vehicle is stationary.
(C) Operation of the clutch lever stopped while the multi-speed transmission was in the neutral state.
(D) The idling stop switch has been operated.
(E) The multi-speed transmission was not in neutral and the clutch lever was operated.
The idling stop conditions may include conditions other than the above conditions (A) to (E). Also, some of the conditions (A) to (E) can be set as conditions for a ready state in which idling stop is possible, and other parts can be divided into the operation of stopping the engine.
 エンジンの再始動は、アイドリングストップ状態のエンジンが、所定の再始動条件の成立によって始動することである。
 再始動条件は、例えば、クラッチレバーの操作である。再始動条件は、クラッチレバーの操作以外の条件を含んでいてもよい。再始動条件は、例えば、アクセルグリップから加速要求が出力されず、且つ、クラッチセンサが操作されることである。
Restarting the engine means starting the engine in an idling stop state when a predetermined restart condition is satisfied.
The restart condition is, for example, operation of the clutch lever. The restart condition may include conditions other than the operation of the clutch lever. The restart condition is, for example, that the accelerator grip does not output an acceleration request and the clutch sensor is operated.
 プロセスは、入力データに対応して動作する。プロセスとしての、エンジン強制停止始動プロセス、及び、アイドリングストップ再始動プロセスのそれぞれは、データの入力機能と制御のデータの出力機能とを備える。また、それぞれのプロセスは、処理の流れ、又はデータを有する。流れを有することによって、例えば制御装置の初期化後、最初の有効なデータの入力から、入力データを反映したデータの出力まで、動作クロック単位で遅延が生じる。
 エンジン強制停止始動プロセスは、アイドリングストップ再始動プロセスとは独立して実施される。例えば、エンジン強制停止始動プロセスの処理自体の流れは、アイドリングストップ再始動プロセスにおける処理の結果の影響を受けずに実行される。
 仮に、例えば、アイドリングストップ制御部におけるアイドリングストップ再始動プロセスの出力内容に応じて、強制停止制御部におけるエンジン強制停止始動プロセスにおける処理の流れが変化する場合、エンジン強制停止始動プロセスは、アイドリングストップ再始動プロセスから独立して実施されていないといえる。
 例えば、互いに独立したエンジン強制停止始動プロセス及びアイドリングストップ再始動プロセスが、プログラムとして実施される場合、あるエンジン強制停止始動プロセスのプログラムは、このプログラム内のジャンプ命令、ブランチ命令、又は、サブルーチン命令のみでアイドリングストップ再始動プロセスのプログラム内に遷移しない。
A process operates in response to input data. As processes, the engine forced stop start process and the idling stop restart process each have a data input function and a control data output function. Each process also has a process flow or data. By having a flow, for example after initialization of the controller, there is a delay in units of operating clocks from the first valid data input to the output of data reflecting the input data.
The forced engine stop start process is performed independently of the idling stop restart process. For example, the process flow of the engine forced stop start process itself is executed without being affected by the result of the process in the idling stop restart process.
For example, if the flow of processing in the engine forced stop start process in the forced stop control unit changes according to the output contents of the idling stop restart process in the idling stop control unit, the engine forced stop start process is performed by the idling stop restart It can be said that it is not performed independently from the start-up process.
For example, when the engine forced stop start process and the idling stop restart process that are independent of each other are implemented as programs, a program of the engine forced stop start process may include only jump instructions, branch instructions, or subroutine instructions in this program. does not transition to the idling stop restart process program.
 エンジン強制停止始動プロセスと、アイドリングストップ再始動プロセスとは、例えば、互いに独立したハードウェアで実施される。つまり、アイドリングストップ制御部と強制停止制御部とは互いに独立したハードウェアで構成される。例えば、アイドリングストップ再始動プロセスは、プロセッサ及びプログラムを有するアイドリングストップ制御部としてのコンピュータにより実施される。
 例えば、強制停止制御部は、アイドリングストップ制御部とは異なるワイヤードロジックで実現される。強制停止制御部のハードウェアと、アイドリングストップ制御部とは、共通の回路基板の異なる領域に設けられた電気回路で構成されてもよい。この場合、強制停止制御部のハードウェアと、アイドリングストップ制御部のハードウェアとは、互いに接続され一体化している。この場合、強制停止制御部のハードウェアと、アイドリングストップ制御部のハードウェアとは、電源回路といった一部のハードウェアを共有している。
 制御装置のハードウェア構成は、特に限定されず、例えば、強制停止制御部は、電磁リレー及びダイオードにより構成されるリレー回路として実現されてもよい。また、例えば、強制停止制御部のハードウェアと、アイドリングストップ制御部のハードウェアとが、互いに分離していてもよい。
 またさらに、エンジン強制停止始動プロセスと、アイドリングストップ再始動プロセスは、例えば、共通のプロセッサで実行される互いに独立したソフトウェアプロセス(タスク)であってもよい。プロセスが独立していることは、ハードウェアが独立していることに限られない。例えば、単一のプロセッサが、マルチプロセスを制御可能なオペレーティングシステムプログラムを実行する。この場合、オペレーティングシステムプログラムは、子プロセスとしての上記2つのプロセスを時分割又はタスク分割で順次動作させてもよい。つまり、アイドリングストップ制御部と強制停止制御部とは、互いに異なるプログラムを実行する共通のハードウェアで構成される。この場合も、エンジン強制停止始動プロセスは、アイドリングストップ再始動プロセスから、独立している。つまり、エンジン強制停止始動プロセスの処理の流れが、アイドリングストップ再始動プロセスにおける処理の結果の影響を受けない。例えば、アイドリングストップ再始動プロセスのプログラムが実行される途中で、例えばタスクスイッチといったオペレーティングシステムプログラムの介在なしにエンジン強制停止始動プロセスのプログラムが実行されることはない。また、この逆に、例えば、エンジン強制停止始動プロセスのプログラムが実行される途中で、オペレーティングシステムプログラムの介在なしにアイドリングストップ再始動プロセスのプログラムが実行されることはない。
The forced engine stop start process and the idling stop restart process are implemented, for example, by hardware independent of each other. In other words, the idling stop control section and the forced stop control section are configured by independent hardware. For example, the idling stop restart process is implemented by a computer as an idling stop controller having a processor and a program.
For example, the forced stop control section is realized by wired logic different from the idling stop control section. The hardware of the forced stop control unit and the idling stop control unit may be configured by electric circuits provided in different regions of a common circuit board. In this case, the hardware of the forced stop control unit and the hardware of the idling stop control unit are connected and integrated with each other. In this case, the hardware of the forced stop control unit and the hardware of the idling stop control unit share part of the hardware such as the power supply circuit.
The hardware configuration of the control device is not particularly limited, and for example, the forced stop control section may be implemented as a relay circuit configured by an electromagnetic relay and a diode. Further, for example, the hardware of the forced stop control section and the hardware of the idling stop control section may be separated from each other.
Furthermore, the forced engine stop start process and the idling stop restart process may be independent software processes (tasks) executed by a common processor, for example. Process independence is not limited to hardware independence. For example, a single processor executes an operating system program capable of controlling multiple processes. In this case, the operating system program may operate the above two processes as child processes sequentially by time division or task division. That is, the idling stop control section and the forced stop control section are configured by common hardware that executes different programs. Again, the forced engine stop start process is independent of the idle stop restart process. That is, the processing flow of the engine forced stop start process is not affected by the processing result of the idling stop restart process. For example, while the idling stop restart process program is being executed, the engine forced stop start process program is not executed without intervention of the operating system program such as task switch. Conversely, for example, while the program for the forced engine stop start process is being executed, the program for the idling stop restart process is not executed without the intervention of the operating system program.
 エンジン始動スイッチの操作とは、例えば、ライダがエンジン始動スイッチを変位させることである。
 エンジン始動スイッチは、例えば、リーン車両を発進させる操作対象とは異なるスイッチである。エンジン始動スイッチは、例えば、専らエンジンを始動させるための機能を有するスイッチである。例えば、リーン車両を発進させるため操作されるクラッチレバーがエンジンを再始動させるための機能をたとえ有しても、このクラッチレバーは、エンジン始動スイッチではない。クラッチレバーは、本来リーン車両を発進させるための機能を有する。アイドリングストップでは、リーン車両の発進のための操作手段がエンジンを始動するための機能を兼ね備えることによって、エンジンの状態に拘わらず発進操作が可能である。これに対し、エンジン始動スイッチは、リーン車両の発進のための操作とは異なる操作である。
 アイドリングストップスイッチの操作とは、例えば、ライダがアイドリングストップスイッチを変位させることである。
 アイドリングストップスイッチは、アイドリングストップ準備状態で動作しているエンジンを停止するスイッチである。
The operation of the engine start switch means, for example, that the rider displaces the engine start switch.
The engine start switch is, for example, a switch different from an operation target for starting a lean vehicle. The engine start switch is, for example, a switch that has a function exclusively for starting the engine. For example, even if a clutch lever operated to start a lean vehicle has a function to restart the engine, this clutch lever is not an engine start switch. A clutch lever originally has a function for starting a lean vehicle. In the idling stop, the operating means for starting the lean vehicle has a function for starting the engine, so that the starting operation is possible regardless of the state of the engine. On the other hand, the operation of the engine start switch is different from the operation for starting the lean vehicle.
The operation of the idling stop switch means, for example, that the rider displaces the idling stop switch.
The idling stop switch is a switch for stopping the engine operating in the idling stop preparation state.
 少なくともエンジン始動スイッチが操作されるまでエンジンの動作の強制的な停止状態を維持することは、エンジン始動スイッチが操作されるまで、エンジンの動作の強制的な停止状態が解除されないことを意味する。例えば、全輪接地型自立機構の動作が停止し、且つ、クラッチレバーが操作されても、エンジンの動作の強制的な停止状態が解除されない。少なくともエンジン始動スイッチが操作されるまでエンジンの動作の強制的な停止状態を維持することは、例えば、エンジン始動スイッチの操作とこの操作以外の条件との組合せによってエンジンの動作の強制的な停止状態を解除することを含む。エンジンの動作の強制的な停止状態を解除の条件として、少なくともエンジン始動スイッチが操作されることは、例えば、(a)全輪接地型自立機構の動作が停止していることと、クラッチレバーが操作されていることと、エンジン始動スイッチが操作されている状態とが時間的に重複することである。また、少なくとも前記エンジン始動スイッチが操作されることは、例えば、(b)多段変速装置がニュートラル状態であることと、エンジン始動スイッチが操作されている状態とが時間的に重複することである。また、少なくともエンジン始動スイッチが操作されることは、上記(a)及び(b)の何れかの成立である。 Maintaining the forced stop state of the engine operation at least until the engine start switch is operated means that the forced stop state of the engine operation is not released until the engine start switch is operated. For example, even if the operation of the all-wheel-grounding self-sustaining mechanism is stopped and the clutch lever is operated, the forced stop state of the operation of the engine is not released. Maintaining the forced stop state of the engine operation at least until the engine start switch is operated means, for example, the forced stop state of the engine operation by a combination of operation of the engine start switch and conditions other than this operation. including releasing the If at least the engine start switch is operated as a condition for canceling the forcibly stopped state of the operation of the engine, for example, (a) the operation of the all-wheel-grounding self-supporting mechanism is stopped and the clutch lever is The fact that it is being operated and the state that the engine start switch is being operated overlap in terms of time. Further, at least the engine start switch being operated means, for example, that (b) the multi-speed transmission is in the neutral state and the state in which the engine start switch is operated overlaps in terms of time. Further, the fact that at least the engine start switch is operated means that either (a) or (b) above is satisfied.
 「エンジンから駆動輪への出力の伝達が切断された状態」は、例えば、多段変速装置がニュートラル状態である場合、又は、クラッチが動力の切断状態である場合である。 "The state in which the transmission of the output from the engine to the drive wheels is disconnected" is, for example, the case where the multi-speed transmission is in the neutral state or the clutch is in the power disconnected state.
 少なくともエンジン始動スイッチが操作されることに基づいてエンジンを始動することは、例えば、エンジン始動スイッチの操作と他の条件の成立でエンジンを始動することが含まれる。エンジンを始動する条件として、少なくとも前記エンジン始動スイッチが操作されることは、例えば、上述した、エンジンの動作の強制的な停止状態を解除の条件と等しくてもよい。 Starting the engine based on at least the operation of the engine start switch includes, for example, starting the engine upon operation of the engine start switch and establishment of other conditions. As a condition for starting the engine, at least the operation of the engine start switch may be equal to, for example, the above-described condition for canceling the forcible stop state of the operation of the engine.
 リーン車両は、例えば、エンジンからの出力の速度を変換して駆動輪に伝達する多段変速装置を備えている。多段変速装置は、シフトペダルの操作に応じて変速比を多段階に変更するように構成されている。多段変速装置は、例えば、マニュアル多段変速装置である。 A lean vehicle, for example, is equipped with a multi-speed transmission that converts the speed of the output from the engine and transmits it to the drive wheels. The multi-stage transmission is configured to change the gear ratio in multiple stages according to the operation of the shift pedal. The multi-speed transmission is, for example, a manual multi-speed transmission.
 リーン車両は、表示装置として、例えば、ランプを備える。表示装置は特に限定されず、例えば、変位する指示子を備える装置、又は音を発する装置でもよい。 A lean vehicle is equipped with, for example, a lamp as a display device. The display device is not particularly limited, and may be, for example, a device with a displaceable indicator or a device that emits sound.
 ロータは、スロットの数の2/3より多い磁極部を有する。例えば、ロータは、スロットの数より多い磁極部を有する。この場合、より大きなインダクタンスが得られる。例えば、ロータは、スロットの数の4/3、又はそれより多い磁極部を有する。この場合、制御の複雑化を抑制しつつ、さらに大きなインダクタンスが得られる。但し、ロータは特に限定されず、例えば、スロットの数の2/3又はより少ない磁極部を有してもよい。 The rotor has more magnetic pole pieces than 2/3 of the number of slots. For example, the rotor has more pole pieces than slots. In this case, a larger inductance is obtained. For example, the rotor has 4/3 or more pole pieces than the number of slots. In this case, a larger inductance can be obtained while suppressing complication of control. However, the rotor is not particularly limited, and may have, for example, 2/3 the number of slots or fewer magnetic pole portions.
 本発明によれば、リーン車両におけるアイドリングストップ機能を有しつつ、全輪接地型自立機構の動作についてアイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジンを始動することができる。 According to the present invention, while having an idling stop function in a lean vehicle, it is possible to start the engine under the same conditions and operations as in a vehicle that does not have an idling stop function with respect to the operation of the all-wheel-grounded independent mechanism.
第1実施形態に係るリーン車両の構成を示す図である。1 is a diagram showing the configuration of a lean vehicle according to a first embodiment; FIG. 図1に示すリーン車両のエンジンの停止及び始動に係る状態の遷移及び階層の構造を示す状態遷移図である。FIG. 2 is a state transition diagram showing state transitions and a hierarchical structure relating to stop and start of the engine of the lean vehicle shown in FIG. 1 ; 第1実施形態のリーン車両の第1の適用例における表示装置を示す図である。It is a figure which shows the display apparatus in the 1st application example of the lean vehicle of 1st Embodiment. 第1実施形態のリーン車両の第2適用例における全輪接地型自立機構を示す図である。FIG. 7 is a diagram showing an all-wheel-grounded self-standing mechanism in a second application example of the lean vehicle of the first embodiment; 第1実施形態のリーン車両1の第3適用例におけるエンジン10及びその周辺装置の概略構造を示す図である。FIG. 10 is a diagram showing a schematic structure of an engine 10 and its peripheral devices in a third application example of the lean vehicle 1 of the first embodiment; 第2実施形態に係るリーン車両の制御装置の構成及びプロセスを示すチャートである。8 is a chart showing the configuration and process of a lean vehicle control device according to a second embodiment;
 以下、実施形態が、図面を参照しつつ説明される。 Hereinafter, embodiments will be described with reference to the drawings.
 [第1実施形態]
 図1は、第1実施形態に係るリーン車両1の構成を示す図である。図1のパート(a)は、リーン車両1を模式的に示す側面図である。図1のパート(b)は、リーン車両1の一部を示す拡大図である。図1のパート(c)は、リーン車両1の制御装置60のプロセスを示すチャートである。
[First embodiment]
FIG. 1 is a diagram showing the configuration of a lean vehicle 1 according to the first embodiment. Part (a) of FIG. 1 is a side view schematically showing the lean vehicle 1. FIG. Part (b) of FIG. 1 is an enlarged view showing a part of the lean vehicle 1 . Part (c) of FIG. 1 is a chart showing the process of the control device 60 of the lean vehicle 1 .
 図1に示すリーン車両1は、走行時にカーブの内方向に傾いた姿勢で旋回するように構成される。リーン車両1は、例えば、自動二輪車である。リーン車両1は、車体1Aと、複数の車輪14,15と、クラッチ25と、クラッチレバー122と、クラッチセンサ123と、全輪接地型自立機構101と、検出装置102と、を備える。また、リーン車両1は、エンジン10と、始動発電機20と、エンジン始動スイッチ121と、制御装置60と、アクセルグリップ124と、アイドリングストップスイッチ125と、を備える。クラッチレバー122と、エンジン始動スイッチ121と、アクセルグリップ124とは、ハンドルバー12に設けられている。
 リーン車両1は、2つの車輪14,15を備える。車輪14は前輪である。車輪15は、後輪である。車輪15はエンジン10からの出力によってリーン車両1を駆動する駆動輪として機能する。つまり、車輪14,15は駆動輪を含む。以降、車輪15は駆動輪15とも称される。複数の車輪14,15のいずれも、走行時に接地する。リーン車両1は、停車時に複数の車輪14,15のみによって自立しないように構成されている。
The lean vehicle 1 shown in FIG. 1 is configured to turn in a tilted posture toward the inside of a curve when traveling. The lean vehicle 1 is, for example, a motorcycle. The lean vehicle 1 includes a vehicle body 1</b>A, a plurality of wheels 14 and 15 , a clutch 25 , a clutch lever 122 , a clutch sensor 123 , an all-wheel-grounded independent mechanism 101 , and a detection device 102 . The lean vehicle 1 also includes an engine 10 , a starter generator 20 , an engine start switch 121 , a control device 60 , an accelerator grip 124 and an idling stop switch 125 . The clutch lever 122 , the engine start switch 121 and the accelerator grip 124 are provided on the handlebar 12 .
The lean vehicle 1 comprises two wheels 14,15. Wheel 14 is the front wheel. Wheel 15 is the rear wheel. The wheels 15 function as drive wheels that drive the lean vehicle 1 by the output from the engine 10 . That is, the wheels 14, 15 include drive wheels. The wheels 15 are hereinafter also referred to as drive wheels 15 . Both of the plurality of wheels 14, 15 are grounded during running. The lean vehicle 1 is configured so as not to stand on its own due to only the plurality of wheels 14 and 15 when the vehicle is stopped.
 エンジン10は、燃焼によって生じるパワーを出力する。エンジン10は、クランク軸11を有する。エンジン10は、クランク軸11の回転力としてパワーを出力する。
 クラッチ25は、クランク軸11の回転力を駆動輪15へ伝達する接続状態と回転力を遮断する切断状態とを操作に応じて切り替える。クラッチ25は、クラッチレバー122に対する操作に応じて動作する。クラッチレバー122は、リーン車両1に乗車されるライダに直接操作される。より詳細には、クラッチレバー122が操作を受けると、クラッチ25が動作して切断状態となる。クラッチレバー122の操作は、ライダがクラッチレバー122をリーン車両1における後方に向かって引く操作である。クラッチレバー122の操作の停止は、例えば、ライダがクラッチレバー122を引く力を弱めるか又は引くことを止めることによってクラッチレバー122が前方に戻ることである。クラッチレバー122の操作が停止すると、クラッチ25は接続状態となる。クラッチセンサ123は、クラッチレバー122に対する操作を検出する。
 エンジン始動スイッチ121は、ライダによる操作に応じてエンジン10を始動させるためのスイッチである。
 アイドリングストップスイッチ125は、ライダによる操作に応じてエンジン10をアイドリングストップ状態にするためのスイッチである。アイドリングストップ準備条件が成立した場合にアイドリングストップスイッチ125が操作されると、エンジン10が停止する。
 アクセルグリップ124は、ライダに操作される。アクセルグリップ124は、操作によってリーン車両1の加速要求を出力する。アクセルグリップ124が操作に応じて加速要求を出力することによって、エンジン10の出力パワーが増大する。
The engine 10 outputs power generated by combustion. The engine 10 has a crankshaft 11 . The engine 10 outputs power as rotational force of the crankshaft 11 .
The clutch 25 switches between a connected state in which the rotational force of the crankshaft 11 is transmitted to the drive wheels 15 and a disconnected state in which the rotational force is interrupted, depending on the operation. Clutch 25 operates according to the operation of clutch lever 122 . The clutch lever 122 is directly operated by a rider riding in the lean vehicle 1 . More specifically, when the clutch lever 122 is operated, the clutch 25 operates and becomes disengaged. The operation of the clutch lever 122 is an operation of pulling the clutch lever 122 toward the rear of the lean vehicle 1 by the rider. Stopping the operation of the clutch lever 122 is, for example, returning the clutch lever 122 forward by reducing or stopping the pulling force of the clutch lever 122 by the rider. When the operation of the clutch lever 122 is stopped, the clutch 25 is in the engaged state. Clutch sensor 123 detects an operation on clutch lever 122 .
The engine start switch 121 is a switch for starting the engine 10 according to the operation by the rider.
The idling stop switch 125 is a switch for putting the engine 10 into an idling stop state according to the operation by the rider. When the idling stop preparation condition is satisfied and the idling stop switch 125 is operated, the engine 10 is stopped.
The accelerator grip 124 is operated by the rider. The accelerator grip 124 outputs an acceleration request for the lean vehicle 1 by operation. The output power of the engine 10 is increased by outputting an acceleration request according to the operation of the accelerator grip 124 .
 動作時の全輪接地型自立機構101は、停車時におけるリーン車両1の車体1Aを自立させる。この時、走行中に接地していた複数の車輪14,15の全てが接地している。非動作時の全輪接地型自立機構101は、車体1Aを自立させない。
 全輪接地型自立機構101は、例えばサイドスタンドである。サイドスタンドの展開状態は、全輪接地型自立機構101の動作状態に対応する。サイドスタンドの収納状態は、全輪接地型自立機構101の動作が停止した状態、即ち非動作状態に対応する。
 検出装置102は、全輪接地型自立機構101が動作しているか否か検出する。検出装置102は、例えば、全輪接地型自立機構101としてのサイドスタンドの展開状態を検出する。
The all-wheel-grounded self-supporting mechanism 101 during operation makes the vehicle body 1A of the lean vehicle 1 self-supporting when the vehicle is stopped. At this time, all of the plurality of wheels 14 and 15 that were grounded during running are grounded. The all-wheel grounding type self-supporting mechanism 101 when not in operation does not allow the vehicle body 1A to stand on its own.
The all-wheel-grounded self-standing mechanism 101 is, for example, a side stand. The unfolded state of the side stand corresponds to the operating state of the all-wheel-grounding self-standing mechanism 101 . The retracted state of the side stand corresponds to a state in which the operation of the all-wheel-grounding self-standing mechanism 101 is stopped, that is, a non-operating state.
The detection device 102 detects whether or not the all-wheel grounding self-standing mechanism 101 is operating. The detection device 102 detects, for example, the unfolded state of the side stand as the all-wheel-grounding self-standing mechanism 101 .
 始動発電機20は、エンジン10の始動時にクランク軸11を駆動する。また、始動発電機20は、エンジン10の燃焼動作時にクランク軸11に駆動され発電する。始動発電機20は、例えばクラッチ機構を介することなくクランク軸11に接続される。始動発電機20は、例えばクランク軸11の速度と固定比の速度で回転する。始動発電機20は、クランク軸11に直結される。ただし、始動発電機20として、クランク軸11に動力伝達部材を介して接続される構成も採用可能である。 The starter generator 20 drives the crankshaft 11 when the engine 10 is started. Further, the starter generator 20 is driven by the crankshaft 11 to generate electric power when the engine 10 is in combustion operation. The starter/generator 20 is connected to the crankshaft 11 without, for example, a clutch mechanism. The starter-generator 20 rotates, for example, at a speed that is a fixed ratio of the speed of the crankshaft 11 . The starter generator 20 is directly connected to the crankshaft 11 . However, a configuration in which the starter generator 20 is connected to the crankshaft 11 via a power transmission member can also be adopted.
 リーン車両1は、表示装置51を備える。表示装置51は、アイドリングストップに関する3つの状態を示す。第1の状態は、エンジン10のアイドリングストップ状態である。第2の状態は、エンジン10の動作中にアイドリングストップ準備条件が成立した状態(アイドリングストップ準備状態)である。第3の状態は、その他の状態、即ち、アイドリングストップ準備条件が成立せず、アイドリングストップ状態でもない状態を示す。 The lean vehicle 1 includes a display device 51. The display device 51 shows three states regarding idling stop. A first state is an idling stop state of the engine 10 . The second state is a state in which the idling stop preparation condition is met while the engine 10 is operating (idling stop preparation state). The third state indicates another state, that is, a state in which the idling stop preparation condition is not established and the idling stop state is not established.
 制御装置60は、エンジン10の動作を制御する。制御装置60は、エンジン10の燃焼動作を制御することによって、エンジン10のクランク軸11からの出力を制御する。また、制御装置60は、スイッチング素子65を備える。スイッチング素子65は、オン-オフ動作することによって、始動発電機20を流れる電流を制御する。より詳細には、スイッチング素子65は、始動発電機20の巻線224(図5参照)を流れる電流を制御する。制御装置60は、スイッチング素子65に始動発電機20への電流を供給させることによってクランク軸11を回転させる。これによって、制御装置60は、エンジン10の始動及び停止を制御する。
 制御装置60は、アイドリングストップ制御部61(IS制御部61)と、強制停止制御部62とを備える。
 アイドリングストップ制御部61は、アイドリングストップ再始動プロセス61aを実施する。アイドリングストップ再始動プロセス61aは、エンジン10のアイドリングストップ及び再始動を行なうプロセスである。アイドリングストップ再始動プロセス61aは、全輪接地型自立機構101の状態以外のアイドリングストップ条件の成立に基づいて、エンジン10の状態を、アイドリングストップ状態にする。アイドリングストップ状態は、エンジン10の動作が停止した状態である。アイドリングストップ状態は、エンジン始動スイッチ121の操作以外の操作でエンジン10の始動が可能な状態である。また、アイドリングストップ再始動プロセス61aは、アイドリングストップ状態でクラッチセンサ123による操作の検出結果に基づいてエンジン10を再始動する。
 アイドリングストップ制御部61は、図示しないプロセッサとプログラムとを有するコンピュータで構成されている。アイドリングストップ再始動プロセス61aは、プログラムが実行されることによって実施されるプロセスである。
Control device 60 controls the operation of engine 10 . The control device 60 controls the output from the crankshaft 11 of the engine 10 by controlling the combustion operation of the engine 10 . The control device 60 also includes a switching element 65 . The switching element 65 controls the current flowing through the starter/generator 20 by turning on and off. More specifically, switching element 65 controls the current through winding 224 (see FIG. 5) of starter-generator 20 . The control device 60 rotates the crankshaft 11 by causing the switching element 65 to supply current to the starter/generator 20 . Thereby, the control device 60 controls starting and stopping of the engine 10 .
The control device 60 includes an idling stop control section 61 (IS control section 61 ) and a forced stop control section 62 .
The idling stop control unit 61 carries out an idling stop restart process 61a. The idling stop/restart process 61 a is a process of stopping and restarting the engine 10 . The idling stop restart process 61a changes the state of the engine 10 to the idling stop state based on the establishment of the idling stop condition other than the state of the all-wheel-grounded independent mechanism 101 . The idling stop state is a state in which the operation of the engine 10 is stopped. The idling stop state is a state in which the engine 10 can be started by an operation other than the operation of the engine start switch 121 . Further, the idling stop restart process 61a restarts the engine 10 based on the detection result of the operation by the clutch sensor 123 in the idling stop state.
The idling stop control unit 61 is composed of a computer having a processor and a program (not shown). The idling stop restart process 61a is a process implemented by executing a program.
 強制停止制御部62は、エンジン強制停止始動プロセス62aを実施する。エンジン強制停止始動プロセス62aは、アイドリングストップ及び再始動とは異なる条件でエンジン10を停止及び始動する。エンジン強制停止始動プロセス62aは、アイドリングストップ再始動プロセス61aとは独立したプロセスである。
 図1の強制停止制御部62は、ワイヤードロジックで構成されている。強制停止制御部62は、プロセッサもプログラムも備えていない。エンジン強制停止始動プロセス62aは、ワイヤードロジックが有する各論理ゲートによって、入力されるデータが処理され出力されるプロセスである。
 エンジン強制停止始動プロセス62aは、強制停止状態のデータを出力することによってエンジン10の動作を強制的に停止する。例えば、強制停止状態のデータは、エンジン10の燃料噴射又は点火を停止する。エンジン強制停止始動プロセス62aは、全輪接地型自立機構101の動作が検出された場合にエンジン10の動作を強制的に停止する。エンジン強制停止始動プロセス62aは、少なくともエンジン始動スイッチ121が操作されることに基づいてエンジン10を始動する。エンジン強制停止始動プロセス62aは、少なくともエンジン始動スイッチ121が操作されるまでエンジン10の動作の停止状態を維持する。
The forced stop control section 62 implements an engine forced stop start process 62a. The engine forced stop start process 62a stops and starts the engine 10 under conditions different from idling stop and restart. The engine forced stop start process 62a is a process independent of the idling stop restart process 61a.
The forced stop control unit 62 in FIG. 1 is configured by wired logic. The forced stop control unit 62 has neither a processor nor a program. The engine forced stop start process 62a is a process in which input data is processed and output by each logic gate of wired logic.
The engine forced stop start process 62a forcibly stops the operation of the engine 10 by outputting forced stop state data. For example, data for a forced stop condition stops fuel injection or ignition of the engine 10 . The engine forcible stop start process 62a forcibly stops the operation of the engine 10 when the operation of the all-wheel-grounded independent mechanism 101 is detected. The forced engine stop start process 62a starts the engine 10 at least based on the operation of the engine start switch 121. FIG. The forced engine stop start process 62a maintains the stopped state of the operation of the engine 10 at least until the engine start switch 121 is operated.
 図2は、図1に示すリーン車両1のエンジン10の停止及び始動に係る状態の遷移及び階層の構造を示す状態遷移図である。図2の楕円は各状態を示し、矢印は状態の遷移を示し、長方形は遷移に伴う動作を示す。また、矢印の脇に遷移の条件が示されている。 FIG. 2 is a state transition diagram showing state transitions and a hierarchical structure relating to the stop and start of the engine 10 of the lean vehicle 1 shown in FIG. Ellipses in FIG. 2 indicate respective states, arrows indicate state transitions, and rectangles indicate operations associated with the transitions. Also, transition conditions are shown beside the arrows.
 リーン車両1は、エンジン10の動作、及び、図示しない制動に関する種々の状態を有している。種々の状態は、群M1からM4に区分できる。一つの群は、条件に応じて互い遷移する関係を有する状態で構成される。
 エンジン10の基本制御状態の群M1は、エンジン10の基本的な停止及び始動の状態に関する。エンジン10の基本制御状態の群M1は、エンジン動作許容状態m11とエンジン動作不能状態m12を含んでいる。全輪接地型自立機構101が動作すると、エンジン10の動作は強制的に停止される。状態が、エンジン動作不能状態m12に遷移する。エンジン動作不能状態m12で、少なくともエンジン始動スイッチ121の操作を条件として、エンジン10が始動する。エンジン10の始動には、エンジン始動スイッチ121の操作以外の条件も加重され得る。そして、状態はエンジン動作許容状態m11に遷移する。エンジン動作許容状態m11では、エンジン10が燃焼動作する。
 エンジン動作不能状態m12で、全輪接地型自立機構101の動作が停止するだけでは、状態はエンジン動作許容状態m11に遷移しない。つまり、一旦全輪接地型自立機構101が動作すると、少なくともエンジン始動スイッチ121が操作されるまで、エンジン動作許容状態m11に遷移しない。
 なお、エンジン動作許容状態m11は、エンジン10が動作していない状態も含む。つまり、全輪接地型自立機構101が動作しないエンジン動作許容状態m11で、エンジン10は停止する場合がある。例えば、エンジン10は、クラッチレバー122の操作タイミングに起因したエンジンストール、または、図示しないエンジンキルスイッチの操作により停止する場合がある。
The lean vehicle 1 has various states related to the operation of the engine 10 and braking (not shown). Various states can be divided into groups M1 to M4. One group is composed of states having relationships of mutual transition according to conditions.
Group M1 of basic control states of engine 10 relates to basic stop and start states of engine 10 . A group M1 of basic control states of the engine 10 includes an engine operable state m11 and an engine operable state m12. When the all-wheel-grounded self-standing mechanism 101 operates, the operation of the engine 10 is forcibly stopped. The state transitions to the engine inoperable state m12. In the engine inoperable state m12, the engine 10 is started on condition that at least the engine start switch 121 is operated. Conditions other than the operation of the engine start switch 121 may be added to the starting of the engine 10 . Then, the state transitions to the engine operation permissible state m11. In the engine operation permissible state m11, the engine 10 performs combustion operation.
In the engine operation disabled state m12, the state does not transition to the engine operation permitted state m11 simply by stopping the operation of the all-wheel-grounding self-supporting mechanism 101. FIG. In other words, once the all-wheel-grounding self-standing mechanism 101 operates, it does not transition to the engine operation permissible state m11 until at least the engine start switch 121 is operated.
Note that the engine operation permissible state m11 also includes a state in which the engine 10 is not operating. In other words, the engine 10 may stop in the engine operation permissible state m11 in which the all-wheel-grounding self-standing mechanism 101 does not operate. For example, the engine 10 may stop due to an engine stall caused by the operation timing of the clutch lever 122 or an operation of an engine kill switch (not shown).
 アイドリングストップ制御状態の群M3は、エンジン動作中状態m31と、アイドリングストップ状態m32を含む。エンジン動作中状態m31で、アイドリングストップ条件が成立すると、エンジン10が停止する。状態はアイドリングストップ状態m32になる。
 エンジン10の基本制御状態の群M1とアイドリングストップ制御状態の群M3とは互いに独立している。例えば、エンジン10の基本制御状態の群M1の状態は、全輪接地型自立機構101と、エンジン始動スイッチ121の状態によって決定され、アイドリングストップ制御状態の群M3の状態によらない。ただし、群M1と群M3の双方はエンジン10を制御する。群M1の状態による制御出力と群M3の状態による制御出力とが異なる場合、エンジン10の基本制御状態の群M1の制御出力が優先する。例えば、アイドリングストップ制御状態の群M3における状態が、エンジン動作中状態m31又はアイドリングストップ状態m32のいずれであっても、全輪接地型自立機構101が動作すると、エンジン10の動作は強制的に停止される。エンジン10の動作が強制的に停止された状態は、エンジン動作不能状態m12である。そして、少なくともエンジン始動スイッチ121が操作されるまで、エンジン10が始動しない。少なくともエンジン始動スイッチ121が操作されると、エンジン10が始動する。
The idling stop control state group M3 includes an engine operating state m31 and an idling stop state m32. When the idling stop condition is satisfied in the engine operating state m31, the engine 10 is stopped. The state becomes the idling stop state m32.
The group M1 of the basic control state of the engine 10 and the group M3 of the idling stop control state are independent of each other. For example, the state of group M1 of the basic control state of the engine 10 is determined by the states of the all-wheel-grounding independent mechanism 101 and the engine start switch 121, and does not depend on the state of group M3 of the idling stop control state. However, both groups M1 and M3 control the engine 10. FIG. If the control output due to the state of group M1 and the control output due to the state of group M3 are different, the control output of group M1 in the basic control state of engine 10 takes precedence. For example, even if the state in the group M3 of the idling stop control state is either the engine operating state m31 or the idling stop state m32, the operation of the engine 10 is forcibly stopped when the all-wheel grounding self-supporting mechanism 101 operates. be done. The state in which the operation of the engine 10 is forcibly stopped is the engine inoperable state m12. Then, the engine 10 does not start until at least the engine start switch 121 is operated. When at least the engine start switch 121 is operated, the engine 10 is started.
 図1のパート(c)を参照して、アイドリングストップ制御部61(IS制御部61)が実施するアイドリングストップ再始動プロセス61aと、強制停止制御部62が実施するエンジン強制停止始動プロセス62aとが説明される。 Referring to part (c) of FIG. 1, an idling stop restart process 61a performed by an idling stop control unit 61 (IS control unit 61) and an engine forced stop start process 62a performed by a forced stop control unit 62 are performed. explained.
 アイドリングストップ制御部61は、アイドリングストップ制御と、再始動制御を実行する。
 アイドリングストップ制御において、アイドリングストップ制御部61は、アイドリングストップ状態(IS状態)と、アイドリングストップ準備条件(IS準備条件)の成立とについて判別する(S11,S12)。アイドリングストップ準備条件は、例えば、エンジン10の温度又は冷却水の温度が基準値以上であること、前回のエンジン始動以降に基準速度以上で走行したことである。全輪接地型自立機構101の状態は、アイドリングストップ準備条件に含まれない。
 制御状態がアイドリングストップ状態でなく(S11でNo)、且つ、アイドリングストップ準備条件が成立する場合(S12でYes)、アイドリングストップ制御部61は、制御状態をアイドリングストップ準備状態(IS準備状態)にする(S13)。また、アイドリングストップ制御部61は、アイドリングストップ準備条件が成立した状態を表示装置51に表示させる。
The idling stop control unit 61 executes idling stop control and restart control.
In the idling stop control, the idling stop control unit 61 determines whether the idling stop state (IS state) or the establishment of the idling stop preparation condition (IS preparation condition) is established (S11, S12). The idling stop preparation condition is, for example, that the temperature of the engine 10 or the temperature of the cooling water is equal to or higher than a reference value, and that the vehicle has traveled at a speed equal to or higher than the reference speed since the previous engine start. The state of the all-wheel-grounded independent mechanism 101 is not included in the idling stop preparation conditions.
If the control state is not the idling stop state (No in S11) and the idling stop preparation condition is satisfied (Yes in S12), the idling stop control unit 61 changes the control state to the idling stop preparation state (IS preparation state). (S13). Further, the idling stop control unit 61 causes the display device 51 to display a state in which the idling stop preparation condition is satisfied.
 制御状態がアイドリングストップ準備状態であり、アイドリングストップ操作がある場合(S14でYes)、アイドリングストップ制御部61は、エンジン10(EG10)を停止する(S15)。アイドリングストップ操作は、ライダの操作によりアイドリングストップの実施が要求されたことである。アイドリングストップ操作は、例えば(A)から(E)の何れか一つ又は複数の組合せである。
 (A) アクセルグリップ124が加速要求を出力しないこと。
 (B) リーン車両1が停止していること。
 (C) 多段変速装置30(図5参照)がニュートラル状態でクラッチレバー122の操作が停止したこと。
 (D) アイドリングストップスイッチ125が操作されたこと。
 (E) 多段変速装置30がニュートラル状態でなく、クラッチレバー122が操作されたこと。
 全輪接地型自立機構101の状態は、アイドリングストップ操作に含まれない。
 例えば、アイドリングストップ操作は、条件(A),(B),(C)の組合せである。この組合せの場合、変速段を変更するためクラッチレバー122が操作される際にエンジン10が停止しない。
 また、アイドリングストップ操作として、条件(A),(B),(D),(E)の組合せも採用可能である。この場合のアイドリングストップ準備条件は、多段変速装置30がニュートラル状態でないことである。この組合せの場合、多段変速装置30の操作が簡便化する。
 また、アイドリングストップ準備条件として、条件(A),(B),(C)の組合せ、又は、条件(A),(B),(D)の組合せの何れかの成立を採用することもできる。
If the control state is the idling stop preparation state and there is an idling stop operation (Yes in S14), the idling stop control unit 61 stops the engine 10 (EG 10) (S15). An idling stop operation is a rider's request to implement an idling stop. The idling stop operation is, for example, any one or a combination of (A) to (E).
(A) The accelerator grip 124 does not output an acceleration request.
(B) The lean vehicle 1 is stopped.
(C) Operation of the clutch lever 122 is stopped while the multi-speed transmission 30 (see FIG. 5) is in the neutral state.
(D) The idling stop switch 125 has been operated.
(E) The multi-speed transmission 30 is not in the neutral state and the clutch lever 122 is operated.
The state of the all-wheel-grounded independent mechanism 101 is not included in the idling stop operation.
For example, the idling stop operation is a combination of conditions (A), (B) and (C). In this combination, the engine 10 does not stop when the clutch lever 122 is operated to change gears.
A combination of conditions (A), (B), (D), and (E) can also be employed as the idling stop operation. The idling stop preparation condition in this case is that the multi-speed transmission 30 is not in the neutral state. This combination simplifies the operation of the multi-speed transmission 30 .
Further, as the idling stop preparation condition, it is also possible to employ the establishment of any combination of the conditions (A), (B) and (C) or the combination of the conditions (A), (B) and (D). .
 アイドリングストップ制御部61は、エンジン10を停止すると、制御状態をアイドリングストップ状態にする。アイドリングストップ制御部61は、表示装置51にアイドリングストップ状態を表示させる。 When the engine 10 is stopped, the idling stop control unit 61 changes the control state to the idling stop state. The idling stop control unit 61 causes the display device 51 to display the idling stop state.
 再始動制御において、アイドリングストップ制御部61は、アイドリングストップ状態(IS状態)と、再始動準備条件の成立と、クラッチ25の操作について判別する(S21,S22,S23)。再始動準備条件は、例えば、アクセルグリップ124が加速要求を出力しないことである。これによって、エンジン10の再始動後における回転速度の急な上昇を抑制することができる。即ち、アイドリングストップ状態で再始動準備条件が成立し、クラッチ25が操作された場合(S21でYes,S22でYes,S23でYes)、アイドリングストップ制御部61は、エンジン再始動要求を出力する(S24)。アイドリングストップ制御部61は、アイドリングストップ状態を終了する(S25)。即ち、アイドリングストップ制御部61は、制御状態を動作中にする。また、アイドリングストップ制御部61は、表示装置51にアイドリングストップ状態の表示を停止する。アイドリングストップ制御部61は、アイドリングストップ許可条件が成立もせず、アイドリングストップ状態でもない状態を表示装置51に表示させる。
 アイドリングストップ制御部61は、多段変速装置30(図5参照)がニュートラル状態である場合又はニュートラル状態でない場合の何れにおいても、クラッチ25の操作に基づいて再始動する。これによって、アイドリングストップ状態から発進までの操作が簡便化する。
In the restart control, the idling stop control unit 61 determines the idling stop state (IS state), the establishment of the restart preparation condition, and the operation of the clutch 25 (S21, S22, S23). The restart preparation condition is, for example, that the accelerator grip 124 does not output an acceleration request. As a result, it is possible to suppress a sudden increase in the rotation speed after the engine 10 is restarted. That is, when the restart preparation condition is established in the idling stop state and the clutch 25 is operated (Yes in S21, Yes in S22, and Yes in S23), the idling stop control unit 61 outputs an engine restart request ( S24). The idling stop control unit 61 terminates the idling stop state (S25). That is, the idling stop control unit 61 changes the control state to active. Also, the idling stop control unit 61 stops displaying the idling stop state on the display device 51 . The idling stop control unit 61 causes the display device 51 to display a state in which the idling stop permission condition is not met and the idling stop state is not established.
The idling stop control unit 61 restarts based on the operation of the clutch 25 regardless of whether the multi-stage transmission 30 (see FIG. 5) is in the neutral state or not in the neutral state. This simplifies the operation from the idling stop state to start.
 強制停止制御部62は、ワイヤード論理回路で構成される。強制停止制御部62は、強制停止状態のデータを保持及び出力する停止保持状態装置625を有する。強制停止状態のデータが出力されるとエンジン10の燃焼動作は停止する。停止保持状態装置625は、例えばフリップフロップで構成される。
 停止保持状態装置625は、エンジン停止中でなく、且つ、全輪接地型自立機構101が動作している場合に、強制停止状態のデータを出力する。停止保持状態装置625は、少なくとも、全輪接地型自立機構101の動作が停止し、且つ、クラッチレバー122が操作されるまで、強制停止状態のデータを保持する。強制停止制御部62は、強制停止状態のデータが保持される間、アイドリングストップ準備条件の成立でもなく、アイドリングストップ状態でもない状態を表示装置51に表示させる。
 強制停止状態のデータを出力している停止保持状態装置625が、強制停止状態のデータの出力を停止してエンジン10を始動するには、少なくとも、エンジン始動スイッチ121が操作される必要がある。
 より詳細には、強制停止制御部62は、エンジン10から駆動輪15への出力の伝達が切断された状態でエンジン始動スイッチ121が操作されるまで強制停止状態のデータの出力を維持する。これによってエンジン10の停止状態が維持される。強制停止制御部62は、エンジン10から駆動輪15への出力の伝達が切断された状態で、且つ、エンジン始動スイッチ121が操作される場合に、強制停止状態のデータの出力を停止する。またこのとき、強制停止制御部62は、エンジン始動(EG始動)のデータを出力する。
 より詳細には、停止保持状態装置625が、強制停止状態のデータの出力を停止してエンジン10を始動するには、例えば、次の条件(a)及び条件(b)の何れかが成立する必要がある。条件(a)は、全輪接地型自立機構101の動作が停止し、且つ、クラッチレバー122が操作され、且つ、エンジン始動スイッチ121が操作されることである。条件(b)は、多段変速装置30がニュートラル状態であり、且つ、エンジン始動スイッチ121が操作されることである。
 例えば、強制停止状態のデータを出力している強制停止制御部62は、全輪接地型自立機構101の動作が停止しており、且つ、クラッチレバー122が操作され、且つエンジン始動スイッチ121が操作されている場合に、エンジン10の始動のデータを出力する。
The forced stop control unit 62 is composed of a wired logic circuit. The forced stop control unit 62 has a stop holding state device 625 that holds and outputs forced stop state data. When the forced stop state data is output, the combustion operation of the engine 10 is stopped. The hold-stop state device 625 is composed of, for example, a flip-flop.
The stop holding state device 625 outputs forced stop state data when the engine is not stopped and when the all-wheel-grounded independent mechanism 101 is operating. The stop holding state device 625 holds the data of the forced stop state at least until the operation of the all-wheel-grounding independent mechanism 101 stops and the clutch lever 122 is operated. The forced stop control unit 62 causes the display device 51 to display a state in which neither the idling stop preparation condition is met nor the idling stop state is established while the forced stop state data is held.
In order for the stop holding state device 625 outputting the forced stop state data to stop outputting the forced stop state data and start the engine 10, at least the engine start switch 121 needs to be operated.
More specifically, the forced stop control unit 62 keeps outputting forced stop state data until the engine start switch 121 is operated in a state in which transmission of output from the engine 10 to the drive wheels 15 is cut off. As a result, the stopped state of the engine 10 is maintained. The forced stop control unit 62 stops outputting the forced stop state data when the transmission of the output from the engine 10 to the driving wheels 15 is cut off and the engine start switch 121 is operated. At this time, the forced stop control unit 62 also outputs engine start (EG start) data.
More specifically, in order for the stop holding state device 625 to stop outputting the forced stop state data and start the engine 10, for example, either of the following conditions (a) and (b) is satisfied: There is a need. Condition (a) is that the operation of the all-wheel-grounding self-sustaining mechanism 101 is stopped, the clutch lever 122 is operated, and the engine start switch 121 is operated. Condition (b) is that the multi-speed transmission 30 is in the neutral state and the engine start switch 121 is operated.
For example, the forced stop control unit 62, which outputs forced stop state data, indicates that the operation of the all-wheel-grounded independent mechanism 101 is stopped, the clutch lever 122 is operated, and the engine start switch 121 is operated. If so, data for starting the engine 10 is output.
 停止保持状態装置625が強制停止状態のデータの出力を停止している場合、エンジン10の再始動要求があると、エンジン10が始動する。エンジン10が再始動する。この逆に、停止保持状態装置625が強制停止状態のデータの出力している場合、エンジン10の再始動要求があっても、エンジン10が始動しない。これによって、強制停止制御部62によるエンジン10の停止の制御が優先する。 When the stop holding state device 625 has stopped outputting the forced stop state data, the engine 10 will start when there is a request to restart the engine 10 . Engine 10 is restarted. Conversely, if the stop holding state device 625 is outputting data indicating a forced stop state, the engine 10 will not start even if there is a request to restart the engine 10 . As a result, the control for stopping the engine 10 by the forced stop control unit 62 has priority.
 上述したようにして、強制停止制御部62は、エンジン強制停止始動プロセス62aを実施する。エンジン強制停止始動プロセス62aにおいて、強制停止制御部62は、アイドリングストップの場合と異なる条件でエンジン10を停止し、再始動の場合とは異なる条件でエンジン10を始動する。
 このようにして、強制停止制御部62は、アイドリングストップ再始動プロセス61aとは独立したエンジン強制停止始動プロセス62aを実施する。
As described above, the forced stop control section 62 carries out the engine forced stop start process 62a. In the forced engine stop start process 62a, the forced stop control unit 62 stops the engine 10 under conditions different from those for idling stop, and starts the engine 10 under conditions different from those for restart.
In this manner, the forced stop control unit 62 performs the engine forced stop start process 62a independent of the idling stop restart process 61a.
 エンジン強制停止始動プロセス62aは、アイドリングストップ再始動プロセス61aとは独立したプロセスである。このため、全輪接地型自立機構101の状態以外の条件の成立に基づいてエンジン10がアイドリングストップ状態になる。これに対し、エンジン強制停止始動プロセス62aは、全輪接地型自立機構101の動作に基づいてエンジン10の動作を強制的に停止することができる。さらに、エンジン10の動作の停止状態を、少なくともエンジン始動スイッチ121が操作されるまで維持することができる。したがって、一旦全輪接地型自立機構101が動作すると、その後、全輪接地型自立機構101の動作が停止した状態でも、クラッチレバー122の操作でエンジン10が始動することがない。全輪接地型自立機構101が動作した後は、少なくともエンジン始動スイッチ121が操作されるまで、エンジン10が始動しない。即ち、全輪接地型自立機構101が動作した後は、少なくともエンジン始動スイッチ121が操作されることに基づいてエンジン10が始動する。 The engine forced stop start process 62a is a process independent of the idling stop restart process 61a. Therefore, the engine 10 enters the idling stop state based on the establishment of conditions other than the state of the all-wheel-grounding self-standing mechanism 101 . On the other hand, the engine forced stop start process 62a can forcibly stop the operation of the engine 10 based on the operation of the all-wheel-grounded independent mechanism 101. FIG. Furthermore, the stopped state of the operation of the engine 10 can be maintained at least until the engine start switch 121 is operated. Therefore, once the all-wheel grounding self-supporting mechanism 101 operates, the engine 10 is not started by operating the clutch lever 122 even when the all-wheel grounding self-supporting mechanism 101 stops operating. After the all-wheel-grounding self-standing mechanism 101 operates, the engine 10 does not start until at least the engine start switch 121 is operated. That is, after the all-wheel grounding self-standing mechanism 101 is operated, the engine 10 is started based on at least the operation of the engine start switch 121 .
 リーン車両1のエンジン10は、一旦全輪接地型自立機構101が動作すると、その後、全輪接地型自立機構101の動作が停止している状態も含め、例えばアイドリングストップ機能を有さない車両と同様な操作により始動できる。従って、アイドリングストップ機能を有しつつ、アイドリングストップ機能を有さない車両と同様の条件及び操作によりエンジン10を始動することができる。 The engine 10 of the lean vehicle 1, once the all-wheel grounding type self-supporting mechanism 101 operates, after that, including the state in which the operation of the all-wheel grounding type self-supporting mechanism 101 is stopped, is a vehicle that does not have an idling stop function, for example. It can be started by a similar operation. Therefore, while having the idling stop function, the engine 10 can be started under the same conditions and operation as those of a vehicle without the idling stop function.
 また、リーン車両1におけるエンジン10から駆動輪15への出力の伝達が切断された状態でエンジン10が始動することによって、エンジン10の始動時に駆動輪15からの抵抗が抑制される。従って、短時間でエンジン10を始動することができる。 Also, by starting the engine 10 in a state in which the transmission of the output from the engine 10 to the driving wheels 15 in the lean vehicle 1 is cut off, resistance from the driving wheels 15 is suppressed when the engine 10 is started. Therefore, the engine 10 can be started in a short time.
 図3は、第1実施形態のリーン車両1の第1の適用例における表示装置51を示す図である。本適用例の説明として、第1実施形態のリーン車両1と異なる部分が、説明される。共通部分は、図面において同一の符号を付されるか、または図示及び説明が省略される。 FIG. 3 is a diagram showing a display device 51 in a first application example of the lean vehicle 1 of the first embodiment. As an explanation of this application example, portions different from the lean vehicle 1 of the first embodiment will be explained. Common parts are given the same reference numerals in the drawings, or their illustration and description are omitted.
 図3に示す表示装置51は、アイドリングストップ状態と、エンジン10の動作中にアイドリングストップ準備条件が成立した状態と、その他の状態とを示す。表示装置51は、表示ランプである。表示装置51は、スピードメータ50に設けられた表示ランプである。表示装置51は、例えば点灯することによって特定のマークを表示する。但し、表示装置51として、例えば特定のマークでなく単純な光を点灯する構成も採用可能である。
 表示装置51は、例えば点灯することによってエンジン10の動作中にアイドリングストップ準備条件が成立したことを表示する。表示装置51は、例えば点滅することによってアイドリングストップ状態を表示する。表示装置51は、例えば消灯することによって、アイドリングストップ準備条件が成立せず、アイドリングストップ状態でもないその他の状態を示す。
 第1実施形態で示した制御装置60の制御の一例によれば、エンジン10の動作中にアイドリングストップ準備条件が成立してアイドリングストップ準備になると、表示装置51は点灯する。ライダの操作に応じてエンジン10がアイドリングストップ状態になると、表示装置51は点滅する。再始動条件が成立してエンジン10が再始動すると、表示装置51は消灯する。
 全輪接地型自立機構101の動作が検出されると、表示装置51は、消灯する。つまり、全輪接地型自立機構101の動作が検出されると、エンジン10は動作せず、そして、表示装置51は消灯する。一旦全輪接地型自立機構101の動作が検出されると、少なくともエンジン始動スイッチ121が操作されることによってエンジン10が始動しその後、アイドリングストップ準備条件が成立するまで、表示装置51は点灯しない。
The display device 51 shown in FIG. 3 indicates an idling stop state, a state in which the idling stop preparation condition is satisfied while the engine 10 is operating, and other states. The display device 51 is a display lamp. The display device 51 is a display lamp provided on the speedometer 50 . The display device 51 displays a specific mark by lighting, for example. However, as the display device 51, for example, it is possible to employ a configuration in which a simple light is turned on instead of a specific mark.
The display device 51 displays that the idling stop preparation condition is met while the engine 10 is operating, for example, by turning on. The display device 51 displays the idling stop state by blinking, for example. The display device 51, for example, turns off the light to indicate that the idling stop preparation condition is not established and that the idling stop state is not the state.
According to an example of the control of the control device 60 shown in the first embodiment, when the idling stop preparation condition is satisfied while the engine 10 is operating and the idling stop preparation is started, the display device 51 lights up. When the engine 10 enters the idling stop state according to the rider's operation, the display device 51 blinks. When the restart condition is satisfied and the engine 10 is restarted, the display device 51 is turned off.
When the operation of the all-wheel-grounded self-standing mechanism 101 is detected, the display device 51 is turned off. That is, when the operation of the all-wheel-grounded self-standing mechanism 101 is detected, the engine 10 does not operate, and the display device 51 turns off. Once the operation of the all-wheel grounding self-supporting mechanism 101 is detected, the display device 51 does not turn on until at least the engine start switch 121 is operated to start the engine 10 and then the idling stop preparation condition is satisfied.
 図4は、第1実施形態のリーン車両1の第2適用例における全輪接地型自立機構101を示す図である。図4のパート(a)は、全輪接地型自立機構101としてのサイドスタンドが収納された状態を示す。図4のパート(b)は、サイドスタンドが展開された状態を示す。本適用例の説明として、第1実施形態のリーン車両1と異なる部分が、説明される。共通部分は、図面において同一の符号を付されるか、または図示及び説明が省略される。 FIG. 4 is a diagram showing an all-wheel-grounded self-standing mechanism 101 in a second application example of the lean vehicle 1 of the first embodiment. Part (a) of FIG. 4 shows a state in which the side stand as the all-wheel-grounding self-standing mechanism 101 is stored. Part (b) of FIG. 4 shows a state in which the side stand is deployed. As an explanation of this application example, portions different from the lean vehicle 1 of the first embodiment will be explained. Common parts are given the same reference numerals in the drawings, or their illustration and description are omitted.
 全輪接地型自立機構101は、サイドスタンドである。全輪接地型自立機構101としてのサイドスタンドは、リーン車両1の車体1Aに設けられている。全輪接地型自立機構101としてのサイドスタンドは、ライダの操作力によって展開又は収納される。全輪接地型自立機構101としてのサイドスタンドは、図4のパート(b)に示されるように展開されることで動作する。即ち、地面に対しリーン車両1を支持することによって、車輪14,15が接地した状態でリーン車両1を自立させる。
 全輪接地型自立機構101としてのサイドスタンドは、図4のパート(a)に示されるように収納されることで、動作を終了する。即ち、全輪接地型自立機構101は非動作状態になる。全輪接地型自立機構101は、検出装置102を有している。検出装置102は、全輪接地型自立機構101の状態を検出し、検出結果のデータを制御装置60へ送信する。検出装置102は、例えば全輪接地型自立機構101が動作状態であることを示す動作データを制御装置60へ送信する。
 リーン車両1のエンジン10は、全輪接地型自立機構101としてのサイドスタンドが展開されると、その後、収納されている状態も含め、例えばアイドリングストップ機能を有さない車両と同様な操作により始動できる。即ち、全輪接地型自立機構101としてのサイドスタンドが格納され、且つ、エンジン始動スイッチ121が操作されると、エンジン10が始動する。
The all-wheel grounding type self-standing mechanism 101 is a side stand. A side stand as the all-wheel-grounded self-standing mechanism 101 is provided on the vehicle body 1A of the lean vehicle 1. As shown in FIG. The side stand as the all-wheel-grounded self-standing mechanism 101 is deployed or retracted by the rider's operating force. The side stand as the all-wheel-grounded self-standing mechanism 101 operates by being deployed as shown in part (b) of FIG. 4 . That is, by supporting the lean vehicle 1 on the ground, the lean vehicle 1 can stand on its own while the wheels 14 and 15 are in contact with the ground.
The side stand as the all-wheel-grounding self-supporting mechanism 101 completes its operation by retracting as shown in part (a) of FIG. That is, the all-wheel-grounded self-standing mechanism 101 is put into a non-operating state. The all-wheel-grounded self-standing mechanism 101 has a detection device 102 . The detection device 102 detects the state of the all-wheel-grounded self-standing mechanism 101 and transmits data of the detection result to the control device 60 . The detection device 102 transmits to the control device 60 operation data indicating, for example, that the all-wheel-grounded self-sustaining mechanism 101 is in an operating state.
The engine 10 of the lean vehicle 1 can be started by the same operation as that of a vehicle without an idling stop function, for example, after the side stand as the all-wheel-grounding self-supporting mechanism 101 is deployed, including the stowed state. . That is, when the side stand as the all-wheel grounding self-standing mechanism 101 is retracted and the engine start switch 121 is operated, the engine 10 is started.
 図5は、第1実施形態のリーン車両1の第3適用例におけるエンジン10及びその周辺装置の概略構造を示す図である。図5のパート(a)は、エンジン10、始動発電機20、及び多段変速装置30の側面図である。図5のパート(b)は、図5(a)のX-X´線における断面図である。図5のパート(c)は、始動発電機20の断面図である。本適用例の説明として、第1実施形態のリーン車両1と異なる部分が、説明される。共通部分は、図面において同一の符号を付されるか、または図示及び説明が省略される。 FIG. 5 is a diagram showing a schematic structure of the engine 10 and its peripheral devices in a third application example of the lean vehicle 1 of the first embodiment. Part (a) of FIG. 5 is a side view of the engine 10, the starter/generator 20, and the multi-speed transmission 30. FIG. Part (b) of FIG. 5 is a cross-sectional view taken along line XX′ of FIG. 5(a). Part (c) of FIG. 5 is a cross-sectional view of the starter generator 20 . As an explanation of this application example, portions different from the lean vehicle 1 of the first embodiment will be explained. Common parts are given the same reference numerals in the drawings, or their illustration and description are omitted.
 本実施形態のリーン車両1のエンジン10は、クランク軸11を収容するクランクケース17を備える。始動発電機20は、クランクケース17内に設けられている。つまり、始動発電機20が設けられる空間とクランク軸11が設けられる空間は繋がっている。2つの空間は仕切られていない。始動発電機20とクランク軸11は、オイル18で潤滑される。
 始動発電機20は、オイル18で冷却される。このため、始動発電機20に対する冷却用のファンやフィンは省略されている。また、始動発電機20の配置空間とクランク軸11の配置空間との間の壁も省略されている。
 始動発電機20は、エンジン10の始動時にクランク軸11を駆動する機能を有する。このため、始動発電機20は、例えば、発電専用の発電機と比べて大型化しやすい。しかし、リーン車両1では、始動発電機20とエンジン10を含むユニット4の大型化が抑えられる。
The engine 10 of the lean vehicle 1 of this embodiment includes a crankcase 17 that accommodates the crankshaft 11 . The starter generator 20 is provided inside the crankcase 17 . That is, the space in which the starter generator 20 is provided and the space in which the crankshaft 11 is provided are connected. The two spaces are not separated. Starter generator 20 and crankshaft 11 are lubricated with oil 18 .
The starter generator 20 is cooled with oil 18 . Therefore, cooling fans and fins for the starter generator 20 are omitted. Also, the wall between the arrangement space of the starter generator 20 and the arrangement space of the crankshaft 11 is omitted.
The starter generator 20 has a function of driving the crankshaft 11 when the engine 10 is started. Therefore, the starter generator 20 tends to be larger than, for example, a generator dedicated to power generation. However, in the lean vehicle 1, an increase in size of the unit 4 including the starter generator 20 and the engine 10 is suppressed.
 始動発電機20は、制御装置60に設けられたスイッチング素子65を介して電流が供給されることにより駆動する。オイル18による潤滑によって始動発電機20の回転抵抗が抑制される。このため、エンジン10の再始動におけるスイッチング素子65への供給電流が抑制される。従って、スイッチング素子65の発熱も抑制される。このため、制御装置60の断熱構造を簡潔化することができる。つまり、制御装置60を小型化することができる。 The starter generator 20 is driven by current supplied via a switching element 65 provided in the control device 60 . Rotational resistance of the starter generator 20 is suppressed by the lubrication by the oil 18 . Therefore, the supply current to the switching element 65 is suppressed when the engine 10 is restarted. Therefore, heat generation of the switching element 65 is also suppressed. Therefore, the heat insulation structure of the control device 60 can be simplified. That is, the control device 60 can be downsized.
 始動発電機20は、ステータ22と、ロータ23とを備える。ステータ22は、ステータコア223と、複数相の巻線224とを備える。ステータコア223は、スロット221と周方向で交互に設けられた複数の歯部222を備える。巻線224は、歯部222に巻回される。巻線224には、スイッチング素子65を介して電流が供給される。また、巻線224は、発電した電流をスイッチング素子65に供給する。
 始動発電機20のロータ23は、クランク軸11の回転と連動するようにクランク軸11に設けられる。ロータ23は、ステータ22と空隙を空けて周方向に並び且つスロット221の数の2/3より多い磁極部232を有する。磁極部232は、永久磁石231で構成される。
The starter generator 20 has a stator 22 and a rotor 23 . The stator 22 includes a stator core 223 and multi-phase windings 224 . The stator core 223 has slots 221 and a plurality of teeth 222 alternately arranged in the circumferential direction. A winding 224 is wound on the teeth 222 . A current is supplied to winding 224 via switching element 65 . Also, the winding 224 supplies the generated current to the switching element 65 .
A rotor 23 of the starter generator 20 is provided on the crankshaft 11 so as to interlock with the rotation of the crankshaft 11 . The rotor 23 has magnetic pole portions 232 that are circumferentially aligned with the stator 22 with a gap therebetween and that are more than two-thirds the number of the slots 221 . The magnetic pole portion 232 is composed of the permanent magnet 231 .
 始動発電機20における電気角周期に基づく角速度は、例えばスロット221の数の2/3と等しい又はそれより少ない磁極部232を有する構成の場合と比べて大きい。電気角は、歯部222が1つの極対を通過する角度を360度とした場合の角度である。電気角周期に基づく角速度は、磁極部232で形成される極対を歯部222が通過する電気角の角速度である。始動発電機20における巻線224のインダクタンスは、例えばスロット221の数の2/3と等しい又はそれより少ない磁極部232を有する構成の場合と比べて大きい。このため、エンジン10が再始動した後、始動発電機20が発電機として機能する回転速度の領域において、より大きな巻線224のインダクタンスによって発電電流が抑制される。従って、発電時においてスイッチング素子65への供給電流が抑制される。制御装置60における放熱のための構造をより簡潔にして小型化することができる。 The angular velocity based on the electrical angular period in the starter generator 20 is greater than in a configuration having magnetic pole portions 232 equal to or less than 2/3 of the number of slots 221, for example. The electrical angle is an angle when the angle at which the tooth portion 222 passes through one pole pair is 360 degrees. The angular velocity based on the electrical angle period is the angular velocity of the electrical angle at which the tooth portion 222 passes through the pole pair formed by the magnetic pole portion 232 . The inductance of the windings 224 in the starter-generator 20 is greater than in configurations with pole pieces 232 equal to or less than two-thirds the number of slots 221, for example. Therefore, after the engine 10 is restarted, the generated current is suppressed by the larger inductance of the winding 224 in the rotation speed region where the starter generator 20 functions as a generator. Therefore, the current supplied to the switching element 65 is suppressed during power generation. The structure for heat dissipation in the control device 60 can be simplified and miniaturized.
 エンジン10は、ロータ位置検出装置24を更に備える。ロータ位置検出装置24は、ステータ22の巻線224とは異なる検出巻線241を有する。ロータ位置検出装置24は、多段変速装置30の低ギア段の状態でのエンジン10の始動時にロータ23の位置の検出を表す信号を制御装置60に出力する。検出巻線241は、磁気作用によってロータ23の位置を検出する。検出巻線241は、例えばホール素子と比べて高い温度で動作できる。従って、クランクケース17内の放熱のための構造を簡潔にし、クランクケース17を小型化することができる。 The engine 10 further includes a rotor position detection device 24 . The rotor position detection device 24 has detection windings 241 that are different from the windings 224 of the stator 22 . The rotor position detection device 24 outputs a signal indicating detection of the position of the rotor 23 to the control device 60 when the engine 10 is started with the multi-speed transmission 30 in the low gear position. The detection winding 241 detects the position of the rotor 23 by magnetic action. The sensing winding 241 can operate at higher temperatures than, for example, Hall elements. Therefore, the structure for dissipating heat in the crankcase 17 can be simplified, and the crankcase 17 can be miniaturized.
 [第2実施形態]
 図6は、第2実施形態に係るリーン車両1の制御装置260の構成及びプロセスを示すチャートである。本実施形態における、第1実施形態との共通部分は、図面において同一の符号を付されるか、または図示及び説明が省略される。第2実施形態に示す制御装置260は、上述した第1、第2、及び第3の適用例に適用され得る。
[Second embodiment]
FIG. 6 is a chart showing the configuration and process of the control device 260 for the lean vehicle 1 according to the second embodiment. Portions in this embodiment that are common to those in the first embodiment are given the same reference numerals in the drawings, or illustration and description thereof are omitted. The control device 260 shown in the second embodiment can be applied to the first, second, and third application examples described above.
 本実施形態における制御装置260の強制停止制御部262は、図示しないプロセッサとプログラムとを有するコンピュータで構成されている。
 制御装置260が実施するエンジン強制停止始動プロセス262aは、プログラムが実行されることによって実施される。これらの点が、第1実施形態と異なる。本実施形態のエンジン強制停止始動プロセス262aは、プロセッサでプログラムが逐次実行されることにより実施される。このため、第1実施形態におけるエンジン強制停止始動プロセス62a(図1参照)に対し、信号が出力されるタイミングがわずかなずれを有する場合がある。ただし、この出力のタイミングのずれは、制御のタイミングとして無視できるずれである。したがって、実質的な制御の観点では、出力のタイミングも一致と言うことができる。
The forced stop control unit 262 of the control device 260 in this embodiment is configured by a computer having a processor and programs (not shown).
The engine forced stop start process 262a performed by the control device 260 is performed by executing a program. These points are different from the first embodiment. The engine forced stop start process 262a of the present embodiment is implemented by the processor sequentially executing a program. Therefore, there may be a slight deviation in the timing at which the signal is output with respect to the engine forced stop start process 62a (see FIG. 1) in the first embodiment. However, this output timing deviation is a deviation that can be ignored as control timing. Therefore, from the point of view of substantial control, it can be said that the timing of the output also coincides.
 エンジン強制停止始動プロセス262aの制御の処理の内容は、第1実施形態におけるエンジン強制停止始動プロセス62a(図1参照)の場合と同じである。つまり、強制停止制御部262は、強制停止制御部62(図1参照)と同じ信号を受け、強制停止制御部62と同じ信号を出力する。また、第1実施形態の場合と同じく、本実施形態のエンジン強制停止始動プロセス262aは、アイドリングストップ再始動プロセス61aとは独立したプロセスである。 The contents of the control process of the forced engine stop start process 262a are the same as those of the forced engine stop start process 62a (see FIG. 1) in the first embodiment. That is, the forced stop control section 262 receives the same signals as the forced stop control section 62 (see FIG. 1) and outputs the same signals as the forced stop control section 62 . Further, as in the case of the first embodiment, the forced engine stop start process 262a of this embodiment is a process independent of the idling stop restart process 61a.
 エンジン強制停止始動プロセス262aは、強制停止制御と復帰制御とを有する。
 強制停止制御において、強制停止制御部262は、現在の状態が強制停止状態か否か判別する(S31)。また、強制停止制御部262は、全輪接地型自立機構101の動作を判別する。
 現在の状態が強制停止状態でなく(S31でNo)、全輪接地型自立機構101が動作している場合(S32でYes)、強制停止制御部262は、状態を強制停止状態とする(S33)。そして、強制停止制御部262は、エンジン10を停止する(EG停止S34)。これによって、エンジン10の動作が、強制的に停止される。
The engine forced stop start process 262a has forced stop control and return control.
In the forced stop control, the forced stop control unit 262 determines whether or not the current state is the forced stop state (S31). In addition, the forced stop control unit 262 determines the operation of the all-wheel-grounded independent mechanism 101 .
If the current state is not the forced stop state (No in S31) and the all-wheel-grounding self-supporting mechanism 101 is operating (Yes in S32), the forced stop control unit 262 changes the state to the forced stop state (S33). ). Then, the forced stop control unit 262 stops the engine 10 (EG stop S34). As a result, the operation of the engine 10 is forcibly stopped.
 復帰制御において、強制停止制御部262は、現在の状態が強制停止状態か否か判別する(S41)。現在の状態が強制停止状態である場合(S41でYes)、強制停止制御部262は、エンジン始動スイッチ121(EG始動SW121)が操作されたか否か判別する(S42)。エンジン始動スイッチ121が操作された場合(S42でYes)で、さらに、多段変速装置30がニュートラル状態(N)の場合(S43でYes)、強制停止制御部262は、エンジン10を始動する(S46)。
 現在の状態が強制停止状態でない場合(S41でNo)、強制停止制御部262は、再始動要求に応じた動作を行なう(S48)。現在の状態が強制停止状態である場合(S41でYes)、強制停止制御部262による制御は反映されない。これによって、強制停止制御部262によるエンジン10の停止の制御が優先する。
In the return control, the forced stop control unit 262 determines whether or not the current state is the forced stop state (S41). If the current state is the forced stop state (Yes in S41), the forced stop control unit 262 determines whether or not the engine start switch 121 (EG start SW 121) has been operated (S42). If the engine start switch 121 has been operated (Yes in S42) and if the multi-speed transmission 30 is in the neutral state (N) (Yes in S43), the forced stop control unit 262 starts the engine 10 (S46). ).
If the current state is not the forced stop state (No in S41), the forced stop control unit 262 performs an operation in response to the restart request (S48). If the current state is the forced stop state (Yes in S41), the control by the forced stop control unit 262 is not reflected. As a result, the control for stopping the engine 10 by the forced stop control unit 262 has priority.
 多段変速装置30がニュートラル状態(N)でなくインギアの状態であっても(S43でNo)、次の条件が成立する場合、強制停止制御部262は、エンジン10を始動する(S46)。その条件は、全輪接地型自立機構101の動作が停止しており(S44でYes)、クラッチレバー122の操作が検出された場合である(S45でYes)。
 エンジン10の始動とともに、強制停止制御部262は、強制停止状態を終了する(S47)。
Even if the multi-speed transmission 30 is not in the neutral state (N) but in the in-gear state (No in S43), the forced stop control unit 262 starts the engine 10 (S46) if the following conditions are satisfied. The condition is that the operation of the all-wheel-grounding self-supporting mechanism 101 is stopped (Yes in S44) and the operation of the clutch lever 122 is detected (Yes in S45).
As soon as the engine 10 is started, the forced stop control unit 262 terminates the forced stop state (S47).
1    リーン車両
1A   車体
10   エンジン
11   クランク軸
14   車輪
15   車輪(駆動輪)
15   駆動輪
17   クランクケース
18   オイル
20   始動発電機
22   ステータ
23   ロータ
24   ロータ位置検出装置
25   クラッチ
30   多段変速装置
51   表示装置
60,260 制御装置
61   アイドリングストップ制御部
61a  アイドリングストップ再始動プロセス
62   強制停止制御部
62a  エンジン強制停止始動プロセス
65   スイッチング素子
101  全輪接地型自立機構
102  検出装置
121  エンジン始動スイッチ
122  クラッチレバー
123  クラッチセンサ
124  アクセルグリップ
222  歯部
223  ステータコア
224  巻線
232  磁極部
241  検出巻線
260  制御装置
262  強制停止制御部
262a エンジン強制停止始動プロセス
1 lean vehicle 1A vehicle body 10 engine 11 crankshaft 14 wheel 15 wheel (driving wheel)
15 Drive wheel 17 Crankcase 18 Oil 20 Starter generator 22 Stator 23 Rotor 24 Rotor position detection device 25 Clutch 30 Multi-speed transmission 51 Display device 60, 260 Control device 61 Idling stop control unit 61a Idling stop restart process 62 Forced stop control Part 62a Engine forced stop start process 65 Switching element 101 All-wheel-grounded independent mechanism 102 Detector 121 Engine start switch 122 Clutch lever 123 Clutch sensor 124 Accelerator grip 222 Tooth 223 Stator core 224 Winding 232 Magnetic pole 241 Detection winding 260 Control Device 262 Forced stop control unit 262a Engine forced stop start process

Claims (7)

  1. 走行時に接地する複数の車輪のみによって自立しないように構成されたリーン車両であって、
     前記リーン車両は、
     前記複数の車輪と、
     動作時に前記複数の車輪が接地した状態で車体を自立させる一方、非動作時には車体を自立させないように構成された全輪接地型自立機構と、
     前記全輪接地型自立機構が動作しているか否かを検出する検出装置と、
     クランク軸を有し、燃焼動作によって生じるパワーを、前記クランク軸を介して出力するエンジンと、
     ライダによる操作に応じてクラッチを動作させるクラッチレバーと、
     前記クラッチレバーの操作を検出するクラッチセンサと、
     前記エンジンの始動時に前記クランク軸を駆動し、前記エンジンの燃焼動作時に前記クランク軸に駆動され発電する始動発電機と、
     前記ライダによる操作に応じて前記エンジンを始動させるためのエンジン始動スイッチと、
     前記エンジン及び前記始動発電機の動作を制御する制御装置と
    を備え、以下を特徴とする:
     前記制御装置は、前記エンジンのアイドリングストップ及び再始動のためのアイドリングストップ再始動プロセスを実施するアイドリングストップ制御部と、前記アイドリングストップ及び再始動とは異なる条件で前記エンジンを停止及び始動するためのエンジン強制停止始動プロセスを実施する強制停止制御部とを備え、
    前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記全輪接地型自立機構の状態以外のアイドリングストップ条件の成立に基づいて、前記エンジンを動作が停止したアイドリングストップ状態にするとともに、前記アイドリングストップ状態で前記クラッチセンサによる操作の検出結果に基づいて前記エンジンを再始動し、
    前記強制停止制御部は、前記アイドリングストップ再始動プロセスとは独立したプロセスとして前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の強制的な停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいて前記エンジンを始動する。
    A lean vehicle configured so as not to stand on its own only with a plurality of wheels that are grounded when traveling,
    The lean vehicle is
    the plurality of wheels;
    an all-wheel-grounding self-standing mechanism configured to allow the vehicle body to stand on its own with the plurality of wheels in contact with the ground during operation, but not to allow the vehicle body to stand on its own when not in operation;
    a detection device for detecting whether or not the all-wheel-grounded self-standing mechanism is operating;
    an engine having a crankshaft through which power generated by combustion operation is output;
    a clutch lever that operates the clutch in accordance with a rider's operation;
    a clutch sensor that detects the operation of the clutch lever;
    a starter-generator that drives the crankshaft when the engine is started and generates power by being driven by the crankshaft during combustion operation of the engine;
    an engine start switch for starting the engine in response to an operation by the rider;
    a controller for controlling the operation of the engine and the starter-generator, characterized by:
    The control device includes an idling stop control unit that performs an idling stop restart process for idling stop and restart of the engine, and a control unit for stopping and starting the engine under conditions different from the idling stop and restart. a forced stop control unit that implements an engine forced stop start process,
    By executing the idling stop restart process, the idling stop control unit puts the engine into an idling stop state in which operation is stopped based on the establishment of an idling stop condition other than the state of the all-wheel grounding self-supporting mechanism. and restarting the engine based on the detection result of the operation by the clutch sensor in the idling stop state,
    The forced stop control unit performs the engine forced stop start process as a process independent of the idling stop restart process, thereby operating the engine when the operation of the all-wheel grounding independent mechanism is detected. is forcibly stopped, the forced stop state of the operation of the engine is maintained at least until the engine start switch is operated, and the engine is started based on at least the operation of the engine start switch. .
  2.  請求項1に記載のリーン車両であって、
     前記複数の車輪は、前記エンジンからの出力によって前記リーン車両を駆動する駆動輪を含み、
     前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、前記エンジンから前記駆動輪への出力の伝達が切断された状態で前記全輪接地型自立機構の動作の停止及び前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、前記エンジンから前記駆動輪への出力の伝達が切断された状態で前記全輪接地型自立機構の動作の停止及び前記エンジン始動スイッチの操作の双方が同時に成立することに基づいて前記エンジンを始動する。
    A lean vehicle according to claim 1,
    The plurality of wheels includes drive wheels that drive the lean vehicle by output from the engine;
    The forced stop control unit performs the engine forced stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and The operation of the engine is maintained in a stopped state until the operation of the all-wheel grounding self-supporting mechanism is stopped and the engine start switch is operated in a state in which the transmission of output to the drive wheels is cut off, and the engine is driven by the engine. The engine is started based on the simultaneous establishment of both the stop of the operation of the all-wheel-grounding self-supporting mechanism and the operation of the engine start switch in a state in which the transmission of power to the wheels is cut off.
  3.  請求項1又は2に記載のリーン車両であって、
     前記全輪接地型自立機構は、展開されることにより動作するサイドスタンドであり、
     前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記サイドスタンドの状態以外のアイドリングストップ条件の成立に基づいて、前記エンジンを動作が停止した前記アイドリングストップ状態にするとともに、前記アイドリングストップ状態で前記クラッチセンサによる操作の検出結果に基づいて前記エンジンを再始動し、
    前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記サイドスタンドの展開が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいて前記エンジンを始動する。
    A lean vehicle according to claim 1 or 2,
    The all-wheel grounding type self-standing mechanism is a side stand that operates by being deployed,
    By implementing the idling stop restart process, the idling stop control unit puts the engine in the idling stop state in which the operation is stopped based on the establishment of the idling stop condition other than the state of the side stand, and the restarting the engine based on the detection result of the operation by the clutch sensor in an idling stop state;
    The forced stop control unit executes the engine forced stop start process to forcibly stop the operation of the engine when the deployment of the side stand is detected, and at least the engine start switch is operated. The stopped state of the operation of the engine is maintained until , and the engine is started based on at least the operation of the engine start switch.
  4.  請求項1から3のいずれか1項に記載のリーン車両であって、
     前記リーン車両は、操作によって前記リーン車両の加速要求を出力するアクセルグリップを備え、
     前記アイドリングストップ制御部は、前記アイドリングストップ再始動プロセスを実施することにより、前記全輪接地型自立機構の状態以外のアイドリングストップ条件の成立に基づいて、前記エンジンを動作が停止した前記アイドリングストップ状態にするとともに、前記アクセルグリップが前記加速要求を出力せず、且つ、前記クラッチセンサが操作の検出結果を出力する場合に前記エンジンを再始動し、
    前記強制停止制御部は、前記エンジン強制停止始動プロセスを実施することにより、前記全輪接地型自立機構の動作が検出された場合に前記エンジンの動作を強制的に停止するとともに、少なくとも前記エンジン始動スイッチが操作されるまで前記エンジンの動作の停止状態を維持し、少なくとも前記エンジン始動スイッチが操作されることに基づいて前記エンジンを始動する。
    A lean vehicle according to any one of claims 1 to 3,
    The lean vehicle includes an accelerator grip that outputs an acceleration request for the lean vehicle by operation,
    The idling stop control unit implements the idling stop restart process, and the idling stop state in which the operation of the engine is stopped based on the establishment of the idling stop condition other than the state of the all-wheel grounding self-supporting mechanism. and restarting the engine when the accelerator grip does not output the acceleration request and the clutch sensor outputs an operation detection result,
    The forced stop control unit performs the forced engine stop start process to forcibly stop the operation of the engine when the operation of the all-wheel-grounded independent mechanism is detected, and at least the engine start. The stopped state of the operation of the engine is maintained until the switch is operated, and the engine is started based on at least the operation of the engine start switch.
  5.  請求項1から4のいずれか1項に記載のリーン車両であって、
     前記エンジンは、前記クランク軸を収容するクランクケースを備え、
     前記始動発電機は、前記クランクケース内に、オイルで潤滑されるよう設けられている。
    A lean vehicle according to any one of claims 1 to 4,
    The engine comprises a crankcase housing the crankshaft,
    The starter-generator is mounted within the crankcase and lubricated with oil.
  6.  請求項1から5のいずれか1項に記載のリーン車両であって、
     前記制御装置は、前記始動発電機を流れる電流を制御するスイッチング素子を備え、
     前記始動発電機は、スロットと周方向で交互に設けられた複数の歯部を備えるステータコア、及び、前記歯部に巻回され前記スイッチング素子を介して電流が供給され、発電した電流を前記スイッチング素子に供給する複数相の巻線を有するステータと、前記ステータと空隙を空けて前記周方向に並び且つ前記スロットの数の2/3より多い磁極部を有するロータとを備える。
    A lean vehicle according to any one of claims 1 to 5,
    The control device includes a switching element that controls current flowing through the starter generator,
    The starter generator includes a stator core including slots and a plurality of teeth alternately arranged in a circumferential direction, and a current supplied through the switching element wound around the teeth, and the generated current is supplied to the switching element. A stator having multi-phase windings for supplying elements, and a rotor arranged in the circumferential direction with an air gap from the stator and having magnetic pole portions larger than 2/3 of the number of the slots.
  7.  請求項1から6のいずれか1項に記載のリーン車両であって、
     前記始動発電機は、前記エンジンに対し位置が固定され巻線を有するステータと、前記ステータに対し空隙を介して設けられた永久磁石を有し前記クランク軸の回転と連動するように前記クランク軸に設けられたロータとを備え、
     前記エンジンは、前記クラッチセンサによる操作の検出結果又は前記エンジン始動スイッチの操作に基づいて前記エンジンが前記再始動する時に前記ロータの位置の検出を表す信号を前記制御装置に出力する、前記ステータの前記巻線とは異なる検出巻線を有するロータ位置検出装置を更に備える。
    A lean vehicle according to any one of claims 1 to 6,
    The starter-generator has a stator fixed in position with respect to the engine and having windings, and a permanent magnet provided with an air gap with respect to the stator. a rotor provided in
    The engine outputs a signal indicating detection of the position of the rotor to the control device when the engine is restarted based on a detection result of operation by the clutch sensor or operation of the engine start switch. It further comprises a rotor position sensing device having a sensing winding different from the windings.
PCT/JP2021/034048 2021-09-16 2021-09-16 Leaning vehicle WO2023042325A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/034048 WO2023042325A1 (en) 2021-09-16 2021-09-16 Leaning vehicle
PCT/JP2022/033418 WO2023042706A1 (en) 2021-09-16 2022-09-06 Mt-type leaning vehicle
TW111134644A TWI827254B (en) 2021-09-16 2022-09-14 MT type tilt vehicle
FR2209316A FR3126959A1 (en) 2021-09-16 2022-09-15 Manual transmission tilt vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034048 WO2023042325A1 (en) 2021-09-16 2021-09-16 Leaning vehicle

Publications (1)

Publication Number Publication Date
WO2023042325A1 true WO2023042325A1 (en) 2023-03-23

Family

ID=85602573

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/034048 WO2023042325A1 (en) 2021-09-16 2021-09-16 Leaning vehicle
PCT/JP2022/033418 WO2023042706A1 (en) 2021-09-16 2022-09-06 Mt-type leaning vehicle

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033418 WO2023042706A1 (en) 2021-09-16 2022-09-06 Mt-type leaning vehicle

Country Status (1)

Country Link
WO (2) WO2023042325A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275967A (en) * 2009-05-29 2010-12-09 Denso Corp Control apparatus for vehicle
JP2013072427A (en) * 2011-09-29 2013-04-22 Honda Motor Co Ltd Motorcycle
JP2016156346A (en) * 2015-02-25 2016-09-01 スズキ株式会社 Idling stop control device for motorcycle
WO2019198599A1 (en) * 2018-04-09 2019-10-17 本田技研工業株式会社 Vehicle control system
WO2020141594A1 (en) * 2019-01-04 2020-07-09 ヤマハ発動機株式会社 Four-stroke engine unit and straddle vehicle equipped with same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275967A (en) * 2009-05-29 2010-12-09 Denso Corp Control apparatus for vehicle
JP2013072427A (en) * 2011-09-29 2013-04-22 Honda Motor Co Ltd Motorcycle
JP2016156346A (en) * 2015-02-25 2016-09-01 スズキ株式会社 Idling stop control device for motorcycle
WO2019198599A1 (en) * 2018-04-09 2019-10-17 本田技研工業株式会社 Vehicle control system
WO2020141594A1 (en) * 2019-01-04 2020-07-09 ヤマハ発動機株式会社 Four-stroke engine unit and straddle vehicle equipped with same
WO2020141571A1 (en) * 2019-01-04 2020-07-09 ヤマハ発動機株式会社 4-stroke engine unit and straddle-type vehicle equipped with said engine unit

Also Published As

Publication number Publication date
WO2023042706A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP6002269B1 (en) Starter for vehicle engine
CN110891838B (en) Vehicle with a steering wheel
US10837550B2 (en) Straddled vehicle
JP2003172238A (en) Engine start control device
WO2023042325A1 (en) Leaning vehicle
JP2023171528A (en) Saddle-riding type electric vehicle
EP3640080B1 (en) Vehicle
JP2015229922A (en) Engine unit and saddle riding type vehicle
TWI827254B (en) MT type tilt vehicle
TWI680893B (en) Speedometer device, auxiliary display device, and straddle type vehicle equipped with speedometer device or auxiliary display device
EP3640078B1 (en) Vehicle
WO2022039253A1 (en) Mt-type straddled vehicle
JP7239785B2 (en) MT type straddled vehicle
KR101509675B1 (en) Method and apparatus for control engine starting of idle stop and go vehicle
WO2021044609A1 (en) Mt-type straddled vehicle
EP4032768B1 (en) Leaning vehicle
WO2023053351A1 (en) Saddle-type vehicle
EP3825536B1 (en) Engine ignition device for vehicles
JP6752192B2 (en) Engine starting device and engine starting method of engine starting device
JP6097465B2 (en) Saddle riding vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957507

Country of ref document: EP

Kind code of ref document: A1