WO2020141571A1 - 4-stroke engine unit and straddle-type vehicle equipped with said engine unit - Google Patents

4-stroke engine unit and straddle-type vehicle equipped with said engine unit Download PDF

Info

Publication number
WO2020141571A1
WO2020141571A1 PCT/JP2019/000022 JP2019000022W WO2020141571A1 WO 2020141571 A1 WO2020141571 A1 WO 2020141571A1 JP 2019000022 W JP2019000022 W JP 2019000022W WO 2020141571 A1 WO2020141571 A1 WO 2020141571A1
Authority
WO
WIPO (PCT)
Prior art keywords
stroke engine
generator
crankshaft
low
stator
Prior art date
Application number
PCT/JP2019/000022
Other languages
French (fr)
Japanese (ja)
Inventor
日野 陽至
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2019/000022 priority Critical patent/WO2020141571A1/en
Priority to JP2020563867A priority patent/JP7235771B2/en
Priority to PCT/JP2019/050503 priority patent/WO2020141594A1/en
Publication of WO2020141571A1 publication Critical patent/WO2020141571A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators

Definitions

  • the present invention relates to a 4-stroke engine unit and a straddle-type vehicle equipped with the engine unit.
  • the motorcycle of Patent Document 1 is equipped with a 4-stroke engine.
  • the engine unit includes a 4-stroke engine, a transmission, and a starter/generator.
  • the saddle-ride type vehicle is configured so that the posture of the vehicle is controlled by the weight shift of the driver while traveling. Therefore, from the viewpoint of operability and traveling performance, the straddle-type vehicle tends to be required to be small.
  • a saddle-ride type vehicle as disclosed in Patent Document 1 is driven by a 4-stroke engine. Therefore, a straddle-type vehicle equipped with a 4-stroke engine may be strongly required to be small.
  • the vehicle in a saddle-type vehicle, the vehicle is relatively small, and the proportion of the engine in the entire vehicle is large. Therefore, the straddle-type vehicle itself can be effectively downsized by downsizing the 4-stroke engine. Therefore, how to downsize the 4-stroke engine is an important factor for a saddle-ride type vehicle equipped with the engine.
  • the axial size of the crankshaft has a relatively large effect on the size of the vehicle. Therefore, how to reduce these sizes is more important.
  • the axial direction of the crankshaft corresponds to, for example, the vehicle width direction of a saddle-ride type vehicle.
  • An object of the present invention is to provide a four-stroke engine equipped with a starter/generator capable of reducing the size of the crankshaft in the axial direction.
  • the starting generator has the functions of a starter motor and a generator.
  • the starter/generator needs to be maintained at an appropriate temperature during power generation. Therefore, the four-stroke engine equipped with the starter/generator has a cooling mechanism for cooling the starter/generator.
  • the cooling mechanism include an oil cooler and a radiator. Since the cooling mechanism functions sufficiently, the temperature rise of the start-up generator is suppressed, which suppresses the evaporation of the lubricating oil in the engine.
  • the present inventor has studied to suppress evaporation of the lubricating oil in the engine by the performance of the starting generator itself. As a result, the present inventor has found that if the starter/generator satisfies the condition that (the number of magnetic pole faces/the number of slots) is larger than 2/3, even if the starter/generator is placed in contact with the lubricating oil, It has been found that the evaporation of lubricating oil can be suppressed.
  • the generated current can be suppressed by a large impedance in the rotation region used as the generator. Therefore, in such a starter-generator, the temperature of the stator winding does not become higher than the temperature of the lubricating oil or does not easily become higher than that of the lubricating oil. Can be suppressed. Conventionally, it was considered that the cooling mechanism had to be large when the start-up generator was placed in an environment where it came into contact with the lubricating oil. However, based on the above-mentioned knowledge, it is possible to arrange the starter-generator in an environment where it comes into contact with the lubricating oil while suppressing or avoiding an increase in the size of the cooling mechanism.
  • the present inventor uses a lubricating oil having a low temperature viscosity grade lower than 20 W (hereinafter, also referred to as a low viscosity oil) to reduce or omit stirring of the lubricating oil by a starting generator for cooling. I found it. As a result, not only the energy loss due to the decrease in viscosity but also the energy loss of the starting generator due to the agitation of the lubricating oil can be reduced. That is, the resistance to rotation of the starting generator can be reduced. As a result, the starter generator can be further downsized.
  • a lubricating oil having a low temperature viscosity grade lower than 20 W hereinafter, also referred to as a low viscosity oil
  • a 4-stroke engine unit has the following configuration.
  • a 4-stroke engine unit is A crankcase configured to be internally lubricated with a low-viscosity oil having a low-temperature viscosity grade lower than 20 W; and a crankshaft rotatably supported by the crankcase, wherein the crankcase is rotatably supported during four strokes.
  • a load fluctuation type four-stroke engine having a high load region in which a load for rotating a crankshaft is large, and a low load region in which a load for rotating the crankshaft is smaller than a load in the high load region,
  • a transmission that is provided in the crankcase so as to be lubricated by the low-viscosity oil, and that transmits the driving force from the crankshaft;
  • a stator core having a plurality of teeth provided with slots formed in the circumferential direction, and a stator having windings of a plurality of phases wound around the teeth, and the circumferential direction so as to face the stator with a gap.
  • Rotors having permanent magnet portions arranged in parallel with each other and having magnetic pole surfaces greater than 2/3 of the number of slots, arranged coaxially with the crankshaft, and having no fan or fin for generating an air flow for cooling.
  • a starting generator provided at a position in contact with the low-viscosity oil.
  • the engine unit (1) includes a load-changing four-stroke engine, a manual transmission, and a starting generator.
  • the load fluctuation type four-stroke engine has a crankcase configured to be internally lubricated with low-viscosity oil having a low temperature viscosity grade lower than 20 W, and a crankshaft rotatably supported by the crankcase.
  • the manual transmission is provided in the crankcase so as to be lubricated by the low-viscosity oil, and the driving force from the crankshaft is transmitted to the manual transmission.
  • the start generator includes a stator and a rotor.
  • the stator has a stator core and a plurality of phases of stator windings.
  • the stator core includes a plurality of tooth portions provided with slots in the circumferential direction.
  • the multi-phase stator winding is wound around the teeth.
  • the rotor has a permanent magnet section.
  • the permanent magnet portion is arranged in the circumferential direction so as to face the stator with a gap, and has a magnetic pole surface larger than 2/3 of the number of slots.
  • the rotor is fixed to the crankshaft and does not have fans or fins that generate the airflow for cooling.
  • the starting generator is provided at a position in contact with the low viscosity oil.
  • the starter generator satisfies the condition that (pole face/number of slots) is more than 2/3. Therefore, the temperature of the stator winding does not become higher than the temperature of the low-viscosity oil or does not easily become higher. Thereby, even if the starting generator is arranged so as to come into contact with the low-viscosity oil, the evaporation of the low-viscosity oil can be suppressed. Therefore, the starter generator can be arranged in an environment where it comes into contact with the low-viscosity oil. Therefore, the start-up generator can suppress or avoid an increase in the size of the cooling mechanism. Therefore, the size of the crankshaft in the axial direction can be reduced.
  • the low-viscosity oil whose low-temperature viscosity grade is lower than 20 W since the low-viscosity oil whose low-temperature viscosity grade is lower than 20 W is used, it is possible to reduce the stirring of the low-viscosity oil by the starting generator for cooling. As a result, not only the energy loss associated with the decrease in viscosity but also the energy loss associated with stirring can be reduced. Therefore, it is possible to reduce the resistance against the rotation of the starting generator. As a result, the starter generator can be further downsized.
  • the four-stroke engine unit can employ the following configurations.
  • the load fluctuation type four-stroke engine has a cylinder connected to the crankcase,
  • the rotor of the starter-generator has a bottomed tubular shape connected to the crankshaft between the stator and the cylinder in the axial direction in which the crankshaft extends.
  • the crankshaft of the load-changing four-stroke engine can be shortened as compared with, for example, a configuration in which the rotor of the starter generator is opened toward the cylinder in the axial direction. Therefore, the starter generator can be further downsized.
  • the four-stroke engine unit can employ the following configurations.
  • a position detection device is further provided.
  • the rotor position detecting device outputs a signal indicating detection of the position of the rotor of the starting generator.
  • the starter generator has a stator winding that does not rise above the temperature of the low viscosity oil. Therefore, as the configuration of the rotor position detecting device, for example, either a Hall IC with a relatively low upper limit operating temperature or a pickup coil with a relatively low upper limit operating temperature can be adopted. Therefore, the degree of freedom in design is high.
  • a straddle-type vehicle can employ the following configurations.
  • the saddle-ride type vehicle includes any one of the four-stroke engine units (1) to (3).
  • the saddle riding type vehicle can be downsized in the axial direction of the crankshaft by including any one of the four-stroke engine units of (1) to (3).
  • the terminology used herein is for the purpose of defining particular embodiments only and is not intended to limit the invention.
  • the term “and/or” includes any and all combinations of one or more of the associated listed components.
  • the use of the terms “including,” “comprising,” or “having” and variations thereof refers to the described feature, step, operation, It identifies the presence of elements, components and/or their equivalents, but can include one or more of steps, acts, elements, components, and/or groups thereof.
  • the terms “attached”, “connected”, “coupled” and/or their equivalents are widely used and refer to both direct and indirect attachment, connection and Includes both bindings.
  • the load fluctuation type four-stroke engine has a high load region and a low load region during four strokes.
  • the load fluctuation type four-stroke engine is, for example, a single cylinder engine, a two-cylinder engine, a non-equidistant explosion three-cylinder engine, or a non-equidistant explosion four-cylinder engine.
  • the load fluctuation type four-stroke engine is, for example, an engine having less than three cylinders.
  • the load variation 4-stroke engine is, for example, a single-cylinder engine or a 2-cylinder engine.
  • the two-cylinder engine may be a non-equidistant combustion engine having two cylinders.
  • An example of a nonuniform combustion engine having two cylinders is a V-type engine.
  • the load fluctuation type 4-stroke engine has a large fluctuation in rotation at a low rotation speed as compared with other types of engines.
  • the high load region is a region where the load torque is higher than the average value of the load torque in one combustion cycle in one combustion cycle of the engine.
  • the low load region refers to a region other than the high load region in one combustion cycle. In the engine, the low load region is wider than the high load region, for example, when viewed from the rotation angle of the crankshaft.
  • the compression stroke has an overlap with the high load area. It should be noted that in the present specification, the directions shown with respect to the load fluctuation type 4-stroke engine are shown with reference to a saddle type vehicle equipped with the load fluctuation type 4 stroke engine.
  • the starter generator is a rotating electric machine that can both start the engine and generate electricity.
  • the starting generator may be, for example, an outer rotor type or an inner rotor type. Further, the starting generator may be an axial gap type instead of the radial gap type.
  • the rotor comprises permanent magnets.
  • the start-up generator is, for example, a surface magnet type (SPM type) in which a magnetic pole portion of a rotor is exposed from a magnetic material.
  • SPM type surface magnet type
  • IPM type embedded magnet type
  • the (pole surface/number of slots) is not particularly limited as long as it is larger than 2/3.
  • the ratio is 8/9 or more.
  • the ratio is 1/1 or more.
  • the ratio is greater than 1/1.
  • the ratio is 4/3.
  • some of the slots of the stator may not be formed because the control board or the like is installed on the stator.
  • the number of slots may be determined assuming that the slots are provided at the positions where the slots should originally be provided.
  • the crankcase is a case that houses at least the crankcase of the 4-stroke engine unit.
  • the crankcase is connected to the cylinder.
  • the crankcase houses the manual transmission.
  • the crankcase houses, for example, a starting generator.
  • the crankcase also includes the starting generator cover and the starting generator housing space.
  • the starting generator may be housed only in the crankcase.
  • the rotor position detection device is a device that detects the position of the rotor of the starting generator.
  • a Hall IC is used as the rotor position detecting device.
  • a pickup may be used as the rotor position detecting device.
  • the rotor position detecting device is attached to the crankcase.
  • the rotor position detecting device is attached to, for example, a crank generator starter generator cover.
  • the rotor position detecting device may be attached to the stator, for example.
  • a straddle vehicle is a vehicle in which the driver sits across the saddle.
  • the saddle riding type vehicle include a scooter type, a moped type, an off-road type and an on-road type motorcycle.
  • the saddle-ride type vehicle is not limited to a motorcycle, and may be, for example, a motorcycle, an ATV (All-Terrain Vehicle), or the like.
  • the motorcycle may include two front wheels and one rear wheel, or may include one front wheel and two rear wheels.
  • the drive wheels of the saddle type vehicle may be rear wheels or front wheels. Further, the drive wheels of the saddle riding type vehicle may be both rear wheels and front wheels.
  • the straddle-type vehicle is configured to be able to turn in a lean posture.
  • a straddle-type vehicle configured to be able to turn in a lean posture is configured to turn in a posture tilted inward of a curve.
  • the straddle-type vehicle configured to be able to turn in the lean posture opposes the centrifugal force applied to the straddle-type vehicle at the time of turning.
  • lightness is required, and therefore responsiveness of progress to a start operation is important.
  • a torque converter that utilizes the mechanical action of fluid is not provided in the power transmission path from the power source to the drive wheels.
  • a four-stroke engine unit including a starter/generator capable of reducing the size of the crankshaft in the axial direction.
  • FIG. 2 is a side view of a saddle-ride type vehicle equipped with the 4-stroke engine unit of FIG. 1.
  • FIG. 1 is a sectional view showing a configuration of a 4-stroke engine unit according to an embodiment of the present invention.
  • the four-stroke engine unit 10 of FIG. 1 includes a load-changing four-stroke engine 20, a manual transmission 30, and a starter/generator 60.
  • the load fluctuation type 4-stroke engine 20 is also referred to as the 4-stroke engine 20.
  • the 4-stroke engine 20 has a crankcase 21 and a crankshaft 24.
  • the crankcase 21 is configured such that the inside thereof is lubricated with the low-viscosity oil OL.
  • the crankshaft 24 is rotatably supported by the crankcase.
  • the 4-stroke engine 20 outputs the power generated by the combustion of gas as the torque and the rotation speed of the crankshaft 24.
  • the four-stroke engine 20 has a high load region in which the load that rotates the crankshaft 24 is large and a low load region in which the load that rotates the crankshaft is smaller than the load in the high load region during four strokes.
  • the low-viscosity oil OL is a lubricating oil whose low-temperature viscosity grade according to SAE viscosity classification is lower than 20W.
  • the low-viscosity oil OL is stored in a part of the crankcase 21.
  • the manual transmission 30 is provided in the crankcase 21 of the 4-stroke engine 20 so as to be lubricated by the low viscosity oil OL.
  • a manual clutch 40 is provided between the crankshaft 24 of the four-stroke engine 20 and the manual transmission 30. The manual clutch 40 engages and disengages the power transmitted between the 4-stroke engine 20 and the manual transmission 30.
  • the starter/generator 60 includes a stator 62 and a rotor 61.
  • the stator 62 has a stator core 621 having a plurality of teeth 623 provided with slots formed in the circumferential direction, and a plurality of phases of stator windings 622 wound around the teeth 623.
  • the rotor 61 has a permanent magnet portion 614 which is arranged in the circumferential direction so as to face the stator 62 with a gap and has a magnetic pole surface of 4/3 of the number of slots. That is, the rotor 61 has the permanent magnet portion 614 having a magnetic pole surface larger than 2/3 of the number of slots.
  • the rotor 61 is arranged coaxially with the crankshaft 24.
  • the rotor 61 does not include a fan or fin that generates an air flow for cooling.
  • the starter generator 60 is provided at a position in contact with the low viscosity oil OL.
  • the start-up generator 60 receives the supply of electric power and drives the 4-stroke engine 20.
  • the starter generator 60 is driven by the 4-stroke engine 20 via the crankshaft 24 to generate electric power.
  • FIG. 2 is a side view of the 4-stroke engine unit 10 shown in FIG.
  • the 4-stroke engine 20 of the 4-stroke engine unit 10 includes a crankcase 21, a cylinder 22, a piston 26, a connecting rod 25, and a crankshaft 24.
  • the piston 26 is provided in the cylinder 22 so as to be capable of reciprocating.
  • the crankshaft 24 is rotatably provided in the crankcase 21.
  • the connecting rod 25 connects the piston 26 and the crankshaft 24.
  • a cylinder head 23 is attached to the top of the cylinder 22.
  • a combustion chamber is formed by the cylinder 22, the cylinder head 23, and the piston 26.
  • the crankshaft 24 is rotatably supported by the crankcase 21 via a pair of bearings 242.
  • the crankshaft 24 is provided with a starting generator 60 and a drive gear 241 for transmitting power to the manual clutch 40.
  • the starter-generator 60 is mounted in the first direction of the crankshaft 24 when viewed in the direction of the rotation axis of the crankshaft 24.
  • the drive gear 241 is mounted in the second direction of the crankshaft 24 when viewed in the direction of the rotation axis of the crankshaft 24.
  • the four-stroke engine 20 is provided with a throttle valve SV, a fuel injection device FI, and a spark plug 27.
  • the throttle valve SV regulates the amount of air supplied to the combustion chamber.
  • the fuel injection device FI supplies the fuel to the air supplied to the combustion chamber by the throttle valve SV by injecting the fuel.
  • a mixed gas of fuel and air is supplied to the combustion chamber.
  • the spark plug 27 burns a mixed gas of air and fuel supplied to the combustion chamber.
  • the 4-stroke engine 20 is an internal combustion engine.
  • the 4-stroke engine 20 is supplied with fuel.
  • the 4-stroke engine 20 outputs rotational power by a combustion operation that burns fuel.
  • the driver adjusts the rotational power output from the 4-stroke engine 20 by operating an accelerator grip (not shown).
  • the 4-stroke engine 20 outputs rotational power via the crankshaft 24.
  • the rotational power of the crankshaft 24 is transmitted to the manual transmission 30 via the manual clutch 40.
  • the four-stroke engine 20 has a high load region where the load that rotates the crankshaft 24 is large and a low load region where the load that rotates the crankshaft 24 is smaller than the load in the high load region during four strokes. From the viewpoint of the rotation angle of the crankshaft 24, the low load region is wider than the high load region. More specifically, the four-stroke engine 20 rotates forward while repeating four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. The compression stroke is included in the high load area and is not included in the low load area.
  • the 4-stroke engine 20 includes a camshaft 28, an intake valve 29a, an exhaust valve 29b, and a cam chain 281.
  • the cam chain 281 is driven by the crankshaft 24 and rotates the camshaft 28.
  • the cam shaft 28 has a plurality of cams. Each cam of the cam shaft 28 rotates to directly or indirectly move the intake valve 29a and the exhaust valve 29b up and down. More specifically, the crankshaft 24 drives the camshaft 28 and the cam chain 281 so as to lower the intake valve 29a in the intake stroke of the four-stroke engine 20 and lower the exhaust valve 29b in the exhaust stroke.
  • the cam chain 281 is housed in a cam chain housing portion 282 formed in the crankcase 21, the cylinder 22, and the cylinder head 23.
  • the 4-stroke engine 20 includes an oil pan 211 below the crankcase 21.
  • the oil pan 211 stores low-viscosity oil OL that lubricates the operation of the 4-stroke engine 20.
  • the low viscosity oil OL accumulated in the oil pan 211 is pressurized by an oil pump (not shown).
  • the pressurized low viscosity oil OL is supplied to the piston 26 and the crankshaft 24 via an oil supply passage (not shown).
  • Such an oil supply passage is formed by, for example, a hole provided inside the crankshaft 24, a hole provided inside the cylinder 22, and a groove formed at the joint surface between the cylinder 22 and the cylinder head 23. It A part of the low-viscosity oil OL is supplied to the cam chain storage portion 282.
  • the low-viscosity oil OL supplied to the cam chain housing portion 282 is also supplied to the cam shaft 28 and the valve 29 via the cam chain 281. In this way, the interior of the 4-stroke engine 20 is lubricated with the low-viscosity oil OL. Therefore, the inside of the crankcase 21 is lubricated with the low viscosity oil OL.
  • Low-viscosity oil OL is a low-viscosity oil whose low-temperature viscosity grade according to the SAE viscosity classification specified in SAE J300 is lower than 20W.
  • the lower the viscosity grade the lower the viscosity of the oil.
  • the high temperature viscosity grade according to the SAE viscosity classification of the lubricating oil is not particularly limited.
  • X is an integer of 0 or more and less than 20 and Y is an integer of 0 or more
  • the SAE viscosity grade of the lubricating oil is represented by XW-Y.
  • Lubricating oil is composed of base oil and additives.
  • the evaporation temperature may differ even if the lubricating oil has the same viscosity.
  • the evaporation characteristics of the lubricating oil can be obtained, for example, by a boiling point distribution measurement method by gas chromatography simulated distillation according to ASTM D6352.
  • the manual clutch 40 includes a clutch housing 41, a friction plate 42, a clutch plate 43, a clutch boss 44, and a pressure plate 45.
  • a driven gear 411 is provided in the clutch housing 41.
  • the driving force from the crankshaft 24 is transmitted to the clutch housing 41 via a driving gear 241 and a driven gear 411 provided on the crankshaft 24.
  • the friction plate 42 is arranged on the inner circumference of the clutch housing 41.
  • the friction plate 42 engages with the clutch housing 41 and rotates together with the clutch housing 41.
  • the clutch boss 44 is attached to the input shaft 32 of the manual transmission 30 so as to rotate integrally with the input shaft 32 of the manual transmission 30.
  • the rotation axis of the clutch boss 44 and the rotation axis of the clutch housing 41 are substantially coincident with each other.
  • the clutch plate 43 is arranged on the outer periphery of the clutch boss 44. The clutch plate 43 engages with the clutch boss 44 and rotates together with the clutch boss 44.
  • the pressure plate 45 is connected to the lifter rod 38 that penetrates the central axis of the input shaft of the manual transmission 30.
  • the pressure plate 45 brings the friction plate 42 and the clutch plate 43 into close contact with and away from each other by the operation of the driver. More specifically, the driver operates the clutch lever (not shown) to displace the lifter rod 38 in the direction of the central axis via the wire (not shown) and the clutch arm 37.
  • the pressure plate 45 is integrated with the lifter rod 38 and is displaced in the direction of the central axis of the lifter rod 38 to bring the friction plate 42 and the clutch plate 43 into close contact with or apart from each other.
  • the manual transmission 30 is provided inside the crankcase 21.
  • the manual transmission 30 is connected to the manual clutch 40.
  • the manual transmission 30 has a plurality of shift speeds.
  • the manual transmission 30 has an input shaft 32, an output shaft 33, a driving gear 34, a driven gear 35, and a gear stage setting mechanism 36.
  • the input shaft 32 is rotatably arranged.
  • the power output from the 4-stroke engine 20 is input to the input shaft 32 via the manual clutch 40.
  • the manual transmission 30 changes the rotational speed of the output shaft 33 with respect to the input shaft 32 in a stepwise manner.
  • the output shaft 33 is rotatably arranged on an axis parallel to the input shaft 32.
  • the plurality of drive gears 34 are provided on the input shaft 32 and are configured to always rotate together with the input shaft 32. Further, each of the plurality of drive gears 34 corresponds to each shift speed.
  • the plurality of driven gears 35 are provided on the output shaft 33 and are configured to be rotatable relative to the output shaft 33.
  • the plurality of driven gears 35 are configured to be able to mesh with the corresponding drive gears 34. At least one of the plurality of driven gears 35 always meshes with the drive gear 34.
  • the plurality of drive gears 34 included in the manual transmission 30 shown in FIG. 1 are configured so as to always rotate together with the input shaft 32.
  • the plurality of driven gears 35 are configured to be rotatable relative to the output shaft 33. Further, each of the plurality of driven gears 35 always meshes with the driving gear 34.
  • the low viscosity oil OL is also supplied to the manual transmission 30. More specifically, the manual transmission 30 is partially immersed in the low viscosity oil OL stored in the oil pan 211. The low viscosity oil OL supplied to the piston 26 also flows to the manual transmission 30. The low-viscosity oil OL is agitated by the rotation of the manual transmission 30 and diffuses into the crankcase 21. As a result, the low-viscosity oil OL is supplied to the entire manual transmission 30.
  • FIG. 3 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the starting generator 60 shown in FIG.
  • the starting generator 60 will be described with reference to FIGS. 1 and 3.
  • the starter generator 60 is a permanent magnet type three-phase brushless motor.
  • the starter generator 60 also functions as a permanent magnet type three-phase brushless generator.
  • the starter-generator 60 has a stator 62 whose position is fixed with respect to the crankcase 21 and a permanent magnet facing the stator 62 with a gap therebetween, and is provided on the crankshaft 24 so as to interlock with the rotation of the crankshaft 24. And a fixed rotor.
  • the start-up generator 60 of this embodiment is a radial gap type.
  • the starter generator 60 is an outer rotor type. That is, the rotor 61 is an outer rotor.
  • the stator 62 is an inner stator.
  • the starter/generator 60 is housed in a starter/generator housing portion 65 formed by the starter/generator cover 64 and the crankcase 21. The space of the starter generator storage portion 65 communicates with the space of the cam chain storage portion 282.
  • the rotor 61 has a rotor body 615.
  • the rotor body 615 is made of, for example, a ferromagnetic material.
  • the rotor body 615 has a bottomed tubular shape.
  • the rotor body 615 has a cylindrical boss 615a, a disc-shaped bottom wall 615b, and a cylindrical back yoke 615c.
  • the bottom wall portion 615b and the back yoke portion 615c are integrally formed.
  • the bottom wall portion 615b and the back yoke portion 615c are fixed to the crankshaft 24 via a cylindrical boss portion 615a.
  • the rotor 61 is not provided with a winding to which current is supplied.
  • the rotor 61 has a bottomed tubular shape connected to the crankshaft 24 between the stator 62 and the cylinder (cylinder 22) of the four-stroke engine 20 in the axial direction in which the crankshaft 24 extends. That is, the disc-shaped bottom wall portion 615b is provided in the direction of the cylinder 22 rather than the tubular back yoke portion 615c in the axial direction in which the crankshaft 24 extends.
  • the rotor 61 has a permanent magnet portion 614.
  • the rotor 61 has a plurality of magnetic pole portions 616.
  • the plurality of magnetic pole portions 616 are formed by the permanent magnet portion 614.
  • the plurality of magnetic pole portions 616 are provided on the inner peripheral surface of the back yoke portion 615c.
  • the permanent magnet section 614 has a plurality of permanent magnets.
  • the plurality of magnetic pole portions 616 are provided in each of the plurality of permanent magnets.
  • the permanent magnet part 614 of the start-up generator 60 is designed to have a large thickness to increase the permeance coefficient. By increasing the permeance coefficient, the permanent magnet part 614 has robustness against demagnetization.
  • the plurality of magnetic pole portions 616 are provided such that the N poles and the S poles are alternately arranged in the circumferential direction of the starting generator 60.
  • the rotor 61 facing the stator 62 has 24 magnetic poles.
  • the number of magnetic poles of the rotor 61 refers to the number of magnetic poles facing the stator 62.
  • No magnetic material is provided between the magnetic pole portion 616 and the stator 62.
  • the magnetic pole portion 616 is provided outside the stator 62 in the radial direction of the starting generator 60.
  • the back yoke portion 615c is provided outside the magnetic pole portion 616 in the radial direction.
  • the start-up generator 60 has more magnetic poles 616 than the number of teeth 623.
  • the rotor 61 is a surface magnet type (SPM type) in which the magnetic pole portion 616 is exposed from the magnetic material.
  • the position of the stator 62 is fixed with respect to the crankcase 21.
  • the stator 62 has a stator core 621 and a plurality of stator windings 622.
  • the stator core 621 has a plurality of tooth portions 623 provided at intervals in the circumferential direction.
  • the plurality of tooth portions 623 integrally extend from the stator core 621 outward in the radial direction.
  • a total of 18 tooth portions 623 are provided at intervals in the circumferential direction.
  • the stator core 621 has a total of 18 slots 624 formed at intervals in the circumferential direction.
  • the tooth portions 623 are arranged at equal intervals in the circumferential direction.
  • the rotor 61 has a number of magnetic pole portions 616 that is greater than the number of teeth 623.
  • the number of magnetic pole portions is 4/3 of the number of slots.
  • a stator winding 622 is wound around each tooth 623. That is, the plural-phase stator windings 622 are provided so as to pass through the slots 624. In FIG. 3, the stator winding 622 is shown in the slot 624.
  • Each of the multiple-phase stator windings 622 belongs to any one of U phase, V phase, and W phase.
  • the stator windings 622 are arranged, for example, in the order of U phase, V phase, and W phase.
  • a stator winding that is thicker than the stator winding that is used in the rotating electric machine used only for the generator is used.
  • the rotor position detection device 63 is arranged in the starter generator storage portion 65.
  • the rotor position detection device 63 is supported by the crankcase 21 so that its position is fixed with respect to the crankcase 21 within the crankcase 21.
  • the rotor position detecting device 63 outputs a signal indicating the detection of the position of the rotor 61 due to the change in electrical characteristics due to the passage of the magnetic pole portion 616.
  • a Hall IC is used as the rotor position detection device 63.
  • the starter generator 60 is connected to the crankshaft 24 of the 4-stroke engine 20.
  • the rotor 61 is connected to the crankshaft 24 so as to rotate at a fixed speed ratio with respect to the crankshaft 24.
  • the rotation axis of the starter/generator 60 and the rotation axis of the crankshaft 24 are substantially coincident with each other.
  • the rotor 61 is attached to the crankshaft 24 without a power transmission mechanism (for example, a belt, a chain, a gear, a speed reducer, a speed increaser, etc.).
  • the rotor 61 rotates with respect to the crankshaft 24 at a speed ratio of 1:1.
  • the starter generator 60 is configured to rotate the crankshaft 24 in the forward direction by the forward rotation of the 4-stroke engine 20.
  • the starting generator 60 starts the 4-stroke engine 20 by rotating the crankshaft 24 in the forward direction when the engine is started. Further, the starting generator 60 is driven by the four-stroke engine 20 to generate power when the four-stroke engine 20 performs a combustion operation. That is, the start-up generator 60 has both a function of starting the 4-stroke engine 20 by rotating the crankshaft 24 in the forward direction and a function of being driven by the 4-stroke engine 20 to generate power when the 4-stroke engine 20 performs a combustion operation. Have both.
  • the starter-generator 60 is normally rotated by the crankshaft 24 and functions as a generator during at least a part of the period after the start of the 4-stroke engine 20.
  • the starting power generator 60 when the starting power generator 60 functions as a generator, the starting power generator 60 does not always have to function as a generator after the combustion of the engine is started. Further, a period in which the starting generator 60 functions as a generator and a period in which the starting generator 60 functions as a vehicle driving motor after the start of combustion of the engine may be included.
  • the starter-generator 60 of this embodiment has more magnetic pole portions 616 than the number of tooth portions 623. Therefore, the starter generator 60 has a higher angular velocity than the starter generator having the magnetic pole portions smaller than the number of teeth.
  • the angular velocity contributes to the impedance of the winding. That is, the impedance of the winding is roughly expressed by the following equation. (R 2 + ⁇ 2 L 2 ) 1/2
  • R is a DC resistance
  • is an angular velocity about an electrical angle
  • L is an inductance.
  • (P/2) ⁇ (N/60) ⁇ 2 ⁇
  • P number of magnetic poles
  • N rotational speed [rpm]
  • the starter-generator 60 Since the starter-generator 60 has more magnetic poles 616 than the number of teeth 623, the angular velocity ⁇ is larger than that of a starter-generator having less magnetic poles than the number of teeth. Therefore, the impedance when rotating is large. Moreover, as the rotation speed N increases, the angular speed ⁇ increases, and the impedance increases. Therefore, the start-up generator 60 can suppress the generated current with a large impedance in the rotation region used as the generator.
  • stator winding 622 used in the starting generator 60 of the present embodiment a stator winding thicker than the stator winding used in the rotating electric machine used only for the generator is used.
  • a thicker stator winding the DC resistance of the stator winding in the impedance of the starter generator 60 can be reduced.
  • By reducing the DC resistance of the stator winding it is possible to generate a large torque in the low speed rotation region where the start-up generator 60 is used as a starter motor.
  • FIG. 4A is an explanatory diagram that schematically shows the drive characteristics of the starting generator 60.
  • FIG. 4B is an explanatory diagram schematically showing power generation characteristics.
  • the horizontal axis represents the rotation speed of the crankshaft 24.
  • the rotation speed per scale on the horizontal axis is different between the drive characteristics shown in FIG. 4A and the power generation characteristics shown in FIG. 4B.
  • the rotation speed per scale in the diagram of power generation characteristics is higher than the rotation speed per scale in the diagram of drive characteristics.
  • the vertical axis represents the output torque in the positive direction and the generated current in the negative direction.
  • the solid line shows the characteristics of the starter generator 60 according to this embodiment.
  • the broken line shows the characteristics of the starting generator according to the comparative example.
  • the start-up generator according to the comparative example has magnetic pole portions (for example, 2/3 of the number of slots) that are smaller than the number of teeth.
  • the starter generator 60 (solid line) of the present embodiment outputs the same torque as the starter generator (broken line) according to the comparative example (FIG. 4(A)), and rotates at high speed. Occasionally, the generated current can be suppressed more than the starting generator (broken line) according to the comparative example (FIG. 4(B)).
  • the low viscosity oil OL is also supplied to the starter generator 60.
  • the low-viscosity oil OL supplied to the cam chain storage unit 282 is also supplied to the starter generator storage unit 65. More specifically, the low-viscosity oil OL is supplied to the cam chain housing portion 282 and then stirred by the cam chain 281 to be in a mist form.
  • the mist-like low-viscosity oil OL has a space in the starter/generator storage section 65 communicating with a space in the cam chain storage section 282. Is also supplied. Further, the low-viscosity oil OL supplied to the piston 26 also flows to the starter generator 60.
  • the low-viscosity oil OL supplied to the starter/generator storage section 65 is stored in the lower portion of the starter/generator storage section 65.
  • the low-viscosity oil OL collects so that a part of the starting generator 60 is immersed in the low-viscosity oil OL.
  • part of the start-up generator 60 is immersed in the low-viscosity oil OL.
  • the low viscosity oil OL overflowing from the dam wall flows to the oil pan 211. Due to the rotation of the start-up generator 60, the low-viscosity oil OL attached to the start-up generator 60 diffuses into the crankcase 21.
  • a starter/generator has a partition between the starter/generator housing and a four-stroke engine to block the entry and exit of oil, and a rotor provided with a fan or fins for generating an air flow for cooling.
  • the starter/generator 60 does not have a partition for blocking the entry and exit of oil between the starter/generator storage section 65 and the four-stroke engine 20, and the low-viscosity oil is stored in the starter/generator storage section 65. It is in contact with OL. Since the starter generator 60 can suppress the generated current in the rotation region used as a generator, the amount of heat generated during power generation is less than that of a teaching generator (comparative example of FIG.
  • the temperature of the stator winding 622 does not become higher than the temperature of the low-viscosity oil OL or does not easily increase. Therefore, even if the starter generator 60 is arranged so as to come into contact with the low-viscosity oil OL, which is a lubricating oil having a low evaporation temperature, the evaporation of the low-viscosity oil OL can be suppressed.
  • the low-viscosity oil OL which is a lubricating oil having a low evaporation temperature
  • the start-up generator 60 can be arranged in an environment in which it contacts the low-viscosity oil OL, which is lubricating oil, while suppressing or avoiding an increase in the size of the cooling mechanism of the start-up generator 60. Furthermore, the 4-stroke engine unit 10 does not need to be equipped with an oil cooler, a radiator and the like. Further, since the starter generator 60 can suppress the generation of heat, it can suppress the change in the detection characteristics of the detection device.
  • the partition between the starter generator housing portion 65 and the 4-stroke engine 20 can be eliminated without providing the rotor 61 with a fan or fins that generate an air flow for cooling. Therefore, it can be brought into contact with the low-viscosity oil OL of the 4-stroke engine 20. As a result, the size of the crankshaft 24 in the axial direction can be reduced. Further, since the 4-stroke engine unit 10 has the starter/generator 60, it is not necessary to provide a starter motor specialized for starting. Therefore, it is not necessary to attach a power transmission mechanism for transmitting the driving force from the starter motor to the crankshaft 24.
  • the rotor 61 is arranged in the direction of the cylinder 22 of the 4-stroke engine 20 rather than the stator 62 when viewed in the rotation axis direction of the crankshaft 24 of the 4-stroke engine 20. Therefore, the size of the crankshaft 24 in the axial direction can be further reduced.
  • the starter generator 60 can suppress the amount of heat generated during power generation, even if the low-viscosity oil OL having low viscosity is used as the lubricating oil, the low-viscosity oil OL is prevented from evaporating. be able to. Therefore, in the present embodiment, as the low-viscosity oil OL of the 4-stroke engine 20, a low-viscosity lubricating oil whose low temperature viscosity grade is lower than 20 W can be used.
  • the starter generator 60 can reduce not only the energy loss accompanying the decrease in the viscosity of the low viscosity oil OL but also the energy loss accompanying the stirring of the low viscosity oil OL. Further, the resistance to rotation of the starter generator 60 can be reduced. As a result, the 4-stroke engine unit 10 can further reduce the size of the starting generator.
  • the stator winding 622 used in the starter-generator 60 is, for example, a stator winding thicker than the stator winding used in the rotating electric machine used only in the generator. It Therefore, a large torque can be generated in the low speed rotation region where the starter/generator 60 is used as a starter motor.
  • the low-viscosity oil OL of the 4-stroke engine 20 may be a low-viscosity oil having a low temperature viscosity grade lower than 20W. Therefore, the start-up generator 60 can reduce resistance to rotation at the time of starting. Therefore, for example, even in a single-cylinder engine having a high load region and a low load region during four strokes, it is possible to obtain a torque that overcomes the high load region.
  • the rotor position detection device 63 can be arranged in the starter/generator storage portion 65 that is a space in which the starter/generator 60 is stored.
  • the Hall IC used in the rotor position detection device 63 has an input resistance that depends on temperature, and is not suitable for use in a high temperature environment. Therefore, conventionally, it was difficult to arrange the rotor position detecting device in the space in which the starter-generator is housed.
  • the starter generator 60 can suppress the amount of heat even during power generation. Therefore, even if the rotor position detection device 63 is installed in the starter/generator storage portion 65, the effect of the Hall IC can be sufficiently exerted.
  • FIG. 5 is a side view showing a straddle-type vehicle equipped with the 4-stroke engine unit of FIG. 1. More specifically, the straddle-type vehicle 1 is an MT (manual transmission)-type straddle-type vehicle.
  • the saddle riding type vehicle 1 is a motorcycle. More specifically, the saddle riding type vehicle 1 is an MT type motorcycle. More specifically, the saddle riding type vehicle 1 includes a 4-stroke engine unit 10, a vehicle body 11, a front fork 12, a handlebar 13, front wheels 14, drive wheels 15, a seat 16, and a power storage device 17. , Rear arm 151.
  • the front fork 12 is rotatably supported by the vehicle body 11.
  • the handlebar 13 is fixed to the upper end of the front fork 12. That is, the handlebar 13 is rotatably supported by the vehicle body 11 via the front fork 12.
  • a manual clutch lever 50 is provided at the left end of the handlebar 13.
  • a brake lever (not shown) and an accelerator operator are provided on the right side of the handlebar 13.
  • the front wheel 14 is rotatably supported by the front fork 12.
  • the rear arm 151 is swingably supported by the vehicle body 11.
  • the drive wheel 15 is rotatably supported by the rear arm 151.
  • the 4-stroke engine unit 10 is held by the vehicle body 11. More specifically, the 4-stroke engine unit 10 is attached to a frame (not shown) of the vehicle body 11. The 4-stroke engine unit 10 outputs power from the output section 39 to the drive wheels 15.
  • the output unit 39 is a sprocket around which the chain 152 is wound.
  • the output unit 39 is provided outside the crankcase 21.
  • the output part 39 is actually covered with a cover (not shown) provided on the vehicle body 11, but is shown by a solid line so that it is easily exposed to the outside of the housing of the 4-stroke engine unit 10. There is.
  • the power of the four-stroke engine unit 10 is output to the drive wheels 15 via the sprocket as the output section 39 and the chain 152. Below the output unit 39, step 111 is provided below the output unit 39.
  • the seat 16 is a saddle type and is provided on the upper portion of the vehicle body 11.
  • the driver of the saddle riding type vehicle 1 sits astride the seat 16 and puts his/her foot on the step 111 while traveling.
  • Power storage device 17 is arranged inside vehicle body 11. The power storage device 17 stores electric power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

The purpose of the present invention is to provide a 4-stroke engine unit equipped with a starter generator, the size of which can be reduced in the axial direction of the crankshaft. This 4-stroke engine unit is equipped with: a load-variable 4-stroke engine configured in a manner such that the interior thereof is lubricated by a low-viscosity oil, the low-temperature viscosity grade of which is lower than 20W; a manual transmission lubricated by the low-viscosity oil; and a starter generator provided in a location which contacts the low-viscosity oil. The starter generator is equipped with: a stator having a stator core provided with a plurality of teeth provided in the circumferential direction with slots interposed therebetween, and also having a multi-phase stator winding wound around the teeth; and a rotor which has a permanent magnet having pole faces arranged in the circumferential direction so as to face the stator with an air gap interposed therebetween and present in a number which exceeds 2/3 the number of slots, is positioned so as to be coaxial with the crankshaft, and is not provided with a fan or fins for generating airflow for cooling.

Description

4ストロークエンジンユニット、及び同エンジンユニットを備えた鞍乗型車両4-stroke engine unit and saddle-ride type vehicle equipped with the same engine unit
 本発明は、4ストロークエンジンユニット、及び同エンジンユニットを備えた鞍乗型車両に関する。 The present invention relates to a 4-stroke engine unit and a straddle-type vehicle equipped with the engine unit.
 特許文献1の自動二輪車は、4ストロークエンジンを備えている。エンジンユニットは、4ストロークエンジンと、トランスミッションと、始動発電機とを備えている。 The motorcycle of Patent Document 1 is equipped with a 4-stroke engine. The engine unit includes a 4-stroke engine, a transmission, and a starter/generator.
特許第5591778号公報Japanese Patent No. 5591778
 鞍乗型車両は、走行時に運転者の体重移動によって車両の姿勢が制御されるように構成されている。そのため、操作性及び走行性能の観点から、鞍乗型車両は、小型であることを求められる傾向がある。特に、特許文献1に示すような鞍乗型車両は、4ストロークエンジンで駆動される。そのため、4ストロークエンジンが搭載された鞍乗型車両は、小型であることをより強く求められる場合がある。 The saddle-ride type vehicle is configured so that the posture of the vehicle is controlled by the weight shift of the driver while traveling. Therefore, from the viewpoint of operability and traveling performance, the straddle-type vehicle tends to be required to be small. In particular, a saddle-ride type vehicle as disclosed in Patent Document 1 is driven by a 4-stroke engine. Therefore, a straddle-type vehicle equipped with a 4-stroke engine may be strongly required to be small.
 また、鞍乗型車両では、車両が比較的小さく、車両全体に占めるエンジンの割合が大きい。そのため、4ストロークエンジンの小型化によって、鞍乗型車両自体を効果的に小型化できる。従って、4ストロークエンジンを如何に小型化するかは、当該エンジンを備える鞍乗型車両にとって、重要な要素である。特に、クランクシャフトの軸線方向のサイズは、車両のサイズに比較的大きな影響を及ぼす。そのため、これらのサイズを如何に小型化するかが、より重要である。なお、クランクシャフトの軸線方向は、例えば、鞍乗型車両における車幅方向に相当する。 Also, in a saddle-type vehicle, the vehicle is relatively small, and the proportion of the engine in the entire vehicle is large. Therefore, the straddle-type vehicle itself can be effectively downsized by downsizing the 4-stroke engine. Therefore, how to downsize the 4-stroke engine is an important factor for a saddle-ride type vehicle equipped with the engine. In particular, the axial size of the crankshaft has a relatively large effect on the size of the vehicle. Therefore, how to reduce these sizes is more important. The axial direction of the crankshaft corresponds to, for example, the vehicle width direction of a saddle-ride type vehicle.
 本発明の目的は、クランクシャフトの軸線方向におけるサイズが小型化可能な始動発電機を備えた4ストロークエンジンを提供することである。 An object of the present invention is to provide a four-stroke engine equipped with a starter/generator capable of reducing the size of the crankshaft in the axial direction.
 始動発電機は、スタータモータと発電機との機能を備えている。始動発電機が搭載される4ストロークエンジンでは、発電時に、始動発電機が適当な温度に保たれる必要がある。そのため、始動発電機が搭載される4ストロークエンジンは、始動発電機を冷却するための冷却機構を備えている。冷却機構としては、例えば、オイルクーラ、ラジエータが挙げられる。冷却機構が充分に機能するので、始動発電機の温度上昇が抑制され、これにより、エンジン内の潤滑オイルの蒸発が抑制される。 ▽The starting generator has the functions of a starter motor and a generator. In a 4-stroke engine equipped with a starter/generator, the starter/generator needs to be maintained at an appropriate temperature during power generation. Therefore, the four-stroke engine equipped with the starter/generator has a cooling mechanism for cooling the starter/generator. Examples of the cooling mechanism include an oil cooler and a radiator. Since the cooling mechanism functions sufficiently, the temperature rise of the start-up generator is suppressed, which suppresses the evaporation of the lubricating oil in the engine.
 従来、充分な冷却機構の性能を得るために冷却機構が大型化する傾向があった。しかし、本発明者は、始動発電機自体の性能により、エンジン内の潤滑オイルの蒸発を抑制することを検討した。その結果、本発明者は、始動発電機が、(磁極面/スロット数)が2/3より大きいという条件を満たす場合には、始動発電機が潤滑オイルと接触するように配置されても、潤滑オイルの蒸発を抑制できること見出した。始動発電機の磁極面/スロット数が2/3より大きいという条件を満たす場合、発電機として使用される回転領域において、大きなインピーダンスによって発電電流を抑制できる。従って、このような始動発電機では、ステータ巻線の温度が潤滑オイルの温度よりも高くならない又は高くなり難いため、始動発電機が潤滑オイルと接触するように配置されても、潤滑オイルの蒸発を抑制できる。従来、始動発電機が潤滑オイルと接触する環境下に配置される場合には、冷却機構を大きくしなければならないと考えられていた。しかし、上述した知見により、冷却機構の大型化を抑制乃至回避しつつ、始動発電機を潤滑オイルと接触する環境下に配置できる。 Previously, there was a tendency for the cooling mechanism to become larger in order to obtain sufficient cooling mechanism performance. However, the present inventor has studied to suppress evaporation of the lubricating oil in the engine by the performance of the starting generator itself. As a result, the present inventor has found that if the starter/generator satisfies the condition that (the number of magnetic pole faces/the number of slots) is larger than 2/3, even if the starter/generator is placed in contact with the lubricating oil, It has been found that the evaporation of lubricating oil can be suppressed. When the condition that the number of magnetic pole faces/the number of slots of the starting generator is larger than 2/3 is satisfied, the generated current can be suppressed by a large impedance in the rotation region used as the generator. Therefore, in such a starter-generator, the temperature of the stator winding does not become higher than the temperature of the lubricating oil or does not easily become higher than that of the lubricating oil. Can be suppressed. Conventionally, it was considered that the cooling mechanism had to be large when the start-up generator was placed in an environment where it came into contact with the lubricating oil. However, based on the above-mentioned knowledge, it is possible to arrange the starter-generator in an environment where it comes into contact with the lubricating oil while suppressing or avoiding an increase in the size of the cooling mechanism.
 更に、本発明者は、低温粘度グレードが20Wよりも低い潤滑オイル(以下、低粘度オイルともいう)を使用することにより、冷却のための始動発電機による潤滑オイルの攪拌を削減乃至省略できることを見出した。これにより、粘度の低下に伴うエネルギーロスの低減だけではなく、潤滑オイルの攪拌に伴う始動発電機のエネルギーロスを低減できる。即ち、始動発電機の回転に対する抵抗を小さくできる。その結果、始動発電機の更なる小型化が可能になる。 Furthermore, the present inventor uses a lubricating oil having a low temperature viscosity grade lower than 20 W (hereinafter, also referred to as a low viscosity oil) to reduce or omit stirring of the lubricating oil by a starting generator for cooling. I found it. As a result, not only the energy loss due to the decrease in viscosity but also the energy loss of the starting generator due to the agitation of the lubricating oil can be reduced. That is, the resistance to rotation of the starting generator can be reduced. As a result, the starter generator can be further downsized.
 以上の目的を達成するために、本発明の一つの観点によれば、4ストロークエンジンユニットは、次の構成を備える。 In order to achieve the above object, according to one aspect of the present invention, a 4-stroke engine unit has the following configuration.
 (1) 4ストロークエンジンユニットであって、
 前記4ストロークエンジンユニットは、
 低温粘度グレードが20Wよりも低い低粘度オイルで内部が潤滑されるように構成されたクランクケースと、前記クランクケースに回転可能に支持されるクランクシャフトとを有し、4ストロークの間に、前記クランク軸を回転させる負荷が大きい高負荷領域と、前記クランク軸を回転させる負荷が前記高負荷領域の負荷より小さい低負荷領域とを有する負荷変動型4ストロークエンジンと、
 前記低粘度オイルによって潤滑されるように前記クランクケース内に設けられ、前記クランクシャフトからの駆動力が伝達されるトランスミッションと、
 周方向にスロットを空けて設けられた複数の歯部を備えるステータコア、及び前記歯部に巻回される複数相の巻線を有するステータと、前記ステータと空隙を空けて向かい合うように前記周方向に並び且つ前記スロットの数の2/3より多い磁極面を有する永久磁石部を有し、前記クランクシャフトと同軸上に配置され、冷却のための気流を発生させるファン又はフィンを備えていないロータとを備え、前記低粘度オイルと接触する位置に設けられる始動発電機と
を備える。
(1) A 4-stroke engine unit,
The 4-stroke engine unit is
A crankcase configured to be internally lubricated with a low-viscosity oil having a low-temperature viscosity grade lower than 20 W; and a crankshaft rotatably supported by the crankcase, wherein the crankcase is rotatably supported during four strokes. A load fluctuation type four-stroke engine having a high load region in which a load for rotating a crankshaft is large, and a low load region in which a load for rotating the crankshaft is smaller than a load in the high load region,
A transmission that is provided in the crankcase so as to be lubricated by the low-viscosity oil, and that transmits the driving force from the crankshaft;
A stator core having a plurality of teeth provided with slots formed in the circumferential direction, and a stator having windings of a plurality of phases wound around the teeth, and the circumferential direction so as to face the stator with a gap. Rotors having permanent magnet portions arranged in parallel with each other and having magnetic pole surfaces greater than 2/3 of the number of slots, arranged coaxially with the crankshaft, and having no fan or fin for generating an air flow for cooling. And a starting generator provided at a position in contact with the low-viscosity oil.
 (1)のエンジンユニットは、負荷変動型4ストロークエンジンと、マニュアル・トランスミッションと、始動発電機とを備える。
 負荷変動型4ストロークエンジンは、低温粘度グレードが20Wよりも低い低粘度オイルで内部が潤滑されるように構成されたクランクケースと、クランクケースに回転可能に支持されるクランクシャフトとを有する。
 マニュアル・トランスミッションは、低粘度オイルによって潤滑されるようにクランクケース内に設けられ、クランクシャフトからの駆動力が伝達される。
 始動発電機は、ステータと、ロータとを備える。ステータは、ステータコア及び複数相のステータ巻線を有する。ステータコアは、周方向にスロットを空けて設けられた複数の歯部を備える。複数相のステータ巻線は、歯部に巻回される。ロータは、永久磁石部を有する。永久磁石部は、ステータと空隙を空けて向かい合うように周方向に並び且つスロットの数の2/3より多い磁極面を有する。ロータは、クランクシャフトに固定され、冷却のための気流を発生させるファン又はフィンを備えていない。始動発電機は、低粘度オイルと接触する位置に設けられる。
The engine unit (1) includes a load-changing four-stroke engine, a manual transmission, and a starting generator.
The load fluctuation type four-stroke engine has a crankcase configured to be internally lubricated with low-viscosity oil having a low temperature viscosity grade lower than 20 W, and a crankshaft rotatably supported by the crankcase.
The manual transmission is provided in the crankcase so as to be lubricated by the low-viscosity oil, and the driving force from the crankshaft is transmitted to the manual transmission.
The start generator includes a stator and a rotor. The stator has a stator core and a plurality of phases of stator windings. The stator core includes a plurality of tooth portions provided with slots in the circumferential direction. The multi-phase stator winding is wound around the teeth. The rotor has a permanent magnet section. The permanent magnet portion is arranged in the circumferential direction so as to face the stator with a gap, and has a magnetic pole surface larger than 2/3 of the number of slots. The rotor is fixed to the crankshaft and does not have fans or fins that generate the airflow for cooling. The starting generator is provided at a position in contact with the low viscosity oil.
 (1)の構成によれば、始動発電機が、(磁極面/スロット数)が2/3より多いという条件を満している。このため、ステータ巻線の温度が低粘度オイルの温度よりも高くならない乃至高くなり難い。これにより、始動発電機が低粘度オイルと接触するように配置されても、低粘度オイルの蒸発を抑制できる。このため、始動発電機は、低粘度オイルと接触する環境下に配置できる。従って、始動発電機は、冷却機構の大型化を抑制乃至回避できる。このため、クランクシャフトの軸線方向におけるサイズを小型化できる。 According to the configuration of (1), the starter generator satisfies the condition that (pole face/number of slots) is more than 2/3. Therefore, the temperature of the stator winding does not become higher than the temperature of the low-viscosity oil or does not easily become higher. Thereby, even if the starting generator is arranged so as to come into contact with the low-viscosity oil, the evaporation of the low-viscosity oil can be suppressed. Therefore, the starter generator can be arranged in an environment where it comes into contact with the low-viscosity oil. Therefore, the start-up generator can suppress or avoid an increase in the size of the cooling mechanism. Therefore, the size of the crankshaft in the axial direction can be reduced.
 また、(1)の構成によれば、低温粘度グレードが20Wよりも低い低粘度オイルを使用するため、冷却のための始動発電機による低粘度オイルの攪拌を削減できる。これにより、粘度の低下に伴うエネルギーロスの低減だけではなく、攪拌に伴うエネルギーロスを低減できる。このため、始動発電機の回転に対する抵抗を小さくできる。その結果、始動発電機の更なる小型化が可能になる。 According to the configuration of (1), since the low-viscosity oil whose low-temperature viscosity grade is lower than 20 W is used, it is possible to reduce the stirring of the low-viscosity oil by the starting generator for cooling. As a result, not only the energy loss associated with the decrease in viscosity but also the energy loss associated with stirring can be reduced. Therefore, it is possible to reduce the resistance against the rotation of the starting generator. As a result, the starter generator can be further downsized.
 本発明の一つの観点によれば、4ストロークエンジンユニットは、以下の構成を採用できる。
 (2) (1)の4ストロークエンジンユニットであって、
 前記負荷変動型4ストロークエンジンは、前記クランクケースに接続された気筒を有し、
 前記始動発電機のロータは、前記クランクシャフトが延びる軸線方向における、前記ステータと前記気筒との間で前記クランクシャフトに接続された有底筒状である。
According to one aspect of the invention, the four-stroke engine unit can employ the following configurations.
(2) The four-stroke engine unit of (1),
The load fluctuation type four-stroke engine has a cylinder connected to the crankcase,
The rotor of the starter-generator has a bottomed tubular shape connected to the crankshaft between the stator and the cylinder in the axial direction in which the crankshaft extends.
 (2)の構成によれば、例えば始動発電機のロータが軸線方向で気筒に向かって開いた構成と比べ、負荷変動型4ストロークエンジンのクランクシャフトを短くできる。従って、始動発電機の更なる小型化が可能になる。 According to the configuration of (2), the crankshaft of the load-changing four-stroke engine can be shortened as compared with, for example, a configuration in which the rotor of the starter generator is opened toward the cylinder in the axial direction. Therefore, the starter generator can be further downsized.
 本発明の一つの観点によれば、4ストロークエンジンユニットは、以下の構成を採用できる。
 (3) (2)の4ストロークエンジンユニットであって、
 前記始動発電機が収納される空間内で、前記クランクケース内で前記クランクケースに対し位置が固定されるように前記クランクケースに支持された、前記ロータの位置の検出を表す信号を出力するロータ位置検出装置を更に備える。
According to one aspect of the invention, the four-stroke engine unit can employ the following configurations.
(3) The four-stroke engine unit of (2),
A rotor, which is supported by the crankcase so as to be fixed in position in the crankcase in the space in which the starter-generator is housed, and outputs a signal indicating detection of the position of the rotor. A position detection device is further provided.
 (3)の構成によれば、ロータ位置検出装置が、始動発電機のロータの位置の検出を表す信号を出力する。始動発電機は、低粘度オイルの温度よりも高くならない乃至高くなり難いステータ巻線を有する。従って、ロータ位置検出装置の構成として、例えば上限動作温度が比較的低いホールIC、又は、上限動作温度が比較的低いピックアップコイルのいずれも採用することができる。従って、設計の自由度が高い。 According to the configuration of (3), the rotor position detecting device outputs a signal indicating detection of the position of the rotor of the starting generator. The starter generator has a stator winding that does not rise above the temperature of the low viscosity oil. Therefore, as the configuration of the rotor position detecting device, for example, either a Hall IC with a relatively low upper limit operating temperature or a pickup coil with a relatively low upper limit operating temperature can be adopted. Therefore, the degree of freedom in design is high.
 本発明の一つの観点によれば、鞍乗型車両は、以下の構成を採用できる。
 (4) 鞍乗型車両であって、
 前記鞍乗型車両は、(1)乃至(3)の何れか1つの4ストロークエンジンユニットを備える。
According to one aspect of the invention, a straddle-type vehicle can employ the following configurations.
(4) A straddle-type vehicle,
The saddle-ride type vehicle includes any one of the four-stroke engine units (1) to (3).
 (4)の構成によれば、鞍乗型車両は、(1)乃至(3)の何れか1つの4ストロークエンジンユニットを備えることにより、クランクシャフトの軸線方向におけるサイズが小型化できる。 According to the configuration of (4), the saddle riding type vehicle can be downsized in the axial direction of the crankshaft by including any one of the four-stroke engine units of (1) to (3).
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「及び/又は」は一つの、又は複数の関連した列挙された構成物のあらゆる又は全ての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」及び/又はそれらの等価物は広く使用され、直接的及び間接的な取り付け、接続及び結合の両方を包含する。更に、「接続された」及び「結合された」は、物理的又は機械的な接続又は結合に限定されず、直接的又は間接的な電気的接続又は結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。本発明の説明においては、多数の技術及び工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせを全て繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び請求項の範囲内にあることを理解して読まれるべきである。 The terminology used herein is for the purpose of defining particular embodiments only and is not intended to limit the invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed components. As used herein, the use of the terms "including," "comprising," or "having" and variations thereof refers to the described feature, step, operation, It identifies the presence of elements, components and/or their equivalents, but can include one or more of steps, acts, elements, components, and/or groups thereof. As used herein, the terms “attached”, “connected”, “coupled” and/or their equivalents are widely used and refer to both direct and indirect attachment, connection and Includes both bindings. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings. Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as commonly used dictionary-defined terms should be construed to have a meaning consistent with the meaning in the context of the relevant technology and this disclosure and are expressly defined herein. Unless stated otherwise, it should not be interpreted in the ideal or overly formal sense. In describing the present invention, it is understood that numerous techniques and steps have been disclosed. Each of these has individual benefits, and each may also be used with one or more, and possibly all, of the other disclosed techniques. Therefore, for the sake of clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps. Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of this invention and claims.
 本明細書では、新しい4ストロークエンジンユニットについて説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。 In this specification, a new 4-stroke engine unit will be described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without these specific details. This disclosure is to be considered as illustrative of the invention and is not intended to limit the invention to the particular embodiments illustrated by the following drawings or description.
 負荷変動型4ストロークエンジンは、4ストロークの間に、高負荷領域と低負荷領域とを有する。負荷変動型4ストロークエンジンは、例えば、単気筒エンジン、2気筒エンジン、不等間隔爆発型3気筒エンジン、又は、不等間隔爆発型4気筒エンジンである。負荷変動型4ストロークエンジンは、例えば、3つより少ない気筒を有するエンジンである。本開示の一実施形態において、負荷変動型4ストロークエンジンは、例えば、単気筒エンジン又は2気筒エンジンである。2気筒エンジンは、2つの気筒を有する不等間隔燃焼エンジンであってもよい。2つの気筒を有する不等間隔燃焼エンジンとして、例えばV型エンジンが挙げられる。
 負荷変動型4ストロークエンジンでは、低い回転速度における回転の変動が、他のタイプのエンジンと比べ大きい。高負荷領域とは、エンジンの1燃焼サイクルのうち、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも高い領域をいう。低負荷領域とは、1燃焼サイクルにおける高負荷領域以外の領域をいう。エンジンでは、クランクシャフトの回転角度を基準として見ると、低負荷領域は、例えば、高負荷領域より広い。圧縮行程は、高負荷領域と重なりを有する。なお、本明細書において、負荷変動型4ストロークエンジンに関して示される方向は、当該負荷変動型4ストロークエンジンが搭載された鞍乗型車両を基準として示されている。
The load fluctuation type four-stroke engine has a high load region and a low load region during four strokes. The load fluctuation type four-stroke engine is, for example, a single cylinder engine, a two-cylinder engine, a non-equidistant explosion three-cylinder engine, or a non-equidistant explosion four-cylinder engine. The load fluctuation type four-stroke engine is, for example, an engine having less than three cylinders. In one embodiment of the present disclosure, the load variation 4-stroke engine is, for example, a single-cylinder engine or a 2-cylinder engine. The two-cylinder engine may be a non-equidistant combustion engine having two cylinders. An example of a nonuniform combustion engine having two cylinders is a V-type engine.
The load fluctuation type 4-stroke engine has a large fluctuation in rotation at a low rotation speed as compared with other types of engines. The high load region is a region where the load torque is higher than the average value of the load torque in one combustion cycle in one combustion cycle of the engine. The low load region refers to a region other than the high load region in one combustion cycle. In the engine, the low load region is wider than the high load region, for example, when viewed from the rotation angle of the crankshaft. The compression stroke has an overlap with the high load area. It should be noted that in the present specification, the directions shown with respect to the load fluctuation type 4-stroke engine are shown with reference to a saddle type vehicle equipped with the load fluctuation type 4 stroke engine.
 始動発電機は、エンジン始動及び発電の双方が可能な回転電機である。始動発電機は、例えばアウターロータ型でもよく、また、インナーロータ型でもよい。また、始動発電機は、ラジアルギャップ型でなく、アキシャルギャップ型でもよい。一つの実施形態によれば、始動発電機では、ロータが、永久磁石を備えている。始動発電機は、例えば、ロータの磁極部が磁性材料から露出した表面磁石型(SPM型)である。始動発電機はこれに限られず、例えば、ロータの磁極部が磁性材料に埋め込まれた埋込磁石型(IPM型)であってもよい。(磁極面/スロット数)は、2/3より多ければ、特に限定されない。(磁極面/スロット数)の上限値としては、例えば、4/3が挙げられる。本開示に係る一例において、当該比は、8/9以上である。本開示に係る一例において、当該比は、1/1以上である。本開示に係る一例において、当該比は、1/1より大きい。本開示に係る一例において、当該比は、4/3である。なお、ステータに制御基板等を設置するためにステータのスロットの一部が形成されない場合がある。このような場合、本来スロットが設けられるべき位置に、スロットが設けられることとして、スロットの数が決定されてもよい。フライホイールの磁極数についても同様である。即ち、磁極数とスロット数とが実質的に4:3の関係を満たすような4:3系列の磁極及びスロットの配置が行われる場合、(磁極面/スロット数)が4/3であるといえる。 ▽The starter generator is a rotating electric machine that can both start the engine and generate electricity. The starting generator may be, for example, an outer rotor type or an inner rotor type. Further, the starting generator may be an axial gap type instead of the radial gap type. According to one embodiment, in a starter generator, the rotor comprises permanent magnets. The start-up generator is, for example, a surface magnet type (SPM type) in which a magnetic pole portion of a rotor is exposed from a magnetic material. The starter generator is not limited to this, and may be, for example, an embedded magnet type (IPM type) in which the magnetic pole portion of the rotor is embedded in a magnetic material. The (pole surface/number of slots) is not particularly limited as long as it is larger than 2/3. As an upper limit value of (magnetic pole surface/number of slots), for example, 4/3 can be mentioned. In an example according to the present disclosure, the ratio is 8/9 or more. In an example according to the present disclosure, the ratio is 1/1 or more. In one example according to the present disclosure, the ratio is greater than 1/1. In one example according to the present disclosure, the ratio is 4/3. Note that some of the slots of the stator may not be formed because the control board or the like is installed on the stator. In such a case, the number of slots may be determined assuming that the slots are provided at the positions where the slots should originally be provided. The same applies to the number of magnetic poles of the flywheel. That is, when the 4:3 series of magnetic poles and slots are arranged such that the number of magnetic poles and the number of slots substantially satisfy the relationship of 4:3, (the magnetic pole surface/the number of slots) is 4/3. I can say.
 クランクケースは、4ストロークエンジンユニットのうち、少なくともクランクケースを収容するケースである。クランクケースは、気筒(シリンダ)と接続される。クランクケースはマニュアル・トランスミッションを収容する。クランクケースは、例えば始動発電機を収容する。この場合、クランクケースは、始動発電機カバーと、始動発電機収納空間も含む。ただし、始動発電機は、クランクケースのみにより収納されてもよい。 The crankcase is a case that houses at least the crankcase of the 4-stroke engine unit. The crankcase is connected to the cylinder. The crankcase houses the manual transmission. The crankcase houses, for example, a starting generator. In this case, the crankcase also includes the starting generator cover and the starting generator housing space. However, the starting generator may be housed only in the crankcase.
 ロータ位置検出装置は、始動発電機のロータの位置を検出する装置である。ロータ位置検出装置として、例えばホールICが使用される。但しロータ位置検出装置として、例えばピックアップが使用されてもよい。ロータ位置検出装置が始動発電機収納空間内に配置される場合、ロータ位置検出装置は、クランクケースに取り付けられる。ロータ位置検出装置は、例えばクランクケースの始動発電機カバーに取り付けられる。ロータ位置検出装置が始動発電機収納空間内に配置される場合、ロータ位置検出装置は、例えば、ステータに取り付けられてもよい。 The rotor position detection device is a device that detects the position of the rotor of the starting generator. For example, a Hall IC is used as the rotor position detecting device. However, for example, a pickup may be used as the rotor position detecting device. When the rotor position detecting device is arranged in the starting generator housing space, the rotor position detecting device is attached to the crankcase. The rotor position detecting device is attached to, for example, a crank generator starter generator cover. When the rotor position detecting device is arranged in the starter generator housing space, the rotor position detecting device may be attached to the stator, for example.
 鞍乗型車両(straddle vehicle) とは、運転者がサドルに跨って着座する形式のビークルをいう。鞍乗型車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、自動三輪車、ATV(All-Terrain Vehicle)等であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。鞍乗型車両の駆動輪は、後輪であってもよく、前輪であってもよい。また、鞍乗型車両の駆動輪は、後輪及び前輪の双方であってもよい。 A straddle vehicle is a vehicle in which the driver sits across the saddle. Examples of the saddle riding type vehicle include a scooter type, a moped type, an off-road type and an on-road type motorcycle. Further, the saddle-ride type vehicle is not limited to a motorcycle, and may be, for example, a motorcycle, an ATV (All-Terrain Vehicle), or the like. The motorcycle may include two front wheels and one rear wheel, or may include one front wheel and two rear wheels. The drive wheels of the saddle type vehicle may be rear wheels or front wheels. Further, the drive wheels of the saddle riding type vehicle may be both rear wheels and front wheels.
 また、鞍乗型車両は、リーン姿勢で旋回可能に構成されていることが好ましい。リーン姿勢で旋回可能に構成された鞍乗型車両は、カーブの内方向に傾いた姿勢で旋回するように構成される。これにより、リーン姿勢で旋回可能に構成された鞍乗型車両は、旋回時に鞍乗型車両に加わる遠心力に対抗する。リーン姿勢で旋回可能に構成された鞍乗型車両では、軽快性が求められるため、発進の操作に対する進行の応答性が重要視される。リーン姿勢で旋回可能に構成された鞍乗型車両では、例えば、動力源から駆動輪までの動力伝達経路に、流体の力学的作用を利用したトルクコンバータが設けられていない。 Also, it is preferable that the straddle-type vehicle is configured to be able to turn in a lean posture. A straddle-type vehicle configured to be able to turn in a lean posture is configured to turn in a posture tilted inward of a curve. As a result, the straddle-type vehicle configured to be able to turn in the lean posture opposes the centrifugal force applied to the straddle-type vehicle at the time of turning. In a saddle-ride type vehicle that is configured to be able to turn in a lean posture, lightness is required, and therefore responsiveness of progress to a start operation is important. In a straddle-type vehicle that is configured to be able to turn in a lean posture, for example, a torque converter that utilizes the mechanical action of fluid is not provided in the power transmission path from the power source to the drive wheels.
 本発明によれば、クランクシャフトの軸線方向におけるサイズが小型化可能な始動発電機を備えた4ストロークエンジンユニットを実現することができる。 According to the present invention, it is possible to realize a four-stroke engine unit including a starter/generator capable of reducing the size of the crankshaft in the axial direction.
本発明の一実施形態に係る4ストロークエンジンユニットの構成を示す断面図である。It is a sectional view showing composition of a 4-stroke engine unit concerning one embodiment of the present invention. 図1に示す4ストロークエンジンユニットの側面図である。It is a side view of the 4-stroke engine unit shown in FIG. 図1に示す始動発電機の回転軸線に垂直な断面を示す断面図である。It is sectional drawing which shows the cross section perpendicular|vertical to the rotating shaft line of the starter generator shown in FIG. (A)は、始動発電機の駆動特性を模式的に示す説明図である。(B)は、発電特性を模式的に示す説明図である。(A) is an explanatory view which shows typically the drive characteristic of a starting generator. (B) is an explanatory view schematically showing power generation characteristics. 図1の4ストロークエンジンユニットを搭載した鞍乗型車両の側面図である。FIG. 2 is a side view of a saddle-ride type vehicle equipped with the 4-stroke engine unit of FIG. 1.
 以下、本発明を、図面を参照しつつ説明する。 Hereinafter, the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る4ストロークエンジンユニットの構成を示す断面図である。図1の4ストロークエンジンユニット10は、負荷変動型4ストロークエンジン20と、マニュアル・トランスミッション30と、始動発電機60とを備える。なお、以下においては、負荷変動型4ストロークエンジン20は、4ストロークエンジン20とも称される。
 4ストロークエンジン20は、クランクケース21と、クランクシャフト24とを有する。クランクケース21は、低粘度オイルOLで内部が潤滑されるように構成されている。クランクシャフト24は、クランクケースに回転可能に支持される。4ストロークエンジン20は、ガスの燃焼によって生じるパワーをクランクシャフト24のトルク及び回転速度として出力する。4ストロークエンジン20は、4ストロークの間に、クランクシャフト24を回転させる負荷が大きい高負荷領域と、クランクシャフトを回転させる負荷が高負荷領域の負荷より小さい低負荷領域とを有する。本実施形態において、低粘度オイルOLは、SAE粘度分類による低温粘度グレードが20Wよりも低い潤滑オイルである。低粘度オイルOLは、クランクケース21内の一部に溜まっている。
FIG. 1 is a sectional view showing a configuration of a 4-stroke engine unit according to an embodiment of the present invention. The four-stroke engine unit 10 of FIG. 1 includes a load-changing four-stroke engine 20, a manual transmission 30, and a starter/generator 60. Note that, hereinafter, the load fluctuation type 4-stroke engine 20 is also referred to as the 4-stroke engine 20.
The 4-stroke engine 20 has a crankcase 21 and a crankshaft 24. The crankcase 21 is configured such that the inside thereof is lubricated with the low-viscosity oil OL. The crankshaft 24 is rotatably supported by the crankcase. The 4-stroke engine 20 outputs the power generated by the combustion of gas as the torque and the rotation speed of the crankshaft 24. The four-stroke engine 20 has a high load region in which the load that rotates the crankshaft 24 is large and a low load region in which the load that rotates the crankshaft is smaller than the load in the high load region during four strokes. In the present embodiment, the low-viscosity oil OL is a lubricating oil whose low-temperature viscosity grade according to SAE viscosity classification is lower than 20W. The low-viscosity oil OL is stored in a part of the crankcase 21.
 マニュアル・トランスミッション30は、低粘度オイルOLによって潤滑されるように4ストロークエンジン20のクランクケース21内に設けられる。4ストロークエンジン20のクランクシャフト24とマニュアル・トランスミッション30との間には、マニュアル・クラッチ40が設けられている。マニュアル・クラッチ40は、4ストロークエンジン20とマニュアル・トランスミッション30との間で伝達される動力を断続する。 The manual transmission 30 is provided in the crankcase 21 of the 4-stroke engine 20 so as to be lubricated by the low viscosity oil OL. A manual clutch 40 is provided between the crankshaft 24 of the four-stroke engine 20 and the manual transmission 30. The manual clutch 40 engages and disengages the power transmitted between the 4-stroke engine 20 and the manual transmission 30.
 始動発電機60は、ステータ62と、ロータ61とを備える。ステータ62は、周方向にスロットを空けて設けられた複数の歯部623を有するステータコア621と、歯部623に巻回される複数相のステータ巻線622をと有する。ロータ61は、ステータ62と空隙を空けて向かい合うように周方向に並び、且つスロットの数の4/3の磁極面を有する永久磁石部614を有する。即ち、ロータ61は、スロットの数の2/3より多い磁極面を有する永久磁石部614を有する。ロータ61は、クランクシャフト24と同軸上に配置される。ロータ61は、冷却のための気流を発生させるファン又はフィンを備えていない。始動発電機60は、低粘度オイルOLと接触する位置に設けられる。始動発電機60は、電力の供給を受けて4ストロークエンジン20を駆動する。また、始動発電機60は、クランクシャフト24を介して4ストロークエンジン20に駆動され発電する。 The starter/generator 60 includes a stator 62 and a rotor 61. The stator 62 has a stator core 621 having a plurality of teeth 623 provided with slots formed in the circumferential direction, and a plurality of phases of stator windings 622 wound around the teeth 623. The rotor 61 has a permanent magnet portion 614 which is arranged in the circumferential direction so as to face the stator 62 with a gap and has a magnetic pole surface of 4/3 of the number of slots. That is, the rotor 61 has the permanent magnet portion 614 having a magnetic pole surface larger than 2/3 of the number of slots. The rotor 61 is arranged coaxially with the crankshaft 24. The rotor 61 does not include a fan or fin that generates an air flow for cooling. The starter generator 60 is provided at a position in contact with the low viscosity oil OL. The start-up generator 60 receives the supply of electric power and drives the 4-stroke engine 20. The starter generator 60 is driven by the 4-stroke engine 20 via the crankshaft 24 to generate electric power.
 図2は、図1に示す4ストロークエンジンユニット10の側面図である。以下、図1及び図2を参照して、4ストロークエンジンユニット10について、更に詳細に説明する。
 4ストロークエンジンユニット10の4ストロークエンジン20は、クランクケース21と、シリンダ22と、ピストン26と、コネクティングロッド25と、クランクシャフト24とを備えている。
 ピストン26は、シリンダ22内に往復移動自在に設けられている。クランクシャフト24は、クランクケース21内に回転可能に設けられている。コネクティングロッド25は、ピストン26とクランクシャフト24を接続している。シリンダ22の上部には、シリンダヘッド23が取り付けられている。シリンダ22とシリンダヘッド23とピストン26とによって、燃焼室が形成される。
 クランクシャフト24は、クランクケース21に、一対のベアリング242を介して、回転自在な態様で支持されている。クランクシャフト24は、始動発電機60と、マニュアル・クラッチ40に動力を伝達する駆動ギア241とが取り付けられる。始動発電機60は、クランクシャフト24の回転軸線の方向に見た時に、クランクシャフト24の第1の方向に取り付けられている。駆動ギア241は、クランクシャフト24の回転軸線の方向に見た時に、クランクシャフト24の第2の方向に取り付けられる。
FIG. 2 is a side view of the 4-stroke engine unit 10 shown in FIG. Hereinafter, the 4-stroke engine unit 10 will be described in more detail with reference to FIGS. 1 and 2.
The 4-stroke engine 20 of the 4-stroke engine unit 10 includes a crankcase 21, a cylinder 22, a piston 26, a connecting rod 25, and a crankshaft 24.
The piston 26 is provided in the cylinder 22 so as to be capable of reciprocating. The crankshaft 24 is rotatably provided in the crankcase 21. The connecting rod 25 connects the piston 26 and the crankshaft 24. A cylinder head 23 is attached to the top of the cylinder 22. A combustion chamber is formed by the cylinder 22, the cylinder head 23, and the piston 26.
The crankshaft 24 is rotatably supported by the crankcase 21 via a pair of bearings 242. The crankshaft 24 is provided with a starting generator 60 and a drive gear 241 for transmitting power to the manual clutch 40. The starter-generator 60 is mounted in the first direction of the crankshaft 24 when viewed in the direction of the rotation axis of the crankshaft 24. The drive gear 241 is mounted in the second direction of the crankshaft 24 when viewed in the direction of the rotation axis of the crankshaft 24.
 4ストロークエンジン20には、スロットル弁SVと、燃料噴射装置FIと、点火プラグ27とが設けられている。スロットル弁SVは、燃焼室に供給される空気の量を調整する。燃料噴射装置FIは、燃料を噴射することによって、スロットル弁SVにより燃焼室に供給される空気に燃料を供給する。燃料と空気の混合ガスが、燃焼室に供給される。点火プラグ27は、燃焼室に供給される空気と燃料の混合ガスを燃焼させる。 The four-stroke engine 20 is provided with a throttle valve SV, a fuel injection device FI, and a spark plug 27. The throttle valve SV regulates the amount of air supplied to the combustion chamber. The fuel injection device FI supplies the fuel to the air supplied to the combustion chamber by the throttle valve SV by injecting the fuel. A mixed gas of fuel and air is supplied to the combustion chamber. The spark plug 27 burns a mixed gas of air and fuel supplied to the combustion chamber.
 4ストロークエンジン20は、内燃機関である。4ストロークエンジン20は、燃料の供給を受ける。4ストロークエンジン20は、燃料を燃焼する燃焼動作によって回転パワーを出力する。運転者は、図示しないアクセルグリップを操作することによって、4ストロークエンジン20から出力される回転パワーを調節する。4ストロークエンジン20は、クランクシャフト24を介して回転パワーを出力する。クランクシャフト24の回転パワーは、マニュアル・クラッチ40を介してマニュアル・トランスミッション30に伝達される。 The 4-stroke engine 20 is an internal combustion engine. The 4-stroke engine 20 is supplied with fuel. The 4-stroke engine 20 outputs rotational power by a combustion operation that burns fuel. The driver adjusts the rotational power output from the 4-stroke engine 20 by operating an accelerator grip (not shown). The 4-stroke engine 20 outputs rotational power via the crankshaft 24. The rotational power of the crankshaft 24 is transmitted to the manual transmission 30 via the manual clutch 40.
 4ストロークエンジン20は、4ストロークの間に、クランクシャフト24を回転させる負荷が大きい高負荷領域と、クランクシャフト24を回転させる負荷が高負荷領域の負荷より小さい低負荷領域とを有する。クランクシャフト24の回転角度を基準として見ると、低負荷領域は高負荷領域よりも広い。より詳細には、4ストロークエンジン20は、吸気行程、圧縮行程、膨張行程、及び排気行程の4行程を繰返しながら正回転する。圧縮行程は、高負荷領域に含まれ、低負荷領域に含まれない。 The four-stroke engine 20 has a high load region where the load that rotates the crankshaft 24 is large and a low load region where the load that rotates the crankshaft 24 is smaller than the load in the high load region during four strokes. From the viewpoint of the rotation angle of the crankshaft 24, the low load region is wider than the high load region. More specifically, the four-stroke engine 20 rotates forward while repeating four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. The compression stroke is included in the high load area and is not included in the low load area.
 4ストロークエンジン20は、カムシャフト28と、吸気バルブ29aと、排気バルブ29bと、カムチェーン281とを備える。カムチェーン281は、クランクシャフト24により駆動され、カムシャフト28を回転させる。カムシャフト28は複数のカムを有する。カムシャフト28のそれぞれのカムは、回転することにより、直接的又は間接的に吸気バルブ29a及び排気バルブ29bを上下動させる。より詳細には、クランクシャフト24は、4ストロークエンジン20の吸気行程において、吸気バルブ29aを下降させ、排気行程においては、排気バルブ29bを下降させるように、カムシャフト28とカムチェーン281とを駆動させる。カムチェーン281は、クランクケース21と、シリンダ22と、シリンダヘッド23とに形成された、カムチェーン収納部282に収納される。 The 4-stroke engine 20 includes a camshaft 28, an intake valve 29a, an exhaust valve 29b, and a cam chain 281. The cam chain 281 is driven by the crankshaft 24 and rotates the camshaft 28. The cam shaft 28 has a plurality of cams. Each cam of the cam shaft 28 rotates to directly or indirectly move the intake valve 29a and the exhaust valve 29b up and down. More specifically, the crankshaft 24 drives the camshaft 28 and the cam chain 281 so as to lower the intake valve 29a in the intake stroke of the four-stroke engine 20 and lower the exhaust valve 29b in the exhaust stroke. Let The cam chain 281 is housed in a cam chain housing portion 282 formed in the crankcase 21, the cylinder 22, and the cylinder head 23.
 4ストロークエンジン20は、クランクケース21の下部にオイルパン211を備える。オイルパン211は、4ストロークエンジン20の動作を潤滑させる低粘度オイルOLが溜められている。オイルパン211に溜まった低粘度オイルOLは、図示しないオイルポンプによって加圧される。加圧された低粘度オイルOLは、図示しないオイル供給通路を介して、ピストン26、及びクランクシャフト24に供給される。このようなオイル供給通路は、例えば、クランクシャフト24の内部に設けられた孔、シリンダ22の内部に設けられた孔、及びシリンダ22とシリンダヘッド23との接合面に形成された溝で形成される。低粘度オイルOLの一部は、カムチェーン収納部282に供給される。カムチェーン収納部282に供給される低粘度オイルOLは、カムチェーン281を介して、カムシャフト28及びバルブ29にも供給される。このようにして、4ストロークエンジン20の内部は、低粘度オイルOLで潤滑される。従って、クランクケース21の内部は、低粘度オイルOLで潤滑される。 The 4-stroke engine 20 includes an oil pan 211 below the crankcase 21. The oil pan 211 stores low-viscosity oil OL that lubricates the operation of the 4-stroke engine 20. The low viscosity oil OL accumulated in the oil pan 211 is pressurized by an oil pump (not shown). The pressurized low viscosity oil OL is supplied to the piston 26 and the crankshaft 24 via an oil supply passage (not shown). Such an oil supply passage is formed by, for example, a hole provided inside the crankshaft 24, a hole provided inside the cylinder 22, and a groove formed at the joint surface between the cylinder 22 and the cylinder head 23. It A part of the low-viscosity oil OL is supplied to the cam chain storage portion 282. The low-viscosity oil OL supplied to the cam chain housing portion 282 is also supplied to the cam shaft 28 and the valve 29 via the cam chain 281. In this way, the interior of the 4-stroke engine 20 is lubricated with the low-viscosity oil OL. Therefore, the inside of the crankcase 21 is lubricated with the low viscosity oil OL.
 低粘度オイルOLは、SAE J300に規定されるSAE粘度分類による低温粘度グレードが、20Wよりも低い低粘度オイルである。粘度グレードが低いほどオイルの粘度は低い。潤滑オイルのSAE粘度分類による高温粘度グレードは、特に限定されない。Xを0以上20未満の整数、Yを0以上の整数とすると、潤滑オイルのSAE粘度グレードは、XW-Yで表される。潤滑オイルは、ベースオイルと添加物で構成されている。大まかにいうと、潤滑オイルの粘度が低いほど、潤滑オイルの蒸発温度が低く、蒸発しやすい。ベースオイルの種類(例えば鉱物油であるか合成油であるか)や、添加物によっては、潤滑オイルの粘度が同じであっても蒸発温度が異なる場合がある。潤滑オイルの蒸発特性は、例えば、ASTM D6352に準拠したガスクロマトグラフィー模擬蒸留による沸点分布測定法によって取得できる。 Low-viscosity oil OL is a low-viscosity oil whose low-temperature viscosity grade according to the SAE viscosity classification specified in SAE J300 is lower than 20W. The lower the viscosity grade, the lower the viscosity of the oil. The high temperature viscosity grade according to the SAE viscosity classification of the lubricating oil is not particularly limited. When X is an integer of 0 or more and less than 20 and Y is an integer of 0 or more, the SAE viscosity grade of the lubricating oil is represented by XW-Y. Lubricating oil is composed of base oil and additives. Roughly speaking, the lower the viscosity of the lubricating oil, the lower the evaporation temperature of the lubricating oil and the easier it is to evaporate. Depending on the type of base oil (for example, mineral oil or synthetic oil) and additives, the evaporation temperature may differ even if the lubricating oil has the same viscosity. The evaporation characteristics of the lubricating oil can be obtained, for example, by a boiling point distribution measurement method by gas chromatography simulated distillation according to ASTM D6352.
 マニュアル・クラッチ40は、クラッチハウジング41と、フリクションプレート42と、クラッチプレート43と、クラッチボス44と、プレッシャープレート45と、を備える。クラッチハウジング41には、被駆動ギア411が設けられる。クラッチハウジング41には、クランクシャフト24に設けられた駆動ギア241と被駆動ギア411とを介して、クランクシャフト24からの駆動力が伝達される。フリクションプレート42は、クラッチハウジング41の内周に配置される。フリクションプレート42は、クラッチハウジング41と係合し、クラッチハウジング41と共に回転する。クラッチボス44は、マニュアル・トランスミッション30の入力軸32に、マニュアル・トランスミッション30の入力軸32と一体となって回転するように取り付けられる。クラッチボス44の回転軸線と、クラッチハウジング41の回転軸線とは、略一致している。クラッチプレート43は、クラッチボス44の外周に配置される。クラッチプレート43は、クラッチボスと44係合し、クラッチボス44と共に回転する。 The manual clutch 40 includes a clutch housing 41, a friction plate 42, a clutch plate 43, a clutch boss 44, and a pressure plate 45. A driven gear 411 is provided in the clutch housing 41. The driving force from the crankshaft 24 is transmitted to the clutch housing 41 via a driving gear 241 and a driven gear 411 provided on the crankshaft 24. The friction plate 42 is arranged on the inner circumference of the clutch housing 41. The friction plate 42 engages with the clutch housing 41 and rotates together with the clutch housing 41. The clutch boss 44 is attached to the input shaft 32 of the manual transmission 30 so as to rotate integrally with the input shaft 32 of the manual transmission 30. The rotation axis of the clutch boss 44 and the rotation axis of the clutch housing 41 are substantially coincident with each other. The clutch plate 43 is arranged on the outer periphery of the clutch boss 44. The clutch plate 43 engages with the clutch boss 44 and rotates together with the clutch boss 44.
 プレッシャープレート45は、マニュアル・トランスミッション30の入力軸の中心軸を貫くリフタロッド38に接続される。プレッシャープレート45は、運転者の操作により、フリクションプレート42と、クラッチプレート43とを、密着及び離間させる。より詳細には、運転者は、図示しないクラッチレバーを操作することにより、図示しないワイヤ、及びクラッチアーム37を介して、リフタロッド38を中心軸線の方向に変位させる。プレッシャープレート45は、リフタロッド38と一体となり、リフタロッド38の中心軸線の方向に変位して、フリクションプレート42と、クラッチプレート43とを、密着又は離間させる。運転者が、プレッシャープレート45により、フリクションプレート42とクラッチプレート43とを密着させると、4ストロークエンジン20の駆動力が、マニュアル・トランスミッション30に伝達される。運転者が、プレッシャープレート45により、フリクションプレート42とクラッチプレート43とを離間させると、4ストロークエンジン20の駆動力が、マニュアル・トランスミッション30から切断される。 The pressure plate 45 is connected to the lifter rod 38 that penetrates the central axis of the input shaft of the manual transmission 30. The pressure plate 45 brings the friction plate 42 and the clutch plate 43 into close contact with and away from each other by the operation of the driver. More specifically, the driver operates the clutch lever (not shown) to displace the lifter rod 38 in the direction of the central axis via the wire (not shown) and the clutch arm 37. The pressure plate 45 is integrated with the lifter rod 38 and is displaced in the direction of the central axis of the lifter rod 38 to bring the friction plate 42 and the clutch plate 43 into close contact with or apart from each other. When the driver brings the friction plate 42 and the clutch plate 43 into close contact with each other with the pressure plate 45, the driving force of the four-stroke engine 20 is transmitted to the manual transmission 30. When the driver separates the friction plate 42 from the clutch plate 43 with the pressure plate 45, the driving force of the four-stroke engine 20 is disconnected from the manual transmission 30.
 マニュアル・トランスミッション30は、クランクケース21内に設けられる。マニュアル・トランスミッション30は、マニュアル・クラッチ40と接続されている。マニュアル・トランスミッション30は、複数の変速段を有する。マニュアル・トランスミッション30は、入力軸32と、出力軸33と、駆動ギア34と、被駆動ギア35と、変速段設定機構36とを有する。入力軸32は、回転可能に配置される。入力軸32には、マニュアル・クラッチ40を介して、4ストロークエンジン20から出力された動力が入力される。マニュアル・トランスミッション30は、入力軸32に対し出力軸33の回転速度を段階的に変速する。 The manual transmission 30 is provided inside the crankcase 21. The manual transmission 30 is connected to the manual clutch 40. The manual transmission 30 has a plurality of shift speeds. The manual transmission 30 has an input shaft 32, an output shaft 33, a driving gear 34, a driven gear 35, and a gear stage setting mechanism 36. The input shaft 32 is rotatably arranged. The power output from the 4-stroke engine 20 is input to the input shaft 32 via the manual clutch 40. The manual transmission 30 changes the rotational speed of the output shaft 33 with respect to the input shaft 32 in a stepwise manner.
 出力軸33は、入力軸32と平行な軸線上に回転可能に配置される。複数の駆動ギア34は、入力軸32に設けられ、常に入力軸32と共に回転するように構成されている。また、複数の駆動ギア34のそれぞれは、各変速段に対応する。複数の被駆動ギア35は、出力軸33に設けられ、出力軸33と相対回転可能であるように構成される。複数の被駆動ギア35は、対応する駆動ギア34と噛み合い可能であるように構成されている。常時、複数の被駆動ギア35の少なくとも一つが、駆動ギア34と噛み合う。
 詳細には、図1に示すマニュアル・トランスミッション30に備えられた複数の駆動ギア34は、常に入力軸32と共に回転するように構成されている。また、複数の被駆動ギア35は、出力軸33と相対回転可能であるように構成される。また、複数の被駆動ギア35のそれぞれが、駆動ギア34と常時噛み合う。
The output shaft 33 is rotatably arranged on an axis parallel to the input shaft 32. The plurality of drive gears 34 are provided on the input shaft 32 and are configured to always rotate together with the input shaft 32. Further, each of the plurality of drive gears 34 corresponds to each shift speed. The plurality of driven gears 35 are provided on the output shaft 33 and are configured to be rotatable relative to the output shaft 33. The plurality of driven gears 35 are configured to be able to mesh with the corresponding drive gears 34. At least one of the plurality of driven gears 35 always meshes with the drive gear 34.
Specifically, the plurality of drive gears 34 included in the manual transmission 30 shown in FIG. 1 are configured so as to always rotate together with the input shaft 32. Further, the plurality of driven gears 35 are configured to be rotatable relative to the output shaft 33. Further, each of the plurality of driven gears 35 always meshes with the driving gear 34.
 低粘度オイルOLは、マニュアル・トランスミッション30にも供給される。より詳細には、マニュアル・トランスミッション30は、一部がオイルパン211に溜められた低粘度オイルOLに浸かっている。また、ピストン26に供給された低粘度オイルOLは、マニュアル・トランスミッション30にも流れる。低粘度オイルOLは、マニュアル・トランスミッション30の回転により攪拌されることによりクランクケース21内に拡散する。これにより、低粘度オイルOLは、マニュアル・トランスミッション30全体に供給される。 The low viscosity oil OL is also supplied to the manual transmission 30. More specifically, the manual transmission 30 is partially immersed in the low viscosity oil OL stored in the oil pan 211. The low viscosity oil OL supplied to the piston 26 also flows to the manual transmission 30. The low-viscosity oil OL is agitated by the rotation of the manual transmission 30 and diffuses into the crankcase 21. As a result, the low-viscosity oil OL is supplied to the entire manual transmission 30.
 図3は、図1に示す始動発電機60の回転軸線に垂直な断面を示す断面図である。図1及び図3を参照して始動発電機60を説明する。始動発電機60は、永久磁石式三相ブラシレス型モータである。始動発電機60は、永久磁石式三相ブラシレス型発電機としても機能する。始動発電機60は、クランクケース21に対し位置が固定されたステータ62と、ステータ62に対し空隙を介して対向する永久磁石を有しクランクシャフト24の回転と連動するようにクランクシャフト24に設けられたロータとを備える。本実施形態の始動発電機60は、ラジアルギャップ型である。始動発電機60は、アウターロータ型である。即ち、ロータ61はアウターロータである。ステータ62はインナーステータである。始動発電機60は、始動発電機カバー64とクランクケース21とにより形成された始動発電機収納部65に収納される。始動発電機収納部65の空間は、カムチェーン収納部282の空間と連通している。 FIG. 3 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the starting generator 60 shown in FIG. The starting generator 60 will be described with reference to FIGS. 1 and 3. The starter generator 60 is a permanent magnet type three-phase brushless motor. The starter generator 60 also functions as a permanent magnet type three-phase brushless generator. The starter-generator 60 has a stator 62 whose position is fixed with respect to the crankcase 21 and a permanent magnet facing the stator 62 with a gap therebetween, and is provided on the crankshaft 24 so as to interlock with the rotation of the crankshaft 24. And a fixed rotor. The start-up generator 60 of this embodiment is a radial gap type. The starter generator 60 is an outer rotor type. That is, the rotor 61 is an outer rotor. The stator 62 is an inner stator. The starter/generator 60 is housed in a starter/generator housing portion 65 formed by the starter/generator cover 64 and the crankcase 21. The space of the starter generator storage portion 65 communicates with the space of the cam chain storage portion 282.
 ロータ61は、ロータ本体部615を有する。ロータ本体部615は、例えば強磁性材料からなる。ロータ本体部615は、有底筒状を有する。ロータ本体部615は、筒状ボス部615aと、円板状の底壁部615bと、筒状のバックヨーク部615cとを有する。底壁部615bとバックヨーク部615cとは一体的に形成されている。底壁部615b及びバックヨーク部615cは筒状ボス部615aを介してクランクシャフト24に固定されている。ロータ61には、電流が供給される巻線が設けられていない。
 ロータ61は、クランクシャフト24が伸びる軸線方向における、ステータ62と4ストロークエンジン20の気筒(シリンダ22)との間でクランクシャフト24に接続された有底筒状である。つまり、円板状の底壁部615bが、クランクシャフト24が伸びる軸線方向において、筒状のバックヨーク部615cよりもシリンダ22の方向に設けられている。
 ロータ61は、永久磁石部614を有する。ロータ61は、複数の磁極部616を有する。複数の磁極部616は永久磁石部614により形成されている。複数の磁極部616は、バックヨーク部615cの内周面に設けられている。本実施形態において、永久磁石部614は、複数の永久磁石を有する。複数の磁極部616は、複数の永久磁石のそれぞれに設けられている。
 本実施形態において、始動発電機60の永久磁石部614は、厚さを厚く設計することによって、パーミアンス係数を高くする。パーミアンス係数を高くすることにより、永久磁石部614は、減磁に対してロバスト性を有することになる。
The rotor 61 has a rotor body 615. The rotor body 615 is made of, for example, a ferromagnetic material. The rotor body 615 has a bottomed tubular shape. The rotor body 615 has a cylindrical boss 615a, a disc-shaped bottom wall 615b, and a cylindrical back yoke 615c. The bottom wall portion 615b and the back yoke portion 615c are integrally formed. The bottom wall portion 615b and the back yoke portion 615c are fixed to the crankshaft 24 via a cylindrical boss portion 615a. The rotor 61 is not provided with a winding to which current is supplied.
The rotor 61 has a bottomed tubular shape connected to the crankshaft 24 between the stator 62 and the cylinder (cylinder 22) of the four-stroke engine 20 in the axial direction in which the crankshaft 24 extends. That is, the disc-shaped bottom wall portion 615b is provided in the direction of the cylinder 22 rather than the tubular back yoke portion 615c in the axial direction in which the crankshaft 24 extends.
The rotor 61 has a permanent magnet portion 614. The rotor 61 has a plurality of magnetic pole portions 616. The plurality of magnetic pole portions 616 are formed by the permanent magnet portion 614. The plurality of magnetic pole portions 616 are provided on the inner peripheral surface of the back yoke portion 615c. In the present embodiment, the permanent magnet section 614 has a plurality of permanent magnets. The plurality of magnetic pole portions 616 are provided in each of the plurality of permanent magnets.
In the present embodiment, the permanent magnet part 614 of the start-up generator 60 is designed to have a large thickness to increase the permeance coefficient. By increasing the permeance coefficient, the permanent magnet part 614 has robustness against demagnetization.
 複数の磁極部616は、始動発電機60の周方向にN極とS極とが交互に配置されるように設けられている。本実施形態では、ステータ62と対向するロータ61の磁極数が24個である。ロータ61の磁極数とは、ステータ62と対向する磁極数をいう。磁極部616とステータ62との間には磁性体が設けられていない。
 磁極部616は、始動発電機60の径方向におけるステータ62よりも外に設けられている。バックヨーク部615cは、径方向における磁極部616よりも外に設けられている。始動発電機60は、歯部623の数よりも多い磁極部616を有している。なお、本実施形態において、ロータ61は、磁極部616が磁性材料から露出した表面磁石型(SPM型)である。
The plurality of magnetic pole portions 616 are provided such that the N poles and the S poles are alternately arranged in the circumferential direction of the starting generator 60. In the present embodiment, the rotor 61 facing the stator 62 has 24 magnetic poles. The number of magnetic poles of the rotor 61 refers to the number of magnetic poles facing the stator 62. No magnetic material is provided between the magnetic pole portion 616 and the stator 62.
The magnetic pole portion 616 is provided outside the stator 62 in the radial direction of the starting generator 60. The back yoke portion 615c is provided outside the magnetic pole portion 616 in the radial direction. The start-up generator 60 has more magnetic poles 616 than the number of teeth 623. In the present embodiment, the rotor 61 is a surface magnet type (SPM type) in which the magnetic pole portion 616 is exposed from the magnetic material.
 ステータ62は、クランクケース21に対し位置が固定されている。ステータ62は、ステータコア621と複数のステータ巻線622とを有する。ステータコア621は、周方向に間隔を空けて設けられた複数の歯部623を有する。複数の歯部623は、ステータコア621から径方向外に向かって一体的に延びている。本実施形態においては、合計18個の歯部623が周方向に間隔を空けて設けられている。換言すると、ステータコア621は、周方向に間隔を空けて形成された合計18個のスロット624を有する。歯部623は周方向に等間隔で配置されている。
 ロータ61は、歯部623の数より多い数の磁極部616を有する。磁極部の数は、スロット数の4/3である。
The position of the stator 62 is fixed with respect to the crankcase 21. The stator 62 has a stator core 621 and a plurality of stator windings 622. The stator core 621 has a plurality of tooth portions 623 provided at intervals in the circumferential direction. The plurality of tooth portions 623 integrally extend from the stator core 621 outward in the radial direction. In the present embodiment, a total of 18 tooth portions 623 are provided at intervals in the circumferential direction. In other words, the stator core 621 has a total of 18 slots 624 formed at intervals in the circumferential direction. The tooth portions 623 are arranged at equal intervals in the circumferential direction.
The rotor 61 has a number of magnetic pole portions 616 that is greater than the number of teeth 623. The number of magnetic pole portions is 4/3 of the number of slots.
 各歯部623の周囲には、ステータ巻線622が巻回している。つまり、複数相のステータ巻線622は、スロット624を通るように設けられている。図3には、ステータ巻線622が、スロット624の中にある状態が示されている。複数相のステータ巻線622のそれぞれは、U相、V相、W相の何れかに属する。ステータ巻線622は、例えば、U相、V相、W相の順に並ぶように配置される。本実施形態において、ステータ巻線622は、発電機のみに使用する回転電機に使用されるステータ巻線より太めのステータ巻線が使用される。 A stator winding 622 is wound around each tooth 623. That is, the plural-phase stator windings 622 are provided so as to pass through the slots 624. In FIG. 3, the stator winding 622 is shown in the slot 624. Each of the multiple-phase stator windings 622 belongs to any one of U phase, V phase, and W phase. The stator windings 622 are arranged, for example, in the order of U phase, V phase, and W phase. In the present embodiment, as the stator winding 622, a stator winding that is thicker than the stator winding that is used in the rotating electric machine used only for the generator is used.
 ロータ位置検出装置63は、始動発電機収納部65に配置される。ロータ位置検出装置63は、クランクケース21内でクランクケース21に対し位置が固定されるようにクランクケース21に支持される。ロータ位置検出装置63は、磁極部616の通過による電気的特性変化により、ロータ61の位置の検出を表す信号を出力する。ロータ位置検出装置63として、ホールICが使用される。 The rotor position detection device 63 is arranged in the starter generator storage portion 65. The rotor position detection device 63 is supported by the crankcase 21 so that its position is fixed with respect to the crankcase 21 within the crankcase 21. The rotor position detecting device 63 outputs a signal indicating the detection of the position of the rotor 61 due to the change in electrical characteristics due to the passage of the magnetic pole portion 616. A Hall IC is used as the rotor position detection device 63.
 始動発電機60は、4ストロークエンジン20のクランクシャフト24と接続されている。詳細には、ロータ61が、クランクシャフト24に対し固定された速度比で回転するようクランクシャフト24と接続されている。
 本実施形態では、始動発電機60の回転軸線と、クランクシャフト24の回転軸線とは、略一致している。ロータ61が、クランクシャフト24に、動力伝達機構(例えば、ベルト、チェーン、ギア、減速機、増速機等)を介さずに取り付けられている。ロータ61は、クランクシャフト24に対し1:1の速度比で回転する。始動発電機60が、4ストロークエンジン20の正回転によりクランクシャフト24を正回転させるように構成されている。
The starter generator 60 is connected to the crankshaft 24 of the 4-stroke engine 20. Specifically, the rotor 61 is connected to the crankshaft 24 so as to rotate at a fixed speed ratio with respect to the crankshaft 24.
In the present embodiment, the rotation axis of the starter/generator 60 and the rotation axis of the crankshaft 24 are substantially coincident with each other. The rotor 61 is attached to the crankshaft 24 without a power transmission mechanism (for example, a belt, a chain, a gear, a speed reducer, a speed increaser, etc.). The rotor 61 rotates with respect to the crankshaft 24 at a speed ratio of 1:1. The starter generator 60 is configured to rotate the crankshaft 24 in the forward direction by the forward rotation of the 4-stroke engine 20.
 始動発電機60は、エンジン始動時には、クランクシャフト24を正回転させて4ストロークエンジン20を始動させる。また、始動発電機60は、4ストロークエンジン20が燃焼動作する場合に、4ストロークエンジン20に駆動されて発電する。即ち、始動発電機60は、クランクシャフト24を正回転させて4ストロークエンジン20を始動させる機能と、4ストロークエンジン20が燃焼動作する場合に、4ストロークエンジン20に駆動されて発電する機能の双方を兼ね備えている。始動発電機60は、4ストロークエンジン20の始動後の期間の少なくとも一部には、クランクシャフト24により正回転されてジェネレータとして機能する。即ち、始動発電機60がジェネレータとして機能する場合において、始動発電機60は、エンジンの燃焼開始後、必ずしも、常にジェネレータとして機能する必要はない。また、エンジンの燃焼開始後に、始動発電機60がジェネレータとして機能する期間と始動発電機60が車両駆動用モータとして機能する期間とが含まれていてもよい。 The starting generator 60 starts the 4-stroke engine 20 by rotating the crankshaft 24 in the forward direction when the engine is started. Further, the starting generator 60 is driven by the four-stroke engine 20 to generate power when the four-stroke engine 20 performs a combustion operation. That is, the start-up generator 60 has both a function of starting the 4-stroke engine 20 by rotating the crankshaft 24 in the forward direction and a function of being driven by the 4-stroke engine 20 to generate power when the 4-stroke engine 20 performs a combustion operation. Have both. The starter-generator 60 is normally rotated by the crankshaft 24 and functions as a generator during at least a part of the period after the start of the 4-stroke engine 20. That is, when the starting power generator 60 functions as a generator, the starting power generator 60 does not always have to function as a generator after the combustion of the engine is started. Further, a period in which the starting generator 60 functions as a generator and a period in which the starting generator 60 functions as a vehicle driving motor after the start of combustion of the engine may be included.
 本実施形態の始動発電機60は、歯部623の数よりも多い磁極部616を有している。このため、始動発電機60は、歯部の数より少ない磁極部を有する始動発電機と比べて角速度が大きい。角速度は、巻線のインピーダンスに寄与する。
 即ち、巻線のインピーダンスは、概略的に下式で表される。
 (R1/2
 ここで、R:直流抵抗、ω:電気角についての角速度、L:インダクタンスである。
The starter-generator 60 of this embodiment has more magnetic pole portions 616 than the number of tooth portions 623. Therefore, the starter generator 60 has a higher angular velocity than the starter generator having the magnetic pole portions smaller than the number of teeth. The angular velocity contributes to the impedance of the winding.
That is, the impedance of the winding is roughly expressed by the following equation.
(R 22 L 2 ) 1/2
Here, R is a DC resistance, ω is an angular velocity about an electrical angle, and L is an inductance.
 電気角についての角速度ωは、下式で表される。
 ω=(P/2)×(N/60)×2π
 ここで、P:磁極数、N:回転速度[rpm]
The angular velocity ω with respect to the electrical angle is expressed by the following equation.
ω=(P/2)×(N/60)×2π
Where P: number of magnetic poles, N: rotational speed [rpm]
 始動発電機60は、歯部623の数よりも多い磁極部616を有しているので、歯部の数より少ない磁極部を有する始動発電機と比べて角速度ωが大きい。従って、回転している時のインピーダンスが大きい。しかも、回転速度Nが高くなるほど、角速度ωが大きくなり、インピーダンスが大きくなる。
 従って、始動発電機60は、発電機として使用される回転領域において、大きなインピーダンスによって発電電流を抑制できる。
Since the starter-generator 60 has more magnetic poles 616 than the number of teeth 623, the angular velocity ω is larger than that of a starter-generator having less magnetic poles than the number of teeth. Therefore, the impedance when rotating is large. Moreover, as the rotation speed N increases, the angular speed ω increases, and the impedance increases.
Therefore, the start-up generator 60 can suppress the generated current with a large impedance in the rotation region used as the generator.
 また、本実施形態の始動発電機60に使用されるステータ巻線622は、発電機にのみ使用される回転電機に使用されるステータ巻線よりも太めのステータ巻線が使用される。太めのステータ巻線を使用することにより、始動発電機60のインピーダンスにおけるステータ巻線の直流抵抗を小さくすることができる。ステータ巻線の直流抵抗を小さくすることにより、始動発電機60がスタータモータとして使用される低速回転領域において、大きなトルクを発生することができる。 Further, as the stator winding 622 used in the starting generator 60 of the present embodiment, a stator winding thicker than the stator winding used in the rotating electric machine used only for the generator is used. By using a thicker stator winding, the DC resistance of the stator winding in the impedance of the starter generator 60 can be reduced. By reducing the DC resistance of the stator winding, it is possible to generate a large torque in the low speed rotation region where the start-up generator 60 is used as a starter motor.
 図4(A)は、始動発電機60の駆動特性を模式的に示す説明図である。図4(B)は、発電特性を模式的に示す説明図である。
 図中、横軸は、クランクシャフト24の回転速度を示す。なお、横軸の目盛1つあたりの回転速度は、駆動特性の図4(A)と、発電特性の図4(B)とで異なっている。発電特性の図における目盛1つあたりの回転速度は、駆動特性の図における目盛1つあたりの回転速度よりも多い。縦軸は、正方向に出力トルクを示し、負方向に発電電流を示す。実線は、本実施形態に係る始動発電機60の特性を示す。破線は、比較例に係る始動発電機の特性を示す。比較例に係る始動発電機は、歯部の数より少ない磁極部(例えば、スロット数の2/3)を有する。本実施形態の始動発電機60(実線)は、クランクシャフト24を駆動する場合に、比較例に係る始動発電機(破線)と同程度のトルクを出力し(図4(A))、高速回転時に、比較例に係る始動発電機(破線)よりも発電電流を抑制できる(図4(B))。
FIG. 4A is an explanatory diagram that schematically shows the drive characteristics of the starting generator 60. FIG. 4B is an explanatory diagram schematically showing power generation characteristics.
In the figure, the horizontal axis represents the rotation speed of the crankshaft 24. The rotation speed per scale on the horizontal axis is different between the drive characteristics shown in FIG. 4A and the power generation characteristics shown in FIG. 4B. The rotation speed per scale in the diagram of power generation characteristics is higher than the rotation speed per scale in the diagram of drive characteristics. The vertical axis represents the output torque in the positive direction and the generated current in the negative direction. The solid line shows the characteristics of the starter generator 60 according to this embodiment. The broken line shows the characteristics of the starting generator according to the comparative example. The start-up generator according to the comparative example has magnetic pole portions (for example, 2/3 of the number of slots) that are smaller than the number of teeth. When the crankshaft 24 is driven, the starter generator 60 (solid line) of the present embodiment outputs the same torque as the starter generator (broken line) according to the comparative example (FIG. 4(A)), and rotates at high speed. Occasionally, the generated current can be suppressed more than the starting generator (broken line) according to the comparative example (FIG. 4(B)).
 低粘度オイルOLは、始動発電機60にも供給される。カムチェーン収納部282に供給された低粘度オイルOLは、始動発電機収納部65にも供給される。より詳細には、低粘度オイルOLは、カムチェーン収納部282に供給されたのち、カムチェーン281に攪拌されミスト状となる。ミスト状となった低粘度オイルOLは、始動発電機収納部65の空間は、カムチェーン収納部282の空間と連通しているため、始動発電機60が収納される始動発電機収納部65にも供給される。また、ピストン26に供給された低粘度オイルOLが、始動発電機60にも流れる。始動発電機収納部65に供給された低粘度オイルOLは、始動発電機収納部65の下部に貯められる。低粘度オイルOLは、始動発電機60の一部が低粘度オイルOLに浸かるように溜まる。例えば始動発電機60の一部を囲うように設けられた図示しない堰止め壁に低粘度オイルOLが溜まることで、始動発電機60の一部が低粘度オイルOLに浸かる。例えば堰き止め壁からあふれた低粘度オイルOLは、オイルパン211へ流れる。始動発電機60の回転によって、始動発電機60に付着した低粘度オイルOLがクランクケース21内に拡散する。 The low viscosity oil OL is also supplied to the starter generator 60. The low-viscosity oil OL supplied to the cam chain storage unit 282 is also supplied to the starter generator storage unit 65. More specifically, the low-viscosity oil OL is supplied to the cam chain housing portion 282 and then stirred by the cam chain 281 to be in a mist form. The mist-like low-viscosity oil OL has a space in the starter/generator storage section 65 communicating with a space in the cam chain storage section 282. Is also supplied. Further, the low-viscosity oil OL supplied to the piston 26 also flows to the starter generator 60. The low-viscosity oil OL supplied to the starter/generator storage section 65 is stored in the lower portion of the starter/generator storage section 65. The low-viscosity oil OL collects so that a part of the starting generator 60 is immersed in the low-viscosity oil OL. For example, when the low-viscosity oil OL collects in a blocking wall (not shown) provided so as to surround a part of the start-up generator 60, part of the start-up generator 60 is immersed in the low-viscosity oil OL. For example, the low viscosity oil OL overflowing from the dam wall flows to the oil pan 211. Due to the rotation of the start-up generator 60, the low-viscosity oil OL attached to the start-up generator 60 diffuses into the crankcase 21.
 従来は、始動発電機は、始動発電機収納部と4ストロークエンジンとの間にオイルの出入りを塞ぐ仕切りを設け、ロータに冷却のための気流を発生させるファン又はフィンを設けていた。これに対し、本実施形態において、始動発電機60は、始動発電機収納部65と4ストロークエンジン20との間にオイルの出入りを塞ぐ仕切りがなく、始動発電機収納部65内で低粘度オイルOLと接触している。始動発電機60は、発電機として使用される回転領域において発電電流を抑制できるため、発電時に発生する熱量が、歯部の数より少ない磁極面を有する指導発電機(図4の比較例)よりも少ない。このため、始動発電機60は、ステータ巻線622の温度が低粘度オイルOLの温度よりも高くならない又は高くなり難い。従って、始動発電機60が蒸発温度の低い潤滑オイルである低粘度オイルOLと接触するように配置されても、低粘度オイルOLの蒸発を抑制できる。
 その結果、本実施形態においては、始動発電機60の冷却機構の大型化を抑制又は回避しつつ、始動発電機60を潤滑オイルである低粘度オイルOLと接触する環境下に配置できる。更には、4ストロークエンジンユニット10は、オイルクーラ、及びラジエータ等を設置しなくてもよい。
 また、始動発電機60は、熱量の発生を抑制できるため、検出装置の検出特性の変化を抑制できる。
Conventionally, a starter/generator has a partition between the starter/generator housing and a four-stroke engine to block the entry and exit of oil, and a rotor provided with a fan or fins for generating an air flow for cooling. On the other hand, in the present embodiment, the starter/generator 60 does not have a partition for blocking the entry and exit of oil between the starter/generator storage section 65 and the four-stroke engine 20, and the low-viscosity oil is stored in the starter/generator storage section 65. It is in contact with OL. Since the starter generator 60 can suppress the generated current in the rotation region used as a generator, the amount of heat generated during power generation is less than that of a teaching generator (comparative example of FIG. 4) having magnetic pole faces with less number of teeth. Also few. Therefore, in the start-up generator 60, the temperature of the stator winding 622 does not become higher than the temperature of the low-viscosity oil OL or does not easily increase. Therefore, even if the starter generator 60 is arranged so as to come into contact with the low-viscosity oil OL, which is a lubricating oil having a low evaporation temperature, the evaporation of the low-viscosity oil OL can be suppressed.
As a result, in the present embodiment, the start-up generator 60 can be arranged in an environment in which it contacts the low-viscosity oil OL, which is lubricating oil, while suppressing or avoiding an increase in the size of the cooling mechanism of the start-up generator 60. Furthermore, the 4-stroke engine unit 10 does not need to be equipped with an oil cooler, a radiator and the like.
Further, since the starter generator 60 can suppress the generation of heat, it can suppress the change in the detection characteristics of the detection device.
 4ストロークエンジンユニット10では、ロータ61に冷却のための気流を発生させるファン又はフィンを設けることなく、始動発電機収納部65と4ストロークエンジン20との仕切りを排除することができる。このため、4ストロークエンジン20の低粘度オイルOLと接触させることができる。これにより、クランクシャフト24の軸線方向のサイズを小型化することができる。また、4ストロークエンジンユニット10は、始動発電機60を有しているため、始動に特化したスタータモータを設ける必要がない。そのため、クランクシャフト24には、スタータモータからの駆動力を伝達するための動力伝達機構を取り付ける必要がない。また、ロータ61は、4ストロークエンジン20のクランクシャフト24の回転軸線方向に見た時に、ステータ62よりも4ストロークエンジン20のシリンダ22方向に配置される。従って、更に、クランクシャフト24の軸線方向のサイズを小型化することができる。 In the 4-stroke engine unit 10, the partition between the starter generator housing portion 65 and the 4-stroke engine 20 can be eliminated without providing the rotor 61 with a fan or fins that generate an air flow for cooling. Therefore, it can be brought into contact with the low-viscosity oil OL of the 4-stroke engine 20. As a result, the size of the crankshaft 24 in the axial direction can be reduced. Further, since the 4-stroke engine unit 10 has the starter/generator 60, it is not necessary to provide a starter motor specialized for starting. Therefore, it is not necessary to attach a power transmission mechanism for transmitting the driving force from the starter motor to the crankshaft 24. Further, the rotor 61 is arranged in the direction of the cylinder 22 of the 4-stroke engine 20 rather than the stator 62 when viewed in the rotation axis direction of the crankshaft 24 of the 4-stroke engine 20. Therefore, the size of the crankshaft 24 in the axial direction can be further reduced.
 また、本実施形態において、始動発電機60は、発電時に発生する熱量を抑制することができるため、潤滑オイルを粘度の低い低粘度オイルOLにしたとしても、低粘度オイルOLの蒸発を抑制することができる。従って、本実施形態においては、4ストロークエンジン20の低粘度オイルOLは低温粘度グレードが20Wよりも低い、低粘度潤滑オイルを使用することができる。これにより、始動発電機60を潤滑オイルである低粘度オイルOLと接触する環境下に配置したとしても、冷却のための始動発電機60による低粘度オイルOLの攪拌を削減又は省略できる。従って、始動発電機60は、低粘度オイルOLの粘度の低下に伴うエネルギーロスの低減だけではなく、低粘度オイルOLの攪拌に伴うエネルギーロスを低減できる。また、始動発電機60の回転に対する抵抗を小さくできる。その結果、4ストロークエンジンユニット10は、始動発電機の更なる小型化が可能になる。 Further, in the present embodiment, since the starter generator 60 can suppress the amount of heat generated during power generation, even if the low-viscosity oil OL having low viscosity is used as the lubricating oil, the low-viscosity oil OL is prevented from evaporating. be able to. Therefore, in the present embodiment, as the low-viscosity oil OL of the 4-stroke engine 20, a low-viscosity lubricating oil whose low temperature viscosity grade is lower than 20 W can be used. As a result, even if the starting generator 60 is arranged in an environment in which it contacts the low-viscosity oil OL, which is lubricating oil, it is possible to reduce or omit stirring of the low-viscosity oil OL by the starting generator 60 for cooling. Therefore, the starter generator 60 can reduce not only the energy loss accompanying the decrease in the viscosity of the low viscosity oil OL but also the energy loss accompanying the stirring of the low viscosity oil OL. Further, the resistance to rotation of the starter generator 60 can be reduced. As a result, the 4-stroke engine unit 10 can further reduce the size of the starting generator.
 本実施形態において、上述の通り、始動発電機60に使用されるステータ巻線622は、例えば発電機にのみ使用される回転電機に使用されるステータ巻線よりも太めのステータ巻線が使用される。そのため、始動発電機60がスタータモータとして使用される低速回転領域において、大きなトルクを発生することができる。また、本実施形態においては、4ストロークエンジン20の低粘度オイルOLは低温粘度グレードが20Wよりも低い低粘度オイルを使用することができる。このため、始動発電機60は、始動時の回転に対する抵抗を小さくできる。従って、例えば4ストロークの間に高負荷領域と低負荷領域とを有する単気筒エンジンにおいても、高負荷領域を乗り越えるトルクを得ることができる。 In the present embodiment, as described above, the stator winding 622 used in the starter-generator 60 is, for example, a stator winding thicker than the stator winding used in the rotating electric machine used only in the generator. It Therefore, a large torque can be generated in the low speed rotation region where the starter/generator 60 is used as a starter motor. Further, in the present embodiment, the low-viscosity oil OL of the 4-stroke engine 20 may be a low-viscosity oil having a low temperature viscosity grade lower than 20W. Therefore, the start-up generator 60 can reduce resistance to rotation at the time of starting. Therefore, for example, even in a single-cylinder engine having a high load region and a low load region during four strokes, it is possible to obtain a torque that overcomes the high load region.
 また、本実施形態において、ロータ位置検出装置63は、始動発電機60が収納される空間である始動発電機収納部65内に配置できる。ロータ位置検出装置63に使用されるホールICは、入力抵抗に温度依存性があり、高温環境下での使用に適していない。従って、従来は、ロータ位置検出装置は始動発電機が収納される空間に配置するのが困難であった。しかし、本実施形態においては、始動発電機60は、発電時においても熱量を抑制できる。従って、ロータ位置検出装置63は、始動発電機収納部65に設置しても、ホールICの効果を十分に発揮できる。 In addition, in the present embodiment, the rotor position detection device 63 can be arranged in the starter/generator storage portion 65 that is a space in which the starter/generator 60 is stored. The Hall IC used in the rotor position detection device 63 has an input resistance that depends on temperature, and is not suitable for use in a high temperature environment. Therefore, conventionally, it was difficult to arrange the rotor position detecting device in the space in which the starter-generator is housed. However, in the present embodiment, the starter generator 60 can suppress the amount of heat even during power generation. Therefore, even if the rotor position detection device 63 is installed in the starter/generator storage portion 65, the effect of the Hall IC can be sufficiently exerted.
 図5は、図1の4ストロークエンジンユニットを搭載する鞍乗型車両を示す側面図である。
 鞍乗型車両1は、より詳細には、MT(マニュアル・トランスミッション)型鞍乗型車両である。また、鞍乗型車両1は、自動二輪車である。鞍乗型車両1は、より詳細には、MT型自動二輪車である。
 鞍乗型車両1は、より詳細には、4ストロークエンジンユニット10と、車体11と、フロントフォーク12と、ハンドルバー13と、前輪14と、駆動輪15と、シート16と、蓄電装置17と、リアアーム151とを備えている。
FIG. 5 is a side view showing a straddle-type vehicle equipped with the 4-stroke engine unit of FIG. 1.
More specifically, the straddle-type vehicle 1 is an MT (manual transmission)-type straddle-type vehicle. The saddle riding type vehicle 1 is a motorcycle. More specifically, the saddle riding type vehicle 1 is an MT type motorcycle.
More specifically, the saddle riding type vehicle 1 includes a 4-stroke engine unit 10, a vehicle body 11, a front fork 12, a handlebar 13, front wheels 14, drive wheels 15, a seat 16, and a power storage device 17. , Rear arm 151.
 フロントフォーク12は、車体11に回転自在に支持されている。ハンドルバー13は、フロントフォーク12の上端に固定されている。つまり、ハンドルバー13は、フロントフォーク12を介して車体11に対し回転自在に支持されている。ハンドルバー13の左端には、マニュアルクラッチレバー50が設けられている。ハンドルバー13の右部には、図示しないブレーキレバーと、アクセル操作子が設けられている。前輪14は、フロントフォーク12に回転自在に支持されている。
 リアアーム151は、車体11に揺動自在に支持されている。駆動輪15は、リアアーム151に回転自在に支持されている。
The front fork 12 is rotatably supported by the vehicle body 11. The handlebar 13 is fixed to the upper end of the front fork 12. That is, the handlebar 13 is rotatably supported by the vehicle body 11 via the front fork 12. A manual clutch lever 50 is provided at the left end of the handlebar 13. A brake lever (not shown) and an accelerator operator are provided on the right side of the handlebar 13. The front wheel 14 is rotatably supported by the front fork 12.
The rear arm 151 is swingably supported by the vehicle body 11. The drive wheel 15 is rotatably supported by the rear arm 151.
 4ストロークエンジンユニット10は、車体11に保持されている。より詳細には、4ストロークエンジンユニット10は、車体11の図示しないフレームに取り付けられている。4ストロークエンジンユニット10は、出力部39から駆動輪15へ向けの動力を出力する。出力部39は、チェーン152が巻き掛けられるスプロケットである。出力部39は、クランクケース21の外に設けられている。出力部39は、実際には、車体11に設けられた図示しないカバーで覆われているが、4ストロークエンジンユニット10の筐体の外に露出していることが分かりやすいよう実線で表されている。4ストロークエンジンユニット10の動力は、出力部39としてのスプロケット及びチェーン152を介して駆動輪15へ向け出力される。出力部39よりも下方には、ステップ111が設けられている。 The 4-stroke engine unit 10 is held by the vehicle body 11. More specifically, the 4-stroke engine unit 10 is attached to a frame (not shown) of the vehicle body 11. The 4-stroke engine unit 10 outputs power from the output section 39 to the drive wheels 15. The output unit 39 is a sprocket around which the chain 152 is wound. The output unit 39 is provided outside the crankcase 21. The output part 39 is actually covered with a cover (not shown) provided on the vehicle body 11, but is shown by a solid line so that it is easily exposed to the outside of the housing of the 4-stroke engine unit 10. There is. The power of the four-stroke engine unit 10 is output to the drive wheels 15 via the sprocket as the output section 39 and the chain 152. Below the output unit 39, step 111 is provided.
 シート16は、サドル型であり車体11の上部に設けられている。鞍乗型車両1の運転者は、シート16に跨がって着座し、走行中、ステップ111に足を乗せる。
 蓄電装置17は、車体11の内部に配置されている。蓄電装置17は、電力を蓄える。
The seat 16 is a saddle type and is provided on the upper portion of the vehicle body 11. The driver of the saddle riding type vehicle 1 sits astride the seat 16 and puts his/her foot on the step 111 while traveling.
Power storage device 17 is arranged inside vehicle body 11. The power storage device 17 stores electric power.
 1  鞍乗型車両
 10  4ストロークエンジンユニット
 13  ハンドルバー
 15  駆動輪
 20  4ストロークエンジン
 21  クランクケース
 22  シリンダ
 24  クランクシャフト
 30  マニュアル・トランスミッション
 39  出力部
 40  マニュアル・クラッチ
 60  始動発電機
 61  ロータ
 62  ステータ
1 Saddle-type vehicle 10 4-stroke engine unit 13 Handlebar 15 Drive wheel 20 4-stroke engine 21 Crankcase 22 Cylinder 24 Crankshaft 30 Manual transmission 39 Output section 40 Manual clutch 60 Starter generator 61 Rotor 62 Stator

Claims (4)

  1.  4ストロークエンジンユニットであって、
     前記4ストロークエンジンユニットは、
     低温粘度グレードが20Wよりも低い低粘度オイルで内部が潤滑されるように構成されたクランクケースと、前記クランクケースに回転可能に支持されるクランクシャフトとを有し、4ストロークの間に、前記クランク軸を回転させる負荷が大きい高負荷領域と、前記クランク軸を回転させる負荷が前記高負荷領域の負荷より小さい低負荷領域とを有する負荷変動型4ストロークエンジンと、
     前記低粘度オイルによって潤滑されるように前記クランクケース内に設けられ、前記クランクシャフトからの駆動力が伝達されるマニュアル・トランスミッションと、
     周方向にスロットを空けて設けられた複数の歯部を備えるステータコア、及び前記歯部に巻回される複数相のステータ巻線を有するステータと、前記ステータと空隙を空けて向かい合うように前記周方向に並び且つ前記スロットの数の2/3より多い磁極面を有する永久磁石部を有し、前記クランクシャフトと同軸上に配置され、冷却のための気流を発生させるファン又はフィンを備えていないロータとを備え、前記低粘度オイルと接触する位置に設けられる始動発電機と
    を備える。
    A four-stroke engine unit,
    The 4-stroke engine unit is
    A crankcase configured to be internally lubricated with a low-viscosity oil having a low-temperature viscosity grade lower than 20 W, and a crankshaft rotatably supported by the crankcase, and the crankshaft is provided with A load fluctuation type four-stroke engine having a high load region in which a load for rotating a crankshaft is large, and a low load region in which a load for rotating the crankshaft is smaller than a load in the high load region,
    A manual transmission provided in the crankcase so as to be lubricated by the low-viscosity oil, to which the driving force from the crankshaft is transmitted,
    A stator core having a plurality of tooth portions provided with slots in the circumferential direction, and a stator having a plurality of phases of stator windings wound around the tooth portions, and the stator so as to face the stator with a gap. Having permanent magnet portions arranged in the same direction and having a magnetic pole surface larger than 2/3 of the number of slots, arranged coaxially with the crankshaft, and having no fan or fin for generating an air flow for cooling. A rotor, and a starting generator provided at a position in contact with the low viscosity oil.
  2.  請求項1に記載の4ストロークエンジンユニットであって、
     前記4ストロークエンジンは、前記クランクケースに接続された気筒を有し、
     前記始動発電機のロータは、前記クランクシャフトが延びる軸線方向における、前記ステータと前記気筒との間で前記クランクシャフトに接続された有底筒状である。
    The four-stroke engine unit according to claim 1, wherein
    The four-stroke engine has a cylinder connected to the crankcase,
    The rotor of the starter-generator has a bottomed tubular shape connected to the crankshaft between the stator and the cylinder in the axial direction in which the crankshaft extends.
  3.  請求項2に記載の4ストロークエンジンユニットであって、
     前記始動発電機が収納される空間内で、前記クランクケース内で前記クランクケースに対し位置が固定されるように前記クランクケースに支持された、前記ロータの位置の検出を表す信号を出力するロータ位置検出装置を更に備える。
    The four-stroke engine unit according to claim 2, wherein
    A rotor, which is supported by the crankcase so as to be fixed in position in the crankcase in the space in which the starter-generator is housed, and outputs a signal indicating detection of the position of the rotor. A position detection device is further provided.
  4.  鞍乗型車両であって、
     前記鞍乗型車両は、請求項1乃至請求項3の何れか1つに記載の4ストロークエンジンユニットを備える。
    A saddle type vehicle,
    The straddle-type vehicle includes the four-stroke engine unit according to any one of claims 1 to 3.
PCT/JP2019/000022 2019-01-04 2019-01-04 4-stroke engine unit and straddle-type vehicle equipped with said engine unit WO2020141571A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/000022 WO2020141571A1 (en) 2019-01-04 2019-01-04 4-stroke engine unit and straddle-type vehicle equipped with said engine unit
JP2020563867A JP7235771B2 (en) 2019-01-04 2019-12-24 4-stroke engine unit and straddled vehicle equipped with the same engine unit
PCT/JP2019/050503 WO2020141594A1 (en) 2019-01-04 2019-12-24 Four-stroke engine unit and straddle vehicle equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000022 WO2020141571A1 (en) 2019-01-04 2019-01-04 4-stroke engine unit and straddle-type vehicle equipped with said engine unit

Publications (1)

Publication Number Publication Date
WO2020141571A1 true WO2020141571A1 (en) 2020-07-09

Family

ID=71407200

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/000022 WO2020141571A1 (en) 2019-01-04 2019-01-04 4-stroke engine unit and straddle-type vehicle equipped with said engine unit
PCT/JP2019/050503 WO2020141594A1 (en) 2019-01-04 2019-12-24 Four-stroke engine unit and straddle vehicle equipped with same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050503 WO2020141594A1 (en) 2019-01-04 2019-12-24 Four-stroke engine unit and straddle vehicle equipped with same

Country Status (2)

Country Link
JP (1) JP7235771B2 (en)
WO (2) WO2020141571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039253A1 (en) * 2020-08-20 2022-02-24 ヤマハ発動機株式会社 Mt-type straddled vehicle
WO2023042325A1 (en) * 2021-09-16 2023-03-23 ヤマハ発動機株式会社 Leaning vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023042706A1 (en) * 2021-09-16 2023-03-23

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098781A1 (en) * 2002-05-16 2003-11-27 Mitsuba Corporation Dynamo electric machine
JP2005304291A (en) * 2004-04-13 2005-10-27 Re Phelon Co Inc Magnetic multi-pole charger
WO2016002428A1 (en) * 2014-06-30 2016-01-07 ヤマハ発動機株式会社 Air-cooled single-cylinder engine, and saddled vehicle
JP2017129065A (en) * 2016-01-20 2017-07-27 ヤマハ発動機株式会社 Vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954942B2 (en) * 2002-09-11 2007-08-08 本田技研工業株式会社 Starter for vehicle engine
JP2005090486A (en) * 2003-08-12 2005-04-07 Yamaha Motor Co Ltd Engine for motorcycle
JP4372077B2 (en) * 2005-09-30 2009-11-25 本田技研工業株式会社 Starter for internal combustion engine
JP2011149392A (en) 2010-01-25 2011-08-04 Toyota Motor Corp Lubricating device of engine
JP2011213132A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Hybrid vehicle
JP5902005B2 (en) * 2012-03-08 2016-04-13 シェブロンジャパン株式会社 Lubricating oil composition for automobile engine lubrication
TWI593877B (en) * 2013-04-03 2017-08-01 Kwang Yang Motor Co Engine
JP2015135105A (en) 2013-12-20 2015-07-27 ヤマハ発動機株式会社 Vehicular four-stroke engine unit and vehicle
JP6002269B1 (en) * 2015-03-30 2016-10-05 本田技研工業株式会社 Starter for vehicle engine
JP2018053773A (en) * 2016-09-28 2018-04-05 ヤマハ発動機株式会社 Saddle-riding type vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098781A1 (en) * 2002-05-16 2003-11-27 Mitsuba Corporation Dynamo electric machine
JP2005304291A (en) * 2004-04-13 2005-10-27 Re Phelon Co Inc Magnetic multi-pole charger
WO2016002428A1 (en) * 2014-06-30 2016-01-07 ヤマハ発動機株式会社 Air-cooled single-cylinder engine, and saddled vehicle
JP2017129065A (en) * 2016-01-20 2017-07-27 ヤマハ発動機株式会社 Vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039253A1 (en) * 2020-08-20 2022-02-24 ヤマハ発動機株式会社 Mt-type straddled vehicle
JPWO2022039253A1 (en) * 2020-08-20 2022-02-24
WO2023042325A1 (en) * 2021-09-16 2023-03-23 ヤマハ発動機株式会社 Leaning vehicle
WO2023042706A1 (en) * 2021-09-16 2023-03-23 ヤマハ発動機株式会社 Mt-type leaning vehicle

Also Published As

Publication number Publication date
WO2020141594A1 (en) 2020-07-09
JPWO2020141594A1 (en) 2021-11-11
JP7235771B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP7235771B2 (en) 4-stroke engine unit and straddled vehicle equipped with the same engine unit
TWI682863B (en) vehicle
TW201728496A (en) Leaning vehicle
KR100347859B1 (en) Automatic two-wheeled vehicle
US6336434B1 (en) Engine unit of outboard motor
WO2021149711A1 (en) Manual-transmission straddled vehicle
JP2019054559A (en) Vehicle
US20050157966A1 (en) Arrangement structure of bearings
JP6912678B2 (en) Engine unit with MT type shift pedal and straddle vehicle equipped with the same engine unit
JP6898377B2 (en) Valve structure of internal combustion engine
WO2021149144A1 (en) Manual-transmission straddled vehicle
WO2022003985A1 (en) Mt-type straddled vehicle
WO2021149710A1 (en) Manual-transmission straddled vehicle
WO2021149145A1 (en) Manual-transmission-type straddled vehicle
JP7269445B2 (en) MT type straddled vehicle
WO2022162905A1 (en) Engine drive power supply unit
JP7093892B2 (en) Internal combustion engine
JP2000104557A (en) Motorcycle
JP6920367B2 (en) Internal combustion engine
JP2020165519A (en) Power unit
JP2020165413A (en) Internal combustion engine
JP2008045562A (en) Motorcycle
JP2004162692A (en) Crankcase cover for internal combustion engine
JP2006250093A (en) Internal combustion engine
JP2000097136A (en) Starter-cum-power generator for engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP