WO2023042291A1 - 路面異常判定システム、車載装置、及び路面異常判定方法 - Google Patents

路面異常判定システム、車載装置、及び路面異常判定方法 Download PDF

Info

Publication number
WO2023042291A1
WO2023042291A1 PCT/JP2021/033881 JP2021033881W WO2023042291A1 WO 2023042291 A1 WO2023042291 A1 WO 2023042291A1 JP 2021033881 W JP2021033881 W JP 2021033881W WO 2023042291 A1 WO2023042291 A1 WO 2023042291A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
surface abnormality
lane
information
vehicle
Prior art date
Application number
PCT/JP2021/033881
Other languages
English (en)
French (fr)
Inventor
光生 下谷
康志 小高
貴大 小野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/033881 priority Critical patent/WO2023042291A1/ja
Priority to JP2023547993A priority patent/JPWO2023042291A1/ja
Publication of WO2023042291A1 publication Critical patent/WO2023042291A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present disclosure relates to a road surface abnormality determination system, an in-vehicle device, and a road surface abnormality determination method.
  • Patent Document 1 describes that a server device analyzes a road surface abnormality at the current position of the vehicle based on the current position of the vehicle obtained from a GPS device mounted on the vehicle and the behavior of the vehicle such as the vehicle speed. ing.
  • the positioning accuracy of conventional GPS devices is m-order. Therefore, when a vehicle is traveling on a road with multiple lanes on one side, the GPS device can acquire the current position of the vehicle for each road, but cannot acquire the current position of the vehicle for each lane. Therefore, in the invention described in Patent Document 1, although it is possible to analyze road surface abnormalities for each road, there is a problem that it is not possible to analyze road surface abnormalities for each lane.
  • the present disclosure has been made to solve the above-described problems, and is a road surface abnormality determination system, an in-vehicle device, and a road surface abnormality that can determine a position where a road surface abnormality exists in units of lanes that are more detailed than units of roads. It aims at providing the determination method.
  • the road surface abnormality determination system includes a position information acquisition unit that acquires position information indicating the current position of the vehicle in lane units, and road surface condition information that acquires road surface condition information that indicates the condition of the road surface in the lane on which the vehicle travels.
  • a first road surface abnormality determination unit that outputs road surface abnormality information indicating an abnormality, a probe generation unit that generates probe information that associates position information and road surface abnormality information, an accumulation unit that accumulates probe information, and accumulation in the accumulation unit a second road surface abnormality determination unit for determining whether or not a road surface abnormality exists on a lane-by-lane basis based on the obtained probe information; and a map information storage unit for storing in association with each other.
  • the road surface abnormality determination system includes a position information acquisition unit that acquires position information indicating the current position of the vehicle in lane units, and a road surface that acquires road surface condition information that indicates the condition of the road surface in the lane on which the vehicle travels.
  • a road surface abnormality determination unit that determines whether or not a road surface abnormality including at least one of defects and obstacles existing on the road surface exists for each lane; and a map information storage unit for storing in association with each other.
  • the in-vehicle device includes a position information detection unit that acquires position information indicating the current position of the vehicle in units of lanes, and road surface condition information that acquires road surface condition information that indicates the condition of the road surface in the lane on which the vehicle travels. determining whether or not there is a road surface abnormality including at least one of defects occurring on the road surface and obstacles present on the road surface based on the obtaining unit and the road surface condition information; It includes a first road surface abnormality determination unit that outputs road surface abnormality information indicating an abnormality, and a probe generation unit that generates probe information that associates position information and road surface abnormality information.
  • the road surface abnormality determination method includes a step of acquiring position information indicating the current position of the vehicle in units of lanes; Based on the state information, it is determined whether or not there is a road surface abnormality including at least one of defects occurring on the road surface and obstacles existing on the road surface, and if it is determined that there is a road surface abnormality, the road surface abnormality indicating the road surface abnormality is detected. a step of outputting information; a step of generating probe information that associates position information and road surface abnormality information; a step of accumulating probe information; and a step of storing the determined road surface abnormality in association with the map information for each lane.
  • the road surface abnormality determination system determines whether or not a road surface abnormality exists for each lane based on the probe information associated with the accumulated position information indicating the current position of the vehicle for each lane and the road surface abnormality information. Then, the road surface abnormality determination system stores the road surface abnormality in association with the map information for each lane. As a result, the position where the road surface abnormality exists can be determined for each lane, which is more detailed than for each road.
  • FIG. 1 is a block diagram showing a road surface abnormality determination system according to Embodiment 1.
  • FIG. 2 is a flow chart showing processing operations of the in-vehicle device according to the first embodiment.
  • FIG. 3 is a flow chart showing processing operations of the server device according to the first embodiment.
  • FIG. 4 is a plan view showing visualized map information according to the first embodiment.
  • FIG. 5 is a flow chart showing the processing operation of the in-vehicle device according to the modification of the first embodiment.
  • FIG. 6 is a flow chart showing the processing operation of the server device according to the modification of the first embodiment.
  • FIG. 7 is a plan view showing the visualized map information associated with the position where the road surface abnormality exists in the lane width direction according to the first embodiment.
  • FIG. 1 is a block diagram showing a road surface abnormality determination system according to Embodiment 1.
  • FIG. 2 is a flow chart showing processing operations of the in-vehicle device according to the first embodiment.
  • FIG. 3 is
  • FIG. 8 is a block diagram showing a road surface abnormality determination system according to Embodiment 2.
  • FIG. 9 is a flow chart showing the processing operation of the road surface abnormality determination system according to the second embodiment.
  • FIG. 10 is a flow chart showing the processing operation of the delivery requesting vehicle according to the second embodiment.
  • FIG. 11 shows an example of map information displayed in the notification section of the second embodiment.
  • FIG. 1 is a block diagram showing a road surface abnormality determination system 1 according to Embodiment 1. As shown in FIG. Each component of the road surface abnormality determination system 1 is provided in the in-vehicle device 11 or the server device 21 of the information center. Each configuration of the road surface abnormality determination system 1 will be described below.
  • the in-vehicle device 11 includes a position information acquisition unit 12, a road surface condition information acquisition unit 13, a first road surface abnormality determination unit 14, a probe generation unit 15, a high precision locator 16, a road surface condition detection sensor 17, and a communication unit 18.
  • a vehicle equipped with the in-vehicle device 11 and having a function of generating probe information is referred to as a probe vehicle.
  • one probe vehicle may be used, it is preferable to use a plurality of probe vehicles in order to improve the accuracy of determination by a second road surface abnormality determination unit 23 in the server device 21, which will be described later.
  • the position information acquisition unit 12 acquires position information indicating the current position of the probe vehicle for each lane.
  • the positional information acquiring unit 12 acquires positional information from a high-accuracy locator 16 provided on the probe vehicle.
  • the high-precision locator 16 includes a GNSS (Global Navigation Satellite System) and a map information storage device.
  • the GNSS detects the current position of the probe vehicle with accuracy on the order of centimeters using positioning signals from GNSS satellites.
  • the map information storage device stores map information having road shape data for each lane.
  • the high-accuracy locator 16 detects the current position of the probe vehicle in lane units on the map based on the current position detected by the GNSS and the map information stored in the map information storage device.
  • the high-precision locator 16 may perform map matching processing for each lane, or may detect the current position for each lane using a signal from a vehicle speed sensor or the like. In this manner, the position information acquisition unit 12 can acquire position information indicating the current position for each lane by using the high-precision locator 16 .
  • the road surface condition information acquisition unit 13 acquires road surface condition information indicating the condition of the road surface in the lane where the probe vehicle traveled.
  • the road surface condition information acquisition unit 13 acquires road surface condition information from a road surface condition detection sensor 17 provided in the probe vehicle.
  • the road surface state detection sensor 17 is, for example, a sensing device such as an imaging device, a microphone, or a vibration sensor, and may be a plurality of sensing devices.
  • the road surface condition detection sensor 17 is not particularly limited as long as it can detect the condition of the road surface, and may be a device that detects the condition of the road surface by a method such as laser scanning or measuring road surface friction.
  • the first road surface abnormality determination unit 14 determines whether or not a road surface abnormality exists based on the road surface condition information acquired by the road surface condition information acquisition unit 13 .
  • the first road surface abnormality determination unit 14 outputs road surface abnormality information indicating the road surface abnormality and transmits the information to the probe generation unit 15 .
  • the road surface abnormality includes at least one of defects occurring on the road surface and obstacles existing on the road surface, and may have some adverse effect on proper running of the probe vehicle.
  • Defects occurring on the road surface include, for example, depressions in the road surface, holes in the road surface, swelling of the road surface, ruts formed on the road surface, cracks in the road surface, and deterioration of the road surface.
  • Obstacles existing on the road surface are, for example, fallen objects, falling rocks, accident vehicles and dead animals existing on the road surface. The details of the processing operation of the first road surface abnormality determination unit 14 will be described in the processing operation of the in-vehicle device 11 described later.
  • the probe generation unit 15 generates probe information that associates the position information acquired by the position information acquisition unit 12 and the road surface abnormality information output by the first road surface abnormality determination unit 14 .
  • the configuration of the road surface abnormality determination system 1 provided in the server device 21 is a storage unit 22 , a second road surface abnormality determination unit 23 , and a map information storage unit 24 .
  • the server device 21 also includes a communication unit 25 that communicates with the in-vehicle device 11 .
  • the storage unit 22 collects and stores probe information generated by the probe generation unit 15 of the in-vehicle device 11 via the communication unit 25 .
  • the second road surface abnormality determination unit 23 determines whether or not a road surface abnormality exists for each lane based on the probe information accumulated in the accumulation unit 22 .
  • the details of the processing operation of the second road surface abnormality determination unit 23 will be described in the processing operation of the server device 21, which will be described later.
  • the map information storage unit 24 stores map information for each lane. Then, the map information storage unit 24 stores the road surface abnormality for each lane determined by the second road surface abnormality determination unit 23 in association with the map information. The details of the processing operation of the map information storage unit 24 will be described in the processing operation of the server device 21, which will be described later.
  • FIG. 2 is a flow chart showing processing operations of the in-vehicle device 11 according to the first embodiment
  • FIG. 3 is a flow chart showing processing operations of the server device 21 according to the first embodiment.
  • the in-vehicle device 11 starts operating, for example, when the probe vehicle runs.
  • the position information acquisition unit 12 acquires position information indicating the current position of the probe vehicle for each lane.
  • the location information may include road and lane link numbers that are identifiable by the server device 21 . If the location information does not include the link numbers of roads and lanes, the server device 21 may refer to the location information and the map information to obtain the travel road and lanes.
  • step S02 the road surface condition information acquisition unit 13 acquires road surface condition information indicating the condition of the road surface in the lane on which the probe vehicle travels. For example, if the road surface condition detection sensor 17 is an imaging device, the road surface condition information acquisition unit 13 acquires a captured image as the road surface condition information.
  • the first road surface abnormality determination unit 14 determines whether or not a road surface abnormality exists based on the road surface condition information acquired by the road surface condition information acquisition unit 13.
  • the first road surface abnormality determination unit 14 determines that a road surface abnormality exists, it outputs road surface abnormality information indicating the road surface abnormality.
  • the road surface abnormality information may indicate the presence of a road surface abnormality, and may express the degree of the road surface abnormality in stages or may be expressed as a continuous numerical value. Further, the first road surface abnormality determination unit 14 may continuously determine whether or not there is a road surface abnormality, and may determine, for example, in units of 10m or 100m, or in units of sublinks, or the like, in fixed sections.
  • the first road surface abnormality determination unit 14 image-processes the captured image of the road surface condition in the lane on which the probe vehicle travels, which is acquired as the road surface condition information. , to detect the unevenness of the road surface in the captured image. Then, when the first road surface abnormality determination unit 14 detects road surface unevenness having a depth equal to or greater than a preset threshold value, it outputs road surface abnormality information indicating that a road surface abnormality exists.
  • the first road surface abnormality determination unit 14 may determine the degree of road surface abnormality based on the depth, number, and occurrence frequency of unevenness on the road surface. Further, the first road surface abnormality determination unit 14 may perform image processing on the captured image to detect variations in the color tone of the road surface in the captured image. When the first road surface abnormality determination unit 14 detects a variation in color tone of the road surface equal to or greater than a preset threshold value, it outputs road surface abnormality information indicating that a road surface abnormality exists. Further, the first road surface abnormality determination unit 14 may output road surface abnormality information indicating that a road surface abnormality exists when there is a location where the color tone varies significantly.
  • the first road surface abnormality determination unit 14 may determine the degree of road surface abnormality based on the degree of color tone variation, the size and number of areas in which color tone variation occurs. Further, when the road surface condition detection sensor 17 is a vibration sensor or a voice sensor, the first road surface abnormality determination unit 14 acquires the vibration or running sound of the probe vehicle in the lane in which the probe vehicle has traveled as the road surface condition information. Then, the first road surface abnormality determination unit 14 may output road surface abnormality information indicating that a road surface abnormality exists when vibration or running noise having a magnitude equal to or greater than a preset threshold is detected.
  • the first road surface abnormality determination unit 14 may determine the degree of road surface abnormality based on the magnitude of the vibration or running sound, or the detection frequency of vibration or running sound equal to or greater than a preset threshold. Then, the first road surface abnormality determination unit 14 may comprehensively determine the road surface abnormality using a plurality of sensors. For example, by combining the determination methods described above, road surface abnormality information indicating whether or not a road surface abnormality exists or the degree of the road surface abnormality is output. By the method described above, the first road surface abnormality determination section 14 can determine whether or not there is a road surface abnormality in the driving lane.
  • step S03 if road surface abnormality information indicating that a road surface abnormality exists or road surface abnormality information indicating that a road surface abnormality of a degree equal to or greater than a preset threshold exists is output, the process proceeds to step S04. In step S03, if the first road surface abnormality determination unit 14 determines that there is no road surface abnormality, or if it is determined that there is no road surface abnormality that is greater than or equal to the preset threshold value, the process returns to step S01. .
  • step S04 the probe generation unit 15 generates probe information that associates the position information acquired in step S01 and the road surface abnormality information output in step S03. That is, the probe information is information indicating the position of the road surface abnormality for each lane.
  • the communication unit 18 of the in-vehicle device 11 transmits the probe information generated at step S ⁇ b>04 to the server device 21 .
  • the timing for transmitting the probe information to the server device 21 may be when the probe information is generated in step S04, or may be transmitted at a preset timing.
  • probe information may be stored in a storage device (not shown), and a plurality of pieces of probe information may be transmitted simultaneously at preset timings.
  • the preset timing is, for example, the timing at which communication becomes possible from a state in which communication is not possible, such as at the end of traveling, in a tunnel, etc., when there is a margin in the communication line, and may be set as appropriate.
  • the flowchart of FIG. 2 does not show a process for terminating the processing operation of the in-vehicle device 11, for example, when the probe vehicle has finished traveling, or when the operation of the in-vehicle device 11 is stopped by the operation of the passenger, the in-vehicle device The operation of the device 11 ends.
  • step S ⁇ b>06 the communication unit 25 of the server device 21 receives probe information from the in-vehicle device 11 .
  • step S07 the accumulation unit 22 collects and accumulates the probe information received in step S06.
  • the second road surface abnormality determination unit 23 determines whether or not a preset condition is satisfied.
  • the preset condition is a condition for determining whether the timing is suitable for determining whether or not a road surface abnormality exists in each lane in step S09, which will be described later.
  • the preset conditions are that a preset period of time, such as one month, has elapsed since the last step S09 was executed, and road surface abnormality information having a degree equal to or greater than a preset threshold.
  • the associated probe information is accumulated in the accumulation unit 22 .
  • Road surface abnormality information having a degree equal to or greater than a preset threshold value is, for example, a road surface abnormality requiring immediate road surface repair or the like.
  • the preset condition is that when a command is executed by the user's operation, the probe vehicle is requested for probe information under a specific condition from the server device 21 side, and the probe information exceeding the preset number is collected. may be the case. Also, these exemplified conditions may be used in combination.
  • step S08 when the second road surface abnormality determination unit 23 determines that the preset condition is satisfied, the process proceeds to step S09. In step S08, when the second road surface abnormality determination unit 23 determines that the preset condition is not satisfied, step S08 is repeated until the preset condition is satisfied.
  • the second road surface abnormality determination unit 23 determines whether or not a road surface abnormality exists for each lane based on the probe information accumulated in the accumulation unit 22.
  • An example of a method for determining whether or not a road surface abnormality exists by the second road surface abnormality determination unit 23 for each lane will be described.
  • a preset number or more of probe information of the same position information is accumulated in the accumulation unit 22, or a preset number or more of probe information associated with road surface abnormality information having a degree equal to or higher than a preset threshold is accumulated. In such a case, it is determined that there is a road surface abnormality. Further, the analysis may be performed by a statistical method such as variance or median value of the road surface abnormality information associated with the probe information.
  • step S09 if the second road surface abnormality determination unit 23 determines that there is a road surface abnormality, the process proceeds to step S10. In step S09, if the second road surface abnormality determination unit 23 determines that there is no road surface abnormality, the process returns to step S06.
  • the map information storage unit 24 stores the road surface abnormality determined by the second road surface abnormality determination unit 23 in association with the map information stored in the map information storage unit 24 for each lane.
  • FIG. 4 is a plan view showing visualized map information according to the first embodiment.
  • the cross figure indicates a cursor
  • the diamond figure indicates a position where the degree of road surface abnormality has changed
  • the white circle indicates that the degree of road surface abnormality is smaller than a preset threshold value.
  • a black circle indicates that the degree of road surface abnormality is greater than a preset threshold.
  • the map shown in FIG. 4 can be enlarged/reduced and the display position can be specified. In FIG.
  • FIG. 4A a road with more lanes is displayed with a wider road width on the map. From FIG. 4A, it can be seen that small road surface abnormalities exist at points X1 and X3, and large road surface abnormalities exist at points X2 and X4.
  • FIG. 4(B) the map shown in FIG. 4(B), for example, is displayed.
  • the road surface abnormality for each lane at point X2 is displayed in more detail. From FIG. 4B, there is a large degree of road surface abnormality in the second lane from the left of the four uphill lanes, and a diamond-shaped mark is given to indicate that the road surface abnormality has changed since the previous time. Also, it can be seen that there is no road surface abnormality in the first lane, the third lane, the fourth lane, and the fourth down lane.
  • FIG. 4C the road surface abnormality for each lane at point X1 is displayed in more detail. From FIG. 4(C), there is a small road surface abnormality in the 3rd lane from the left of the 4 lanes on one side of the uphill, and there is no road surface abnormality in the 1st, 2nd, 4th and 4th down lanes. I understand.
  • the map information storage unit 24 may display a more detailed state of the road surface abnormality by user's operation. For example, you may display the image of the road surface abnormality of the specific position on a lane. Furthermore, the map information storage unit 24 may display the location of the road surface abnormality in a pop-up manner when a road surface abnormality having a degree equal to or greater than a preset threshold occurs. 11, the captured image may be displayed.
  • step S10 After the processing operation of step S10, the process returns to step S06.
  • the flowchart of FIG. 3 does not show the processing for terminating the processing operation of the server device 21, for example, the server device 21 performs the processing operation when receiving a command to terminate the processing operation of the server device 21 from the user. finish.
  • the in-vehicle device 11 in the present embodiment acquires position information indicating the current position of the probe vehicle for each lane.
  • the in-vehicle device 11 acquires road surface condition information indicating the condition of the road surface in the lane on which the probe vehicle has traveled, and based on the road surface condition information, the road surface including at least one of defects occurring on the road surface and obstacles existing on the road surface. Determine whether an anomaly exists.
  • the in-vehicle device 11 determines that there is a road surface abnormality, it outputs road surface abnormality information indicating the road surface abnormality.
  • the in-vehicle device 11 can generate probe information that associates the position information and the road surface abnormality information. Therefore, the position where the road surface abnormality exists can be determined for each lane, which is more detailed than for each road.
  • the road surface abnormality determination system 1 in the present embodiment determines whether a road surface abnormality exists based on the probe information in which the accumulated position information indicating the current position of the probe vehicle in lane units and the road surface abnormality information are associated. is determined for each lane. Then, the road surface abnormality determination system 1 stores the road surface abnormality in association with the map information for each lane. As a result, the position where the road surface abnormality exists can be determined for each lane, which is more detailed than for each road.
  • the road surface abnormality determination system 1 determines whether or not there is a road surface abnormality on a lane-by-lane basis. Therefore, the road surface abnormality determination system 1 composed of the in-vehicle device 11 and the server device 21 can determine the position where the latest road surface abnormality exists in a wider area than when the system is composed of only the in-vehicle device 11. can be done.
  • the configuration of the road surface abnormality determination system 1 is not limited to the content described above.
  • each component of the road surface abnormality determination system 1 is provided is not limited to the above description. It is also possible to omit or change a part of the configuration of the road surface abnormality determination system 1 without departing from the scope of the present invention.
  • a modified example of the road surface abnormality determination system 1 of the first embodiment will be exemplified below.
  • Embodiment 1 an example in which the first road surface abnormality determination unit 14 is provided in the in-vehicle device 11 is shown, but the first road surface abnormality determination unit 14 may be provided in the server device 21 .
  • the probe generator 15 generates probe information that associates the position information and the road surface condition information.
  • FIG. 5 is a flow chart showing the processing operation of the in-vehicle device 11 of the modification of the first embodiment
  • FIG. 6 is a flow chart showing the processing operation of the server device 21 of the modification of the first embodiment.
  • the same reference numerals are assigned to the same configurations as in the first embodiment.
  • Step S041 the probe generation unit 15 generates probe information that associates the position information acquired in step S01 and the road surface state information acquired in step S02. And in step S051, the communication part 18 of the vehicle-mounted apparatus 11 transmits the probe information produced
  • step S051 the process returns to step S01.
  • the in-vehicle device 11 does not show a process for ending the processing operation of the in-vehicle device 11, for example, when the probe vehicle has finished traveling, or when the operation of the in-vehicle device 11 is stopped by the operation of the passenger, the in-vehicle device The operation of the device 11 ends.
  • step S ⁇ b>061 the communication unit 25 of the server device 21 receives probe information from the in-vehicle device 11 .
  • step S071 the accumulation unit 22 collects and accumulates the probe information received in step S061.
  • step S ⁇ b>072 the first road surface abnormality determination section 14 determines whether or not there is a road surface abnormality based on the road surface state information included in the probe information accumulated in the accumulation section 22 .
  • the processing operation of the first road surface abnormality determination unit 14 is the same as that of the first embodiment.
  • step S072 when the first road surface abnormality determination unit 14 determines that there is a road surface abnormality, it outputs road surface abnormality information. Then, in step S073, the first road surface abnormality determination unit 14 associates the probe information with the road surface abnormality information and causes the storage unit 22 to store the probe information. In step S072, when the first road surface abnormality determination unit 14 determines that there is no road surface abnormality, the process returns to step S071. Steps S08, S09, and S10 are the same as in the first embodiment. Although the flowchart of FIG. 6 does not show the processing for terminating the processing operation of the server device 21, for example, the server device 21 performs the processing operation when receiving a command to terminate the processing operation of the server device 21 from the user. finish.
  • the road surface abnormality determination system 1 in the modification of the first embodiment detects a road surface abnormality based on the probe information that associates the accumulated position information indicating the current position of the probe vehicle for each lane and the road surface condition information. Whether or not it exists is determined for each lane. Then, the road surface abnormality determination system 1 stores the road surface abnormality in association with the map information for each lane. As a result, the position where the road surface abnormality exists can be determined for each lane, which is more detailed than for each road. In addition, since the determination of whether or not a road surface abnormality exists in the first road surface abnormality determination unit 14 is performed by the server device 21, the processing load on the in-vehicle device 11 can be reduced.
  • the position information acquisition unit 12 acquires position information from the high-accuracy locator 16, but the position information may be acquired from a normal-accuracy locator and a white line recognition device.
  • the normal accuracy locator includes a map information storage device for storing navigation accuracy map information having m-order positioning accuracy GNSS and m-order road shape data. Then, the normal accuracy locator detects the current position of the probe vehicle with m-order accuracy.
  • a white line recognition device is a device that performs image processing for recognizing lane markings. Then, the position information acquisition unit 12 acquires position information indicating the current position of the probe vehicle, including the driving lane, using a normal-accuracy locator and a white line recognition device. Further, the map information storage device may be provided with information on the number of lanes on the road on which the vehicle is traveling, thereby improving the accuracy of lane recognition.
  • the position information acquisition unit 12 can acquire position information indicating the current position of the probe vehicle for each lane, as in the first embodiment. Therefore, the in-vehicle device 11 and the road surface abnormality determination system 1 can determine the position where the road surface abnormality exists for each lane, which is more detailed than for each road, as in the first embodiment without using the high-precision locator 16. can.
  • the position information acquisition unit 12 may acquire position information from the high-precision locator 16 and the white line recognition device. As with the position information acquisition unit 12 of Embodiment 1, the position information acquisition unit 12 acquires the current position including the traveling lane of the probe vehicle using the high-precision locator 16 . Furthermore, the position information acquisition unit 12 recognizes lane markings by image processing using a white line recognition device. Therefore, the position information acquisition unit 12 can improve the accuracy of identifying the driving lane. Then, the position information acquisition unit 12 can recognize the position of the probe vehicle traveling in the lane width direction within the lane and the position of the tire of the probe vehicle within the lane by the white line recognition device.
  • the position information acquisition unit 12 includes the current position in the lane width direction or the position of the tire in the position information, so that the second road surface abnormality determination unit 23 can detect the road surface abnormality in the lane width direction within the lane. Locations that are present can be determined.
  • the road surface condition detection sensor 17 is, for example, a microphone or a vibration sensor
  • the road surface condition information is a running sound or a vibration signal
  • the second road surface abnormality determination unit 23 determines the position where the road surface abnormality exists as the position of the tire. Since it can be specified, it is possible to easily determine the position where the road surface abnormality exists in more detail than for each lane.
  • the position information acquisition unit 12 can acquire position information including the current position in the lane width direction or the position of the tire using the white line recognition device.
  • the map information storage unit 24 may store the location of the road surface abnormality in the lane width direction in the lane determined by the second road surface abnormality determination unit 23 in association with the map information.
  • FIG. 7 is a plan view that visualizes map information associated with the position of the road surface abnormality in the lane width direction, and displays the details of the road surface abnormality of the second lane at the point X2 in FIG.
  • FIG. 7A shows locations where the degree of road surface abnormality is large and small within the second lane.
  • FIG. 7B shows the position where the road surface abnormality such as road surface damage exists in the lane.
  • FIG. 7B shows the distance from the boundary line between the first and second lanes to the position of the road surface abnormality in the second lane. In FIG. 7B, it is 20 cm.
  • the map information storage unit 24 stores the position in the lane where the road surface abnormality exists in the lane width direction in association with the map information, so that the user can determine at which position in the lane the road surface abnormality exists. can grasp.
  • the first road surface abnormality determination unit 14 may further include a reference information storage unit in which reference information is stored in advance.
  • the reference information is information indicating the state of the road surface in a normal state or information indicating the state of the road surface when there is an abnormality on the road surface. Then, the first road surface abnormality determination unit 14 compares the information indicating the state of the road surface in the normal state with the road surface state information acquired by the road surface state information acquisition unit 13, and if there is a difference equal to or greater than a preset threshold, determines that there is a road surface abnormality.
  • the first road surface abnormality determination unit 14 compares the information indicating the road surface condition when there is a road surface abnormality with the road surface condition information acquired by the road surface condition information acquisition unit 13, It may be determined that a road surface abnormality exists when there is no difference. Further, the first road surface abnormality determination unit 14 may determine the degree of road surface abnormality.
  • the reference information storage unit is not limited to the first road surface abnormality determination unit 14 , and may be provided as part of the road link information in the map information storage unit 24 .
  • the reference information may be downloaded from the server device 21 .
  • the reference information storage unit may store different reference information for each vehicle type.
  • the reference information storage unit may have reference information for each lane when pavement conditions differ for each lane. In this case, the reference information storage unit may acquire the reference information corresponding to the driving lane of the probe vehicle, and the driving lane may download the reference information of a longer distance than the other lanes. Reference information for short distances may be downloaded. Thereby, the amount of communication can be suppressed.
  • the in-vehicle device 11 and the server device 21 are provided with a reference information storage unit that stores reference information that is information indicating the road surface condition in a normal state or information indicating the road surface condition when there is an abnormality on the road surface. good too.
  • the first road surface abnormality determination unit 14 can determine whether or not a road surface abnormality exists by comparing the road surface condition information acquired by the road surface condition information acquisition unit 13 with the reference information. Therefore, as in the first embodiment, it is possible to determine the position where the road surface abnormality exists for each lane, which is more detailed than for each road. Further, by storing different reference information for each vehicle type and pavement condition, it is possible to improve the accuracy of determination in the first road surface abnormality determination unit 14 whether or not there is a road surface abnormality in the driving lane.
  • the road surface condition information is the traveling sound or vibration signal of the probe vehicle
  • the probe vehicle travels on a vibration-generating road such as rumble strips and rib type lane markings installed on the road
  • the first road surface There is a possibility that the abnormality determination unit 14 may erroneously determine that there is a road surface abnormality. Therefore, the position information of the vibration generation road and the vibration generation location is stored in the reference information, and when the probe vehicle travels on the vibration generation road or the vibration generation location, the first road surface abnormality determination unit 14 determines whether there is a road surface abnormality. It is also possible to omit the process of determining whether or not.
  • the reference information storage unit stores the running sound and vibration of the vibration-generating road and the vibration-generating location as reference information. may determine that there is no road surface abnormality. That is, the reference information includes information indicating the state of the road surface of rumble strips or ribbed lane markings, so that even when the probe vehicle travels on a vibration-causing road, the driving lane in the first road surface abnormality determination unit 14 It is possible to correctly determine whether or not there is a road surface abnormality.
  • the first road surface abnormality determination unit 14 may determine whether or not a road surface abnormality exists using a neural network.
  • the first road surface abnormality determination unit 14 performs neural network analysis using the road surface condition information as an input.
  • the parameters of the neural net may be changed according to the road on which it is traveled.
  • neural network parameters may be stored as road link data, and neural network parameters may be obtained from the outside such as the server device 21 according to position information.
  • a neural network that receives weather and road surface illumination information as input signals may also be used.
  • CNN Convolutional Neural Network
  • the road surface condition detection sensor 17 may be a drive recorder.
  • the road surface condition information is the video signal, audio signal, and vibration signal detected by the drive recorder.
  • a drive recorder may be used as the white line recognition device.
  • a drive recorder with a communication function may be used as the communication unit.
  • the probe generation unit 15 may generate probe information in which position information, road surface condition information, and road surface abnormality information are associated with the probe information.
  • the second road surface abnormality determination section 23 of the server device 21 can utilize the abundant CPU power to determine with high accuracy whether or not there is a road surface abnormality based on the road surface condition information.
  • the in-vehicle device 11 may determine whether or not there is a road surface abnormality only on the road specified by the server device 21 .
  • the roads specified by the server device 21 are, for example, specific road sections, specific road types, bridges, interchanges, specific areas, and the like. Further, the in-vehicle device 11 may determine whether or not there is a road surface abnormality only in the case of specific weather specified by the server device 21 .
  • the in-vehicle device 11 obtains from the server device 21 information designating a probe vehicle of a specific vehicle type or a specific vehicle class, and determines whether or not there is a road surface abnormality when the probe vehicle satisfies the conditions. good too. Furthermore, these conditions may be combined. Thereby, the server device 21 can obtain only necessary information from the in-vehicle device 11 . In addition, the in-vehicle device 11 can reduce the processing load.
  • the road surface abnormality information requested is the same regardless of the area. .
  • each country has a different administrator.
  • road administrators are different in administrative units such as provinces and prefectures. Therefore, the road administrator corresponding to the current position of the probe vehicle may be specified, and only the probe information associated with the road surface abnormality information desired by the road administrator may be transmitted to the server device 21 .
  • the in-vehicle device 11 may transmit probe information corresponding to the reason manager to the server device 21 .
  • the reference information and CNN parameters may be obtained from the reason manager.
  • the road surface abnormality determination unit may use different criteria for determination. Then, the map information storage unit 24 may contain the information of the reason manager. As a result, the in-vehicle device 11 can appropriately transmit the road surface abnormality information requested by the road administrator to the server device 21 .
  • Embodiment 1 lanes were explained assuming general driving roads. It is a target for determining whether or not a road surface abnormality exists. In addition, it is determined whether or not there is a road surface abnormality for each lane in a training zone such as a zebra zone and an area in which traveling sections are separated from each other on a road in a manner equivalent to lanes. In this case, the zebra zone should be regarded as a lane.
  • parking lots, service areas, parking areas, toll booths, ramps, zebra zones and other training zones, and areas where roads are divided into lanes equivalent to each other can be used in the same way as in the first embodiment. It is possible to determine the position where the road surface abnormality exists for each detailed lane.
  • FIG. 8 is a block diagram showing a road surface abnormality determination system 2 according to Embodiment 2.
  • the server device 21 is characterized by including a distribution processing unit 26 that distributes the map information in which the road surface abnormalities stored in the map information storage unit 24 are associated on a lane-by-lane basis to the distribution-requesting vehicle.
  • a delivery requesting vehicle is a vehicle that requests the server device 21 of the information center to deliver map information associated with road surface abnormalities on a lane-by-lane basis, and utilizes the delivered map information.
  • Each component of the road surface abnormality determination system 2 is provided in an in-vehicle device 11 mounted in a probe vehicle, a server device 21 possessed by an information center, and an in-vehicle device 31 mounted in a delivery request vehicle.
  • Other configurations of the road surface abnormality determination system 2 are the same as those of the first embodiment.
  • the same reference numerals are assigned to the same configurations as in the first embodiment.
  • a distribution processing unit 26 is provided in the server device 21, and when a distribution requesting vehicle requests distribution of map information in which road surface abnormalities are associated with lane units, the distribution processing unit 26 transmits a map to the distribution requesting vehicle via the communication unit 25.
  • the map information in which the road surface abnormalities stored in the information storage unit 24 are associated with each lane is distributed.
  • the in-vehicle device 31 provided in the delivery request vehicle includes a location information acquisition unit 36, a delivery request unit 32, a control unit 33, a notification unit 34, and a communication unit 35 that communicates with the server device 21.
  • the position information acquisition unit 36 acquires position information indicating the current position of the delivery request vehicle for each lane.
  • the location information acquisition unit 36 is the same as the location information acquisition unit 12 of Embodiment 1, stores map information having road shape data for each lane, for example, and obtains the current location of the delivery request vehicle from positioning signals from GNSS satellites.
  • Position information may be acquired from the high-precision locator 16 that detects with accuracy on the order of centimeters.
  • the delivery request unit 32 delivers to the server device 21 the map information in which the road surface abnormality in the area including the current location of the delivery requesting vehicle is associated with each lane. Generate the desired signal.
  • a signal generated by the distribution request unit 32 is called a distribution request signal.
  • the area of the map information requested to be distributed to the server device 21 by the distribution request signal is not limited to the area including the current position of the vehicle requesting the distribution.
  • the area of the map information requested to be distributed to the server device 21 by the distribution request signal is the map information of the area corresponding to the route to the destination of the vehicle requesting distribution, or the map information for the specific area specified by the user.
  • the distribution request unit 32 generates a distribution request signal when the in-vehicle device 31 of the distribution requesting vehicle has map information for each lane equivalent to that of the server device 21 and updates the map information provided in the in-vehicle device 31. be done.
  • the distribution request unit 32 outputs a distribution request signal when the distribution request vehicle requires road surface abnormality information that requires attention when the distribution request vehicle travels according to attributes such as the vehicle type and vehicle class of the distribution request vehicle. may be generated, for example, when requesting position information on which there is a road surface abnormality that requires caution during driving.
  • the control unit 33 performs processing operations for utilizing map information in which road surface abnormalities are associated on a lane-by-lane basis. A specific processing operation will be described later in the processing operation of the delivery requesting vehicle.
  • the notification unit 34 notifies the occupants of the delivery request vehicle that there is a road surface abnormality.
  • the notification unit 34 is a display device that displays an image, a speaker that outputs sound, or the like.
  • FIG. 9 is a flow chart showing the processing operation of the road surface abnormality determination system 2 of the second embodiment.
  • FIG. 9A is a flow chart showing the processing operation of the server device 21, and
  • FIG. 9B is a flow chart showing the processing operation of the distribution requesting vehicle.
  • the processing operation of the probe vehicle is the same as in the first embodiment, although not shown.
  • the map information storage unit 24, which is step S10 in FIG. It is the same until it is memorized. It is assumed that the processing in FIG. 3 and the processing in FIG. 9A operate in parallel by multi-process processing or multi-task processing.
  • the server device 21 receives an instruction from the user to terminate the processing operation of the server device 21. If so, terminate the processing operation.
  • step S11 the delivery request vehicle transmits a delivery request signal to the server device 21 via the communication unit 35.
  • step S12 the server device 21 receives a distribution request signal from the distribution request vehicle via the communication unit 25.
  • the server device 21 includes an authentication unit that authenticates whether or not the delivery request vehicle is a vehicle with which a delivery contract has been concluded. may be executed, or the delivery request may be rejected.
  • step S13 the distribution processing unit 26 of the server device 21 distributes the map information in which the road surface abnormalities stored in the map information storage unit 24 are associated for each lane via the communication unit 25 to the distribution requesting vehicle.
  • the distribution request signal is a signal requesting distribution of map information on a specific route
  • the distribution processing unit 26 sends map information associated with road surface abnormalities corresponding to the specific route on a lane-by-lane basis to the distribution-requesting vehicle. To deliver.
  • step S14 the delivery requesting vehicle receives map information associated with road surface abnormalities for each lane via the communication unit 35.
  • step S15 the delivery requesting vehicle utilizes map information in which road surface abnormalities are associated on a lane-by-lane basis.
  • map information in which road surface abnormalities are associated on a lane-by-lane basis will be described below.
  • FIG. 10 is a flowchart showing the processing operation of the delivery requesting vehicle according to Embodiment 2, and is a flowchart showing an example of step S15.
  • FIG. 11 is an example of map information displayed on the notification unit 34 of the second embodiment. In FIG. 11, the positions of delivery request vehicles are indicated by triangles. Further, road surface abnormalities exist at points X1, X2, X3, and X4 in FIG. Here, an example will be described in which the road on which the points X1 and X2 exist has four lanes in one direction, the road surface abnormality exists in the third lane at the point X1, and the road surface abnormality exists in the second lane at the point X2.
  • step S151 the position information acquisition unit 36 acquires position information indicating the current position of the distribution requesting vehicle for each lane from the high-accuracy locator 16, for example.
  • step S152 the control unit 33 uses the map information in which the road surface abnormality received from the server device 21 is associated on a lane-by-lane basis and the position information acquired in step S151 to determine the lane in which the delivery request vehicle is traveling. , it is determined whether or not there is a road surface abnormality.
  • the control unit 33 causes the notification unit 34 to display the map information in the first display mode shown in FIG. 11(A) to the occupant (step S153).
  • the map information in the first display mode is map information in which road surface abnormalities are associated on a lane-by-lane basis, and the positions where road surface abnormalities exist are displayed without being emphasized as compared with the second display mode described later. is.
  • FIG. 11A shows the map information displayed in the notification unit 34 when the delivery request vehicle is traveling in the first lane and there is no road surface abnormality in the first lane at both X1 and X2 points. is.
  • the road abnormalities present at points X1, X2, X3, and X4 are indicated by circular marks.
  • step S152 When it is determined in step S152 that there is a road surface abnormality, the control unit 33 causes the notification unit 34 to display the map information in the second display mode shown in FIG. 11(B) (step S154).
  • the map information in the second display mode is map information in which road surface abnormalities are associated on a lane-by-lane basis. Is displayed.
  • the notification unit 34 can notify the occupants of the delivery requesting vehicle that there is a road surface abnormality in the lane in which the delivery requesting vehicle travels.
  • FIG. 11B shows a case where the delivery request vehicle is traveling in the second lane, and although there is no road surface abnormality at point X1 in the second lane, there is a road surface abnormality at point X2.
  • the road abnormalities existing at the points X1, X3, and X4 are indicated by circles, and the point X2 is indicated by a star.
  • the asterisk is a more emphasized mark than the circle.
  • the method of emphasizing and displaying is not particularly limited, and may be display of a captured image of a road surface abnormality in a different color, animation display such as blinking, or the like.
  • step S155 the control unit 33 determines whether or not the delivery requesting vehicle has approached the location where the road surface abnormality exists by a preset distance or more. Then, when the distribution requesting vehicle approaches the position where the road surface abnormality exists by a predetermined distance or more, the control unit 33 notifies the passenger through the notification unit 34 (step S156).
  • the content of the notification may be content indicating that there is a road surface abnormality ahead, or content urging the occupant to change lanes.
  • the notification unit 34 may further notify the degree of the road surface abnormality of the delivery requesting vehicle, and may display the captured image of the road surface abnormality acquired from the server device 21 .
  • the preset distance may be, for example, a set distance such as 500 m, or may be a case where the distribution requesting vehicle reaches a position expected to arrive in, for example, one minute. If the control unit 33 determines that the delivery requesting vehicle does not approach the position where the road surface abnormality exists by a distance equal to or greater than the preset distance, the processing operation is terminated.
  • the road surface abnormality determination system 2 in the present embodiment detects a road surface abnormality based on the probe information in which the accumulated position information indicating the current position of the probe vehicle for each lane and the road surface abnormality information are associated. Whether or not it exists is determined for each lane. Then, the road surface abnormality determination system 2 stores the road surface abnormality in association with the map information for each lane. As a result, the position where the road surface abnormality exists can be determined for each lane, which is more detailed than for each road.
  • the road surface abnormality determination system 2 in the present embodiment distributes map information in which road surface abnormalities stored in the map information storage are associated with each lane via the communication unit 35 .
  • the delivery requesting vehicle that receives the map information associated with the road surface abnormality on a lane-by-lane basis can, for example, notify the occupant of the delivery requesting vehicle that the road surface abnormality exists on a lane-by-lane basis.
  • the road surface abnormality determination system 2 determines the road surface abnormality for each lane in the server device 21 based on the information collected from the probe vehicle, and distributes the determined result, so that it can be utilized by, for example, a distribution requesting vehicle. can.
  • the in-vehicle device 31 of the delivery requesting vehicle in the present embodiment acquires map information in which the road surface abnormality stored in the map information storage unit 24 of the server device 21 is associated with each lane, and the location information acquisition unit of the delivery requesting vehicle.
  • a control unit 33 is provided that uses the position information acquired by 36 to determine whether or not there is a road surface abnormality in the lane in which the delivery request vehicle is traveling.
  • the notification unit 34 notifies the occupants of the delivery request vehicle that there is a road surface abnormality in the lane in which the delivery request vehicle is traveling. be notified.
  • the occupant of the delivery request vehicle can recognize the position where the road surface abnormality exists in units of lanes that are more detailed than units of roads. For example, when notifying a road surface abnormality for each road, if there is a road surface abnormality in even one lane on a road consisting of multiple lanes on one side, the road surface abnormality will exist even if the delivery requesting vehicle travels in a lane where there is no road surface abnormality. It is annoying because it is notified that Therefore, the delivery request vehicle in the present embodiment can appropriately notify the passenger of the presence of the road surface abnormality by notifying that the road surface abnormality exists for each lane.
  • the notification unit 34 notifies the occupant of the delivery requesting vehicle that there is a road anomaly in the lane in which the delivery requesting vehicle travels by displaying the map information in which the road anomaly is associated with each lane. Then, when it is determined that the road surface abnormality exists in the lane in which the delivery requesting vehicle travels, the control unit 33 causes the notification unit 34 to notify the presence of the road surface abnormality in the lane other than the lane in which the delivery requesting vehicle travels. It is displayed on the map information by emphasizing it rather than the road surface abnormality. As a result, the road surface anomalies in the lane in which the vehicle is traveling are displayed in an emphasized manner, so that the occupants of the delivery-requesting vehicle can pay attention to the road surface anomalies in the lane in which they are traveling.
  • the configuration of the road surface abnormality determination system 2 is not limited to the content described above.
  • the server device 21 and the in-vehicle device 31 each component of the above-described road surface abnormality determination system 2 is provided. It is also possible to omit or change a part of the configuration of the road surface abnormality determination system 2 without departing from the scope of the present invention.
  • a modified example of the road surface abnormality determination system 2 of the second embodiment will be exemplified below.
  • the server device 21 receives a signal indicating the positions of the start point and the end point, performs a route search based on a preset route planning rule, and distributes the map information of the road along the route search result and the route information to the vehicle requesting delivery. may be distributed to Further, the server device 21 may recommend a plurality of pieces of route information to the distribution requesting vehicle. Further, the server device 21 may weight each lane according to the presence or absence of road surface abnormality or the magnitude of the degree thereof, perform a route search in consideration of the lane, and perform route guidance for each lane.
  • the notification unit 34 may change the map display mode according to the distance between the delivery request vehicle and the position where the road surface abnormality exists. For example, the notification unit 34 may display the position of the road surface abnormality on the map in a more emphasized manner as the location of the road surface abnormality is approached. Also, if the position where the road surface abnormality exists is not on the road on which the delivery request vehicle travels, it may be displayed so as not to be emphasized compared to the case where it is on the road on which the delivery request vehicle travels. Also, the display method of the position where the road surface abnormality exists may be changed by the user's setting. As a result, the occupants of the delivery request vehicle can appropriately recognize the position of the road surface abnormality on which there is a high possibility of traveling.
  • the probe vehicle and the delivery request vehicle are different vehicles.
  • the delivery fee may be set low for the vehicle having the functions of both the probe vehicle and the delivery requesting vehicle.
  • the number of vehicles functioning as probe vehicles can be expected to increase, and a large amount of probe information can be collected and stored by the storage unit 22 . Therefore, the accuracy of determination in the second road surface abnormality determination section 23 can be improved.
  • control unit 33 may determine whether or not to change lanes based on the vehicle type and vehicle class of the delivery request vehicle. For example, large vehicles such as buses and trucks may be treated as having no road surface anomalies, ignoring road surface anomalies of a smaller degree than ordinary vehicles because they do not hinder driving. As a result, the existence of a road surface abnormality that does not hinder the travel of the delivery requesting vehicle is not notified, and unnecessary notification can be suppressed.
  • the delivery request vehicle notifies the occupant of the existence of the road surface abnormality as an example of utilizing the map information in which the road surface abnormality is associated with each lane.
  • the control unit 33 may automatically perform lane change control at a preset timing when there is a road surface abnormality in the lane ahead of the delivery request vehicle. In this case, it is desirable that the control unit 33 notifies the lane change to be performed automatically before the lane change by the notification unit 34 .
  • the automatic driving control can prevent the delivery request vehicle from being prevented from properly traveling due to the road surface abnormality.
  • control unit 33 may bring the delivery request vehicle closer to the direction in which the lane should be changed within the lane by automatic operation control so as to prompt the lane change instead of the lane change. This is an operation that intervenes in driving at automatic driving levels 0, 1, and 2.
  • the delivery request vehicle may further include a route search unit that searches for a route on a lane-by-lane basis in consideration of road surface anomalies on a lane-by-lane basis.
  • the route search unit receives the designation of the start point position and the end point position, and preferentially selects a lane with less road surface abnormality or a lesser degree of road surface abnormality from a plurality of lanes on the same road according to preset route planning rules. , to search for a lane-by-lane route from the start point to the end point.
  • the delivery-requesting vehicle can travel in a lane with little road surface abnormality or with a small degree of road surface abnormality.
  • the control part 33 may implement automatic operation control along the route
  • control unit 33 sets a road surface safe speed set lower than the recommended speed when there are road surface abnormalities in all lanes of a road in a specific section of the route, and the notification unit 34 presents it to the occupant.
  • travel control may be performed so as to automatically change to the safe road speed.
  • the delivery-requesting vehicle can reduce the hindrance to running due to the road surface abnormality.
  • the server device 21 may include a repair planning unit that formulates a plan for repairing a road surface having a road surface abnormality on a lane-by-lane basis using map information in which road surface abnormalities are associated with each lane.
  • the repair planning unit can formulate a repair plan for each lane, which is more detailed than for each road.
  • the repair planning unit can formulate a repair plan for repairing roads having road surface abnormalities on all lanes, for example.

Abstract

路面異常判定装置(1)は、蓄積された車両の車線単位の現在位置を示す位置情報及び路面異常情報が関連付けられたプローブ情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを車線単位で判定する。そして、路面異常判定装置(1)は路面異常を地図情報に車線単位で関連付けて記憶する。これにより、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。

Description

路面異常判定システム、車載装置、及び路面異常判定方法
 本開示は、路面異常判定システム、車載装置、及び路面異常判定方法に関する。
 車両から収集した様々な情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在する位置を分析するシステムが提案されている。例えば、特許文献1には、車両に搭載されたGPS装置から取得した車両の現在位置、及び車速等の車両の挙動に基づき、サーバ装置において車両の現在位置における路面異常を分析することが記載されている。
特開2020-13537号公報
 従来のGPS装置の測位精度はmオーダーである。そのため、車両が片側複車線の道路を走行している場合に、GPS装置により道路単位の車両の現在位置を取得できるが、車線単位の車両の現在位置を取得することはできない。よって、特許文献1に記載の発明では、道路単位の路面異常を分析することは可能であるが、車線単位の路面異常を分析することはできないという課題があった。
 本開示は、上述した課題を解決するためになされたものであり、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる路面異常判定システム、車載装置、及び路面異常判定方法を提供することを目的とするものである。
 本開示に係る路面異常判定システムは、車両の車線単位の現在位置を示す位置情報を取得する位置情報取得部と、車両が走行した車線における路面の状態を示す路面状態情報を取得する路面状態情報取得部と、路面状態情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定し、路面異常が存在すると判定した場合に路面異常を示す路面異常情報を出力する第1の路面異常判定部と、位置情報及び路面異常情報を関連付けたプローブ情報を生成するプローブ生成部と、プローブ情報を蓄積する蓄積部と、蓄積部に蓄積されたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する第2の路面異常判定部と、第2の路面異常判定部において判定された路面異常を地図情報に車線単位で関連付けて記憶する地図情報記憶部と、を備えたものである。
 また、本開示に係る路面異常判定システムは、車両の車線単位の現在位置を示す位置情報を取得する位置情報取得部と、車両が走行した車線における路面の状態を示す路面状態情報を取得する路面状態情報取得部と、位置情報及び路面状態情報を関連付けたプローブ情報を生成するプローブ生成部と、プローブ情報を蓄積する蓄積部と、蓄積部に蓄積されたプローブ情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを車線単位で判定する路面異常判定部と、路面異常判定部において判定された路面異常を地図情報に車線単位で関連付けて記憶する地図情報記憶部と、を備えたものである。
 また、本開示に係る車載装置は、車両の車線単位の現在位置を示す位置情報を取得する位置情報検出部と、車両が走行した車線における路面の状態を示す路面状態情報を取得する路面状態情報取得部と、路面状態情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定し、路面異常が存在すると判定した場合に路面異常を示す路面異常情報を出力する第1の路面異常判定部と、位置情報及び路面異常情報を関連付けたプローブ情報を生成するプローブ生成部と、を備えたものである。
 また、本開示に係る路面異常判定方法は、車両の車線単位の現在位置を示す位置情報を取得するステップと、車両が走行した車線における路面の状態を示す路面状態情報を取得するステップと、路面状態情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定し、路面異常が存在すると判定した場合に路面異常を示す路面異常情報を出力するステップと、位置情報及び路面異常情報を関連付けたプローブ情報を生成するステップと、プローブ情報を蓄積するステップと、蓄積されたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定するステップと、判定された路面異常を地図情報に車線単位で関連付けて記憶するステップと、を備えたものである。
 本開示によれば、蓄積された車両の車線単位の現在位置を示す位置情報及び路面異常情報が関連付けられたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する。そして、路面異常判定システムは路面異常を地図情報に車線単位で関連付けて記憶する。これにより、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。
図1は実施の形態1の路面異常判定システムを示すブロック図である。 図2は実施の形態1の車載装置の処理動作を示すフローチャートである。 図3は実施の形態1のサーバ装置の処理動作を示すフローチャートである。 図4は実施の形態1の地図情報を可視化して示す平面図である。 図5は実施の形態1の変形例の車載装置の処理動作を示すフローチャートである。 図6は実施の形態1の変形例のサーバ装置の処理動作を示すフローチャートである。 図7は実施の形態1の車線幅方向のおける路面異常が存在する位置が関連付けられた地図情報を可視化して示す平面図である。 図8は実施の形態2の路面異常判定システムを示すブロック図である。 図9は実施の形態2の路面異常判定システムの処理動作を示すフローチャートである。 図10は実施の形態2の配信要求車両の処理動作を示すフローチャートである。 図11は実施の形態2の通知部に表示される地図情報の一例である。
実施の形態1. 
 実施の形態1における路面異常判定システム1について図1を用いて説明する。図1は実施の形態1の路面異常判定システム1を示すブロック図である。路面異常判定システム1の各構成は、車載装置11又は情報センタが有するサーバ装置21に設けられる。以下に、路面異常判定システム1の各構成について説明する。
 まず、車載装置11について説明する。車載装置11は、位置情報取得部12、路面状態情報取得部13、第1の路面異常判定部14、プローブ生成部15、高精度ロケータ16、路面状態検出センサ17、及び通信部18を備える。ここでは、車載装置11が搭載され、プローブ情報を生成する機能を有する車両をプローブ車両と称する。プローブ車両は1台でもよいが、後述するサーバ装置21における第2の路面異常判定部23による判定精度を向上させるために複数台であることが好ましい。
 位置情報取得部12は、プローブ車両の車線単位の現在位置を示す位置情報を取得する。本実施の形態では、位置情報取得部12はプローブ車両に設けられた高精度ロケータ16から位置情報を取得する。高精度ロケータ16は、GNSS(Global Navigation Satellite System)及び地図情報記憶装置を備える。GNSSはGNSS衛星からの測位信号によりプローブ車両の現在位置をcmオーダーの精度で検出する。地図情報記憶装置は、車線単位の道路形状データを有する地図情報を記憶している。高精度ロケータ16は、GNSSが検出した現在位置と、地図情報記憶装置が記憶している地図情報とに基づき、地図上におけるプローブ車両の車線単位の現在位置を検出する。高精度ロケータ16は車線単位のマップマッチング処理を行ってもよく、車速センサ等の信号を利用して車線単位の現在位置を検出してもよい。このように、位置情報取得部12は高精度ロケータ16により、車線単位の現在位置を示す位置情報を取得することができる。
 路面状態情報取得部13はプローブ車両が走行した車線における路面の状態を示す路面状態情報を取得する。路面状態情報取得部13は、プローブ車両に設けられた路面状態検出センサ17から路面状態情報を取得する。路面状態検出センサ17は、例えば撮像装置、マイクロホン、振動センサ等のセンシング装置であり、複数のセンシング装置であってもよい。路面状態検出センサ17は路面の状態を検出できれば特に限定されず、レーザスキャン、路面摩擦を計測する等の方法により路面の状態を検出する装置であってもよい。
 第1の路面異常判定部14は、路面状態情報取得部13が取得した路面状態情報に基づき、路面異常が存在するか否かを判定する。そして、第1の路面異常判定部14は路面異常が存在すると判定した場合、路面異常を示す路面異常情報を出力し、プローブ生成部15に送信する。路面異常とは、路面に生じている不具合及び路面に存在する障害物の少なくともいずれか一方を含み、プローブ車両の適切な走行に何らかの悪影響を及ぼす可能性があるものである。路面に生じている不具合は、例えば路面の陥没、路面に開いた穴、路面の膨らみ、路面に形成された轍、路面のひび割れ、路面の劣化である。路面に存在する障害物は、例えば路面に存在する落下物、落石、事故車両及び動物の死骸である。第1の路面異常判定部14の処理動作の詳細は後述の車載装置11の処理動作において説明する。
 プローブ生成部15は、位置情報取得部12により取得した位置情報、及び第1の路面異常判定部14により出力された路面異常情報を関連付けたプローブ情報を生成する。
 次に、情報センタが有するサーバ装置21について説明する。サーバ装置21に設けられた路面異常判定システム1の構成は、蓄積部22、第2の路面異常判定部23、地図情報記憶部24である。また、サーバ装置21は車載装置11と通信を行う通信部25を備える。
 蓄積部22は、通信部25を介して車載装置11のプローブ生成部15で生成されたプローブ情報を収集し蓄積する。
 第2の路面異常判定部23は、蓄積部22に蓄積されたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する。第2の路面異常判定部23の処理動作の詳細は後述のサーバ装置21の処理動作において説明する。
 地図情報記憶部24は車線単位の地図情報を記憶している。そして、地図情報記憶部24は第2の路面異常判定部23において判定された車線単位の路面異常を地図情報に関連付けて記憶する。地図情報記憶部24の処理動作の詳細は後述のサーバ装置21の処理動作において説明する。
 次に、路面異常判定システム1による路面異常判定方法について図2及び図3を用いて説明する。図2は実施の形態1の車載装置11の処理動作を示すフローチャートであり、図3は実施の形態1のサーバ装置21の処理動作を示すフローチャートである。
 まず、図2を用いて車載装置11の処理動作を説明する。車載装置11は、例えばプローブ車両が走行したタイミングで動作を開始する。
 ステップS01では、位置情報取得部12はプローブ車両の車線単位の現在位置を示す位置情報を取得する。位置情報は、サーバ装置21で識別可能な道路及び車線のリンク番号を含んでいてもよい。また、位置情報に道路及び車線のリンク番号が含まれない場合は、サーバ装置21において位置情報と地図情報を参照して走行道路及び車線を求めればよい。
 ステップS02では、路面状態情報取得部13はプローブ車両が走行した車線における路面の状態を示す路面状態情報を取得する。例えば、路面状態検出センサ17が撮影装置である場合、路面状態情報取得部13は撮影画像を路面状態情報として取得する。
 ステップS03では、第1の路面異常判定部14は、路面状態情報取得部13が取得した路面状態情報に基づき、路面異常が存在するか否かを判定する。そして、第1の路面異常判定部14は路面異常が存在すると判定した場合に、路面異常を示す路面異常情報を出力する。路面異常情報は、路面異常が存在することを示すものであってもよく、路面異常の度合いを段階的に表現してもよく、連続的な数値で表現してもよい。また、第1の路面異常判定部14は路面異常が存在するか否かを連続的に判定してもよく、例えば10m単位又は100m単位、サブリンク単位等の一定区間で判定してもよい。
 第1の路面異常判定部14による走行車線に路面異常が存在するか否かを判定する方法の例を説明するが、これらに限られるものではない。
 例えば、路面状態検出センサ17が撮像装置である場合は、第1の路面異常判定部14は路面状態情報として取得したプローブ車両が走行した車線における路面の状態が撮像された撮像画像を画像処理し、撮像画像中の路面の凹凸を検出する。そして、第1の路面異常判定部14は予め設定された閾値以上の深さの路面の凹凸を検出した場合に、路面異常が存在することを示す路面異常情報を出力する。また、第1の路面異常判定部14は路面の凹凸の深さ、個数、発生頻度により路面異常の度合いを判定してもよい。
 また、第1の路面異常判定部14は撮像画像を画像処理し、撮像画像中の路面の色調のばらつきを検出してもよい。そして、第1の路面異常判定部14は予め設定された閾値以上の路面の色調のばらつきを検出した場合に、路面異常が存在することを示す路面異常情報を出力する。また、第1の路面異常判定部14は色調のばらつきが著しい箇所が存在する場合に路面異常が存在することを示す路面異常情報を出力してもよい。そして、第1の路面異常判定部14は色調のばらつき度合い、色調のばらつきが発生しているエリアの大きさ、個数により路面異常の度合いを判定してもよい。
 また、路面状態検出センサ17が振動センサ又は音声センサである場合は、第1の路面異常判定部14は路面状態情報としてプローブ車両が走行した車線におけるプローブ車両の振動又は走行音を取得する。そして、第1の路面異常判定部14は予め設定された閾値以上の大きさの振動又は走行音が検出された場合に、路面異常が存在することを示す路面異常情報を出力してもよい。また、第1の路面異常判定部14は、振動又は走行音の大小、予め設定された閾値以上の振動又は走行音の検出頻度により路面異常の度合いを判定してもよい。
 そして、第1の路面異常判定部14は複数のセンサを用いて総合的に路面異常を判定してもよい。例えば、上述の判定方法を組み合わせて、路面異常が存在するか否か、又は路面異常の度合いを示す路面異常情報を出力する。
 上述の方法により、第1の路面異常判定部14は走行車線に路面異常が存在するか否かを判定することができる。
 ステップS03において、路面異常が存在することを示す路面異常情報、又は予め設定された閾値以上の度合いの路面異常が存在することを示す路面異常情報が出力された場合、ステップS04に進む。ステップS03において、第1の路面異常判定部14において路面異常が存在しないと判定された場合、又は予め設定された閾値以上の度合いの路面異常が存在しないと判定された場合は、ステップS01に戻る。
 ステップS04では、プローブ生成部15は、ステップS01において取得された位置情報、及びステップS03において出力された路面異常情報を関連付けたプローブ情報を生成する。すなわち、プローブ情報は路面異常の位置を車線単位で示す情報である。
 ステップ05では、車載装置11の通信部18はステップS04において生成したプローブ情報をサーバ装置21に送信する。プローブ情報をサーバ装置21に送信するタイミングは、ステップS04においてプローブ情報が生成された際でもよく、予め設定されたタイミングに送信してもよい。例えば、図示しない記憶装置にプローブ情報を記憶し、予め設定されたタイミングに複数のプローブ情報を同時に送信してもよい。予め設定されたタイミングは、例えば通信回線に余裕がある場合、走行終了時、トンネル内等通信ができない状態から通信ができる状態になったタイミングであり、適宜設定すればよい。
 ステップS05の処理動作後は、ステップS01に戻る。図2のフローチャートには車載装置11の処理動作を終了する処理が示されていないが、例えばプローブ車両が走行を終了した場合、又は乗員の操作により車載装置11の動作が停止された場合に車載装置11の動作を終了する。
 次に、図3を用いてサーバ装置21の処理動作を説明する。
 ステップS06では、サーバ装置21の通信部25は車載装置11からプローブ情報を受信する。
 ステップS07では、蓄積部22はステップS06で受信したプローブ情報を収集し蓄積する。
 ステップS08では、第2の路面異常判定部23は予め設定された条件を満たすか否かを判定する。予め設定された条件は、後述するステップS09における路面異常が存在するか否かを車線単位で判定するために適したタイミングであるかを判定するための条件である。具体的には、予め設定された条件は、前回のステップS09の処理を実行した時から1か月等の予め設定された期間経過したこと、予め設定された閾値以上の度合いの路面異常情報が関連付けられたプローブ情報が蓄積部22に蓄積された場合等である。予め設定された閾値以上の度合いの路面異常情報は、例えば直ちに路面補修等を要する路面異常である。また、予め設定された条件は、ユーザ操作により命令が実行された時、サーバ装置21側からプローブ車両に特定条件でのプローブ情報を要求し予め設定された個数以上のプロ―ブ情報が集まった場合でもよい。また、これらの例示した条件を複合的に用いてもよい。
 ステップS08において、第2の路面異常判定部23は予め設定された条件を満たすと判定した場合は、ステップS09に進む。ステップS08において、第2の路面異常判定部23は予め設定された条件を満たさないと判定した場合は、予め設定された条件を満たすまでステップS08を繰り返す。
 ステップS09では、第2の路面異常判定部23は蓄積部22に蓄積されたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する。第2の路面異常判定部23による路面異常が存在するか否かを車線単位で判定する方法の例を説明する。蓄積部22に同じ位置情報のプローブ情報が予め設定された数以上蓄積された場合、又は予め設定された閾値以上の度合いの路面異常情報が関連付けられたプローブ情報が予め設定された数以上蓄積された場合等に、路面異常が存在すると判定する。また、プローブ情報に関連付けられた路面異常情報の分散や中央値等の統計的な手法で分析してもよい。
 ステップS09において、第2の路面異常判定部23により路面異常が存在すると判定された場合はステップS10に進む。ステップS09において、第2の路面異常判定部23により路面異常が存在しないと判定された場合はステップS06に戻る。
 ステップS10では、地図情報記憶部24は、第2の路面異常判定部23において判定された路面異常を地図情報記憶部24に記憶された地図情報に車線単位で関連付けて記憶する。図4は、実施の形態1の地図情報を可視化して示す平面図である。図4において、クロスの図形はカーソルを示し、ひし形の図形は路面異常の度合いに変化があった位置を示し、白塗りされた丸印は路面異常の度合いが予め設定された閾値より小さいことを示し、黒塗りされた丸印は路面異常の度合いが予め設定された閾値より大きいことを示す。図4に示す地図は、拡大縮小操作及び表示位置指定が可能である。図4(A)では、車線数が多い道路ほど地図上の道路幅が太く表示される。図4(A)より、X1地点及びX3地点で小さい路面異常が存在し、X2地点及びX4地点で大きい路面異常が存在することが分かる。
 そして、図4(A)のカーソルをX2地点に指定し拡大表示の操作を行うと、例えば図4(B)に示す地図が表示される。図4(B)では、X2地点の車線単位の路面異常がより詳細に表示される。図4(B)より、上り片側4車線の左から第2車線に大きな度合いの路面異常が存在し、前回からの路面異常の変化があったことを示すひし形のマークが付与されている。また、第1車線、第3車線、第4車線及び下り4車線には路面異常が存在しないことが分かる。
 図4(A)のカーソルをX1地点に指定し拡大表示の操作を行うと、例えば図4(C)に示す地図が表示される。図4(C)では、X1地点の車線単位の路面異常がより詳細に表示される。図4(C)より、上り片側4車線の左から第3車線に小さい程度の路面異常が存在し、第1車線、第2車線、第4車線及び下り4車線には路面異常が存在しないことが分かる。
 また、地図情報記憶部24は、ユーザによる操作で路面異常のより詳細な状態を表示してもよい。例えば、車線上の特定位置の路面異常の画像を表示してもよい。さらに、地図情報記憶部24は予め設定された閾値以上の度合いの路面異常が新たに発生した場合にポップアップ的にその路面異常の箇所を表示してもよく、サーバ装置21が撮像画像を車載装置11から受信している場合は、撮像画像を表示してもよい。
 ステップS10の処理動作後は、ステップS06に戻る。図3のフローチャートにはサーバ装置21の処理動作を終了する処理が示されていないが、例えばサーバ装置21はユーザからサーバ装置21の処理動作を終了する旨の指令を受けた場合に処理動作を終了する。
 このように、本実施の形態における車載装置11は、プローブ車両の車線単位の現在位置を示す位置情報を取得する。また、車載装置11はプローブ車両が走行した車線における路面の状態を示す路面状態情報を取得し、路面状態情報に基づき、路面に生じている不具合及び路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定する。そして、車載装置11は路面異常が存在すると判定した場合に路面異常を示す路面異常情報を出力する。これにより、車載装置11は位置情報及び路面異常情報を関連付けたプローブ情報を生成することができる。そのため、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。
 そして、本実施の形態における路面異常判定システム1は、蓄積されたプローブ車両の車線単位の現在位置を示す位置情報及び路面異常情報が関連付けられたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する。そして、路面異常判定システム1は路面異常を地図情報に車線単位で関連付けて記憶する。これにより、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。
 また、1台のプローブ車両に設けられた車載装置11では、収集できるプローブ情報に限りがある。そのため、路面異常が存在する位置を判定できるエリアが限定的である。また、最新の路面異常情報を収集することが難しい。そこで、路面異常判定システム1はサーバ装置21の蓄積部22に蓄積されたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する。そのため、車載装置11とサーバ装置21から構成される路面異常判定システム1は、車載装置11のみから構成される場合と比較して、より広いエリアにおける最新の路面異常が存在する位置を判定することができる。
 なお、路面異常判定システム1の構成は上述に記載の内容に限定されない。例えば、路面異常判定システム1の各構成が車載装置11及びサーバ装置21のどちらに設けられるかについては、上述の記載に限られない。また、要旨を逸脱しない範囲で、路面異常判定システム1の構成の一部を省略、変更することも可能である。以下に、実施の形態1の路面異常判定システム1の変形例を例示する。
 実施の形態1では第1の路面異常判定部14は車載装置11が備える例を示したが、第1の路面異常判定部14はサーバ装置21が備えていてもよい。この場合、プローブ生成部15は位置情報及び路面状態情報を関連付けたプローブ情報を生成する。
 図5及び図6を用いて実施の形態1の変形例の路面異常判定システム1の動作を説明する。図5は実施の形態1の変形例の車載装置11の処理動作を示すフローチャートであり、図6は実施の形態1の変形例のサーバ装置21の処理動作を示すフローチャートである。実施の形態1と同様の構成については、同一符号が付されている。
 まず、図5を用いて車載装置11の処理動作を説明する。
 ステップS01及びステップS02は実施の形態1と同様である。ステップS041では、プローブ生成部15はステップS01で取得した位置情報、及びステップS02で取得した路面状態情報を関連付けたプローブ情報を生成する。そして、ステップS051では、車載装置11の通信部18はステップS041において生成されたプローブ情報をサーバ装置21に送信する。ステップS051の処理動作後は、ステップS01に戻る。図5のフローチャートには車載装置11の処理動作を終了する処理が示されていないが、例えばプローブ車両が走行を終了した場合、又は乗員の操作により車載装置11の動作が停止された場合に車載装置11の動作を終了する。
 次に、図6を用いてサーバ装置21の処理動作を説明する。
 ステップS061では、サーバ装置21の通信部25は車載装置11からプローブ情報を受信する。ステップS071では、蓄積部22はステップS061で受信したプローブ情報を収集し蓄積する。そして、ステップS072では、第1の路面異常判定部14は蓄積部22に蓄積されたプローブ情報に含まれる路面状態情報に基づき、路面異常が存在するか否かを判定する。第1の路面異常判定部14の処理動作は実施の形態1と同様である。
 ステップS072において、第1の路面異常判定部14は路面異常が存在すると判定した場合は、路面異常情報を出力する。そして、ステップS073において、第1の路面異常判定部14はプローブ情報に路面異常情報を関連付けて蓄積部22に記憶させる。ステップS072において、第1の路面異常判定部14は路面異常が存在しないと判定した場合は、ステップS071に戻る。ステップS08、ステップS09、及びステップS10は実施の形態1と同様である。図6のフローチャートにはサーバ装置21の処理動作を終了する処理が示されていないが、例えばサーバ装置21はユーザからサーバ装置21の処理動作を終了する旨の指令を受けた場合に処理動作を終了する。
 このように、実施の形態1の変形例における路面異常判定システム1は、蓄積されたプローブ車両の車線単位の現在位置を示す位置情報及び路面状態情報を関連付けたプローブ情報に基づいて、路面異常が存在するか否かを車線単位で判定する。そして、路面異常判定システム1は路面異常を地図情報に車線単位で関連付けて記憶する。これにより、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。また、第1の路面異常判定部14における路面異常が存在するか否かの判定をサーバ装置21で実施するため、車載装置11の処理負荷を軽減することができる。
 また、実施の形態1では位置情報取得部12は高精度ロケータ16から位置情報を取得する例を示したが、通常精度のロケータ及び白線認識装置から位置情報を取得してもよい。通常精度のロケータとは、mオーダーの測位精度のGNSS及びmオーダーの道路形状データを有するナビゲ―ション精度の地図情報を記憶する地図情報記憶装置を備える。そして、通常精度のロケータはプローブ車両の現在位置をmオーダーの精度で検出する。白線認識装置は、車線区画線を認識する画像処理を実施する装置である。そして、位置情報取得部12は通常精度のロケータ及び白線認識装置によりプローブ車両の走行車線を含む現在位置を示す位置情報を取得する。また、地図情報記憶装置は走行道路の車線数の情報を備えることにより、車線認識精度を向上させてもよい。
 これにより、実施の形態1と同様に位置情報取得部12は、プローブ車両の車線単位の現在位置を示す位置情報を示す位置情報を取得することができる。そのため、車載装置11及び路面異常判定システム1は、高精度ロケータ16を用いることなく、実施の形態1と同様に、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。
 また、位置情報取得部12は高精度ロケータ16及び白線認識装置から位置情報を取得してもよい。実施の形態1の位置情報取得部12と同様に、位置情報取得部12は高精度ロケータ16によりプローブ車両の走行車線を含む現在位置を取得する。さらに、位置情報取得部12は白線認識装置を用いて車線区画線を画像処理により認識する。そのため、位置情報取得部12は走行車線の特定精度を向上させることができる。
 そして、位置情報取得部12は白線認識装置により、車線内での車線幅方向におけるプローブ車両が走行する位置及び車線内でのプローブ車両のタイヤの位置を認識することが可能である。そのため、位置情報取得部12は車線内での車線幅方向の現在位置又はタイヤの位置を位置情報に含めることにより、第2の路面異常判定部23は車線内での車線幅方向における路面異常が存在する位置を判定することができる。特に、路面状態検出センサ17が例えばマイクロホン又は振動センサであり、路面状態情報が走行音又は振動信号である場合に、第2の路面異常判定部23は路面異常が存在する位置をタイヤの位置に特定できるため容易に路面異常が存在する位置を車線単位よりも詳細に判定できる。
 また、上述のとおり、位置情報取得部12は白線認識装置により、車線内での車線幅方向の現在位置又はタイヤの位置を含む位置情報を取得することができる。この場合、地図情報記憶部24は第2の路面異常判定部23において判定された車線内における車線幅方向おける路面異常が存在する位置を地図情報に関連付けて記憶してもよい。図7は、車線幅方向おける路面異常が存在する位置が関連付けられた地図情報を可視化して示す平面図であり、図4におけるX2地点の第2車線の路面異常の詳細を表示している。図7(A)は、第2車線内において路面異常の度合いが大きい箇所と小さい箇所を表示している。そして、車線内の路面破損等の路面異常が存在する位置は、例えば図7(B)のように表示される。図7(B)は、第1車線と第2車線の境界線から第2車線内の路面異常が存在する位置までの距離を表示している。図7(B)では20cmである。
 このように、地図情報記憶部24は車線内における車線幅方向における路面異常が存在する位置を地図情報に関連付けて記憶することにより、ユーザは車線内でのどの位置において路面異常が存在するかを把握することができる。
 また、第1の路面異常判定部14はリファレンス情報が予め記憶されたリファレンス情報記憶部をさらに備えていてもよい。リファレンス情報は、正常時の路面の状態を示す情報又は路面異常が存在する場合の路面の状態を示す情報である。そして、第1の路面異常判定部14は正常時の路面の状態を示す情報と、路面状態情報取得部13において取得した路面状態情報とを比較し、予め設定された閾値以上の差異がある場合に路面異常が存在すると判定する。または、第1の路面異常判定部14は路面異常が存在する場合の路面の状態を示す情報と、路面状態情報取得部13において取得した路面状態情報とを比較し、予め設定された閾値以上の差異がない場合に路面異常が存在すると判定してもよい。また、第1の路面異常判定部14は路面異常の度合いを判定してもよい。
 また、リファレンス情報記憶部は、第1の路面異常判定部14に限られず、地図情報記憶部24の道路リンク情報の一部として備えられてもよい。また、リファレンス情報はサーバ装置21からダウンロードしてもよい。
 また、リファレンス情報記憶部は車種別に異なるリファレンス情報を記憶してもよい。さらに、リファレンス情報記憶部は車線単位で舗装条件が異なる場合は車線単位でリファレンス情報を有していてもよい。この場合、リファレンス情報記憶部はプローブ車両の走行車線に対応するリファレンス情報を取得するようにしてもよく、走行車線は他車線より長い距離のリファレンス情報をダウンロードしてもよく、走行車線から遠い車線程短い距離のリファレンス情報をダウンロードしてもよい。これにより、通信量を抑えることができる。
 このように、車載装置11及びサーバ装置21は、正常時の路面の状態を示す情報又は路面異常が存在する場合の路面の状態を示す情報であるリファレンス情報を記憶するリファレンス情報記憶部を備えてもよい。これにより、第1の路面異常判定部14は路面状態情報取得部13において取得した路面状態情報とリファレンス情報を比較することにより、路面異常が存在するか否かを判定することができる。そのため、実施の形態1と同様に、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。また、車種及び舗装条件別に異なるリファレンス情報を記憶することにより、第1の路面異常判定部14における走行車線に路面異常が存在するか否かの判定精度を向上できる。
 また、路面状態情報がプローブ車両の走行音又は振動信号である場合に、プローブ車両が道路上に設置されたランブルストリップス及びリブ式車線区画線等の振動発生道路を走行すると、第1の路面異常判定部14において誤って路面異常が存在すると判定される虞がある。そこで、リファレンス情報に振動発生道路及び振動発生個所の位置情報を記憶し、プローブ車両が振動発生道路又は振動発生個所を走行した場合は、第1の路面異常判定部14において路面異常が存在するか否かの判定処理をしないようにしてもよい。また、リファレンス情報記憶部は、振動発生道路及び振動発生個所の走行音及び振動をリファレンス情報として記憶し、路面状態情報の走行音及び振動がリファレンス情報と予め設定された閾値以上の差異がない場合は路面異常が存在しないと判定してもよい。すなわち、リファレンス情報は、ランブルストリップス又はリブ式車線区画線の路面の状態を示す情報を含むことにより、プローブ車両が振動発生道路を走行した場合でも、第1の路面異常判定部14における走行車線に路面異常が存在するか否かを正しく判定できる。
 また、第1の路面異常判定部14は、ニューラルネットワークを用いて路面異常が存在するか否かを判定してもよい。この場合、第1の路面異常判定部14は路面状態情報を入力としてニューラルネット分析を行う。ニューラルネットのパラメータは、走行道路に応じて変更してもよい。例えば、道路のリンクデータとしてニューラルネットパラメータを格納してもよく、ニューラルネットのパラメータは位置情報に応じてサーバ装置21等の外部から入手してもよい。また、天候及び路面照度情報を入力信号とするニューラルネットを用いてもよい。昨今では、CNN(Convolutional Neural Network)の利用が盛んであり、CNN演算に画像処理プロセッサを用いるので撮影画像を路面状態情報として利用する場合に適している。
 また、路面状態検出センサ17はドライブレコーダであってもよい。この場合、路面状態情報はドライブレコーダが検出した映像信号、音声信号、振動信号である。また、ドライブレコーダを白線認識装置として用いてもよい。また、通信機能付きのドライブレコーダを通信部として用いてもよい。
 また、図2のステップS05において車載装置11の通信部18はプローブ情報をサーバ装置21に送信したが、車載装置11の通信部18は路面状態情報もサーバ装置21に送信してもよい。この場合、プローブ生成部15はプローブ情報に位置情報、路面状態情報、及び路面異常情報を関連付けたプローブ情報を生成すればよい。これにより、サーバ装置21の第2の路面異常判定部23において、豊富なCPU能力を活用して路面状態情報に基づき、路面異常が存在するか否かを高精度に判定することができる。
 また、車載装置11はサーバ装置21から指定された道路のみ路面異常が存在するか否かを判定してもよい。サーバ装置21が指定する道路は、例えば特定の道路区間、特定の道路種別、橋、インターチェンジ、特定のエリア等である。また、車載装置11はサーバ装置21から指定された特定の天候の場合にのみ、路面異常が存在するか否かを判定してもよい。また、車載装置11はサーバ装置21から特定の車種又は特定の車格のプローブ車両を指定する情報を入手し、プローブ車両が条件に相当する場合に路面異常が存在するか否かを判定してもよい。さらに、これらの条件を組み合わせてもよい。これにより、サーバ装置21は必要な情報のみを車載装置11から得ることができる。また、車載装置11は処理負荷を低減できる。
 また、実施の形態1では要求される路面異常情報がエリアによらず同じとして説明したが、例えば情報センタを運営する道理管理者が異なるエリアでは、要求される路面異常情報がそれぞれ異なる場合がある。例えば、多国間を縦断する場合は国別に道理管理者が異なることが想定される。また、州及び県等の行政単位で道路管理者が異なることも想定される。そこで、プローブ車両の現在位置に対応する道路管理者を特定し、その道路管理者が欲する路面異常情報が関連付けられたプローブ情報のみをサーバ装置21に送信するようにしてもよい。
 また、情報センタが複数存在するエリアをプローブ車両が走行している場合は、車載装置11は道理管理者に対応したプローブ情報をサーバ装置21に送信するようにするとよい。
 また、リファレンス情報及びCNNパラメータは道理管理者から入手するようにしてもよい。さらに、道理管理者毎に路面異常が存在するか否かを判定する基準が異なる場合は、路面異常判定部は判定基準を異なるようにしてもよい。そして、地図情報記憶部24に道理管理者の情報を含んでいてもよい。これにより、車載装置11は道理管理者が要求する路面異常情報を適切にサーバ装置21に送信することができる。
 また、実施の形態1では一般の走行道路を想定して車線の説明をしたが、駐車場、サービスエリア、パーキングエリア、料金所、ランプ等において車線が明確に分離されているエリアも車線別の路面異常が存在するか否かを判定する対象である。また、ゼブラゾーン等の導流帯、道路において車線相当に走行区間を分離するエリアも車線別の路面異常が存在するか否かを判定する対象である。この場合、ゼブラゾーンを車線と見なせばよい。これにより、駐車場、サービスエリア、パーキングエリア、料金所、ランプ、ゼブラゾーン等の導流帯、道路において車線相当に走行区間を分離するエリアにおいても、実施の形態1と同様に道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。
実施の形態2.
 実施の形態2における路面異常判定システム2について図8を用いて説明する。実施の形態2では、路面異常判定システム2の地図情報記憶部24に記憶された路面異常が車線単位で関連付けられた地図情報を利活用する例を説明する。図8は実施の形態2の路面異常判定システム2を示すブロック図である。サーバ装置21は、地図情報記憶部24に記憶された路面異常が車線単位で関連付けられた地図情報を配信要求車両に配信する配信処理部26を備えることを特徴とする。配信要求車両とは、情報センタが有するサーバ装置21に路面異常が車線単位で関連付けられた地図情報の配信を要求し、配信された地図情報を利活用する車両である。路面異常判定システム2の各構成は、プローブ車両に搭載された車載装置11、情報センタが有するサーバ装置21、及び配信要求車両に搭載された車載装置31に設けられる。その他の路面異常判定システム2の構成は実施の形態1と同様である。実施の形態1と同様の構成については、同一符号が付されている。
 配信処理部26はサーバ装置21に備えられ、配信要求車両から路面異常が車線単位で関連付けられた地図情報を配信するように要求があった場合に、通信部25を介して配信要求車両に地図情報記憶部24に記憶された路面異常が車線単位で関連付けられた地図情報を配信する。
 配信要求車両に備えられた車載装置31は、位置情報取得部36、配信要求部32、制御部33、通知部34、及びサーバ装置21と通信を行う通信部35を備える。
 位置情報取得部36は、配信要求車両の車線単位の現在位置を示す位置情報を取得する。位置情報取得部36は実施の形態1の位置情報取得部12と同様であり、例えば車線単位の道路形状データを有する地図情報を記憶し、GNSS衛星からの測位信号により配信要求車両の現在位置をcmオーダーの精度で検出する高精度ロケータ16から位置情報を取得すればよい。
 配信要求部32は、位置情報取得部36により取得した位置情報に基づいて、配信要求車両の現在位置を含むエリアにおける路面異常が車線単位で関連付けられた地図情報をサーバ装置21に配信するように要求する信号を生成する。配信要求部32により生成された信号を配信要求信号と称する。配信要求信号によりサーバ装置21に配信を要求する地図情報のエリアは、上述の配信要求車両の現在位置を含むエリアに限られない。例えば、配信要求信号によりサーバ装置21に配信を要求する地図情報のエリアは、配信要求車両の目的地までの経路に該当するエリアの地図情報、ユーザが指定する特定エリアに対する地図情報である。また、配信要求部32は配信要求信号を、配信要求車両の車載装置31がサーバ装置21と同等の車線単位の地図情報を備え、車載装置31に備えられた地図情報を更新する場合等に生成される。また、配信要求部32は配信要求信号を、配信要求車両の車種及び車格等の属性により配信要求車両が走行する上で要注意となる路面異常情報を必要とする場合、雨天等の天候状況を踏まえて走行上注意する路面異常が存在する位置情報を要求する場合等に生成してもよい。
 制御部33は、路面異常が車線単位で関連付けられた地図情報を利活用するための処理動作を行う。具体的な処理動作は、後述する配信要求車両の処理動作で説明する。
 通知部34は、配信要求車両の乗員に路面異常が存在することを通知する。通知部34は、画像を表示する表示装置又は音声を出力するスピーカ等である。
 次に、路面異常判定システム2及び配信要求車両による車線単位の路面異常が関連付けられた地図情報の利活用の方法について図9を用いて説明する。図9は実施の形態2の路面異常判定システム2の処理動作を示すフローチャートである。図9(A)はサーバ装置21の処理動作を示すフローチャートであり、図9(B)は配信要求車両の処理動作を示すフローチャートである。プローブ車両の処理動作は図示しないが実施の形態1と同様である。また、サーバ装置21の処理動作は、実施の形態1の図3のステップS10である地図情報記憶部24が第2の路面異常判定部23において判定された路面異常を地図情報に車線単位で関連付けて記憶するまでは同様である。そして、図3の処理と図9(A)の処理はマルチプロセス処理やマルチタスク処理により並行に動作するものとする。また、図9(A)のフローチャートにはサーバ装置21の処理動作を終了する処理が示されていないが、例えばサーバ装置21はユーザからサーバ装置21の処理動作を終了する旨の指令を受けた場合に処理動作を終了する。
 ステップS11では、配信要求車両は通信部35を介してサーバ装置21に配信要求信号を送信する。
 ステップS12では、サーバ装置21は通信部25を介して配信要求車両から配信要求信号を受信する。また、図示しないが、サーバ装置21は配信要求車両が配信契約を行った車両であるか否かの認証を行う認証部を備え、配信契約を締結していない場合は、配信契約を要求する処理を実行してもよいし、配信要求を棄却してもよい。
 ステップS13では、サーバ装置21の配信処理部26は、通信部25を介して地図情報記憶部24に記憶された路面異常が車線単位で関連付けられた地図情報を配信要求車両に配信する。例えば、配信要求信号が特定の経路における地図情報の配信を要求する信号である場合、配信処理部26はその特定の経路に対応する路面異常が車線単位で関連付けられた地図情報を配信要求車両に配信する。
 ステップS14では、配信要求車両は通信部35を介して路面異常が車線単位で関連付けられた地図情報を受信する。
 ステップS15では、配信要求車両は、路面異常が車線単位で関連付けられた地図情報を利活用する。路面異常が車線単位で関連付けられた地図情報を利活用する実施例を以下に説明する。
 図10は実施の形態2の配信要求車両の処理動作を示すフローチャートであり、ステップS15の一例を示すフローチャートである。また、図11は実施の形態2の通知部34に表示される地図情報の一例である。図11において、配信要求車両の位置を三角形で示す。また、図11中のX1地点、X2地点、X3地点、X4地点には路面異常が存在する。ここでは、X1地点及びX2地点が存在する道路は片側4車線であり、X1地点では第3車線に路面異常が存在し、X2地点では第2車線に路面異常が存在する例を説明する。
 まず、ステップS151では、位置情報取得部36は、例えば高精度ロケータ16から配信要求車両の車線単位の現在位置を示す位置情報を取得する。
 次に、ステップS152では、制御部33は、サーバ装置21から受信した路面異常が車線単位で関連付けられた地図情報とステップS151において取得した位置情報を用いて、配信要求車両が走行している車線において、路面異常が存在するか否かを判定する。
 ステップS152において路面異常が存在しないと判定された場合、制御部33は通知部34により図11(A)に示す第1の表示態様の地図情報を乗員に表示する(ステップS153)。第1の表示態様の地図情報は、路面異常が車線単位で関連付けられた地図情報であり、路面異常が存在する位置が後述する第2の表示態様に比較して強調されずに表示されたものである。例えば図11(A)は、配信要求車両が第1走行車線を走行中であり、第1走行車線にはX1地点、X2地点ともに路面異常は存在しない場合における通知部34に表示される地図情報である。図11(A)では、X1地点、X2地点、X3地点、X4地点に存在する路面異常は丸印で表示される。
 ステップS152において路面異常が存在すると判定された場合、制御部33は通知部34により、図11(B)に示す第2の表示態様の地図情報を表示する(ステップS154)。第2の表示態様の地図情報は、路面異常が車線単位で関連付けられた地図情報であり、配信要求車両が走行する車線に存在する路面異常を、走行する車線以外の路面異常よりも強調して表示される。これにより、通知部34は配信要求車両の乗員に配信要求車両が走行する車線に路面異常が存在することを通知することができる。例えば図11(B)は、配信要求車両が第2走行車線を走行中であり、第2走行車線にはX1地点には路面異常は存在しないが、X2地点には路面異常が存在する場合における通知部34に表示される地図情報である。図11(B)では、X1地点、X3地点、X4地点に存在する路面異常は丸印で表示され、X2地点は星印で表示される。ここでは、丸印より星印は強調されたマークであるとする。強調して表示する方法は特に限定されず、色を変える、路面異常の撮像画像の表示、点滅等のアニメーション表示等であってもよい。
 ステップS155では、制御部33は、路面異常が存在する位置に配信要求車両が予め設定された距離以上近づいたか否かを判定する。そして、制御部33は、路面異常が存在する位置に配信要求車両が予め設定された距離以上近づいた場合に、通知部34により乗員に通知する(ステップS156)。通知する内容は、前方に路面異常が存在することを示す内容でもよく、乗員に車線変更を促す内容であってもよい。また、通知部34は配信要求車両が路面異常の度合いをさらに通知してもよく、サーバ装置21から取得した路面異常の撮像画像を表示してもよい。予め設定された距離は、例えば500m等の設定された距離であってもよく、配信要求車両が例えば1分で到達すると予想される位置に達した場合であってもよい。制御部33は路面異常が存在する位置に配信要求車両が予め設定された距離以上近づかないと判定した場合は、処理動作を終了する。
 実施の形態1と同様に本実施の形態における路面異常判定システム2は、蓄積されたプローブ車両の車線単位の現在位置を示す位置情報及び路面異常情報が関連付けられたプローブ情報に基づき、路面異常が存在するか否かを車線単位で判定する。そして、路面異常判定システム2は路面異常を地図情報に車線単位で関連付けて記憶する。これにより、道路単位よりも詳細な車線単位で路面異常が存在する位置を判定することができる。
 また、本実施の形態における路面異常判定システム2は、通信部35を介して地図情報記憶に記憶された路面異常が車線単位で関連付けられた地図情報を配信する。これにより、路面異常が車線単位で関連付けられた地図情報を受信した配信要求車両は、例えば配信要求車両の乗員に路面異常が存在することを車線単位で通知することができる。このように、路面異常判定システム2はプローブ車両から収集した情報に基づきサーバ装置21において車線単位の路面異常を判定し、判定した結果を配信することにより例えば配信要求車両等で利活用することができる。
 また、本実施の形態における配信要求車両の車載装置31は、サーバ装置21の地図情報記憶部24に記憶された路面異常が車線単位で関連付けられた地図情報、及び配信要求車両の位置情報取得部36により取得した位置情報を用いて、配信要求車両が走行している車線において、路面異常が存在するか否かを判定する制御部33を備える。そして、制御部33は配信要求車両が走行している車線において、路面異常が存在すると判定した場合に、通知部34により配信要求車両の乗員に配信要求車両が走行する車線に路面異常が存在することを通知させる。これにより、配信要求車両の乗員は、道路単位よりも詳細な車線単位で路面異常が存在する位置を認識することができる。例えば、道路単位の路面異常を通知する場合、片側複数車線からなる道路上で1車線でも路面異常が存在すると、路面異常が存在しない車線を配信要求車両が走行しても、路面異常が存在することが通知されるため煩わしい。そこで、本実施の形態における配信要求車両は車線単位で路面異常が存在することを通知することにより、適切に路面異常が存在することを乗員に通知できる。
 また、通知部34は路面異常が車線単位で関連付けられた地図情報を表示することにより、配信要求車両の乗員に配信要求車両が走行する車線に路面異常が存在することを通知する。そして、制御部33は配信要求車両が走行する車線に路面異常が存在すると判定された場合に、通知部34により配信要求車両が走行する車線の路面異常を配信要求車両が走行する車線以外に存在する路面異常よりも強調して地図情報に表示させる。これにより、走行する車線の路面異常を強調して表示されるため、配信要求車両の乗員は走行する車線に存在する路面異常に注意を払うことができる。
 なお、路面異常判定システム2の構成は上述に記載の内容に限定されない。例えば、上述の路面異常判定システム2の各構成がサーバ装置21及び車載装置31のどちらに設けられるかについては、特に限定されない。また、要旨を逸脱しない範囲で、路面異常判定システム2の構成の一部を省略、変更することも可能である。以下に、実施の形態2の路面異常判定システム2の変形例を例示する。
 サーバ装置21は始点位置と終点位置の位置を示す信号を受信し、予め設定された経路策定規定に基づき、経路探索を行い経路探索結果に沿った道路の地図情報と、経路情報を配信要求車両に配信するようにしてもよい。また、サーバ装置21は、複数の経路情報を配信要求車両に推奨してもよい。また、サーバ装置21は、車線別に路面異常の有無又は度合いの大小により重みづけを行い、車線を考慮した経路探索を行い、車線単位の経路案内を行ってもよい。
 また、通知部34は配信要求車両と路面異常が存在する位置との距離に応じて地図表示態様を変化させてもよい。例えば、通知部34は路面異常が存在する位置に近づくほど地図上の路面異常が存在する位置を強調して表示してもよい。また、路面異常が存在する位置は配信要求車両が走行する道路上ではない場合は、配信要求車両が走行する道路上である場合に比べて強調されないように表示してもよい。また、路面異常が存在する位置の表示方法はユーザの設定により変更できるようにしてもよい。これにより、配信要求車両の乗員は、走行する可能性が高い路面異常の位置を適切に認識できる。
 また、プローブ車両と配信要求車両は異なる車両である例を示したが、同一であってもよい。例えば、情報センタは配信要求車両に配信料金の支払いを求める場合、プローブ車両及び配信要求車両の両方の機能を有する車両は配信料金を安く設定してもよい。これにより、プローブ車両として機能する車両を増やすことが期待でき、蓄積部22により多くのプローブ情報を収集し蓄積することができる。そのため、第2の路面異常判定部23における判定精度を向上させることができる。
 また、制御部33は、配信要求車両の車種及び車格により、車線変更すべきか否かの判断をしてもよい。例えば、バス及びトラック等の大型車両は、普通車両に比べて小さな度合いの路面異常は走行を妨げないので無視して、路面異常は存在しないとして処理してもよい。これにより、配信要求車両の走行を妨げない路面異常については、路面異常が存在することが通知されず、不要な通知を抑制することができる。
 また、図10のステップS15において、配信要求車両は、路面異常が車線単位で関連付けられた地図情報を利活用する例として、乗員に路面異常が存在することを通知する例を示したが、これに限られない。例えば、制御部33は配信要求車両の走行車線の前方に路面異常が存在する場合に、予め設定されたタイミングで自動的に車線変更制御を実施してもよい。この場合、制御部33は通知部34により車線変更の前に、自動的に車線変更を実施することを通知することが望ましい。これにより、配信要求車両が路面異常による適切な走行を妨げられることを自動運転制御により抑制できる。また、制御部33は車線変更ではなく車線変更を促すように車線内で車線変更すべき方向に自動運転制御により配信要求車両を寄せてもよい。これは、自動運転レベル0、1、2時に走行介入するような動作である。
 また、配信要求車両は、車線単位の路面異常を考慮して、車線単位の経路探索を行う経路探索部をさらに備えてもよい。経路探索部は、始点位置と終点位置の指定を受け、予め設定された経路策定規則により、同一道路上の複数の車線において路面異常が少ない又は路面異常の度合いが小さい車線を優先的に選択し、始点位置から終点位置までの車線単位の経路を探索する。これにより、配信要求車両は路面異常が少ない又は路面異常の度合いが小さい車線を走行することができる。また、制御部33は、経路探索部により探索された車線単位の経路に沿って、自動運転制御を実施してもよい。これにより、配信要求車両が路面異常による適切な走行を妨げられることを自動運転制御により抑制できる。
 また、制御部33は、経路上の特定区間の道路において全ての車線に路面異常が存在する場合に、推奨速度よりも低め設定された路面安全速度を設定し、通知部34により乗員に提示する、又は自動的に路面安全速度に変更するように走行制御をしてもよい。これにより、配信要求車両は路面異常による走行の妨げを軽減することができる。
 また、実施の形態2では、配信要求車両において路面異常判定システム2の地図情報記憶部24に記憶された路面異常が車線単位で関連付けられた地図情報を利活用する例を説明したが、これに限定されない。例えば、サーバ装置21は、路面異常が車線単位で関連付けられた地図情報を用いて、路面異常が存在する路面を補修する計画を車線単位で立案する補修計画立案部を備えてもよい。これにより、補修計画立案部は道路単位より詳細な車線単位でも補修計画を立案であきる。また、補修計画立案部は例えば全ての車線に路面異常が存在する道路を優先して補修する補修計画を立案することができる。
1、2 路面異常判定システム、11 車載装置、12 位置情報取得部、13 路面状態情報取得部、14 第1の路面異常判定部、15 プローブ生成部、16 高精度ロケータ、17 路面状態検出センサ、18 通信部、21 サーバ装置、22 蓄積部、23 第2の路面異常判定部、24 地図情報記憶部、25 通信部、26 配信処理部、31 車載装置、32 配信要求部、33 制御部、34 通知部、35 通信部、36 位置情報取得部

Claims (21)

  1.  車両の車線単位の現在位置を示す位置情報を取得する位置情報取得部と、
     前記車両が走行した車線における路面の状態を示す路面状態情報を取得する路面状態情報取得部と、
     前記路面状態情報に基づき、前記路面に生じている不具合及び前記路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定し、前記路面異常が存在すると判定した場合に前記路面異常を示す路面異常情報を出力する第1の路面異常判定部と、
     前記位置情報及び前記路面異常情報を関連付けたプローブ情報を生成するプローブ生成部と、
     前記プローブ情報を蓄積する蓄積部と、
     前記蓄積部に蓄積された前記プローブ情報に基づき、前記路面異常が存在するか否かを前記車線単位で判定する第2の路面異常判定部と、
     前記第2の路面異常判定部において判定された前記路面異常を地図情報に前記車線単位で関連付けて記憶する地図情報記憶部と、
    を備える路面異常判定システム。
  2.  前記路面状態情報は前記車両が走行した前記車線における前記路面の状態が撮像された撮像画像であり、
     前記第1の路面異常判定部は、前記撮像画像を画像処理し前記撮像画像中の路面の凹凸又は前記撮像画像中の前記路面の色調のばらつきを検出し、予め設定された閾値以上の深さの前記凹凸又は予め設定された閾値以上の前記色調のばらつきが検出された場合に前記路面異常が存在すると判定することを特徴とする請求項1に記載の路面異常判定システム。
  3.  前記路面状態情報は前記車両が走行した前記車線における前記車両の振動又は走行音であり、
     前記第1の路面異常判定部は、予め設定された閾値以上の大きさの前記振動又は前記走行音が検出された場合に前記路面異常が存在すると判定することを特徴とする請求項1又は請求項2に記載の路面異常判定システム。
  4.  正常時の路面の状態を示す情報又は前記路面異常が存在する場合の路面の状態を示す情報であるリファレンス情報を記憶するリファレンス情報記憶部をさらに備え、
     前記第1の路面異常判定部は、前記路面状態情報取得部において取得した前記路面状態情報と前記リファレンス情報とを比較することにより、前記路面異常が存在するか否かを判定することを特徴とする請求項1から請求項3のいずれか1項に記載の路面異常判定システム。
  5.  前記リファレンス情報は、ランブルストリップス又はリブ式車線区画線の路面の状態を示す情報を含むことを特徴とする請求項4に記載の路面異常判定システム。
  6.  前記位置情報取得部は、前記車線単位の道路形状データを有する地図情報を記憶し、GNSS衛星からの測位信号により前記車両の前記現在位置をcmオーダーの精度で検出するロケータから前記位置情報を取得することを特徴とする請求項1から請求項5のいずれか1項に記載の路面異常判定システム。
  7.  前記位置情報取得部は、前記ロケータ及び車線区画線を画像処理により認識する白線認識装置により前記位置情報を取得することを特徴とする請求項6に記載の路面異常判定システム。
  8.  前記位置情報は、車線内での車線幅方向の前記現在位置を含むことを特徴とする請求項7に記載の路面異常判定システム。
  9.  前記地図情報記憶部は、前記車線内における前記車線幅方向における前記路面異常が存在する位置を前記地図情報に関連付けて記憶することを特徴とする請求項8に記載の路面異常判定システム。
  10.  前記プローブ情報は、前記路面状態情報を含むことを特徴とする請求項1から請求項9のいずれか1項に記載の路面異常判定システム。
  11.  前記第1の路面異常判定部は、ニューラルネットワークを用いて前記路面異常が存在するか否かを判定することを特徴とする請求項1から請求項10のいずれか1項に記載の路面異常判定システム。
  12.  前記地図情報記憶部に記憶された前記路面異常が前記車線単位で関連付けられた前記地図情報を配信する配信処理部をさらに備えることを特徴とする請求項1から請求項11のいずれか1項に記載の路面異常判定システム。
  13.  前記車両が走行する車線に前記路面異常が存在することを通知する通知部と、
     前記地図情報記憶部に記憶された前記路面異常が前記車線単位で関連付けられた前記地図情報、及び前記位置情報を用いて、前記車両が走行している前記車線において前記路面異常が存在するか否かを判定し、前記車両が走行している前記車線において前記路面異常が存在すると判定された場合に、前記通知部により前記車両が走行する車線に前記路面異常が存在することを通知させる制御部とをさらに備えることを特徴とする請求項12に記載の路面異常判定システム。
  14.  前記制御部は前記車両が走行する前記車線に前記路面異常が存在すると判定された場合に、前記通知部により前記車両が走行する前記車線の前記路面異常を、前記車両が走行する前記車線以外に存在する前記路面異常よりも強調して前記地図情報に表示させることを特徴とする請求項13に記載の路面異常判定システム。
  15.  始点位置と終点位置の指定を受け、予め設定された経路策定規則により、同一道路上の複数の車線において路面異常が少ない又は路面異常の度合いが小さい前記車線を優先的に選択し、前記始点位置から前記終点位置までの車線単位の経路を探索する経路探索部をさらに備えることを特徴とする請求項13に記載の路面異常判定システム。
  16.  前記制御部は前記経路探索部により探索された前記車線単位の経路に沿って、自動運転制御を実施することを特徴とする請求項15に記載の路面異常判定システム。
  17.  前記制御部は、前記経路探索部により探索された前記車線単位の経路上の特定区間の道路において全ての車線に路面異常が存在する場合に、予め設定された前記道路の推奨速度よりも低め設定された路面安全速度を設定し、前記通知部により前記車両の乗員に提示する、又は自動的に前記路面安全速度に変更するように走行制御を実施することを特徴とする請求項15に記載の路面異常判定システム。
  18.  前記地図情報記憶部に記憶された前記路面異常が前記車線単位で関連付けられた前記地図情報を用いて、前記路面異常が存在する路面を補修する計画を車線単位で立案する補修計画立案部をさらに備えることを特徴とする請求項1から請求項17のいずれか1項に記載の路面異常判定システム。
  19.  車両の車線単位の現在位置を示す位置情報を取得する位置情報取得部と、
     前記車両が走行した車線における路面の状態を示す路面状態情報を取得する路面状態情報取得部と、
     前記位置情報及び前記路面状態情報を関連付けたプローブ情報を生成するプローブ生成部と、
     前記プローブ情報を蓄積する蓄積部と、
     前記蓄積部に蓄積された前記プローブ情報に基づき、前記路面に生じている不具合及び前記路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを車線単位で判定する路面異常判定部と、
     前記路面異常判定部において判定された前記路面異常を地図情報に前記車線単位で関連付けて記憶する地図情報記憶部と、
    を備える路面異常判定システム。
  20.  車両の車線単位の現在位置を示す位置情報を取得する位置情報検出部と、
     前記車両が走行した車線における路面の状態を示す路面状態情報を取得する路面状態情報取得部と、
     前記路面状態情報に基づき、前記路面に生じている不具合及び前記路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定し、前記路面異常が存在すると判定した場合に前記路面異常を示す路面異常情報を出力する第1の路面異常判定部と、
     前記位置情報及び前記路面異常情報を関連付けたプローブ情報を生成するプローブ生成部と、
    を備える車載装置。
  21.  車両の車線単位の現在位置を示す位置情報を取得するステップと、
     前記車両が走行した車線における路面の状態を示す路面状態情報を取得するステップと、
     前記路面状態情報に基づき、前記路面に生じている不具合及び前記路面に存在する障害物の少なくとも一方を含む路面異常が存在するか否かを判定し、前記路面異常が存在すると判定した場合に前記路面異常を示す路面異常情報を出力するステップと、
     前記位置情報及び前記路面異常情報を関連付けたプローブ情報を生成するステップと、
     前記プローブ情報を蓄積するステップと、
     蓄積された前記プローブ情報に基づき、前記路面異常が存在するか否かを前記車線単位で判定するステップと、
     判定された前記路面異常を地図情報に前記車線単位で関連付けて記憶するステップと、
    を備える路面異常判定方法。
PCT/JP2021/033881 2021-09-15 2021-09-15 路面異常判定システム、車載装置、及び路面異常判定方法 WO2023042291A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/033881 WO2023042291A1 (ja) 2021-09-15 2021-09-15 路面異常判定システム、車載装置、及び路面異常判定方法
JP2023547993A JPWO2023042291A1 (ja) 2021-09-15 2021-09-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033881 WO2023042291A1 (ja) 2021-09-15 2021-09-15 路面異常判定システム、車載装置、及び路面異常判定方法

Publications (1)

Publication Number Publication Date
WO2023042291A1 true WO2023042291A1 (ja) 2023-03-23

Family

ID=85601986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033881 WO2023042291A1 (ja) 2021-09-15 2021-09-15 路面異常判定システム、車載装置、及び路面異常判定方法

Country Status (2)

Country Link
JP (1) JPWO2023042291A1 (ja)
WO (1) WO2023042291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116343176A (zh) * 2023-05-30 2023-06-27 济南城市建设集团有限公司 一种路面异常监测系统及其监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159397A1 (ja) * 2017-02-28 2018-09-07 パイオニア株式会社 車載装置、情報処理装置、情報収集方法、インフラストラクチャーの劣化判断方法、及びプログラム
CN108922216A (zh) * 2018-06-22 2018-11-30 泉州创先力智能科技有限公司 一种基于车载导航的道路监控方法和系统
JP2020013537A (ja) * 2018-04-25 2020-01-23 トヨタ自動車株式会社 路面状態推定装置及び路面状態推定方法
JP2020154622A (ja) * 2019-03-19 2020-09-24 株式会社Subaru 交通制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159397A1 (ja) * 2017-02-28 2018-09-07 パイオニア株式会社 車載装置、情報処理装置、情報収集方法、インフラストラクチャーの劣化判断方法、及びプログラム
JP2020013537A (ja) * 2018-04-25 2020-01-23 トヨタ自動車株式会社 路面状態推定装置及び路面状態推定方法
CN108922216A (zh) * 2018-06-22 2018-11-30 泉州创先力智能科技有限公司 一种基于车载导航的道路监控方法和系统
JP2020154622A (ja) * 2019-03-19 2020-09-24 株式会社Subaru 交通制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116343176A (zh) * 2023-05-30 2023-06-27 济南城市建设集团有限公司 一种路面异常监测系统及其监测方法
CN116343176B (zh) * 2023-05-30 2023-08-11 济南城市建设集团有限公司 一种路面异常监测系统及其监测方法

Also Published As

Publication number Publication date
JPWO2023042291A1 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
CN112639918B (zh) 地图系统、车辆侧装置、方法和存储介质
JP7067536B2 (ja) 車両制御装置、方法および記憶媒体
JP7167876B2 (ja) 地図生成システム、サーバ、方法
CN107851125B9 (zh) 通过车辆和服务器数据库进行两步对象数据处理以生成、更新和传送精确道路特性数据库的系统和方法
US7362241B2 (en) Vehicle proximity warning apparatus, method and program
US9836051B2 (en) Automated drive assisting device, automated drive assisting method, and program
JP5062498B2 (ja) 風景マッチング用参照データ生成システム及び位置測位システム
EP2610837B1 (en) Traffic information distribution system and traffic information system, traffic information distribution program, and traffic information distribution method
JP5057183B2 (ja) 風景マッチング用参照データ生成システム及び位置測位システム
US8134480B2 (en) Image processing system and method
CN112639919A (zh) 车辆侧装置、服务器、方法和存储介质
WO2015129045A1 (ja) 画像取得システム、端末、画像取得方法および画像取得プログラム
JP2022037064A (ja) 事故判定装置
JP2019197356A (ja) 自動運転システム
JP2019086363A (ja) 自車位置推定装置
CN109074728A (zh) 推荐行驶速度提供程序、行驶支持系统、车辆控制设备和自动行驶车辆
JP2010223901A (ja) 地図データ誤り検査システム、地図データ誤り検査用端末装置、地図データ誤り検査方法
US20110106448A1 (en) Database System and Method of Obtaining and Communicating Data
WO2018168318A1 (ja) 車両制御システム、データ処理装置、及び制御プログラム
US20180208197A1 (en) Lane keeping assistance system
WO2023042291A1 (ja) 路面異常判定システム、車載装置、及び路面異常判定方法
JP2007225911A (ja) 道路地図情報収集方法、道路地図情報収集システムおよび道路地図情報処理装置
US11087618B2 (en) Method for detecting illegally parked vehicles
CN114763164A (zh) 车辆控制系统和车辆控制方法
CN114348015A (zh) 车辆控制装置和车辆控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547993

Country of ref document: JP