WO2023042269A1 - Refrigerant recovery system and refrigerant recovery method - Google Patents

Refrigerant recovery system and refrigerant recovery method Download PDF

Info

Publication number
WO2023042269A1
WO2023042269A1 PCT/JP2021/033774 JP2021033774W WO2023042269A1 WO 2023042269 A1 WO2023042269 A1 WO 2023042269A1 JP 2021033774 W JP2021033774 W JP 2021033774W WO 2023042269 A1 WO2023042269 A1 WO 2023042269A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
separation membrane
pressure
way valve
Prior art date
Application number
PCT/JP2021/033774
Other languages
French (fr)
Japanese (ja)
Inventor
善宏 堂岸
勝也 谷口
正樹 近藤
亜加音 野村
幸治 太田
Original Assignee
三菱電機ビルソリューションズ株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルソリューションズ株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルソリューションズ株式会社
Priority to PCT/JP2021/033774 priority Critical patent/WO2023042269A1/en
Priority to CN202180099771.9A priority patent/CN117545972A/en
Priority to JP2022503972A priority patent/JP7106030B1/en
Publication of WO2023042269A1 publication Critical patent/WO2023042269A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present disclosure relates to refrigerant recovery systems and refrigerant recovery methods.
  • Refrigerating and air-conditioning equipment such as refrigerators and air conditioners has an air-conditioning compressor that compresses gaseous refrigerant, which is vaporized, into a high-temperature and high-pressure state, and an air-conditioning compressor that compresses gaseous refrigerant that conveys thermal energy.
  • An air-conditioning condenser that liquefies the gas refrigerant that has been raised to high temperature and pressure by the air-conditioning compressor by cooling it with outside air, etc., an expansion valve that expands the refrigerant (liquid refrigerant) that has been liquefied in the air-conditioning condenser and gasifies it, and an expansion valve and a refrigerant recovery condenser for liquefying the refrigerant (gas refrigerant) vaporized in the refrigerant recovery condenser, and an accumulator for storing the refrigerant (liquid refrigerant) liquefied by the refrigerant recovery condenser.
  • the refrigerant plays a role of transporting thermal energy, and while releasing heat to the outside in the air conditioning condenser, it receives heat from outside air or the like after passing through the expansion valve.
  • HFCs hydrofluorocarbons
  • R134A or R32 as a single refrigerant
  • R410A or R407C as a mixed refrigerant
  • a refrigerant recovery device is used to recover the refrigerant.
  • the gas refrigerant is sucked by the compressor in the refrigerant recovery device and adiabatically compressed.
  • the adiabatically compressed gas refrigerant is liquefied by the condenser in the refrigerant recovery device and recovered as liquid refrigerant in the recovery cylinder.
  • the amount of refrigerant recovered is measured by a weight scale.
  • Patent Document 1 when a non-condensable gas such as air is mixed in the recovery system when the refrigerant in a device using a refrigerant is recovered in a recovery container (recovery cylinder) by a refrigerant recovery device, the non-condensable gas is also discharged into the recovery container. (see paragraph 0056 of the same document). Since the non-condensable gas does not condense in the recovery vessel and exists as a compressed gas, as the amount of liquid refrigerant in the recovery vessel increases and the volume of the gas phase decreases, the pressure and temperature inside the recovery vessel increase. do.
  • a non-condensable gas such as air
  • the gas separation device is connected to the recovery container, and the gas is A technique is disclosed for removing non-condensable gas in a collection vessel by means of a separation device. Specifically, the mixed gas of the gas refrigerant and the non-condensable gas in the recovery container is sent to the gas separation device to be separated, the non-condensable gas is discharged into the atmosphere, and the gas refrigerant is returned to the recovery container. ing. After removing the non-condensable gas in the collection container, the refrigerant collection device and the equipment using the refrigerant are connected to the collection container again, and the work of collecting the refrigerant into the collection container is restarted.
  • the refrigerant recovering device in recovering the refrigerant from the refrigerant circuit of the refrigerating and air-conditioning equipment, the refrigerant recovering device vaporizes the refrigerant, adiabatically compresses it, and then liquefies it to recover the refrigerant.
  • non-condensable gas mainly composed of air such as nitrogen (N2) and oxygen (O2)
  • N2 nitrogen
  • O2 oxygen
  • the non-condensable gas is not condensed in the refrigerant recovery device and is recovered as gas.
  • the cylinder will be filled.
  • the internal pressure of the recovery cylinder rises, making it difficult to fill the liquid refrigerant, and the speed of recovering the refrigerant into the recovery cylinder decreases. Therefore, it takes a long time to recover all the refrigerant.
  • Patent Document 1 the non-condensable gas in the recovery container is removed by a gas separation device. It is necessary to disconnect the instrument and connect the collection vessel to the gas separator. Moreover, when the non-condensable gas removal process is completed, it is necessary to reconnect the recovery container, the refrigerant recovery device, and the refrigerant-using equipment. Therefore, it takes a lot of time and effort. In addition, since the refrigerant from the gas separation device is returned (injected) to the recovery container in the state of gas refrigerant (gas phase), the amount of refrigerant charged in the recovery container is reduced compared to the case where the refrigerant is liquefied and injected. There is also the problem of a decline in
  • an object of the present disclosure is to reduce the non-condensable gas in the recovery cylinder while maintaining the connection between the recovery cylinder, the refrigerant recovery device, and the refrigeration and air conditioning equipment when recovering the refrigerant from the refrigeration and air conditioning equipment.
  • An object of the present invention is to provide a refrigerant recovery system and a refrigerant recovery method that can be used.
  • the refrigerant recovery system of the present disclosure is a refrigerant recovery system that recovers the air conditioning refrigerant from the refrigerant circuit of the refrigeration and air conditioning equipment.
  • the refrigerant recovery system includes a refrigerant recovery device that generates compressed and condensed refrigerant by compressing and condensing the air conditioning refrigerant, a recovery cylinder that recovers the compressed and condensed refrigerant generated by the refrigerant recovery device, and a recovery cylinder that recovers the compressed and condensed refrigerant.
  • a gas separation module device including a first gas separation module and a second gas separation module for separating the air-conditioning refrigerant as a gas component from the inside of the gas separation module device; and a resending pipe for resending to and from the recovery device.
  • the second gas separation module is arranged after the first gas separation module.
  • the first gas separation module includes a first separation membrane.
  • the second gas separation module includes a second separation membrane. Gas that permeates the first separation membrane can flow into the second separation membrane.
  • the refrigerant recovery method of the present disclosure is a refrigerant recovery method for recovering the air-conditioning refrigerant from the refrigerant circuit of the refrigerating and air-conditioning equipment.
  • the refrigerant recovery method includes the steps of: a refrigerant recovery device compressing and condensing an air-conditioning refrigerant to generate a compressed condensed refrigerant; a recovery cylinder recovering the compressed and condensed refrigerant generated by the refrigerant recovery device; a gas separation module apparatus comprising a separation module and a second gas separation module separating air conditioning refrigerant from gas components contained within a recovery cylinder in which compressed condensed refrigerant is recovered; and retransmitting the gaseous component of the separated air-conditioning refrigerant between the refrigerant circuit and the refrigerant recovery device.
  • the second gas separation module is arranged after the first gas separation module.
  • the first gas separation module includes a first separation membrane.
  • the second gas separation module
  • the non-condensable gas in the recovery cylinder can be reduced while maintaining the connection between the recovery cylinder, the refrigerant recovery device, and the refrigerating and air-conditioning equipment. Since the gas components of the air-conditioning refrigerant separated by the gas separation module device are re-sent between the refrigerant circuit and the refrigerant recovery device, the separated gas components of the air-conditioning refrigerant are recovered again or used in the refrigerant circuit. be able to.
  • FIG. 1 is a schematic diagram of a refrigerant recovery system 10 according to Embodiment 1.
  • FIG. FIG. 4 is a block diagram of dispatch controller 76;
  • FIG. 4 is a diagram showing an example of pressure characteristics of each refrigerant;
  • 3 is a block diagram of a three-way valve controller 80;
  • FIG. 3 is a block diagram of a pressure controller 97;
  • FIG. 10 is a diagram for explaining a set pressure PA of an internal-external differential pressure of the first separation membrane 92A;
  • FIG. 10 is a diagram for explaining a set pressure PB of a differential pressure between the inside and outside of a second separation membrane 92B;
  • FIG. 4 is a diagram schematically showing how gas is separated by a first separation membrane 92A made of an inorganic separation membrane.
  • FIG. 4 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to Embodiment 1.
  • FIG. 4 is a flowchart showing first three-way valve control; It is a flowchart which shows a 2nd three-way valve control.
  • FIG. 4 is a schematic diagram of a refrigerant recovery system 10A according to Embodiment 2; 10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10A in Embodiment 2.
  • FIG. 1 is a schematic diagram of a refrigerant recovery system 10 according to Embodiment 1.
  • FIG. 1 is a schematic diagram of a refrigerant recovery system 10 according to Embodiment 1.
  • FIG. 1 is a schematic diagram of a refrigerant recovery system 10 according to Embodiment 1.
  • the refrigerant recovery system 10 is a system for recovering air-conditioning refrigerant from refrigerating and air-conditioning equipment and filling a recovery cylinder 16 with the refrigerant.
  • An example of recovering air-conditioning refrigerant from an air conditioner 12 as a refrigerating and air-conditioning device will be described below, but the refrigerant recovery system 10 can be applied to refrigerant recovery from all devices that use refrigerant.
  • the refrigerant for air conditioning means at least one of the cooling function and the heating function of the air etc. It is a refrigerant that realizes
  • the refrigerant recovery system 10 includes a refrigerant recovery device 14, a recovery cylinder 16, a gas separation module device 68, retransmission pipes 58A, 58B, 58C, and a three-way valve 40.
  • the refrigerant recovery device 14 sucks the air conditioning refrigerant from the refrigerant circuit 30 of the air conditioner 12, adiabatically compresses it, condenses the compressed refrigerant and liquefies it to generate compressed condensed refrigerant.
  • the recovery cylinder 16 recovers the compressed condensed refrigerant generated by the refrigerant recovery device 14 .
  • the gas separation module device 68 separates the air conditioning refrigerant from the mixed gas component 22 contained inside the recovery cylinder 16 in which the compressed condensed refrigerant is recovered.
  • the gas separation module arrangement 68 comprises a first gas separation module 68A and a second gas separation module 68B.
  • the reason why two of the first gas separation module 68A and the second gas separation module 68B are used is that when the refrigerant for air conditioning is a mixed refrigerant containing R-32 and other refrigerants, the molecular diameter of R-32 and the This is because it is difficult to separate the air-conditioning refrigerant and the non-condensable gas with one gas separation module because the molecular diameters of the condensable gases are close.
  • the resending pipes 58A, 58B, and 58C resend the air-conditioning refrigerant separated by the gas separation module device 68 between the refrigerant circuit 30 and the refrigerant recovery device 14 .
  • the air-conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant circuit 30 .
  • the temperature of the refrigerant in the refrigerant circuit 30 rises, so that vaporization of the refrigerant is promoted, and when refrigerant recovery is resumed, the refrigerant recovery speed can be improved.
  • circulation mode the air conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant recovery device 14 . As a result, the process of recovering the air-conditioning refrigerant separated by the gas separation module device 68 is performed again.
  • a three-way valve 40 is arranged between the refrigerant circuit 30 and the refrigerant recovery device 14 .
  • Air conditioner 12 includes a service port 34 that connects to refrigerant circuit 30 .
  • the refrigerant circuit 30 includes an accumulator 32 in which liquid refrigerant is stored.
  • the refrigerant recovery device 14 sucks through the service port 34 the gas refrigerant obtained by vaporizing the liquid refrigerant in the accumulator 32 .
  • Refrigerant recovery device 14 includes a compressor and a condenser, and can be realized by a widely commercially available Freon recovery machine.
  • the refrigerant recovery device 14 includes an inlet 36 (take-in port) that takes in the air-conditioning refrigerant from the refrigerant circuit 30, an outlet 38 that discharges the compressed and condensed refrigerant, and a pressure detector 37 that detects the pressure of the air-conditioning refrigerant at the inlet 36. including.
  • the recovery cylinder 16 includes a liquid inlet/outlet 46 for admitting the compressed condensed refrigerant from the refrigerant recovery device 14 into the recovery cylinder 16 and a gas inlet/outlet 48 for exiting the gas component 22 in the recovery cylinder 16 .
  • the three-way valve 40 includes a second port 41, a second port 42 and a third port 43.
  • a connection pipe 50 connects the service port 34 of the air conditioner 12 and the first port 41 of the three-way valve 40 .
  • a front pipe 52 connects the second port 42 of the three-way valve 40 and the inlet 36 of the refrigerant recovery device 14 .
  • the third port 43 of the three-way valve 40 and the resending pipe 58C are connected.
  • the outlet 38 of the refrigerant recovery device 14 and the liquid inlet/outlet 46 of the recovery cylinder 16 are connected by a rear pipe 54 .
  • the first port 41 and the second port 42 of the three-way valve 40 are brought into communication (normal mode).
  • Air nitrogen, oxygen etc.
  • the non-condensable gas is sucked into the refrigerant recovery device 14 together with the refrigerant, the non-condensable gas is not condensed in the refrigerant recovery device 14 and is filled in the recovery cylinder 16 as it is. be.
  • the internal pressure of the recovery cylinder 16 rises, making it difficult to fill the liquid refrigerant, and the refrigerant recovery speed to the recovery cylinder 16 decreases.
  • the refrigerant recovery system 10 includes a separation device 18 for removing non-condensable gases within the recovery cylinder 16 .
  • the gaseous refrigerant obtained by partially re-vaporizing the liquid refrigerant 20 and the non-condensable gas are combined to generate a mixed gas 22 (gas component 22).
  • the separation device 18 includes a gas inlet 60, a delivery line 56, a gas separation module device 68, and re-transmission lines 58A, 58B, 58C.
  • the gas inlet 60 is connected to the gas inlet/outlet 48 of the recovery cylinder 16 .
  • the mixed gas 22 taken in from the gas inlet 60 flows through the delivery pipe 56 .
  • the gas separation module device 68 separates the air-conditioning refrigerant as a gas component from the inside of the recovery cylinder 16 in which the compressed and condensed refrigerant is recovered.
  • Gas separation module apparatus 68 is fed with gas mixture 22 in delivery line 56 and separates gas refrigerant and non-condensable gases from gas mixture 22 .
  • the retransmission pipes 58A, 58B, 58C are connected to the gas separation module device 68.
  • the resending pipes 58A, 58B, and 58C resend the gas components of the air-conditioning refrigerant separated by the gas separation module device 68 between the refrigerant recovery device 14 and the refrigerant circuit 30 .
  • the gas separation module device 68 includes a first gas separation module 68A and a second gas separation module 68B.
  • the second gas separation module 68B is arranged after the first gas separation module 68A.
  • the first gas separation module 68A includes an inlet 90A, a first separation membrane 92A, an outlet 94A, and an outlet 96A.
  • Inlet 90A takes in mixed gas 22 .
  • the first separation membrane 92A performs gas separation.
  • the discharge port 94A discharges the mixed gas 24 composed of the non-condensable gas separated by the first separation membrane 92A and R32 to the pipe 59.
  • the outlet 96A discharges the retransmitted gas refrigerant (refrigerant for air conditioning), which is a gas component in which the non-condensable gas and R32 are reduced compared to the mixed gas 22 by the first separation membrane 92A.
  • refrigerant for air conditioning
  • a first end of the delivery pipe 56 is the gas inlet 60 .
  • a second end of the delivery line 56 is connected to the inlet 90A of the first gas separation module 68A.
  • a first end of the retransmission pipe 58A is connected to the outlet 96A of the first gas separation module 68A.
  • a second end of the retransmission pipe 58A is connected to the junction ND.
  • the second gas separation module 68B includes an inlet 90B, a second separation membrane 92B, an outlet 94B, and an outlet 96B.
  • Inlet 90B takes in mixed gas 24 .
  • the second separation membrane 92B performs gas separation.
  • the discharge port 94B discharges the non-condensable gas separated by the second separation membrane 92B to the atmosphere.
  • the outlet 96B discharges retransmitted gas refrigerant (air-conditioning refrigerant), which is a gas component in which the non-condensable gas is reduced compared to the mixed gas 24 by the second separation membrane 92B.
  • a first end of the pipe 59 is connected to the outlet 94A of the first gas separation module 68A.
  • a second end of tubing 59 is connected to inlet 90B of second gas separation module 68B.
  • a first end of the retransmission pipe 58B is connected to the outlet 96B of the second gas separation module 68B.
  • a second end of the retransmission pipe 58B is connected to the junction ND.
  • a first end of the retransmission pipe 58C is connected to the junction ND.
  • a second end of the resending pipe 58C is connected to the third port 43 of the three-way valve 40 as a gas outlet 74 .
  • the separation device 18 further comprises a first pressure regulator 98A, a second pressure regulator 98B, a first check valve 99A and a second check valve 99B.
  • the first pressure regulator 98A adjusts the internal and external pressure difference of the first separation membrane 92A of the first gas separation module 68A.
  • the first pressure regulator 98A is positioned after the first gas separation module 68A and includes a first back pressure valve that regulates the pressure on the primary side of the first pressure regulator 98A.
  • the second pressure regulator 98B adjusts the internal and external pressure difference of the second separation membrane 92B of the second gas separation module 68B.
  • the second pressure regulator 98B is positioned after the second gas separation module 68B and includes a second back pressure valve that regulates the pressure on the primary side of the second pressure regulator 98B.
  • the first check valve 99A is arranged between the first pressure regulator 98A and the junction ND.
  • the first check valve 99A prevents the gas that has flowed out from the first separation membrane 92A and the gas that has flowed out from the second separation membrane 92B from flowing into the first separation membrane 92A.
  • the second check valve 99B is arranged between the second pressure regulator 98B and the junction ND.
  • the second check valve 99B prevents the gas that has flowed out from the first separation membrane 92A and the gas that has flowed out from the second separation membrane 92B from flowing into the second separation membrane 92B.
  • the refrigerant recovery method which is the basis of the refrigerant recovery system including such a configuration, comprises the following steps (1) to (4).
  • the first port 41 and the second port 42 of the three-way valve 40 are brought into communication (hereinafter referred to as normal mode), and the refrigerant for air conditioning in the refrigerant circuit 30 is collected through the connecting pipe 50 and the front pipe 52.
  • the gas component 22 contained inside the recovery cylinder 16 is led to the gas separation module device 68 through the delivery pipe 56, and the gas separation module device 68 is used to separate the mixed gas 22 from the non-condensable gas and the resent gas refrigerant (air conditioning Refrigerant for use) and a separation step.
  • the second port 42 and the third port 43 of the three-way valve 40 are brought into communication (hereinafter referred to as circulation mode), and the resent gas refrigerant separated by the gas separation module device 68 is transferred to the resending pipes 58A, 58B, a resending step of resending between the refrigerant recovery device 14 and the refrigerant circuit 30 through 58C and the front pipe 52;
  • the separation step (3) includes the following two steps. (3A) A first separation step in which the first gas separation module 68A separates the mixed gas 24 consisting of the non-condensable gas and R32 from the mixed gas 22 and the refrigerant other than R32.
  • the separation device 18 further comprises a pressure detector 61 , a temperature detector 62 , a control valve 64 and a pressure reducing valve 66 arranged in the delivery line 56 .
  • a pressure detector 61 and a temperature detector 62 on the delivery pipe 56 are positioned closer to the recovery cylinder 16 than the control valve 64 and detect the pressure and temperature inside the recovery cylinder 16 .
  • the separation device 18 further comprises a pressure detector 70 and a pressure regulator 72 arranged in the retransmission pipe 58C.
  • the pressure detector 70 on the resending pipe 58C detects the pressure inside the resending pipe 58C upstream of the pressure regulator 72 (gas separation module device 68 side).
  • the pressure regulator 72 regulates the pressure in the retransmission pipe 58C downstream of the pressure regulator 72 (on the side of the gas outlet 74).
  • the separation device 18 further comprises a dispatch controller 76 , a retransmission controller 78 , a three-way valve controller 80 and a pressure controller 97 .
  • the sending controller 76, the resending controller 78, the three-way valve controller 80, and the pressure controller 97 are controllers, for example, CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), flash It is a microcomputer equipped with memory, input/output ports, and the like. These controllers may be realized by one common microcomputer. Also, these controllers may include an ASIC (Application Specific Integrated Circuit) or the like instead of or together with a microcomputer.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • flash It is a microcomputer equipped with memory, input/output ports, and the like.
  • These controllers may be realized by one common microcomputer. Also, these controllers may include an ASIC (Application Specific Integrated Circuit) or the like instead of or together with a microcomputer.
  • ASIC Application Specific Integrated Circuit
  • the dispatch controller 76 determines whether it is necessary to remove the non-condensable gas from the recovery cylinder 16 based on the detected value DP of the pressure detector 61 and the detected value DT of the temperature detector 62 .
  • the shipping controller 76 opens the control valve 64 when determining that the removal is necessary, and closes the control valve 64 when determining that the removal is not necessary.
  • the three-way valve controller 80 controls the three-way valve 40 to set the first port 41 and the second port 42 to communicate (normal mode).
  • the three-way valve controller 80 controls the three-way valve 40 so that the second port 42 and the third port 43 are in communication (circulation mode), or the first port 41 and the third port 43 are connected to each other (hereinafter referred to as vaporization promotion mode).
  • the vaporization acceleration mode is added to the basic refrigerant recovery method.
  • the normal mode is a mode in which refrigerant is recovered from the air conditioner 12 to the recovery cylinder 16 .
  • a circulation loop is formed by the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16, and the mixed gas 22 in the recovery cylinder 16 is repeatedly sent to the gas separation module device 68, and the inside of the recovery cylinder 16 is This mode removes non-condensable gases.
  • the vaporization promotion mode when there is a possibility that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is condensed at a low temperature, part of the mixed gas 22 in the recovery cylinder 16 is sent from the separator 18 into the refrigerant circuit 30, This is a mode in which the temperature of the refrigerant in the refrigerant circuit 30 is raised to promote vaporization of the refrigerant. Since the gas refrigerant that has passed through the refrigerant recovery device 14 is adiabatically compressed, it has a higher temperature than when it flows into the refrigerant circuit 30 , that is, into the refrigerant recovery device 14 . Therefore, the temperature of the refrigerant entering the recovery cylinder 16 from the refrigerant recovery device 14 is high.
  • the pressure controller 97 controls the first pressure regulator 98A to adjust the differential pressure between the inside and outside of the first separation membrane 92A.
  • the pressure controller 97 controls the second pressure regulator 98B to adjust the differential pressure between the inside and outside of the second separation membrane 92B.
  • FIG. 2 is a block diagram of the dispatch controller 76.
  • the dispatch controller 76 comprises a reference pressure acquirer 104 , a pressure reducing valve controller 106 and a determiner 108 .
  • the separating device 18 comprises an input unit 100 such as a keypad or barcode reader, and a storage unit 102 such as flash memory.
  • the dispatch controller 76 is electrically connected to the input section 100 and the storage section 102 .
  • Memory within dispatch controller 76 may be used as storage unit 102 .
  • recovered refrigerant information 110 indicating the type of refrigerant to be recovered (hereinafter also referred to as recovered refrigerant) is input from the input unit 100 and stored in the storage unit 102 .
  • recovered refrigerant information 110 can be obtained. It is stored in the storage unit 102 .
  • the storage unit 102 further stores in advance the characteristic of saturated vapor pressure with respect to temperature (hereinafter referred to as pressure characteristic 112) for each of a plurality of types of refrigerants.
  • FIG. 3 is a diagram showing an example of pressure characteristics of each refrigerant.
  • FIG. 3 shows the pressure characteristics of A, B, C, and D refrigerants.
  • the temperature DT detected by the temperature detector 62 on the shipping pipe 56 (temperature inside the recovery cylinder 16) is input to the reference pressure acquirer 104.
  • the reference pressure acquirer 104 reads the pressure characteristic 112 corresponding to the recovered refrigerant indicated by the recovered refrigerant information 110 from the storage unit 102, and, as shown in FIG. In the example of FIG. 3, the saturated vapor pressure of refrigerant A) is obtained as the reference pressure RP.
  • the reference pressure acquirer 104 then outputs the reference pressure RP to the determiner 108 .
  • the reference pressure RP and the detected pressure DP of the pressure detector 61 on the shipping pipe 56 are input to the determiner 108.
  • the determiner 108 controls the control valve 64 to open, and the mixed gas 22 in the recovery cylinder 16 is discharged. Send to gas separation module device 68 .
  • the determiner 108 keeps the control valve 64 closed when the high pressure is not present.
  • the determiner 108 outputs a removal signal indicating whether the non-condensable gas is being removed.
  • the removal signal is a signal that becomes Low when the control valve 64 is closed and becomes High when the control valve 64 is open.
  • the pressure DP detected by the pressure detector 61 on the delivery pipe 56 (the pressure inside the recovery cylinder 16) is input to the pressure reducing valve controller 106.
  • the pressure reducing valve controller 106 when the control valve 64 is opened and the mixed gas 22 in the recovery cylinder 16 is sent to the gas separation module device 68, the separation membranes 92A and 92B of the gas separation module device 68 are separated from the recovery cylinder.
  • the pressure reducing valve 66 is controlled so that the pressure in 16 does not damage it. By controlling the pressure reducing valve 66, the pressure in the pipe downstream of the pressure reducing valve 66 (on the side of the gas separation module device 68) is adjusted.
  • FIG. 4 is a block diagram of the three-way valve controller 80.
  • the three-way valve controller 80 has a determiner 118 .
  • the three-way valve controller 80 is electrically connected to an input section 100 such as a keypad and a storage section 102 such as flash memory.
  • a memory within the three-way valve controller 80 may be used as the storage unit 102 .
  • a pressure threshold value 120 as a transition condition to the vaporization promotion mode and a vaporization promotion mode duration 122 are input from the input unit 100 and stored in the storage unit 102 .
  • the determination device 118 stores the removal signal, the detected pressure DPS of the pressure detector 37 of the refrigerant recovery device 14 (the pressure at the inlet 36 of the refrigerant recovery device 14), and the pressure threshold 120 and duration 122 stored in the storage unit 102. is entered.
  • the detected pressure DPS indicates the pressure in the refrigerant circuit 30 of the air conditioner 12 in the normal mode.
  • the determiner 118 controls the three-way valve 40 so that the first port 41 and the second port 42 of the three-way valve 40 are in communication (normal mode).
  • the determiner 118 selects one of the circulation mode and the vaporization acceleration mode based on the result of comparison between the detected pressure DPS (the pressure in the refrigerant circuit 30) and the pressure threshold 120. It is decided which way the three-way valve 40 will be controlled. Specifically, when the detected pressure DPS is higher than the pressure threshold 120, the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 is unlikely to condense at a low temperature, and the second port 42 of the three-way valve 40 and The three-way valve 40 is controlled so that it communicates with the third port 43 (circulation mode).
  • the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 may be condensed at a low temperature, and the first port 41 and the third port of the three-way valve 40 43 is in communication (vaporization acceleration mode).
  • the determiner 118 controls the three-way valve 40 from the vaporization promotion mode to the circulation mode when the duration time 122 has elapsed after the transition to the vaporization promotion mode.
  • the determiner 118 outputs a three-way valve signal indicating the current state of the normal mode, the circulation mode, or the vaporization promotion mode.
  • the resending controller 78 includes a three-way valve signal, a detected pressure DPR of the pressure detector 70 on the resending pipe 58C (pressure inside the resending pipe 58), and a pressure detector of the refrigerant recovery device 14.
  • 37 detected pressure DPS (the pressure at the inlet 36 of the refrigerant recovery device 14) is input.
  • the resending controller 78 is controlled based on the sensed pressures DPR, DPS when the 3-way valve signal indicates the circulation mode, and the pressure downstream of the pressure regulator 72 (gas outlet 36) relative to the pressure at the inlet 36 of the refrigerant recovery device 14. 74 side), the pressure regulator 72 is controlled so that the pressure in the retransmission pipe 58C increases.
  • the resending controller 78 controls the pressure in the resending pipe 58C on the downstream side (gas outflow port 74 side) of the pressure regulator 72 to increase the pressure in the refrigerant circuit 30 of the air conditioner 12.
  • the pressure regulator 72 is controlled to provide a predetermined pressure at which gas can be delivered to the .
  • FIG. 5 is a block diagram of the pressure controller 97.
  • the pressure controller 97 comprises a pressure acquirer 211 , a first pressure controller 212 and a second pressure controller 213 .
  • the pressure controller 97 is electrically connected to a storage unit 102 such as a flash memory.
  • a memory within the pressure controller 97 may be used as the storage unit 102 .
  • the storage unit 102 stores first pressure information 214 and second pressure information 215 .
  • the first pressure information 214 represents the internal and external pressure difference PA of the first separation membrane 92A set by the first pressure regulator 98A.
  • the second pressure information 215 represents the internal and external pressure difference PB of the second separation membrane 92B set by the second pressure regulator 98B.
  • the pressure acquirer 211 acquires first pressure information 214 from the storage unit 102 and sends it to the first pressure controller 212 before refrigerant recovery.
  • the first pressure controller 212 controls the first pressure regulator 98A to set the internal and external pressure difference P1o of the first separation membrane 92A to PA.
  • the pressure acquirer 211 acquires the second pressure information 215 from the storage unit 102 and sends it to the second pressure controller 213 before refrigerant recovery.
  • the second pressure controller 213 controls the second pressure regulator 98B to set the internal and external differential pressure P2o of the second separation membrane 92B to PB.
  • FIG. 6 is a diagram for explaining the set pressure PA of the internal and external differential pressure of the first separation membrane 92A.
  • the pressure difference between the inside and outside of the first separation membrane 92A is less than the first threshold value TH1
  • the gas component of R32 and the non-condensable gas can permeate the first separation membrane 92A, and the refrigerant gas other than R32 Components cannot permeate the first separation membrane 92A.
  • the set pressure PA of the internal and external differential pressure of the first separation membrane 92A is set to a value less than the first threshold TH1.
  • FIG. 7 is a diagram for explaining the set pressure PB of the internal and external differential pressure of the second separation membrane 92B.
  • the pressure difference between the inside and outside of the second separation membrane 92B is less than the second threshold TH2
  • the non-condensable gas can permeate the second separation membrane 92B, and the gas component of R32 and the refrigerant gas other than R32 Components cannot permeate the second separation membrane 92B.
  • the set pressure PB of the internal and external differential pressure of the second separation membrane 92B is set to a value less than the second threshold TH2.
  • the pressure difference between the inside and outside of the first separation membrane 92A is P1o
  • the pressure inside the first separation membrane 92A (that is, the pressure on the input side of the first separation membrane 92A)
  • P1i the pressure inside the first separation membrane 92A
  • P2i the pressure inside the second separation membrane 92B
  • P2t the pressure on the permeation side of the second separation membrane 92B.
  • P1i P1o+P2o (11)
  • Control of the pressure reducing valve 66 by the dispatch controller 76 allows the pressure P1o to be controlled. Should P1i be significantly greater than P1o, pressure reducing valve 66 vents gas downstream for control of pressure P1o. In other words, a large amount of gas flows out without being separated by the first separation membrane 92A. Therefore, it is desirable that P1i is slightly higher than P2o. Specifically, P1i is desirably higher than P2o by 0 [MPa] or more and 0.1 [MPa] or less by control of the pressure reducing valve 66 by the shipping controller 76 .
  • the set pressure PA of the internal and external differential pressure of the first separation membrane 92A be higher than the set pressure PB of the internal and external differential pressure of the second separation membrane 92B.
  • a mixed gas 22 containing R32, a refrigerant other than R32, and a non-condensable gas flows into the first gas separation module 68A.
  • the first gas separation module 68A includes a tubular housing 88A and a tubular first separation membrane 92A disposed within the housing 88A.
  • Enclosure 88A includes an inlet 90A for taking in mixed gas 22, an outlet 96A positioned opposite inlet 90A for discharging rerouted gas refrigerant, and an outlet 94A for discharging non-condensable gases and R32.
  • the gas component of R32 can permeate the first separation membrane 92A.
  • a non-condensable gas can permeate the first separation membrane 92A. Gas components of refrigerants other than R32 cannot permeate the first separation membrane 92A.
  • a first end of the first separation membrane 92A is connected to the inlet 90A of the housing 88A.
  • a second end of the first separation membrane 92A is connected to the outlet 96A of the housing 88A.
  • Mixed gas 22 enters the interior of first separation membrane 92A from inlet 90A and proceeds toward outlet 96A, during which air-based non-condensable gas and R32 permeate first separation membrane 92A. Then, it goes out of the first separation membrane 92A, and is eventually released into the pipe 59 from the discharge port 94A of the housing 88A.
  • the non-condensable gas and the retransmitted gas refrigerant with reduced R32 compared to the mixed gas 22 are discharged from the outlet 96A of the housing 88A into the retransmitted pipe 58A.
  • first separation membrane 92A and the second separation membrane 92B for example, a membrane made of an inorganic material (hereinafter referred to as an inorganic separation membrane) or a membrane made of an organic material (hereinafter referred to as an organic separation membrane ) can be used. Ceramics, zeolites, and the like, for example, can be used as materials for the inorganic separation membrane.
  • the first separation membrane 92A and the second separation membrane 92B are membranes capable of separating gases with a small separation diameter, such as non-condensable gases (N2, O2).
  • the molecular diameters of the first separation membrane 92A and the second separation membrane 92B are approximately 3.8 ⁇ .
  • the first separation membrane 92A has polarity, and the second separation membrane 92B does not have polarity.
  • FIG. 8 is a diagram schematically showing how gas is separated by the first separation membrane 92A composed of an inorganic separation membrane.
  • the inorganic separation membrane basically uses the difference in molecular diameter to separate gases. Air (non-condensable gas) 26 with a small molecular diameter and water 28 go out of the first separation membrane 92A through the pores of the first separation membrane 92A.
  • the refrigerant 24 other than R32 having a large molecular diameter remains inside the first separation membrane 92A.
  • the molecular diameter of R32 is slightly larger than that of the inorganic separation membrane.
  • R32 permeates the first separation membrane 92A by being deformed.
  • the first separation membrane 92A has polarity. Since the second separation membrane 92B does not have polarity, R32 may or may not permeate the second separation membrane 92B depending on the transmembrane pressure difference.
  • a mixed gas 24 containing R32 and non-condensable gas flows into the second gas separation module 68B.
  • the second gas separation module 68B includes a tubular housing 88B and a tubular second separation membrane 92B disposed within the housing 88B.
  • Enclosure 88B includes an inlet 90B for taking in mixed gas 24, an outlet 96B disposed opposite inlet 90B for discharging rerouted gas refrigerant, and an outlet 94B for discharging non-condensable gases.
  • the R32 gas component cannot permeate the second separation membrane 92B.
  • a non-condensable gas can permeate the second separation membrane 92B.
  • a first end of the second separation membrane 92B is connected to the inlet 90B of the housing 88B.
  • a second end of the second separation membrane 92B is connected to the outlet 96B of the housing 88B.
  • the mixed gas 24 enters the interior of the second separation membrane 92B from the inlet 90B and proceeds toward the outlet 96B, during which the non-condensable gas mainly composed of air permeates the second separation membrane 92B to It goes out of the second separation membrane 92B and is released into the atmosphere from the discharge port 94B of the housing 88B before long. Further, the retransmitted gas refrigerant having a reduced non-condensable gas content compared to the mixed gas 24 is discharged from the outlet 96B of the housing 88B into the retransmitted pipe 58B.
  • FIG. 9(a) is a diagram schematically showing how gas is separated by the second separation membrane 92B composed of an inorganic separation membrane when the transmembrane pressure difference is less than TH2.
  • FIG. 9(b) is a diagram schematically showing how gas is separated by the second separation membrane 92B composed of an inorganic separation membrane when the transmembrane pressure difference is TH2 or higher.
  • the inorganic separation membrane basically uses the difference in molecular diameter to separate gases.
  • Air (non-condensable gas) 26 with a small molecular diameter and water 28 go out of the second separation membrane 92B through the pores of the second separation membrane 92B. Since the second separation membrane 92B does not have polarity, R32 (25) remains inside the second separation membrane 92B unless the transmembrane pressure difference becomes equal to or greater than the second threshold TH2.
  • FIG. 10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to the first embodiment.
  • S100 to S104, S126 and S128 are steps performed by the operator, and other steps are steps performed automatically by the refrigerant recovery system 10.
  • FIG. 10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to the first embodiment.
  • S100 to S104, S126 and S128 are steps performed by the operator, and other steps are steps performed automatically by the refrigerant recovery system 10.
  • FIG. 10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to the first embodiment.
  • S100 to S104, S126 and S128 are steps performed by the operator, and other steps are steps performed automatically by the refrigerant recovery system 10.
  • FIG. 10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to the first embodiment.
  • the operator turns on the separation device 18. After that, the operator inputs the collected refrigerant information 110 (see FIG. 2) and the pressure threshold 120 and the duration 122 (see FIG. 4) regarding the accelerated vaporization mode from the input section 100.
  • FIG. When the isolation device 18 is powered on, the three-way valve controller 80 controls the three-way valve 40 to a normal mode in which the first port 41 and the second port 42 are in communication.
  • the operator drives the refrigerant recovery device 14. Thereby, refrigerant recovery from the air conditioner 12 is started.
  • S106 to S122 are automatic controls by the refrigerant recovery system .
  • the reference pressure acquirer 104 of the dispatch controller 76 determines the detected temperature DT of the temperature detector 62 (the temperature in the recovery cylinder 16 ) is obtained as the reference pressure RP.
  • a determiner 108 of the delivery controller 76 checks whether or not the detected pressure DP of the pressure detector 61 (the pressure inside the recovery cylinder) is higher than the reference pressure RP. Note that, as shown in S106 in FIG. 7, the determination device 108 determines that the detected pressure DP (inside the recovery cylinder pressure) is high.
  • the determiner 108 determines that it is not necessary to remove the non-condensable gas in the recovery cylinder 16, and continues to recover the refrigerant (S108 ).
  • the determiner 108 determines that the non-condensable gas in the recovery cylinder 16 needs to be removed, and outputs a removal signal. is changed from Low to High, and the process proceeds to S110. If the determination is made using the reference pressure in this way, removal of the non-condensable gas can be started after a certain amount of non-condensable gas is accumulated in the recovery cylinder 16 .
  • FIG. 11 is a flowchart showing first three-way valve control.
  • the determiner 118 of the three-way valve controller 80 checks whether the detected pressure DPS (pressure of the refrigerant circuit 30) of the pressure detector 37 of the refrigerant recovery device 14 is equal to or less than the pressure threshold 120 stored in the storage unit 102. do.
  • the pressure threshold 120 is, for example, about 0.1 MPa.
  • the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is unlikely to condense at a low temperature, and the three-way valve 40 is connected between the second port 42 and the third port 43. (S206), the vaporization acceleration flag is turned off (S208), and the first three-way valve control is terminated.
  • the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is highly likely to be condensed at a low temperature, and the three-way valve 40 is connected to the first port 41 and the third port 43. (S202), turns on the vaporization promotion flag (S204), and ends the first three-way valve control.
  • the pressure controller 97 adjusts the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A. Then, by controlling the second pressure regulator 98B, the adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB is started.
  • the determiner 108 of the shipping controller 76 opens the control valve 64 on the shipping pipe 56 .
  • the timing of changing the removal signal from Low to High, the execution timing of S110 (first three-way valve control), and the execution timing of S112 (operation of opening the control valve 64) are substantially the same.
  • the pressure reducing valve 66 is adjusted by the pressure reducing valve controller 106 before the control valve 64 is opened. By opening control valve 64 , mixed gas 22 in recovery cylinder 16 is sent to gas separation module device 68 .
  • a circulation loop consisting of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, and the mixed gas 22 in the recovery cylinder 16 is repeatedly sent to the gas separation module device 68.
  • Non-condensable gases are vented to the atmosphere.
  • the resent gas refrigerant is sent to the front pipe 52 in front of the refrigerant recovery device 14, passes through the refrigerant recovery device 14, and returns to the recovery cylinder 16 in a liquefied state.
  • the non-condensable gas inside the recovery cylinder 16 is gradually removed, and the pressure inside the recovery cylinder 16 decreases.
  • the resent gas refrigerant that is part of the mixed gas 22 in the recovery cylinder 16 is sent into the refrigerant circuit 30 of the air conditioner 12 to raise the temperature of the refrigerant in the refrigerant circuit 30 .
  • vaporization of the refrigerant is accelerated, and when refrigerant recovery is restarted, the refrigerant recovery speed can be improved.
  • the resending controller 78 controls the pressure regulator 72 in the circulation mode and the vaporization promotion mode to adjust the pressure in the resending pipe 58C on the downstream side of the pressure regulator 72 (gas outflow port 74 side).
  • the determiner 108 of the shipping controller 76 confirms whether or not the detected pressure DP of the pressure detector 61 (the pressure inside the recovery cylinder 16) has become equal to or less than the reference pressure RP. If S114 is NO, the removal of non-condensable gas is continued (S116), and the process proceeds to S118.
  • FIG. 12 is a flow chart showing second three-way valve control.
  • the determiner 118 of the three-way valve controller 80 confirms whether or not the vaporization promotion flag is ON. If S300 is NO (in the circulation mode), the second three-way valve control is ended. On the other hand, if S300 is YES (in the case of vaporization promotion mode), the process proceeds to S302.
  • the determiner 118 checks whether the duration 122 (see FIG. 4) stored in the storage unit 102 has passed since the transition to the vaporization acceleration mode. If S302 is NO, the determiner 118 determines that it is necessary to continue the vaporization acceleration mode, and ends the second three-way valve control. On the other hand, if S302 is YES, the determiner 118 determines that the vaporization promotion mode may be terminated, and controls the three-way valve 40 to the circulation mode in which the second port 42 and the third port 43 communicate ( S304), the vaporization promotion flag is turned off (S306), and the second three-way valve control ends.
  • the determiner 108 of the shipping controller 76 closes the control valve 64 on the shipping pipe 56 and changes the removal signal from High to Low.
  • the decision device 118 of the three-way valve controller 80 controls the three-way valve 40 to the normal mode in which the first port 41 and the second port 42 communicate with each other in response to the removal signal changing from High to Low.
  • the pressure reducing valve controller 106 of the dispatch controller 76 terminates control of the pressure reducing valve 66 and the retransmission controller 78 terminates control of the pressure regulator 72 .
  • the pressure controller 97 finishes adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
  • the adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB by controlling the two-pressure regulator 98B is completed.
  • the refrigerant recovery device 14 confirms whether or not the pressure DPS detected by the pressure detector 37 (the pressure in the refrigerant circuit 30) has become negative. If S122 is NO, the refrigerant recovery device 14 continues refrigerant recovery (S124), and if S122 is YES, the refrigerant recovery device 14 notifies the completion of refrigerant recovery by means of a lamp, sound, or the like. tell people.
  • the operator stops the refrigerant recovery device 14 .
  • the operator turns off the separation device 18 .
  • the non-condensable gas is separated from the mixed gas 22 and discharged to the atmosphere, and the mixed gas
  • the rerouted gaseous refrigerant which has reduced noncondensable gases compared to 22 , is discharged from the gas separation module arrangement 68 and directed into the piping between the refrigerant circuit 30 of the air conditioner 12 and the refrigerant recovery system 14 . Further, the retransmitted gas refrigerant passes through the refrigerant recovery device 14 again and returns to the recovery cylinder 16 in a liquefied state.
  • the non-condensable gas in the recovery cylinder 16 can be reduced while maintaining the connection between the recovery cylinder 16, the refrigerant recovery device 14 and the air conditioner 12.
  • the increase in internal pressure of the recovery cylinder 16 can be suppressed, the speed of refrigerant recovery to the recovery cylinder 16 can be improved, and the amount of refrigerant charged in the recovery cylinder 16 can be increased. Since the resent gas refrigerant is liquefied (with a reduced volume) and returned to the recovery cylinder 16, the amount of refrigerant charged in the recovery cylinder 16 can be further increased.
  • the recovery cylinder 16 In order to send the mixed gas 22 in the recovery cylinder 16 to the gas separation module device 68, it is important that the recovery cylinder 16, the gas separation module device 68, and the refrigerant recovery device 14 are arranged in this order.
  • the air-conditioning refrigerant separated by the gas separation module device 68 is resent between the refrigerant circuit 30 and the refrigerant recovery device 14 .
  • the separated air-conditioning refrigerant can be switched by the three-way valve 40 to be sent to the refrigerant circuit 30 or sent to the refrigerant recovery device 14 .
  • the air-conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant circuit 30, so that the temperature of the refrigerant in the refrigerant circuit 30 can be raised. As a result, vaporization of the refrigerant is accelerated, and when refrigerant recovery is resumed, the refrigerant recovery speed can be improved.
  • the air-conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant recovery device 14, so that the recovery process of the air-conditioning refrigerant separated by the gas separation module device 68 is performed again.
  • the gas separation module device 68 is attached to the top of the recovery cylinder 16. Therefore, liquid components such as the liquid refrigerant and mixed water remain at the bottom of the recovery cylinder 16, and the liquid refrigerant and a large amount of water are mixed in the first separation membrane 92A and the second separation membrane 92B of the gas separation module device 68. Therefore, it is possible to suppress the deterioration of the gas separation effect of the first separation membrane 92A and the second separation membrane 92B.
  • the air-conditioning refrigerant is adiabatically compressed and liquefied by the refrigerant recovery device 14 and filled in the recovery cylinder 16 .
  • a circulation loop of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, and the separation of the non-condensable gas is repeatedly performed by the gas separation module device 68, effectively removing the non-condensable gas in the recovery cylinder 16. elimination of toxic gases is achieved. That is, the separation efficiency can be increased compared to a configuration in which the mixed gas 22 passes through the gas separation module device 68 only once.
  • the non-condensable gas is removed by the gas separation module device 68 by opening the control valve 64. Unnecessary use of gas separation module devices 68 with no or little gas can be avoided.
  • the common separation device 18 can be used to recover different types of refrigerants.
  • the gas separation module device 68 When the gas separation module device 68 is used (when the control valve 64 is open) and the pressure in the refrigerant circuit 30 is higher than a predetermined pressure, the resent gas refrigerant is discharged from the resending pipe 58C. It can be accurately sent to the collection device 14 .
  • the gas separation module device 68 When the gas separation module device 68 is used (when the control valve 64 is open) and the pressure in the refrigerant circuit 30 is equal to or lower than a predetermined pressure, the refrigerant is adiabatically compressed in the refrigerant recovery device 14.
  • the resent gas refrigerant (higher in temperature than in the refrigerant circuit 30), which is a part of the gas refrigerant in the recovery cylinder 16 containing the refrigerant whose temperature is higher than when it flowed into the refrigerant recovery device 14, is used as the refrigerant It can be fed into circuit 30 .
  • the temperature of the refrigerant in the refrigerant circuit 30 can be raised, gasification of the refrigerant can be promoted, and the refrigerant recovery speed can be improved when refrigerant recovery is restarted.
  • the non-condensable gas and the refrigerant gas cannot be separated by one gas separation module.
  • two gas separation modules are used, and the non-condensable gas and the refrigerant gas can be separated by setting the differential pressure between the inside and outside of the separation membrane of each module to an appropriate value.
  • FIG. 13 is a schematic diagram of a refrigerant recovery system 10A according to Embodiment 2.
  • FIG. 13 is a schematic diagram of a refrigerant recovery system 10A according to Embodiment 2.
  • the refrigerant recovery system 10A of the second embodiment differs from the refrigerant recovery system 10 of the first embodiment in that the refrigerant recovery system 10A of the second embodiment includes a directional switching valve 251, a bypass pipe 252, a sensor 253, and A bypass controller 254 is provided.
  • the sensor 253 detects whether the air-conditioning refrigerant contains R32 and outputs a detection signal to the bypass controller 254 .
  • the sensor 253 may be arranged on the connecting pipe 50 .
  • the direction switching valve 251 connects with the pipe 59 .
  • the mixed gas 24 flows into the direction switching valve 251 from the pipe 59 .
  • the direction switching valve 251 can switch the outflow destination of the mixed gas 24 that has flowed in.
  • a first outflow destination is the branch pipe 49 .
  • a first end of the branch pipe 49 is connected to the direction switching valve 251 .
  • a second end of the branch pipe 49 connects with the inlet 90B of the second gas separation module 68B.
  • the second outflow destination is the bypass pipe 252 .
  • a first end of the bypass pipe 252 is connected to the direction switching valve 251 .
  • a second end of the bypass pipe 252 connects with the outlet 94B.
  • the bypass controller 254 switches the outflow destination of the direction switching valve 251 depending on whether the air-conditioning refrigerant contains R32. When the air-conditioning refrigerant contains R32, the bypass controller 254 switches the outflow destination of the direction switching valve 251 to the branch pipe 49 so that the gas 24 that has permeated the first separation membrane 92A is transferred to the second separation membrane 92A. flow into 92B. Bypass controller 254 switches the outflow destination of direction switching valve 251 to bypass pipe 252 when the air-conditioning refrigerant does not contain R32. Do not let it flow into 92B.
  • FIG. 14 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10A according to Embodiment 2.
  • S100 to S104, S126 and S128 are steps performed by the operator, and other steps are steps automatically performed by the refrigerant recovery system 10A.
  • the flowchart of the second embodiment differs from the flowchart of the first embodiment in that the flowchart of the second embodiment includes S201 to S205 instead of S111, and S206 to S208 instead of S121. It is a point to be prepared.
  • bypass controller 254 switches the outflow destination of the direction switching valve 251 to the branch pipe 49.
  • the pressure controller 97 starts adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
  • the adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB is started by controlling the two-pressure regulator 98B. After that, the process proceeds to S112.
  • bypass controller 254 switches the outflow destination of the direction switching valve 251 to the bypass pipe 252.
  • the pressure controller 97 starts adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
  • the pressure controller 97 finishes adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
  • the adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB by controlling the pressure regulator 98B is completed.
  • the pressure controller 97 finishes adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
  • R32 is used as an example of the refrigerant that permeates the first separation membrane but does not permeate the second separation membrane, but the refrigerant is not limited to this.
  • Other refrigerants may be used as the refrigerant that permeates the first separation membrane but does not permeate the second separation membrane. Refrigerants having such properties can generally be referred to as first refrigerants for purposes of explanation.
  • the sensor 253 detects whether or not the air-conditioning refrigerant contains R32, but the present invention is not limited to this. Collected refrigerant information indicating the type of refrigerant contained in the air-conditioning refrigerant is input from the input unit and stored in the storage unit, and the bypass control unit determines whether the air-conditioning refrigerant contains R32 based on the collected refrigerant information. It may be determined.

Abstract

A gas separation module device (68) includes a first gas separation module (68A) and a second gas separation module (68B) that separate an air-conditioning refrigerant as a gas component from the interior of a recovery cylinder (16) that has recovered the compressed and condensed refrigerant. The second gas separation module (68B) is disposed at a later stage than the first gas separation module (68A). The first gas separation module (68A) includes a first separation membrane (92A), the second gas separation module (68B) includes a second separation membrane (92B), and gas that has permeated the first separation membrane (92A) can flow into the second separation membrane (92B).

Description

冷媒回収システム及び冷媒回収方法Refrigerant recovery system and refrigerant recovery method
 本開示は、冷媒回収システム及び冷媒回収方法に関する。 The present disclosure relates to refrigerant recovery systems and refrigerant recovery methods.
 冷凍機およびエアコンなどの冷凍空調機器(冷媒使用機器)は、熱エネルギーを運搬する冷媒の循環経路上に、当該冷媒が気化したガス冷媒を圧縮して高温高圧化する空調用圧縮機と、空調用圧縮機で高温高圧化したガス冷媒を外気等で冷却して液化する空調用凝縮器と、空調用凝縮器で液化した冷媒(液冷媒)を膨張させて気体化する膨張弁と、膨張弁で気化した冷媒(ガス冷媒)を液体化する冷媒回収用凝縮器と、冷媒回収用凝縮器で液化した冷媒(液冷媒)を貯蔵するアキュムレータとを備える。冷媒は熱エネルギーを運搬する役割を担っており、空調用凝縮器において外部に熱を放出する一方、膨張弁を通過後に外気等から熱を受け取る。 Refrigerating and air-conditioning equipment (refrigerant-using equipment) such as refrigerators and air conditioners has an air-conditioning compressor that compresses gaseous refrigerant, which is vaporized, into a high-temperature and high-pressure state, and an air-conditioning compressor that compresses gaseous refrigerant that conveys thermal energy. An air-conditioning condenser that liquefies the gas refrigerant that has been raised to high temperature and pressure by the air-conditioning compressor by cooling it with outside air, etc., an expansion valve that expands the refrigerant (liquid refrigerant) that has been liquefied in the air-conditioning condenser and gasifies it, and an expansion valve and a refrigerant recovery condenser for liquefying the refrigerant (gas refrigerant) vaporized in the refrigerant recovery condenser, and an accumulator for storing the refrigerant (liquid refrigerant) liquefied by the refrigerant recovery condenser. The refrigerant plays a role of transporting thermal energy, and while releasing heat to the outside in the air conditioning condenser, it receives heat from outside air or the like after passing through the expansion valve.
 冷凍空調機器に使用される各種冷媒は、地球温暖化係数及びオゾン層破壊係数が大きいため、大気中への排出が規制されている。したがって、特に、冷媒を交換する際又は冷凍空調機器を廃棄する際には、大気への冷媒の漏洩を極力抑制し、冷凍空調機器に充填されている冷媒を回収することが義務付けられている。同時に、環境負荷の小さな冷媒への転換も推進されており、近年では、代替フロンとしてHFC(Hydrofluorocarbons)等の使用が主流となっている。HFCとしては、例えば、単体冷媒としてはR134AまたはR32、混合冷媒としてはR410AまたはR407Cがある。  Various refrigerants used in refrigeration and air conditioning equipment have high global warming potential and ozone depletion potential, so their emissions into the atmosphere are regulated. Therefore, especially when replacing the refrigerant or disposing of the refrigerating and air-conditioning equipment, it is obligatory to minimize leakage of the refrigerant into the atmosphere and recover the refrigerant filled in the refrigerating and air-conditioning equipment. At the same time, a shift to refrigerants with less environmental load is also being promoted, and in recent years, the use of HFCs (hydrofluorocarbons) and the like as substitutes for chlorofluorocarbons has become mainstream. HFCs include, for example, R134A or R32 as a single refrigerant, and R410A or R407C as a mixed refrigerant.
 冷媒の回収には、冷媒回収装置が使用される。冷媒回収装置においては、冷凍空調機器のアキュムレータにある冷媒を気化した後、ガス冷媒を冷媒回収装置内の圧縮機によって吸引し、断熱圧縮する。断熱圧縮されたガス冷媒を冷媒回収装置内の凝縮器によって液化し、液冷媒として回収ボンベに回収する。回収した冷媒の量は、重量計により測定される。 A refrigerant recovery device is used to recover the refrigerant. In the refrigerant recovery device, after the refrigerant in the accumulator of the refrigerating and air-conditioning equipment is vaporized, the gas refrigerant is sucked by the compressor in the refrigerant recovery device and adiabatically compressed. The adiabatically compressed gas refrigerant is liquefied by the condenser in the refrigerant recovery device and recovered as liquid refrigerant in the recovery cylinder. The amount of refrigerant recovered is measured by a weight scale.
 特許文献1には、冷媒使用機器内の冷媒を冷媒回収装置により回収容器(回収ボンベ)に回収する際に、回収系統に空気等の非凝縮性ガスが混入すると、非凝縮性ガスも回収容器に回収されてしまうことが指摘されている(同文献の段落0056参照)。非凝縮性ガスは、回収容器内で凝縮せず、圧縮ガスとして存在するため、回収容器内の液冷媒の量が増えて気相の体積が少なくなるにつれて、回収容器内の圧力及び温度が上昇する。そのため、同文献では、回収容器内の温度が所定値に達した段階で、回収容器と、冷媒回収装置及び冷媒使用機器との連結を解除し、回収容器にガス分離装置を接続して、ガス分離装置により回収容器内の非凝縮性ガスを除去する技術を開示している。具体的には、回収容器内のガス冷媒と非凝縮性ガスの混合ガスを、ガス分離装置に送って分離し、非凝縮性ガスを大気中に排出すると共に、ガス冷媒を回収容器内に戻している。そして、回収容器内の非凝縮性ガスを除去した後、再度、回収容器に、冷媒回収装置及び冷媒使用機器を接続し、回収容器への冷媒の回収作業を再開している。 In Patent Document 1, when a non-condensable gas such as air is mixed in the recovery system when the refrigerant in a device using a refrigerant is recovered in a recovery container (recovery cylinder) by a refrigerant recovery device, the non-condensable gas is also discharged into the recovery container. (see paragraph 0056 of the same document). Since the non-condensable gas does not condense in the recovery vessel and exists as a compressed gas, as the amount of liquid refrigerant in the recovery vessel increases and the volume of the gas phase decreases, the pressure and temperature inside the recovery vessel increase. do. Therefore, in the same document, when the temperature in the recovery container reaches a predetermined value, the connection between the recovery container, the refrigerant recovery device, and the refrigerant-using equipment is released, the gas separation device is connected to the recovery container, and the gas is A technique is disclosed for removing non-condensable gas in a collection vessel by means of a separation device. Specifically, the mixed gas of the gas refrigerant and the non-condensable gas in the recovery container is sent to the gas separation device to be separated, the non-condensable gas is discharged into the atmosphere, and the gas refrigerant is returned to the recovery container. ing. After removing the non-condensable gas in the collection container, the refrigerant collection device and the equipment using the refrigerant are connected to the collection container again, and the work of collecting the refrigerant into the collection container is restarted.
特開2010-159952号公報JP 2010-159952 A
 上記したように、冷凍空調機器の冷媒回路からの冷媒回収では、冷媒回収装置が、冷媒を気化した後、断熱圧縮し、その後、液化して冷媒を回収する。そうした中、窒素(N2)、酸素(O2)などの空気を主成分とする非凝縮性ガスが冷媒に混入した場合、非凝縮性ガスは、冷媒回収装置で凝縮されず、ガスのままで回収ボンベに充填されることになる。その結果、回収ボンベの内圧が上昇し、液体冷媒が充填され難くなり、回収ボンベへの冷媒回収速度が低下することになる。よって、冷媒を全回収するまでに多くの時間を費やすことになる。 As described above, in recovering the refrigerant from the refrigerant circuit of the refrigerating and air-conditioning equipment, the refrigerant recovering device vaporizes the refrigerant, adiabatically compresses it, and then liquefies it to recover the refrigerant. Under such circumstances, when non-condensable gas mainly composed of air such as nitrogen (N2) and oxygen (O2) is mixed with the refrigerant, the non-condensable gas is not condensed in the refrigerant recovery device and is recovered as gas. The cylinder will be filled. As a result, the internal pressure of the recovery cylinder rises, making it difficult to fill the liquid refrigerant, and the speed of recovering the refrigerant into the recovery cylinder decreases. Therefore, it takes a long time to recover all the refrigerant.
 この問題に対して、特許文献1では、ガス分離装置により回収容器内の非凝縮性ガスを除去しているが、冷媒回収の途中で、回収容器(回収ボンベ)と、冷媒回収装置及び冷媒使用機器との連結を解除して、回収容器をガス分離装置に接続する必要がある。また、非凝縮性ガスの除去処理が完了した際には、再度、回収容器と、冷媒回収装置及び冷媒使用機器とを接続する必要がある。よって、多くの手間がかかる。また、ガス分離装置から冷媒を、ガス冷媒(気相)の状態で回収容器に戻している(注入している)ので、冷媒を液化して注入する場合に比べて、回収容器の冷媒充填量が低下してしまう問題もある。 To address this problem, in Patent Document 1, the non-condensable gas in the recovery container is removed by a gas separation device. It is necessary to disconnect the instrument and connect the collection vessel to the gas separator. Moreover, when the non-condensable gas removal process is completed, it is necessary to reconnect the recovery container, the refrigerant recovery device, and the refrigerant-using equipment. Therefore, it takes a lot of time and effort. In addition, since the refrigerant from the gas separation device is returned (injected) to the recovery container in the state of gas refrigerant (gas phase), the amount of refrigerant charged in the recovery container is reduced compared to the case where the refrigerant is liquefied and injected. There is also the problem of a decline in
 回収ボンベ、冷媒回収装置及び冷凍空調機器の接続を維持したまま、回収ボンベ内の非凝縮性ガスを低減できる改良された技術が必要である。 There is a need for improved technology that can reduce the non-condensable gas in the recovery cylinder while maintaining the connection of the recovery cylinder, refrigerant recovery equipment, and refrigeration and air conditioning equipment.
 それゆえに、本開示の目的は、冷凍空調機器から冷媒を回収する際に、回収ボンベ、冷媒回収装置及び冷凍空調機器の接続を維持したまま、回収ボンベ内の非凝縮性ガスを低減することができる冷媒回収システム及び冷媒回収方法を提供することである。 Therefore, an object of the present disclosure is to reduce the non-condensable gas in the recovery cylinder while maintaining the connection between the recovery cylinder, the refrigerant recovery device, and the refrigeration and air conditioning equipment when recovering the refrigerant from the refrigeration and air conditioning equipment. An object of the present invention is to provide a refrigerant recovery system and a refrigerant recovery method that can be used.
 本開示の冷媒回収システムは、冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収システムである。冷媒回収システムは、空調用冷媒を圧縮凝縮することによって、圧縮凝縮冷媒を生成する冷媒回収装置と、冷媒回収装置が生成した圧縮凝縮冷媒を回収する回収ボンベと、圧縮凝縮冷媒を回収した回収ボンベの内部から空調用冷媒をガス成分として分離させる第1ガス分離モジュールと第2ガス分離モジュールとを含むガス分離モジュール装置と、ガス分離モジュール装置が分離した空調用冷媒のガス成分を冷媒回路と冷媒回収装置との間に再送させる再送配管とを備える。第2ガス分離モジュールは、第1ガス分離モジュールの後段に配置される。第1ガス分離モジュールは、第1分離膜を含む。第2ガス分離モジュールは、第2分離膜を含む。第1分離膜を透過したガスが、第2分離膜内に流入可能である。 The refrigerant recovery system of the present disclosure is a refrigerant recovery system that recovers the air conditioning refrigerant from the refrigerant circuit of the refrigeration and air conditioning equipment. The refrigerant recovery system includes a refrigerant recovery device that generates compressed and condensed refrigerant by compressing and condensing the air conditioning refrigerant, a recovery cylinder that recovers the compressed and condensed refrigerant generated by the refrigerant recovery device, and a recovery cylinder that recovers the compressed and condensed refrigerant. a gas separation module device including a first gas separation module and a second gas separation module for separating the air-conditioning refrigerant as a gas component from the inside of the gas separation module device; and a resending pipe for resending to and from the recovery device. The second gas separation module is arranged after the first gas separation module. The first gas separation module includes a first separation membrane. The second gas separation module includes a second separation membrane. Gas that permeates the first separation membrane can flow into the second separation membrane.
 本開示の冷媒回収方法は、冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収方法である。冷媒回収方法は、冷媒回収装置が、空調用冷媒を圧縮凝縮して、圧縮凝縮冷媒を生成するステップと、回収ボンベが、冷媒回収装置が生成した圧縮凝縮冷媒を回収するステップと、第1ガス分離モジュールおよび第2ガス分離モジュールを含むガス分離モジュール装置が、圧縮凝縮冷媒を回収した回収ボンベの内部に含まれるガス成分から空調用冷媒を分離させるステップと、再送配管が、ガス分離モジュール装置が分離した空調用冷媒のガス成分を冷媒回路と冷媒回収装置との間に再送させるステップと、を備える。第2ガス分離モジュールは、第1ガス分離モジュールの後段に配置される。第1ガス分離モジュールは、第1分離膜を含み。第2ガス分離モジュールは、第2分離膜を含む。第1分離膜を透過したガスが、第2分離膜内に流入可能である。 The refrigerant recovery method of the present disclosure is a refrigerant recovery method for recovering the air-conditioning refrigerant from the refrigerant circuit of the refrigerating and air-conditioning equipment. The refrigerant recovery method includes the steps of: a refrigerant recovery device compressing and condensing an air-conditioning refrigerant to generate a compressed condensed refrigerant; a recovery cylinder recovering the compressed and condensed refrigerant generated by the refrigerant recovery device; a gas separation module apparatus comprising a separation module and a second gas separation module separating air conditioning refrigerant from gas components contained within a recovery cylinder in which compressed condensed refrigerant is recovered; and retransmitting the gaseous component of the separated air-conditioning refrigerant between the refrigerant circuit and the refrigerant recovery device. The second gas separation module is arranged after the first gas separation module. The first gas separation module includes a first separation membrane. The second gas separation module includes a second separation membrane. Gas that permeates the first separation membrane can flow into the second separation membrane.
 本開示によれば、冷凍空調機器から冷媒を回収する際に、回収ボンベ、冷媒回収装置及び冷凍空調機器の接続を維持したまま、回収ボンベ内の非凝縮性ガスを低減することができる。ガス分離モジュール装置が分離した空調用冷媒のガス成分が冷媒回路と冷媒回収装置との間に再送されるので、分離された空調用冷媒のガス成分を再度回収するか、あるいは冷媒回路で利用することができる。 According to the present disclosure, when recovering the refrigerant from the refrigerating and air-conditioning equipment, the non-condensable gas in the recovery cylinder can be reduced while maintaining the connection between the recovery cylinder, the refrigerant recovery device, and the refrigerating and air-conditioning equipment. Since the gas components of the air-conditioning refrigerant separated by the gas separation module device are re-sent between the refrigerant circuit and the refrigerant recovery device, the separated gas components of the air-conditioning refrigerant are recovered again or used in the refrigerant circuit. be able to.
実施の形態1に係る冷媒回収システム10の概略図である。1 is a schematic diagram of a refrigerant recovery system 10 according to Embodiment 1. FIG. 発送制御器76のブロック図である。FIG. 4 is a block diagram of dispatch controller 76; 各冷媒の圧力特性の例を表わす図である。FIG. 4 is a diagram showing an example of pressure characteristics of each refrigerant; 三方弁制御器80のブロック図である。3 is a block diagram of a three-way valve controller 80; FIG. 圧力制御器97のブロック図である。3 is a block diagram of a pressure controller 97; FIG. 第1分離膜92Aの内外差圧の設定圧力PAを説明するための図である。FIG. 10 is a diagram for explaining a set pressure PA of an internal-external differential pressure of the first separation membrane 92A; 第2分離膜92Bの内外差圧の設定圧力PBを説明するための図である。FIG. 10 is a diagram for explaining a set pressure PB of a differential pressure between the inside and outside of a second separation membrane 92B; 無機系分離膜によって構成された第1分離膜92Aのガス分離の様子を模式的に示す図である。FIG. 4 is a diagram schematically showing how gas is separated by a first separation membrane 92A made of an inorganic separation membrane. (a)は、膜内外差圧がTH2未満の場合に、無機系分離膜によって構成された第2分離膜92Bのガス分離の様子を模式的に示す図である。(b)は、膜内外差圧がTH2以上の場合に、無機系分離膜によって構成された第2分離膜92Bのガス分離の様子を模式的に示す図である。(a) is a diagram schematically showing how gas is separated by a second separation membrane 92B made of an inorganic separation membrane when the transmembrane pressure difference is less than TH2. (b) is a diagram schematically showing how gas is separated by the second separation membrane 92B composed of an inorganic separation membrane when the transmembrane pressure difference is TH2 or higher. 実施の形態1における冷媒回収システム10を用いた具体的な冷媒回収方法を示すフローチャートである。4 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to Embodiment 1. FIG. 第1三方弁制御を示すフローチャートである。4 is a flowchart showing first three-way valve control; 第2三方弁制御を示すフローチャートである。It is a flowchart which shows a 2nd three-way valve control. 実施の形態2に係る冷媒回収システム10Aの概略図である。FIG. 4 is a schematic diagram of a refrigerant recovery system 10A according to Embodiment 2; 実施の形態2における冷媒回収システム10Aを用いた具体的な冷媒回収方法を示すフローチャートである。10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10A in Embodiment 2. FIG.
 以下、実施形態について添付図面を参照しながら詳細に説明する。以下で述べる構成は、説明のための例示であって、システム、装置等の仕様に合わせて適宜変更が可能である。また、以下において複数の実施形態または変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。全ての図面において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The configuration described below is an example for explanation, and can be changed as appropriate according to the specifications of the system, device, and the like. Also, when a plurality of embodiments or modified examples are included below, it is assumed from the beginning that the characteristic parts thereof will be used in combination as appropriate. The same reference numerals are given to the same elements in all the drawings, and redundant explanations are omitted.
 実施の形態1.
 図1は、実施の形態1に係る冷媒回収システム10の概略図である。
Embodiment 1.
FIG. 1 is a schematic diagram of a refrigerant recovery system 10 according to Embodiment 1. FIG.
 図中、太い実線は流体が流れる配管を示し、一点鎖線は各制御器に入出力する制御線を示す。冷媒回収システム10は、冷凍空調機器から空調用冷媒を回収して、回収ボンベ16に充填するためのシステムである。以下では、冷凍空調機器としての空調装置12から空調用冷媒を回収する例について説明するが、冷媒回収システム10は、冷媒を使用する機器全般の冷媒回収に適用可能である。なお、空調用冷媒とは、冷凍空調機器の運転時に、熱エネルギーを運搬すると共に液相と気相の間で相変化することで、冷凍空調機器における空気等の冷却機能と加熱機能の少なくとも一方を実現させる冷媒である。 In the figure, thick solid lines indicate piping through which fluid flows, and dashed-dotted lines indicate control lines for input and output to each controller. The refrigerant recovery system 10 is a system for recovering air-conditioning refrigerant from refrigerating and air-conditioning equipment and filling a recovery cylinder 16 with the refrigerant. An example of recovering air-conditioning refrigerant from an air conditioner 12 as a refrigerating and air-conditioning device will be described below, but the refrigerant recovery system 10 can be applied to refrigerant recovery from all devices that use refrigerant. In addition, the refrigerant for air conditioning means at least one of the cooling function and the heating function of the air etc. It is a refrigerant that realizes
 冷媒回収システム10は、冷媒回収装置14と、回収ボンベ16と、ガス分離モジュール装置68と、再送配管58A,58B,58Cと、三方弁40と、を備える。 The refrigerant recovery system 10 includes a refrigerant recovery device 14, a recovery cylinder 16, a gas separation module device 68, retransmission pipes 58A, 58B, 58C, and a three-way valve 40.
 冷媒回収装置14は、空調装置12の冷媒回路30から空調用冷媒を吸引して断熱圧縮し、圧縮された冷媒を凝縮して液体化して圧縮凝縮冷媒を生成する。 The refrigerant recovery device 14 sucks the air conditioning refrigerant from the refrigerant circuit 30 of the air conditioner 12, adiabatically compresses it, condenses the compressed refrigerant and liquefies it to generate compressed condensed refrigerant.
 回収ボンベ16は、冷媒回収装置14が生成した圧縮凝縮冷媒を回収する。
 ガス分離モジュール装置68は、圧縮凝縮冷媒を回収した回収ボンベ16の内部に含まれる混合ガス成分22から空調用冷媒を分離させる。ガス分離モジュール装置68は、第1ガス分離モジュール68Aと第2ガス分離モジュール68Bとを備える。
The recovery cylinder 16 recovers the compressed condensed refrigerant generated by the refrigerant recovery device 14 .
The gas separation module device 68 separates the air conditioning refrigerant from the mixed gas component 22 contained inside the recovery cylinder 16 in which the compressed condensed refrigerant is recovered. The gas separation module arrangement 68 comprises a first gas separation module 68A and a second gas separation module 68B.
 第1ガス分離モジュール68Aと第2ガス分離モジュール68Bの2つを用いるのは、空調用冷媒がR―32とその他の冷媒を含む混合冷媒の場合には、R-32の分子径と、非凝縮性ガスの分子径が近いため、1つのガス分離モジュールで、空調用冷媒と非凝縮性ガスとを分離するのが難しいからである。 The reason why two of the first gas separation module 68A and the second gas separation module 68B are used is that when the refrigerant for air conditioning is a mixed refrigerant containing R-32 and other refrigerants, the molecular diameter of R-32 and the This is because it is difficult to separate the air-conditioning refrigerant and the non-condensable gas with one gas separation module because the molecular diameters of the condensable gases are close.
 再送配管58A,58B,58Cは、ガス分離モジュール装置68が分離した空調用冷媒を冷媒回路30と冷媒回収装置14との間に再送させる。気化促進モードにおいて、ガス分離モジュール装置68が分離した空調用冷媒が冷媒回路30に送られる。これによって、冷媒回路30内の冷媒の温度が上昇するので、冷媒の気化が促進され、冷媒回収を再開した際に、冷媒回収速度を向上させることができる。循環モードにおいて、ガス分離モジュール装置68が分離した空調用冷媒が冷媒回収装置14に送られる。これによって、ガス分離モジュール装置68が分離した空調用冷媒の回収処理が再度実行される。 The resending pipes 58A, 58B, and 58C resend the air-conditioning refrigerant separated by the gas separation module device 68 between the refrigerant circuit 30 and the refrigerant recovery device 14 . In the accelerated vaporization mode, the air-conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant circuit 30 . As a result, the temperature of the refrigerant in the refrigerant circuit 30 rises, so that vaporization of the refrigerant is promoted, and when refrigerant recovery is resumed, the refrigerant recovery speed can be improved. In circulation mode, the air conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant recovery device 14 . As a result, the process of recovering the air-conditioning refrigerant separated by the gas separation module device 68 is performed again.
 三方弁40は、冷媒回路30と冷媒回収装置14の間に配置される。
 空調装置12は、冷媒回路30に繋がるサービスポート34を含む。
A three-way valve 40 is arranged between the refrigerant circuit 30 and the refrigerant recovery device 14 .
Air conditioner 12 includes a service port 34 that connects to refrigerant circuit 30 .
 冷媒回路30は、液冷媒が貯蔵されたアキュムレータ32を含む。冷媒回収装置14は、アキュムレータ32内の液冷媒を気化したガス冷媒をサービスポート34を介して吸引する。 The refrigerant circuit 30 includes an accumulator 32 in which liquid refrigerant is stored. The refrigerant recovery device 14 sucks through the service port 34 the gas refrigerant obtained by vaporizing the liquid refrigerant in the accumulator 32 .
 冷媒回収装置14は、圧縮機と凝縮器とを含み、広く市販されているフロン回収機によって実現することができる。冷媒回収装置14は、冷媒回路30からの空調用冷媒を取り込む入口36(取り込みロ)と、圧縮凝縮冷媒を排出する出口38と、入口36における空調用冷媒の圧力を検出する圧力検出器37とを含む。  Refrigerant recovery device 14 includes a compressor and a condenser, and can be realized by a widely commercially available Freon recovery machine. The refrigerant recovery device 14 includes an inlet 36 (take-in port) that takes in the air-conditioning refrigerant from the refrigerant circuit 30, an outlet 38 that discharges the compressed and condensed refrigerant, and a pressure detector 37 that detects the pressure of the air-conditioning refrigerant at the inlet 36. including.
 回収ボンベ16は、冷媒回収装置14からの圧縮凝縮冷媒を回収ボンベ16内に入れる液出入口46と、回収ボンベ16内のガス成分22を出すガス出入口48とを含む。 The recovery cylinder 16 includes a liquid inlet/outlet 46 for admitting the compressed condensed refrigerant from the refrigerant recovery device 14 into the recovery cylinder 16 and a gas inlet/outlet 48 for exiting the gas component 22 in the recovery cylinder 16 .
 三方弁40は、第ポート41、第2ポート42および第3ポート43を含む。空調装置12のサービスポート34と、三方弁40の第1ポート41とが接続配管50により接続される。三方弁40の第2ポート42と、冷媒回収装置14の入口36とが前配管52により接続される。三方弁40の第3ポート43と、再送配管58Cとが接続される。 The three-way valve 40 includes a second port 41, a second port 42 and a third port 43. A connection pipe 50 connects the service port 34 of the air conditioner 12 and the first port 41 of the three-way valve 40 . A front pipe 52 connects the second port 42 of the three-way valve 40 and the inlet 36 of the refrigerant recovery device 14 . The third port 43 of the three-way valve 40 and the resending pipe 58C are connected.
 冷媒回収装置14の出口38と、回収ボンベ16の液出入口46とが後配管54により接続される。一般的な冷媒回収を行う際には、三方弁40の第1ポート41と第2ポート42を連通状態にする(通常モード)。 The outlet 38 of the refrigerant recovery device 14 and the liquid inlet/outlet 46 of the recovery cylinder 16 are connected by a rear pipe 54 . When performing general refrigerant recovery, the first port 41 and the second port 42 of the three-way valve 40 are brought into communication (normal mode).
 バルブの不良時、配管等の腐食時、冷媒の分解時、および冷媒の修理時における空気侵入等により、空調装置12の空調用冷媒(以下、単に冷媒とも言う)には、空気(窒素、酸素等)を主成分とする非凝縮性ガスが混入することがある。冷媒回収において、冷媒と一緒に非凝縮性ガスが冷媒回収装置14に吸引された際には、非凝縮性ガスは、冷媒回収装置14で凝縮されず、ガスのままで回収ボンベ16に充填される。その結果、回収ボンベ16の内圧が上昇し、液冷媒が充填され難くなって、回収ボンベ16への冷媒回収速度が低下する。それに対処するため、冷媒回収システム10は、回収ボンベ16内の非凝縮性ガスを除去するための分離装置18を備える。なお、回収ボンベ16内では、液冷媒20の一部が再気化したガス冷媒と、非凝縮性ガスとが合わさって混合ガス22(ガス成分22)とが生じる。 Air (nitrogen, oxygen etc.) may be mixed in. In refrigerant recovery, when the non-condensable gas is sucked into the refrigerant recovery device 14 together with the refrigerant, the non-condensable gas is not condensed in the refrigerant recovery device 14 and is filled in the recovery cylinder 16 as it is. be. As a result, the internal pressure of the recovery cylinder 16 rises, making it difficult to fill the liquid refrigerant, and the refrigerant recovery speed to the recovery cylinder 16 decreases. To address this, the refrigerant recovery system 10 includes a separation device 18 for removing non-condensable gases within the recovery cylinder 16 . In the recovery cylinder 16, the gaseous refrigerant obtained by partially re-vaporizing the liquid refrigerant 20 and the non-condensable gas are combined to generate a mixed gas 22 (gas component 22).
 分離装置18は、ガス流入口60と、発送配管56と、ガス分離モジュール装置68と、再送配管58A,58B,58Cと、を含む。 The separation device 18 includes a gas inlet 60, a delivery line 56, a gas separation module device 68, and re-transmission lines 58A, 58B, 58C.
 ガス流入口60は、回収ボンベ16のガス出入口48と接続される。
 発送配管56には、ガス流入口60から取り込まれた混合ガス22が流れる。
The gas inlet 60 is connected to the gas inlet/outlet 48 of the recovery cylinder 16 .
The mixed gas 22 taken in from the gas inlet 60 flows through the delivery pipe 56 .
 ガス分離モジュール装置68は、圧縮凝縮冷媒を回収した回収ボンベ16の内部から空調用冷媒をガス成分として分離させる。ガス分離モジュール装置68は、発送配管56内の混合ガス22が送り込まれ、混合ガス22からガス冷媒と非凝縮性ガスとを分離させる。 The gas separation module device 68 separates the air-conditioning refrigerant as a gas component from the inside of the recovery cylinder 16 in which the compressed and condensed refrigerant is recovered. Gas separation module apparatus 68 is fed with gas mixture 22 in delivery line 56 and separates gas refrigerant and non-condensable gases from gas mixture 22 .
 再送配管58A,58B,58Cは、ガス分離モジュール装置68に接続される。再送配管58A,58B,58Cは、ガス分離モジュール装置68が分離した空調用冷媒のガス成分を冷媒回収装置14と冷媒回路30との間に再送させる。 The retransmission pipes 58A, 58B, 58C are connected to the gas separation module device 68. The resending pipes 58A, 58B, and 58C resend the gas components of the air-conditioning refrigerant separated by the gas separation module device 68 between the refrigerant recovery device 14 and the refrigerant circuit 30 .
 ガス分離モジュール装置68は、第1ガス分離モジュール68Aと第2ガス分離モジュール68Bとを含む。第2ガス分離モジュール68Bは、第1ガス分離モジュール68Aの後段に配置される。 The gas separation module device 68 includes a first gas separation module 68A and a second gas separation module 68B. The second gas separation module 68B is arranged after the first gas separation module 68A.
 第1ガス分離モジュール68Aは、入口90Aと、第1分離膜92Aと、放出口94Aと、出口96Aと、を含む。 The first gas separation module 68A includes an inlet 90A, a first separation membrane 92A, an outlet 94A, and an outlet 96A.
 入口90Aは、混合ガス22を取り入れる。
 第1分離膜92Aは、ガス分離を行う。
Inlet 90A takes in mixed gas 22 .
The first separation membrane 92A performs gas separation.
 放出口94Aは、第1分離膜92Aにより分離された非凝縮性ガスとR32とからなる混合ガス24を配管59に放出する。 The discharge port 94A discharges the mixed gas 24 composed of the non-condensable gas separated by the first separation membrane 92A and R32 to the pipe 59.
 出口96Aは、第1分離膜92Aにより混合ガス22に比べて非凝縮性ガスおよびR32が低減されたガス成分である再送ガス冷媒(空調用冷媒)を排出する。 The outlet 96A discharges the retransmitted gas refrigerant (refrigerant for air conditioning), which is a gas component in which the non-condensable gas and R32 are reduced compared to the mixed gas 22 by the first separation membrane 92A.
 発送配管56の第1端がガス流入口60である。発送配管56の第2端は、第1ガス分離モジュール68Aの入口90Aに接続される。 A first end of the delivery pipe 56 is the gas inlet 60 . A second end of the delivery line 56 is connected to the inlet 90A of the first gas separation module 68A.
 再送配管58Aの第1端は、第1ガス分離モジュール68Aの出口96Aに接続される。再送配管58Aの第2端は、合流点NDに接続される。 A first end of the retransmission pipe 58A is connected to the outlet 96A of the first gas separation module 68A. A second end of the retransmission pipe 58A is connected to the junction ND.
 第2ガス分離モジュール68Bは、入口90Bと、第2分離膜92Bと、放出口94Bと、出口96Bと、を含む。 The second gas separation module 68B includes an inlet 90B, a second separation membrane 92B, an outlet 94B, and an outlet 96B.
 入口90Bは、混合ガス24を取り入れる。
 第2分離膜92Bは、ガス分離を行う。
Inlet 90B takes in mixed gas 24 .
The second separation membrane 92B performs gas separation.
 放出口94Bは、第2分離膜92Bにより分離された非凝縮性ガスを大気に放出する。
 出口96Bは、第2分離膜92Bにより混合ガス24に比べて非凝縮性ガスが低減されたガス成分である再送ガス冷媒(空調用冷媒)を排出する。
The discharge port 94B discharges the non-condensable gas separated by the second separation membrane 92B to the atmosphere.
The outlet 96B discharges retransmitted gas refrigerant (air-conditioning refrigerant), which is a gas component in which the non-condensable gas is reduced compared to the mixed gas 24 by the second separation membrane 92B.
 配管59の第1端が第1ガス分離モジュール68Aの放出口94Aに接続される。配管59の第2端は、第2ガス分離モジュール68Bの入口90Bに接続される。 A first end of the pipe 59 is connected to the outlet 94A of the first gas separation module 68A. A second end of tubing 59 is connected to inlet 90B of second gas separation module 68B.
 再送配管58Bの第1端は、第2ガス分離モジュール68Bの出口96Bに接続される。再送配管58Bの第2端は、合流点NDに接続される。 A first end of the retransmission pipe 58B is connected to the outlet 96B of the second gas separation module 68B. A second end of the retransmission pipe 58B is connected to the junction ND.
 再送配管58Cの第1端は、合流点NDに接続される。再送配管58Cの第2端は、ガス流出口74として、三方弁40の第3ポート43に接続される。 A first end of the retransmission pipe 58C is connected to the junction ND. A second end of the resending pipe 58C is connected to the third port 43 of the three-way valve 40 as a gas outlet 74 .
 分離装置18は、さらに、第1圧力調整器98Aと、第2圧力調整器98Bと、第1逆止弁99Aと、第2逆止弁99Bとを備える。 The separation device 18 further comprises a first pressure regulator 98A, a second pressure regulator 98B, a first check valve 99A and a second check valve 99B.
 第1圧力調整器98Aは、第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧を調整する。第1圧力調整器98Aは、第1ガス分離モジュール68Aの後段に配置され、第1圧力調整器98Aの1次側の圧力を調整する第1背圧弁を含む。 The first pressure regulator 98A adjusts the internal and external pressure difference of the first separation membrane 92A of the first gas separation module 68A. The first pressure regulator 98A is positioned after the first gas separation module 68A and includes a first back pressure valve that regulates the pressure on the primary side of the first pressure regulator 98A.
 第2圧力調整器98Bは、第2ガス分離モジュール68Bの第2分離膜92Bの内外差圧を調整する。第2圧力調整器98Bは、第2ガス分離モジュール68Bの後段に配置され、第2圧力調整器98Bの1次側の圧力を調整する第2背圧弁を含む。 The second pressure regulator 98B adjusts the internal and external pressure difference of the second separation membrane 92B of the second gas separation module 68B. The second pressure regulator 98B is positioned after the second gas separation module 68B and includes a second back pressure valve that regulates the pressure on the primary side of the second pressure regulator 98B.
 第1逆止弁99Aは、第1圧力調整器98Aと、合流点NDとの間に配置される。第1逆止弁99Aは、第1分離膜92Aから流出したガスおよび第2分離膜92Bから流出したガスが、第1分離膜92Aに流入するのを防止する。 The first check valve 99A is arranged between the first pressure regulator 98A and the junction ND. The first check valve 99A prevents the gas that has flowed out from the first separation membrane 92A and the gas that has flowed out from the second separation membrane 92B from flowing into the first separation membrane 92A.
 第2逆止弁99Bは、第2圧力調整器98Bと、合流点NDとの間に配置される。第2逆止弁99Bは、第1分離膜92Aから流出したガスおよび第2分離膜92Bから流出したガスが、第2分離膜92Bに流入するのを防止する。 The second check valve 99B is arranged between the second pressure regulator 98B and the junction ND. The second check valve 99B prevents the gas that has flowed out from the first separation membrane 92A and the gas that has flowed out from the second separation membrane 92B from flowing into the second separation membrane 92B.
 以降説明するように、発送配管56と再送配管58A、58B、58Cには検出器または弁等が配置されるが、それらのいくつかを省略して冷媒回収システムを構成することもできる。このような構成も含めた、冷媒回収システムの基本となる冷媒回収方法は次の(1)~(4)のステップを備える。 As will be described later, detectors, valves, etc. are arranged in the delivery pipe 56 and the retransmission pipes 58A, 58B, 58C, but some of them can be omitted to configure the refrigerant recovery system. The refrigerant recovery method, which is the basis of the refrigerant recovery system including such a configuration, comprises the following steps (1) to (4).
 (1)三方弁40の第1ポート41と第2ポート42とを連通状態とし(以下、通常モードと言う)、冷媒回路30の空調用冷媒を、接続配管50と前配管52とを通じて冷媒回収装置14に導き、冷媒回収装置14を用いて空調用冷媒を圧縮凝縮して、圧縮凝縮冷媒を生成する生成ステップ。 (1) The first port 41 and the second port 42 of the three-way valve 40 are brought into communication (hereinafter referred to as normal mode), and the refrigerant for air conditioning in the refrigerant circuit 30 is collected through the connecting pipe 50 and the front pipe 52. A production step of directing to the device 14 and compressing and condensing the air conditioning refrigerant using the refrigerant recovery device 14 to produce a compressed condensed refrigerant.
 (2)冷媒回収装置14が生成した圧縮凝縮冷媒を後配管54を通じて回収ボンベ16に回収する回収ステップ。 (2) A recovery step of recovering the compressed condensed refrigerant generated by the refrigerant recovery device 14 to the recovery cylinder 16 through the rear pipe 54 .
 (3)回収ボンベ16の内部に含まれるガス成分22を発送配管56を通じてガス分離モジュール装置68に導き、ガス分離モジュール装置68を用いて、混合ガス22から非凝縮性ガスと再送ガス冷媒(空調用冷媒)とを分離させる分離ステップ。 (3) The gas component 22 contained inside the recovery cylinder 16 is led to the gas separation module device 68 through the delivery pipe 56, and the gas separation module device 68 is used to separate the mixed gas 22 from the non-condensable gas and the resent gas refrigerant (air conditioning Refrigerant for use) and a separation step.
 (4)三方弁40の第2ポート42と、第3ポート43とを連通状態とし(以下、循環モードと言う)、ガス分離モジュール装置68が分離した再送ガス冷媒を、再送配管58A,58B,58Cと前配管52を通じて、冷媒回収装置14と冷媒回路30との間に再送させる再送ステップ。 (4) The second port 42 and the third port 43 of the three-way valve 40 are brought into communication (hereinafter referred to as circulation mode), and the resent gas refrigerant separated by the gas separation module device 68 is transferred to the resending pipes 58A, 58B, a resending step of resending between the refrigerant recovery device 14 and the refrigerant circuit 30 through 58C and the front pipe 52;
 上記(3)の分離ステップは、以下の2つのステップを含む。
 (3A)第1ガス分離モジュール68Aによって、混合ガス22から非凝縮性ガスおよびR32からなる混合ガス24と、R32以外の冷媒とを分離させる第1分離ステップ。
The separation step (3) includes the following two steps.
(3A) A first separation step in which the first gas separation module 68A separates the mixed gas 24 consisting of the non-condensable gas and R32 from the mixed gas 22 and the refrigerant other than R32.
 (3B)第2ガス分離モジュール68Bによって、混合ガス24から非凝縮性ガスと、R32とを分離する第2分離ステップ。 (3B) A second separation step of separating the non-condensable gas and R32 from the mixed gas 24 by the second gas separation module 68B.
 図1の冷媒回収システム10の説明を続ける。分離装置18は、さらに、発送配管56に配置された圧力検出器61、温度検出器62、制御弁64および減圧弁66を備える。 The description of the refrigerant recovery system 10 in FIG. 1 continues. The separation device 18 further comprises a pressure detector 61 , a temperature detector 62 , a control valve 64 and a pressure reducing valve 66 arranged in the delivery line 56 .
 発送配管56上の圧力検出器61および温度検出器62は、制御弁64よりも回収ボンベ16側に位置し、回収ボンベ16内の圧力および温度を検出する。 A pressure detector 61 and a temperature detector 62 on the delivery pipe 56 are positioned closer to the recovery cylinder 16 than the control valve 64 and detect the pressure and temperature inside the recovery cylinder 16 .
 分離装置18は、さらに、再送配管58Cに配置された圧力検出器70および圧力調整器72を備える。 The separation device 18 further comprises a pressure detector 70 and a pressure regulator 72 arranged in the retransmission pipe 58C.
 再送配管58C上の圧力検出器70は、圧力調整器72よりも上流側(ガス分離モジュール装置68側)の再送配管58C内の圧力を検出する。圧力調整器72は、圧力調整器72よりも下流側(ガス流出口74側)の再送配管58C内の圧力を調整する。 The pressure detector 70 on the resending pipe 58C detects the pressure inside the resending pipe 58C upstream of the pressure regulator 72 (gas separation module device 68 side). The pressure regulator 72 regulates the pressure in the retransmission pipe 58C downstream of the pressure regulator 72 (on the side of the gas outlet 74).
 分離装置18は、さらに、発送制御器76と、再送制御器78と、三方弁制御器80と、圧力制御器97とを備える。 The separation device 18 further comprises a dispatch controller 76 , a retransmission controller 78 , a three-way valve controller 80 and a pressure controller 97 .
 発送制御器76、再送制御器78、三方弁制御器80、および圧力制御器97は、コントローラであり、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ、および入出力ポート等を備えたマイクロコンピュータである。これらの制御器は、共通の1つのマイクロコンピュータにより実現されてもよい。また、これらの制御器は、マイクロコンピュータに代えて、または、それと共にASIC(Application Specific Integrated Circuit)等を含んでもよい。 The sending controller 76, the resending controller 78, the three-way valve controller 80, and the pressure controller 97 are controllers, for example, CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), flash It is a microcomputer equipped with memory, input/output ports, and the like. These controllers may be realized by one common microcomputer. Also, these controllers may include an ASIC (Application Specific Integrated Circuit) or the like instead of or together with a microcomputer.
 発送制御器76は、圧力検出器61の検出値DPおよび温度検出器62の検出値DTに基づいて、回収ボンベ16内から非凝縮性ガスを除去する必要があるか否かを判断する。発送制御器76は、除去の必要ありと判断した際には制御弁64を開状態とし、除去の必要なしと判断した際には制御弁64を閉状態とする。 The dispatch controller 76 determines whether it is necessary to remove the non-condensable gas from the recovery cylinder 16 based on the detected value DP of the pressure detector 61 and the detected value DT of the temperature detector 62 . The shipping controller 76 opens the control valve 64 when determining that the removal is necessary, and closes the control valve 64 when determining that the removal is not necessary.
 三方弁制御器80は、制御弁64が閉状態の場合には、三方弁40を制御して、第1ポート41と第2ポート42とを連通状態(通常モード)に設定する。 When the control valve 64 is closed, the three-way valve controller 80 controls the three-way valve 40 to set the first port 41 and the second port 42 to communicate (normal mode).
 三方弁制御器80は、制御弁64が開状態の場合には、三方弁40を制御して、第2ポート42と第3ポート43とを連通状態(循環モード)か、あるいは、第1ポート41と第3ポート43とを導連状態とする(以下、気化促進モードと言う)。このように、図1の実施形態では、基本となる冷媒回収方法に対して、気化促進モードが付加されている。 When the control valve 64 is open, the three-way valve controller 80 controls the three-way valve 40 so that the second port 42 and the third port 43 are in communication (circulation mode), or the first port 41 and the third port 43 are connected to each other (hereinafter referred to as vaporization promotion mode). As described above, in the embodiment of FIG. 1, the vaporization acceleration mode is added to the basic refrigerant recovery method.
 通常モードは、空調装置12から回収ボンベ16に冷媒回収を行うモードである。循環モードは、分離装置18、冷媒回収装置14、及び回収ボンベ16によって循環ループを形成して、繰り返し、回収ボンベ16内の混合ガス22をガス分離モジュール装置68に送り込んで、回収ボンベ16内の非凝縮性ガスを除去するモードである。気化促進モードは、空調装置12の冷媒回路30内の冷媒が低温凝縮する可能性がある場合に、回収ボンベ16内の混合ガス22の一部を、分離装置18から冷媒回路30内に送り込み、冷媒回路30内の冷媒の温度を上昇させ、冷媒の気化を促進させるモードである。冷媒回収装置14を通過したガス冷媒は、断熱圧縮されるため、冷媒回路30内、すなわち冷媒回収装置14に流入する時よりも温度が高くなる。そのため、冷媒回収装置14から回収ボンベ16に入る冷媒は、温度が高くなっている。 The normal mode is a mode in which refrigerant is recovered from the air conditioner 12 to the recovery cylinder 16 . In the circulation mode, a circulation loop is formed by the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16, and the mixed gas 22 in the recovery cylinder 16 is repeatedly sent to the gas separation module device 68, and the inside of the recovery cylinder 16 is This mode removes non-condensable gases. In the vaporization promotion mode, when there is a possibility that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is condensed at a low temperature, part of the mixed gas 22 in the recovery cylinder 16 is sent from the separator 18 into the refrigerant circuit 30, This is a mode in which the temperature of the refrigerant in the refrigerant circuit 30 is raised to promote vaporization of the refrigerant. Since the gas refrigerant that has passed through the refrigerant recovery device 14 is adiabatically compressed, it has a higher temperature than when it flows into the refrigerant circuit 30 , that is, into the refrigerant recovery device 14 . Therefore, the temperature of the refrigerant entering the recovery cylinder 16 from the refrigerant recovery device 14 is high.
 圧力制御器97は、第1圧力調整器98Aを制御して、第1分離膜92Aの内外差圧を調整する。圧力制御器97は、第2圧力調整器98Bを制御して、第2分離膜92Bの内外差圧を調整する。 The pressure controller 97 controls the first pressure regulator 98A to adjust the differential pressure between the inside and outside of the first separation membrane 92A. The pressure controller 97 controls the second pressure regulator 98B to adjust the differential pressure between the inside and outside of the second separation membrane 92B.
 図2は、発送制御器76のブロック図である。発送制御器76は、参照圧力取得器104と、減圧弁制御器106と、判定器108とを備える。分離装置18は、キーパッドまたはバーコードリーダ等の入力部100と、フラッシュメモリ等の記憶部102とを備える。発送制御器76は、入力部100および記憶部102と電気的に接続されている。発送制御器76内にあるメモリを、記憶部102として使用してもよい。 FIG. 2 is a block diagram of the dispatch controller 76. FIG. The dispatch controller 76 comprises a reference pressure acquirer 104 , a pressure reducing valve controller 106 and a determiner 108 . The separating device 18 comprises an input unit 100 such as a keypad or barcode reader, and a storage unit 102 such as flash memory. The dispatch controller 76 is electrically connected to the input section 100 and the storage section 102 . Memory within dispatch controller 76 may be used as storage unit 102 .
 冷媒回収の前に、入力部100から回収する冷媒(以下、回収冷媒とも言う)の種類を示す回収冷媒情報110が入力され、記憶部102に格納される。例えば、空調装置12の筐体の表面に付された、空調装置12で使用している冷媒の種類を示すバーコードを、入力部100としてのバーコードリーダで読み取ることで、回収冷媒情報110が記憶部102に格納される。記憶部102には、さらに、複数種類の冷媒毎に、温度に対する飽和蒸気圧の特性(以下、圧力特性112と言う)が予め格納されている。 Before refrigerant recovery, recovered refrigerant information 110 indicating the type of refrigerant to be recovered (hereinafter also referred to as recovered refrigerant) is input from the input unit 100 and stored in the storage unit 102 . For example, by reading a barcode indicating the type of refrigerant used in the air conditioner 12 attached to the surface of the housing of the air conditioner 12 with a barcode reader as the input unit 100, the recovered refrigerant information 110 can be obtained. It is stored in the storage unit 102 . The storage unit 102 further stores in advance the characteristic of saturated vapor pressure with respect to temperature (hereinafter referred to as pressure characteristic 112) for each of a plurality of types of refrigerants.
 図3は、各冷媒の圧力特性の例を表わす図である。図3には、A、B、C、およびDの各冷媒の圧力特性が示されている。 FIG. 3 is a diagram showing an example of pressure characteristics of each refrigerant. FIG. 3 shows the pressure characteristics of A, B, C, and D refrigerants.
 参照圧力取得器104には、発送配管56上の温度検出器62の検出温度DT(回収ボンベ16内の温度)が入力される。参照圧力取得器104は、回収冷媒情報110が示す回収冷媒に対応する圧力特性112を記憶部102から読み出して、図3のように、検出温度DT(回収ボンベ16内の温度)における回収冷媒(図3の例では冷媒A)の飽和蒸気圧を、参照圧力RPとして取得する。そして、参照圧力取得器104は、参照圧力RPを判定器108に出力する。 The temperature DT detected by the temperature detector 62 on the shipping pipe 56 (temperature inside the recovery cylinder 16) is input to the reference pressure acquirer 104. The reference pressure acquirer 104 reads the pressure characteristic 112 corresponding to the recovered refrigerant indicated by the recovered refrigerant information 110 from the storage unit 102, and, as shown in FIG. In the example of FIG. 3, the saturated vapor pressure of refrigerant A) is obtained as the reference pressure RP. The reference pressure acquirer 104 then outputs the reference pressure RP to the determiner 108 .
 判定器108には、参照圧力RPと、発送配管56上の圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)とが入力される。ここで、図3に示すように参照圧力RP(回収冷媒の飽和蒸気圧)よりも検出圧力DPが高い場合には、回収ボンベ16内に非凝縮性ガスが混入していることが示される。そこで、判定器108は、検出圧力DPが参照圧力RPよりも高い状態(以下、高圧状態とも言う)の場合には、制御弁64を開状態に制御し、回収ボンベ16内の混合ガス22をガス分離モジュール装置68に送る。一方、判定器108は、高圧状態ではない場合には、制御弁64を閉状態のままとする。判定器108は、非凝縮性ガスの除去を行っている状態か否かを示す除去信号を出力する。除去信号は、制御弁64が閉状態の場合にLowとなり、制御弁64が開状態の場合にHighとなる信号である。 The reference pressure RP and the detected pressure DP of the pressure detector 61 on the shipping pipe 56 (the pressure in the recovery cylinder 16) are input to the determiner 108. Here, when the detected pressure DP is higher than the reference pressure RP (the saturated vapor pressure of the recovered refrigerant) as shown in FIG. Therefore, when the detected pressure DP is higher than the reference pressure RP (hereinafter also referred to as a high-pressure state), the determiner 108 controls the control valve 64 to open, and the mixed gas 22 in the recovery cylinder 16 is discharged. Send to gas separation module device 68 . On the other hand, the determiner 108 keeps the control valve 64 closed when the high pressure is not present. The determiner 108 outputs a removal signal indicating whether the non-condensable gas is being removed. The removal signal is a signal that becomes Low when the control valve 64 is closed and becomes High when the control valve 64 is open.
 減圧弁制御器106には、発送配管56上の圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)が入力される。減圧弁制御器106は、制御弁64が開状態となり、回収ボンベ16内の混合ガス22がガス分離モジュール装置68に送り込まれた際に、ガス分離モジュール装置68の分離膜92A、92Bが回収ボンベ16内の圧力により損傷しないように、検出圧力DPに基づいて減圧弁66を制御する。減圧弁66の制御により、減圧弁66よりも下流側(ガス分離モジュール装置68側)の配管内圧力が調整される。 The pressure DP detected by the pressure detector 61 on the delivery pipe 56 (the pressure inside the recovery cylinder 16) is input to the pressure reducing valve controller 106. In the pressure reducing valve controller 106, when the control valve 64 is opened and the mixed gas 22 in the recovery cylinder 16 is sent to the gas separation module device 68, the separation membranes 92A and 92B of the gas separation module device 68 are separated from the recovery cylinder. Based on the detected pressure DP, the pressure reducing valve 66 is controlled so that the pressure in 16 does not damage it. By controlling the pressure reducing valve 66, the pressure in the pipe downstream of the pressure reducing valve 66 (on the side of the gas separation module device 68) is adjusted.
 図4は、三方弁制御器80のブロック図である。三方弁制御器80は、判定器118を備える。三方弁制御器80は、キーパッド等の入力部100、およびフラッシュメモリ等の記憶部102と電気的に接続されている。三方弁制御器80内にあるメモリを、記憶部102として使用してもよい。 4 is a block diagram of the three-way valve controller 80. FIG. The three-way valve controller 80 has a determiner 118 . The three-way valve controller 80 is electrically connected to an input section 100 such as a keypad and a storage section 102 such as flash memory. A memory within the three-way valve controller 80 may be used as the storage unit 102 .
 冷媒回収の前に、入力部100から、気化促進モードへの遷移条件としての圧力閾値120と、気化促進モードの継続時間122とが入力され、記憶部102に格納される。判定器118には、除去信号と、冷媒回収装置14の圧力検出器37の検出圧力DPS(冷媒回収装置14の入口36における圧力)と、記憶部102にある圧力閾値120および継続時間122とが入力される。ここで、検出圧力DPSは、通常モードにおいて空調装置12の冷媒回路30の圧力を示す。 Before refrigerant recovery, a pressure threshold value 120 as a transition condition to the vaporization promotion mode and a vaporization promotion mode duration 122 are input from the input unit 100 and stored in the storage unit 102 . The determination device 118 stores the removal signal, the detected pressure DPS of the pressure detector 37 of the refrigerant recovery device 14 (the pressure at the inlet 36 of the refrigerant recovery device 14), and the pressure threshold 120 and duration 122 stored in the storage unit 102. is entered. Here, the detected pressure DPS indicates the pressure in the refrigerant circuit 30 of the air conditioner 12 in the normal mode.
 判定器118は、除去信号がLowの場合には、三方弁40の第1ポート41と第2ポート42とが連通状態(通常モード)となるように三方弁40を制御する。 When the removal signal is Low, the determiner 118 controls the three-way valve 40 so that the first port 41 and the second port 42 of the three-way valve 40 are in communication (normal mode).
 判定器118は、除去信号がLowからHighに変わった際には、検出圧力DPS(冷媒回路30の圧力)と圧力閾値120との比較結果に基づいて、循環モードと気化促進モードとのうち、どちらに三方弁40を制御するかを決める。具体的には、判定器118は、検出圧力DPSが圧力閾値120より高い場合には、冷媒回路30内の冷媒が低温凝縮する可能性が低いと推定し、三方弁40の第2ポート42と第3ポート43とが連通状態(循環モード)となるように三方弁40を制御する。一方、判定器118は、検出圧力DPSが圧力閾値120以下の場合には、冷媒回路30内の冷媒が低温凝縮する可能性があると推定し、三方弁40の第1ポート41と第3ポート43とが連通状態(気化促進モード)となるように三方弁40を制御する。 When the removal signal changes from Low to High, the determiner 118 selects one of the circulation mode and the vaporization acceleration mode based on the result of comparison between the detected pressure DPS (the pressure in the refrigerant circuit 30) and the pressure threshold 120. It is decided which way the three-way valve 40 will be controlled. Specifically, when the detected pressure DPS is higher than the pressure threshold 120, the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 is unlikely to condense at a low temperature, and the second port 42 of the three-way valve 40 and The three-way valve 40 is controlled so that it communicates with the third port 43 (circulation mode). On the other hand, when the detected pressure DPS is equal to or less than the pressure threshold 120, the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 may be condensed at a low temperature, and the first port 41 and the third port of the three-way valve 40 43 is in communication (vaporization acceleration mode).
 判定器118は、気化促進モードに遷移させてから、継続時間122だけ時間が経過した際には、気化促進モードから循環モードに三方弁40を制御する。 The determiner 118 controls the three-way valve 40 from the vaporization promotion mode to the circulation mode when the duration time 122 has elapsed after the transition to the vaporization promotion mode.
 判定器118は、現在、通常モード、循環モード、または気化促進モードのいずれの状態であるかを示す三方弁信号を出力する。 The determiner 118 outputs a three-way valve signal indicating the current state of the normal mode, the circulation mode, or the vaporization promotion mode.
 図1に示すように、再送制御器78には、三方弁信号と、再送配管58C上の圧力検出器70の検出圧力DPR(再送配管58内の圧力)と、冷媒回収装置14の圧力検出器37の検出圧力DPS(冷媒回収装置14の入口36における圧力)とが入力される。再送制御器78は、三方弁信号が循環モードを示す場合には、検出圧力DPR、DPSに基づいて、冷媒回収装置14の入口36における圧力よりも、圧力調整器72の下流側(ガス流出口74側)の再送配管58C内の圧力が高くなるように圧力調整器72を制御する。これにより、前配管52から再送配管58Cに向かって冷媒が逆流することを防止することができる。再送制御器78は、三方弁信号が気化促進モードを示す場合には、圧力調整器72の下流側(ガス流出口74側)の再送配管58C内の圧力が、空調装置12の冷媒回路30内にガスを送り込むことができる予め定められた圧力となるように圧力調整器72を制御する。 As shown in FIG. 1, the resending controller 78 includes a three-way valve signal, a detected pressure DPR of the pressure detector 70 on the resending pipe 58C (pressure inside the resending pipe 58), and a pressure detector of the refrigerant recovery device 14. 37 detected pressure DPS (the pressure at the inlet 36 of the refrigerant recovery device 14) is input. The resending controller 78 is controlled based on the sensed pressures DPR, DPS when the 3-way valve signal indicates the circulation mode, and the pressure downstream of the pressure regulator 72 (gas outlet 36) relative to the pressure at the inlet 36 of the refrigerant recovery device 14. 74 side), the pressure regulator 72 is controlled so that the pressure in the retransmission pipe 58C increases. Thereby, it is possible to prevent the refrigerant from flowing back from the front pipe 52 toward the resending pipe 58C. When the three-way valve signal indicates the vaporization promotion mode, the resending controller 78 controls the pressure in the resending pipe 58C on the downstream side (gas outflow port 74 side) of the pressure regulator 72 to increase the pressure in the refrigerant circuit 30 of the air conditioner 12. The pressure regulator 72 is controlled to provide a predetermined pressure at which gas can be delivered to the .
 図5は、圧力制御器97のブロック図である。圧力制御器97は、圧力取得器211と、第1圧力制御器212と、第2圧力制御器213とを備える。圧力制御器97は、フラッシュメモリ等の記憶部102と電気的に接続されている。圧力制御器97内にあるメモリを、記憶部102として使用してもよい。 FIG. 5 is a block diagram of the pressure controller 97. FIG. The pressure controller 97 comprises a pressure acquirer 211 , a first pressure controller 212 and a second pressure controller 213 . The pressure controller 97 is electrically connected to a storage unit 102 such as a flash memory. A memory within the pressure controller 97 may be used as the storage unit 102 .
 記憶部102は、第1圧力情報214および第2圧力情報215を記憶する。第1圧力情報214は、第1圧力調整器98Aによって設定される第1分離膜92Aの内外差圧PAを表わす。第2圧力情報215は、第2圧力調整器98Bによって設定される第2分離膜92Bの内外差圧PBを表わす。 The storage unit 102 stores first pressure information 214 and second pressure information 215 . The first pressure information 214 represents the internal and external pressure difference PA of the first separation membrane 92A set by the first pressure regulator 98A. The second pressure information 215 represents the internal and external pressure difference PB of the second separation membrane 92B set by the second pressure regulator 98B.
 圧力取得器211は、冷媒回収の前に、記憶部102から第1圧力情報214を取得して、第1圧力制御器212に送る。第1圧力制御器212は、第1圧力調整器98Aを制御して、第1分離膜92Aの内外差圧P1oをPAに設定する。 The pressure acquirer 211 acquires first pressure information 214 from the storage unit 102 and sends it to the first pressure controller 212 before refrigerant recovery. The first pressure controller 212 controls the first pressure regulator 98A to set the internal and external pressure difference P1o of the first separation membrane 92A to PA.
 圧力取得器211は、冷媒回収の前に、記憶部102から第2圧力情報215を取得して、第2圧力制御器213に送る。第2圧力制御器213は、第2圧力調整器98Bを制御して、第2分離膜92Bの内外差圧P2oをPBに設定する。 The pressure acquirer 211 acquires the second pressure information 215 from the storage unit 102 and sends it to the second pressure controller 213 before refrigerant recovery. The second pressure controller 213 controls the second pressure regulator 98B to set the internal and external differential pressure P2o of the second separation membrane 92B to PB.
 次に、第1分離膜92Aの内外差圧の設定圧力PAおよび第2分離膜92Bの内外差圧の設定圧力PBについて説明する。 Next, the set pressure PA for the internal and external differential pressure of the first separation membrane 92A and the set pressure PB for the internal and external differential pressure of the second separation membrane 92B will be described.
 図6は、第1分離膜92Aの内外差圧の設定圧力PAを説明するための図である。
 第1分離膜92Aの内外差圧が第1の閾値TH1未満のときに、R32のガス成分および非凝縮性ガスが第1分離膜92Aを透過可能であり、かつR32以外の他の冷媒のガス成分が第1分離膜92Aを透過不可能である。
FIG. 6 is a diagram for explaining the set pressure PA of the internal and external differential pressure of the first separation membrane 92A.
When the pressure difference between the inside and outside of the first separation membrane 92A is less than the first threshold value TH1, the gas component of R32 and the non-condensable gas can permeate the first separation membrane 92A, and the refrigerant gas other than R32 Components cannot permeate the first separation membrane 92A.
 第1分離膜92Aの内外差圧の設定圧力PAは、第1の閾値TH1未満の値に設定される。これによって、R32のガス成分および非凝縮性ガスが第1分離膜92Aを透過可能となり、R32以外の他の冷媒のガス成分が第1分離膜92Aを透過不可能にすることができる。 The set pressure PA of the internal and external differential pressure of the first separation membrane 92A is set to a value less than the first threshold TH1. As a result, the R32 gas component and the non-condensable gas can permeate the first separation membrane 92A, and the refrigerant gas components other than R32 cannot permeate the first separation membrane 92A.
 図7は、第2分離膜92Bの内外差圧の設定圧力PBを説明するための図である。
 第2分離膜92Bの内外差圧が第2の閾値TH2未満のときに、非凝縮性ガスが第2分離膜92Bを透過可能であり、かつR32のガス成分およびR32以外の他の冷媒のガス成分が第2分離膜92Bを透過不可能である。
FIG. 7 is a diagram for explaining the set pressure PB of the internal and external differential pressure of the second separation membrane 92B.
When the pressure difference between the inside and outside of the second separation membrane 92B is less than the second threshold TH2, the non-condensable gas can permeate the second separation membrane 92B, and the gas component of R32 and the refrigerant gas other than R32 Components cannot permeate the second separation membrane 92B.
 第2分離膜92Bの内外差圧の設定圧力PBは、第2の閾値TH2未満の値に設定される。これによって、非凝縮性ガスが第2分離膜92Bを透過可能となり、R32のガス成分およびR32以外の他の冷媒のガス成分が第2分離膜92Bを透過不可能にすることができる。 The set pressure PB of the internal and external differential pressure of the second separation membrane 92B is set to a value less than the second threshold TH2. As a result, the non-condensable gas can permeate the second separation membrane 92B, and the gas component of R32 and the gas components of refrigerants other than R32 cannot permeate the second separation membrane 92B.
 設定圧力PAおよび設定圧力PBについて、上記の条件を満たし、かつより適切な値に設定する方法について説明する。 A method for satisfying the above conditions and setting the set pressure PA and the set pressure PB to more appropriate values will be explained.
 図1に示すように、第1分離膜92Aの内外差圧をP1o、第1分離膜92Aの内部の圧力(つまり、第1分離膜92Aの入力側の圧力)をP1i、第1分離膜92Aの透過側の圧力をP1tとする。第2分離膜92Bの内外差圧をP2o、第2分離膜92Bの内部の圧力(つまり、第2分離膜92Bの入力側の圧力)をP2i、第2分離膜92Bの透過側の圧力をP2tとする。以下の式が成り立つ。 As shown in FIG. 1, the pressure difference between the inside and outside of the first separation membrane 92A is P1o, the pressure inside the first separation membrane 92A (that is, the pressure on the input side of the first separation membrane 92A) is P1i, and the first separation membrane 92A Let P1t be the pressure on the permeation side of . P2o is the pressure difference between the inside and outside of the second separation membrane 92B, P2i is the pressure inside the second separation membrane 92B (that is, the pressure on the input side of the second separation membrane 92B), and P2t is the pressure on the permeation side of the second separation membrane 92B. and The following formula holds.
 P1t=P2i・・・(1)
 P2t=P2i-P2o・・・(2)
 P1t=P1i-P1o・・・(3)
 第2分離膜92Bにおいて、透過したガスは大気開放されるため、以下の式が成り立つ。
P1t=P2i (1)
P2t=P2i-P2o (2)
P1t=P1i-P1o (3)
In the second separation membrane 92B, the permeated gas is released to the atmosphere, so the following equation holds.
 P2t=0・・・(4)
 式(1)~(4)から、以下の式が成り立つ。
P2t=0 (4)
From equations (1) to (4), the following equation holds.
 P2o=P2i=P1t・・・(5)
 また、第1分離膜92Aにガスが逆流しないようにするには、以下の条件が必要となる。
P2o=P2i=P1t (5)
Moreover, the following conditions are required to prevent the gas from flowing back to the first separation membrane 92A.
 P1t<P1i・・・(6)
 P1t<P1o・・・(7)
 式(5)~(7)から、以下の式が成り立つ。
P1t<P1i (6)
P1t<P1o (7)
From equations (5) to (7), the following equation holds.
 P1i>P2o・・・(8)
 P1o>P2o・・・(9)
 よって、設定圧力PA、PBの大きさを以下のように設定するのが望ましい。
P1i>P2o (8)
P1o>P2o (9)
Therefore, it is desirable to set the magnitudes of the set pressures PA and PB as follows.
 PA>PB・・・(10)
 式(1)、(3)、(5)から、以下の式が成り立つ。
PA>PB (10)
From equations (1), (3), and (5), the following equation holds.
 P1i=P1o+P2o・・・(11)
 発送制御器76による減圧弁66の制御によって、圧力P1oを制御することができる。万一、P1iがP1oより大幅に大きいと、減圧弁66は、圧力P1oの制御のために、後段にガスを排出する。つまり、第1分離膜92Aで分離されずに流れ出すガスが多くなってしまう。そのため、P1iは、P2oよりわずかに高い状態が望ましい。具体的には、P1iは、発送制御器76による減圧弁66の制御によって、P2oよりも0[MPa]以上、かつ0.1[MPa]以下だけ高くなるのが望ましい。
P1i=P1o+P2o (11)
Control of the pressure reducing valve 66 by the dispatch controller 76 allows the pressure P1o to be controlled. Should P1i be significantly greater than P1o, pressure reducing valve 66 vents gas downstream for control of pressure P1o. In other words, a large amount of gas flows out without being separated by the first separation membrane 92A. Therefore, it is desirable that P1i is slightly higher than P2o. Specifically, P1i is desirably higher than P2o by 0 [MPa] or more and 0.1 [MPa] or less by control of the pressure reducing valve 66 by the shipping controller 76 .
 つまり、第1分離膜92Aの内外差圧の設定圧力PAは、第2分離膜92Bの内外差圧の設定圧力PBよりも大きくするのが望ましい。 In other words, it is desirable that the set pressure PA of the internal and external differential pressure of the first separation membrane 92A be higher than the set pressure PB of the internal and external differential pressure of the second separation membrane 92B.
 次に、第1ガス分離モジュール68Aおよび第2ガス分離モジュール68Bについて説明する。 Next, the first gas separation module 68A and the second gas separation module 68B will be explained.
 第1ガス分離モジュール68Aには、R32、R32以外の他の冷媒、および非凝縮性ガスを含む混合ガス22が流入する。 A mixed gas 22 containing R32, a refrigerant other than R32, and a non-condensable gas flows into the first gas separation module 68A.
 図1に示すように、第1ガス分離モジュール68Aは、筒状の筐体88Aと、筐体88Aの中に配置された筒状の第1分離膜92Aと含む。筐体88Aは、混合ガス22を取り入れる入口90Aと、入口90Aと対向して配置され、再送ガス冷媒を排出する出口96Aと、非凝縮性ガスおよびR32を放出する放出口94Aとを含む。R32のガス成分は、第1分離膜92Aを透過可能である。非凝縮性ガスは、第1分離膜92Aを透過可能である。R32以外の他の冷媒のガス成分は、第1分離膜92Aを透過不可能である。 As shown in FIG. 1, the first gas separation module 68A includes a tubular housing 88A and a tubular first separation membrane 92A disposed within the housing 88A. Enclosure 88A includes an inlet 90A for taking in mixed gas 22, an outlet 96A positioned opposite inlet 90A for discharging rerouted gas refrigerant, and an outlet 94A for discharging non-condensable gases and R32. The gas component of R32 can permeate the first separation membrane 92A. A non-condensable gas can permeate the first separation membrane 92A. Gas components of refrigerants other than R32 cannot permeate the first separation membrane 92A.
 第1分離膜92Aの第1端は、筐体88Aの入口90Aに接続される。第1分離膜92Aの第2端は、筐体88Aの出口96Aに接続される。混合ガス22は、入口90Aから第1分離膜92Aの内部に入り、出口96Aに向かって進み、その間に、空気を主成分とする非凝縮性ガスおよびR32が、第1分離膜92Aを透過して、第1分離膜92Aの外に出ていき、やがて、筐体88Aの放出口94Aから配管59に放たれる。また、混合ガス22に比べて非凝縮性ガスおよびR32が低減した再送ガス冷媒は、筐体88Aの出口96Aから再送配管58A内に排出される。 A first end of the first separation membrane 92A is connected to the inlet 90A of the housing 88A. A second end of the first separation membrane 92A is connected to the outlet 96A of the housing 88A. Mixed gas 22 enters the interior of first separation membrane 92A from inlet 90A and proceeds toward outlet 96A, during which air-based non-condensable gas and R32 permeate first separation membrane 92A. Then, it goes out of the first separation membrane 92A, and is eventually released into the pipe 59 from the discharge port 94A of the housing 88A. In addition, the non-condensable gas and the retransmitted gas refrigerant with reduced R32 compared to the mixed gas 22 are discharged from the outlet 96A of the housing 88A into the retransmitted pipe 58A.
 第1分離膜92Aおよび第2分離膜92Bとしては、例えば、無機系材料により構成された膜(以下、無機系分離膜と言う)または有機系材料により構成された膜(以下、有機系分離膜と言う)を使用することができる。無機系分離膜の材料としては、例えばセラミック、ゼオライト等を使用することができる。第1分離膜92Aおよび第2分離膜92Bは、非凝縮性ガス(N2、O2)などの分離径の小さなガスを分離できる膜である。第1分離膜92Aおよび第2分離膜92Bの分子径は、3.8Å程度である。第1分離膜92Aは、極性を有し、第2分離膜92Bは、極性を有さない。 As the first separation membrane 92A and the second separation membrane 92B, for example, a membrane made of an inorganic material (hereinafter referred to as an inorganic separation membrane) or a membrane made of an organic material (hereinafter referred to as an organic separation membrane ) can be used. Ceramics, zeolites, and the like, for example, can be used as materials for the inorganic separation membrane. The first separation membrane 92A and the second separation membrane 92B are membranes capable of separating gases with a small separation diameter, such as non-condensable gases (N2, O2). The molecular diameters of the first separation membrane 92A and the second separation membrane 92B are approximately 3.8 Å. The first separation membrane 92A has polarity, and the second separation membrane 92B does not have polarity.
 図8は、無機系分離膜によって構成された第1分離膜92Aのガス分離の様子を模式的に示す図である。図8に示すように、無機系分離膜は、基本的に分子径の差異を利用してガス分離を行う。分子径が小さい空気(非凝縮性ガス)26、および水28が、第1分離膜92Aの孔を通って第1分離膜92Aの外に出ていく。分子径が大きいR32以外の他の冷媒24は第1分離膜92Aの内側に残る。R32の分子径の大きさは、無機系分離膜の分子径よりも少しだけ大きい。しかし、第1分離膜92Aは、極性を有しているため、R32は、変形することによって、第1分離膜92Aを透過する。 FIG. 8 is a diagram schematically showing how gas is separated by the first separation membrane 92A composed of an inorganic separation membrane. As shown in FIG. 8, the inorganic separation membrane basically uses the difference in molecular diameter to separate gases. Air (non-condensable gas) 26 with a small molecular diameter and water 28 go out of the first separation membrane 92A through the pores of the first separation membrane 92A. The refrigerant 24 other than R32 having a large molecular diameter remains inside the first separation membrane 92A. The molecular diameter of R32 is slightly larger than that of the inorganic separation membrane. However, since the first separation membrane 92A has polarity, R32 permeates the first separation membrane 92A by being deformed.
 第1分離膜92Aおよび第2分離膜92Bの分子径は同一であるが、第1分離膜92Aは極性を有するため、膜内外差圧の大きさに係らず、R32は、第1分離膜92Aを透過し、第2分離膜92Bは極性を有さないため、膜内外差圧によって、R32は、第2分離膜92Bを透過する場合と透過しない場合とがある。 Although the molecular diameters of the first separation membrane 92A and the second separation membrane 92B are the same, the first separation membrane 92A has polarity. Since the second separation membrane 92B does not have polarity, R32 may or may not permeate the second separation membrane 92B depending on the transmembrane pressure difference.
 第2ガス分離モジュール68Bには、R32および非凝縮性ガスを含む混合ガス24が流入する。 A mixed gas 24 containing R32 and non-condensable gas flows into the second gas separation module 68B.
 図1に示すように、第2ガス分離モジュール68Bは、筒状の筐体88Bと、筐体88Bの中に配置された筒状の第2分離膜92Bと含む。筐体88Bは、混合ガス24を取り入れる入口90Bと、入口90Bと対向して配置され、再送ガス冷媒を排出する出口96Bと、非凝縮性ガスを放出する放出口94Bとを含む。R32のガス成分は、第2分離膜92Bを透過不可能である。非凝縮性ガスは、第2分離膜92Bを透過可能である。 As shown in FIG. 1, the second gas separation module 68B includes a tubular housing 88B and a tubular second separation membrane 92B disposed within the housing 88B. Enclosure 88B includes an inlet 90B for taking in mixed gas 24, an outlet 96B disposed opposite inlet 90B for discharging rerouted gas refrigerant, and an outlet 94B for discharging non-condensable gases. The R32 gas component cannot permeate the second separation membrane 92B. A non-condensable gas can permeate the second separation membrane 92B.
 第2分離膜92Bの第1端は、筐体88Bの入口90Bに接続される。第2分離膜92Bの第2端は、筐体88Bの出口96Bに接続される。混合ガス24は、入口90Bから第2分離膜92Bの内部に入り、出口96Bに向かって進み、その間に、空気を主成分とする非凝縮性ガスが、第2分離膜92Bを透過して、第2分離膜92Bの外に出ていき、やがて、筐体88Bの放出口94Bから大気に放たれる。また、混合ガス24に比べて非凝縮性ガスが低減した再送ガス冷媒は、筐体88Bの出口96Bから再送配管58B内に排出される。 A first end of the second separation membrane 92B is connected to the inlet 90B of the housing 88B. A second end of the second separation membrane 92B is connected to the outlet 96B of the housing 88B. The mixed gas 24 enters the interior of the second separation membrane 92B from the inlet 90B and proceeds toward the outlet 96B, during which the non-condensable gas mainly composed of air permeates the second separation membrane 92B to It goes out of the second separation membrane 92B and is released into the atmosphere from the discharge port 94B of the housing 88B before long. Further, the retransmitted gas refrigerant having a reduced non-condensable gas content compared to the mixed gas 24 is discharged from the outlet 96B of the housing 88B into the retransmitted pipe 58B.
 図9(a)は、膜内外差圧がTH2未満の場合に、無機系分離膜によって構成された第2分離膜92Bのガス分離の様子を模式的に示す図である。図9(b)は、膜内外差圧がTH2以上の場合に、無機系分離膜によって構成された第2分離膜92Bのガス分離の様子を模式的に示す図である。 FIG. 9(a) is a diagram schematically showing how gas is separated by the second separation membrane 92B composed of an inorganic separation membrane when the transmembrane pressure difference is less than TH2. FIG. 9(b) is a diagram schematically showing how gas is separated by the second separation membrane 92B composed of an inorganic separation membrane when the transmembrane pressure difference is TH2 or higher.
 図9(a)および(b)に示すように、無機系分離膜は、基本的に分子径の差異を利用してガス分離を行う。分子径が小さい空気(非凝縮性ガス)26、および水28が第2分離膜92Bの孔を通って第2分離膜92Bの外に出ていく。第2分離膜92Bは、極性を有しないため、膜内外差圧が第2の閾値TH2以上とならない限り、R32(25)は第2分離膜92Bの内側に残る。 As shown in FIGS. 9(a) and (b), the inorganic separation membrane basically uses the difference in molecular diameter to separate gases. Air (non-condensable gas) 26 with a small molecular diameter and water 28 go out of the second separation membrane 92B through the pores of the second separation membrane 92B. Since the second separation membrane 92B does not have polarity, R32 (25) remains inside the second separation membrane 92B unless the transmembrane pressure difference becomes equal to or greater than the second threshold TH2.
 次に、冷媒回収システム10を用いた具体的な冷媒回収方法について説明する。図10は、実施の形態1における冷媒回収システム10を用いた具体的な冷媒回収方法を示すフローチャートである。図10において、S100~S104、S126及びS128は作業者が行うステップであり、その他のステップは冷媒回収システム10により自動的に行われるステップである。 Next, a specific refrigerant recovery method using the refrigerant recovery system 10 will be described. FIG. 10 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10 according to the first embodiment. In FIG. 10, S100 to S104, S126 and S128 are steps performed by the operator, and other steps are steps performed automatically by the refrigerant recovery system 10. FIG.
 S100において、作業者は、冷媒回収装置14、回収ボンベ16、および分離装置18を準備する。 In S100, the operator prepares the refrigerant recovery device 14, the recovery cylinder 16, and the separation device 18.
 S102において、作業者は、空調装置12の電源を遮断した後、図1に示すように、空調装置12、冷媒回収装置14、回収ボンベ16、および分離装置18を互いに接続する。 In S102, after turning off the air conditioner 12, the operator connects the air conditioner 12, the refrigerant recovery device 14, the recovery cylinder 16, and the separation device 18 to each other as shown in FIG.
 S103において、作業者は、分離装置18の電源をオンにする。この後、作業者は、回収冷媒情報110(図2参照)と、気化促進モードに関する圧力閾値120および継続時間122(図4参照)とを入力部100から入力する。分離装置18の電源がオンにされると、三方弁制御器80は、三方弁40を第1ポート41と第2ポート42とが連通する通常モードに制御する。 In S103, the operator turns on the separation device 18. After that, the operator inputs the collected refrigerant information 110 (see FIG. 2) and the pressure threshold 120 and the duration 122 (see FIG. 4) regarding the accelerated vaporization mode from the input section 100. FIG. When the isolation device 18 is powered on, the three-way valve controller 80 controls the three-way valve 40 to a normal mode in which the first port 41 and the second port 42 are in communication.
 S104において、作業者は、冷媒回収装置14を駆動させる。これにより、空調装置12からの冷媒回収が開始される。 At S104, the operator drives the refrigerant recovery device 14. Thereby, refrigerant recovery from the air conditioner 12 is started.
 S106~S122は、冷媒回収システム10による自動制御である。
 S106において、発送制御器76の参照圧力取得器104は、回収冷媒情報110が示す回収冷媒の圧力特性(図3参照)に基づいて、温度検出器62の検出温度DT(回収ボンベ16内の温度)における回収冷媒の飽和蒸気圧を参照圧力RPとして取得する。発送制御器76の判定器108は、参照圧力RPよりも、圧力検出器61の検出圧力DP(回収ボンベ内の圧力)が高いか否かを確認する。なお、図7のS106に示すように、判定器108は、参照圧力RPに予め定められた圧力Aを加算した圧力(RP+α、以下、基準圧力と言う)よりも、検出圧力DP(回収ボンベ内の圧力)が高いか否かを確認してもよい。
S106 to S122 are automatic controls by the refrigerant recovery system .
In S106, the reference pressure acquirer 104 of the dispatch controller 76 determines the detected temperature DT of the temperature detector 62 (the temperature in the recovery cylinder 16 ) is obtained as the reference pressure RP. A determiner 108 of the delivery controller 76 checks whether or not the detected pressure DP of the pressure detector 61 (the pressure inside the recovery cylinder) is higher than the reference pressure RP. Note that, as shown in S106 in FIG. 7, the determination device 108 determines that the detected pressure DP (inside the recovery cylinder pressure) is high.
 判定器108は、検出圧力DPが基準圧力(RP+α)以下の場合(S106:NO)には、回収ボンベ16内の非凝縮性ガスの除去は不要と判断して、冷媒回収を継続する(S108)。 If the detected pressure DP is equal to or lower than the reference pressure (RP+α) (S106: NO), the determiner 108 determines that it is not necessary to remove the non-condensable gas in the recovery cylinder 16, and continues to recover the refrigerant (S108 ).
 一方、判定器108は、検出圧力DPが基準圧力(RP+α)よりも高い場合(S106:YES)には、回収ボンベ16内の非凝縮性ガスの除去が必要と判断して、除去信号をLowからHighに変更して、S110に進む。なお、このように基準圧力を用いて判定を行えば、回収ボンベ16内に非凝縮性ガスがある程度蓄積された後、非凝縮性ガスの除去を開始することができる。 On the other hand, when the detected pressure DP is higher than the reference pressure (RP+α) (S106: YES), the determiner 108 determines that the non-condensable gas in the recovery cylinder 16 needs to be removed, and outputs a removal signal. is changed from Low to High, and the process proceeds to S110. If the determination is made using the reference pressure in this way, removal of the non-condensable gas can be started after a certain amount of non-condensable gas is accumulated in the recovery cylinder 16 .
 S110において、三方弁制御器80は、除去信号がLowからHighになったことを受けて、第1三方弁制御を実行する。図11は、第1三方弁制御を示すフローチャートである。 At S110, the three-way valve controller 80 executes the first three-way valve control in response to the removal signal changing from Low to High. FIG. 11 is a flowchart showing first three-way valve control.
 S200において、三方弁制御器80の判定器118は、冷媒回収装置14の圧力検出器37の検出圧力DPS(冷媒回路30の圧力)が、記憶部102にある圧力閾値120以下か否かを確認する。なお、圧力閾値120は、例えば0.1MPA程度である。 In S200, the determiner 118 of the three-way valve controller 80 checks whether the detected pressure DPS (pressure of the refrigerant circuit 30) of the pressure detector 37 of the refrigerant recovery device 14 is equal to or less than the pressure threshold 120 stored in the storage unit 102. do. Note that the pressure threshold 120 is, for example, about 0.1 MPa.
 S200がNOの場合には、判定器118は、空調装置12の冷媒回路30の冷媒が低温凝縮する可能性が低いと推定し、三方弁40を第2ポート42と第3ポート43とが連通する循環モードに制御し(S206)、気化促進フラグをオフにして(S208)、第1三方弁制御を終了する。 When S200 is NO, the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is unlikely to condense at a low temperature, and the three-way valve 40 is connected between the second port 42 and the third port 43. (S206), the vaporization acceleration flag is turned off (S208), and the first three-way valve control is terminated.
 一方、S200がYESの場合には、判定器118は、空調装置12の冷媒回路30の冷媒が低温凝縮する可能性が高いと推定し、三方弁40を第1ポート41と第3ポート43とが連通する気化促進モードに制御し(S202)、気化促進フラグをオンにして(S204)、第1三方弁制御を終了する。 On the other hand, when S200 is YES, the determiner 118 estimates that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is highly likely to be condensed at a low temperature, and the three-way valve 40 is connected to the first port 41 and the third port 43. (S202), turns on the vaporization promotion flag (S204), and ends the first three-way valve control.
 再び図10を参照する。
 S110の後のS111において、圧力制御器97は、第1圧力調整器の98Aを制御することによる第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧P1oの設定圧力PAへの調整を開始し、第2圧力調整器の98Bを制御することによる第2ガス分離モジュール68Bの第2分離膜92Bの内外差圧P1oの設定圧力PBへの調整を開始する。
Refer to FIG. 10 again.
In S111 after S110, the pressure controller 97 adjusts the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A. Then, by controlling the second pressure regulator 98B, the adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB is started.
 S112において、発送制御器76の判定器108は、発送配管56上の制御弁64を開く。なお、除去信号をLowからHighにするタイミングと、S110(第1三方弁制御)の実行タイミングと、S112(制御弁64を開く動作)の実行タイミングとは、ほぼ同時である。また、制御弁64を開く前に、減圧弁制御器106により減圧弁66を調整しておく。制御弁64を開くことにより、回収ボンベ16内の混合ガス22がガス分離モジュール装置68に送られる。 At S<b>112 , the determiner 108 of the shipping controller 76 opens the control valve 64 on the shipping pipe 56 . The timing of changing the removal signal from Low to High, the execution timing of S110 (first three-way valve control), and the execution timing of S112 (operation of opening the control valve 64) are substantially the same. Moreover, the pressure reducing valve 66 is adjusted by the pressure reducing valve controller 106 before the control valve 64 is opened. By opening control valve 64 , mixed gas 22 in recovery cylinder 16 is sent to gas separation module device 68 .
 循環モードの場合には、分離装置18、冷媒回収装置14、および回収ボンベ16からなる循環ループが形成されて、回収ボンベ16内の混合ガス22は、繰り返しガス分離モジュール装置68に送り込まれる。非凝縮性ガスは大気に開放される。再送ガス冷媒は、冷媒回収装置14の前の前配管52に送り込まれて、冷媒回収装置14を通過し、液化された状態で回収ボンベ16に戻る。これにより、回収ボンベ16内の非凝縮性ガスは徐々に除去され、回収ボンベ16内の圧力は低下する。 In the circulation mode, a circulation loop consisting of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, and the mixed gas 22 in the recovery cylinder 16 is repeatedly sent to the gas separation module device 68. Non-condensable gases are vented to the atmosphere. The resent gas refrigerant is sent to the front pipe 52 in front of the refrigerant recovery device 14, passes through the refrigerant recovery device 14, and returns to the recovery cylinder 16 in a liquefied state. As a result, the non-condensable gas inside the recovery cylinder 16 is gradually removed, and the pressure inside the recovery cylinder 16 decreases.
 気化促進モードの場合には、回収ボンベ16内の混合ガス22の一部である再送ガス冷媒が、空調装置12の冷媒回路30内に送り込まれ、冷媒回路30内の冷媒の温度を上昇させる。これにより、冷媒の気化が促進され、冷媒回収を再開した際に、冷媒回収速度を向上させることができる。 In the accelerated vaporization mode, the resent gas refrigerant that is part of the mixed gas 22 in the recovery cylinder 16 is sent into the refrigerant circuit 30 of the air conditioner 12 to raise the temperature of the refrigerant in the refrigerant circuit 30 . As a result, vaporization of the refrigerant is accelerated, and when refrigerant recovery is restarted, the refrigerant recovery speed can be improved.
 再送制御器78は、循環モードおよび気化促進モードにおいて圧力調整器72を制御して、圧力調整器72の下流側(ガス流出口74側)の再送配管58C内の圧力を調整する。 The resending controller 78 controls the pressure regulator 72 in the circulation mode and the vaporization promotion mode to adjust the pressure in the resending pipe 58C on the downstream side of the pressure regulator 72 (gas outflow port 74 side).
 S114において、発送制御器76の判定器108は、圧力検出器61の検出圧カDP(回収ボンベ16内の圧力)が、参照圧力RP以下になったか否かを確認する。S114がNOの場合には、非凝縮性ガスの除去を継続し(S116)、S118に進む。 In S114, the determiner 108 of the shipping controller 76 confirms whether or not the detected pressure DP of the pressure detector 61 (the pressure inside the recovery cylinder 16) has become equal to or less than the reference pressure RP. If S114 is NO, the removal of non-condensable gas is continued (S116), and the process proceeds to S118.
 S118において、三方弁制御器80は、第2三方弁制御を実行する。図12は、第2三方弁制御を示すフローチャートである。 At S118, the three-way valve controller 80 executes second three-way valve control. FIG. 12 is a flow chart showing second three-way valve control.
 S300において、三方弁制御器80の判定器118は、気化促進フラグがオンであるか否かを確認する。S300がNOの場合(循環モードの場合)は、第2三方弁制御を終了する。一方、S300がYESの場合(気化促進モードの場合)にはS302に進む。 At S300, the determiner 118 of the three-way valve controller 80 confirms whether or not the vaporization promotion flag is ON. If S300 is NO (in the circulation mode), the second three-way valve control is ended. On the other hand, if S300 is YES (in the case of vaporization promotion mode), the process proceeds to S302.
 S302において、判定器118は、気化促進モードに遷移させてから、記憶部102にある継続時間122(図4参照)だけ時間が経過したかを確認する。S302がNOの場合には、判定器118は、気化促進モードを引き続き継続させる必要があると判断し、第2三方弁制御を終了する。一方、S302がYESの場合には、判定器118は、気化促進モードを終了してよいと判断し、三方弁40を第2ポート42と第3ポート43とが連通する循環モードに制御し(S304)、気化促進フラグをオフ(S306)にして、第2三方弁制御を終了する。 In S302, the determiner 118 checks whether the duration 122 (see FIG. 4) stored in the storage unit 102 has passed since the transition to the vaporization acceleration mode. If S302 is NO, the determiner 118 determines that it is necessary to continue the vaporization acceleration mode, and ends the second three-way valve control. On the other hand, if S302 is YES, the determiner 118 determines that the vaporization promotion mode may be terminated, and controls the three-way valve 40 to the circulation mode in which the second port 42 and the third port 43 communicate ( S304), the vaporization promotion flag is turned off (S306), and the second three-way valve control ends.
 再び図10を参照する。
 S114において、発送制御器76の判定器108は、圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)が、参照圧力RP以下になった場合(S114:YES)には、回収ボンベ16内の非凝縮性ガスの除去が完了したと判断して、S120に進む。
Refer to FIG. 10 again.
In S114, when the pressure DP detected by the pressure detector 61 (the pressure in the recovery cylinder 16) is equal to or lower than the reference pressure RP (S114: YES), the determination device 108 of the dispatch controller 76 determines that the recovery cylinder 16 It is determined that the removal of the non-condensable gas inside has been completed, and the process proceeds to S120.
 S120において、発送制御器76の判定器108は、発送配管56上の制御弁64を閉じ、除去信号をHighからLowにする。三方弁制御器80の判定器118は、除去信号がHighからLowになったことを受けて、三方弁40を第1ポート41と第2ポート42とが連通する通常モードに制御する。発送制御器76の減圧弁制御器106は、減圧弁66の制御を終了し、再送制御器78は、圧力調整器72の制御を終了する。 At S120, the determiner 108 of the shipping controller 76 closes the control valve 64 on the shipping pipe 56 and changes the removal signal from High to Low. The decision device 118 of the three-way valve controller 80 controls the three-way valve 40 to the normal mode in which the first port 41 and the second port 42 communicate with each other in response to the removal signal changing from High to Low. The pressure reducing valve controller 106 of the dispatch controller 76 terminates control of the pressure reducing valve 66 and the retransmission controller 78 terminates control of the pressure regulator 72 .
 S121において、圧力制御器97は、第1圧力調整器の98Aを制御することによる第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧P1oの設定圧力PAへの調整を終了し、第2圧力調整器の98Bを制御することによる第2ガス分離モジュール68Bの第2分離膜92Bの内外差圧P1oの設定圧力PBへの調整を終了する。 In S121, the pressure controller 97 finishes adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A. The adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB by controlling the two-pressure regulator 98B is completed.
 S122において、冷媒回収装置14は、圧力検出器37の検出圧力DPS(冷媒回路30の圧力)が負圧になったか否かを確認する。S122がNOの場合には、冷媒回収装置14は冷媒回収を継続し(S124)、S122がYESの場合には、冷媒回収装置14は、ランプ、または音等により冷媒回収が終了したことを作業者に伝える。 At S122, the refrigerant recovery device 14 confirms whether or not the pressure DPS detected by the pressure detector 37 (the pressure in the refrigerant circuit 30) has become negative. If S122 is NO, the refrigerant recovery device 14 continues refrigerant recovery (S124), and if S122 is YES, the refrigerant recovery device 14 notifies the completion of refrigerant recovery by means of a lamp, sound, or the like. tell people.
 S126において、作業者は、冷媒回収装置14を停止する。
 S128において、作業者は、分離装置18の電源をオフにする。
At S<b>126 , the operator stops the refrigerant recovery device 14 .
At S<b>128 , the operator turns off the separation device 18 .
 以上が冷媒回収のフローである。
 次に、以上説明した冷媒回収システム10の作用効果について説明する。
The above is the refrigerant recovery flow.
Next, the effects of the refrigerant recovery system 10 described above will be described.
 冷媒回収システム10によれば、回収ボンベ16の内部の混合ガス22がガス分離モジュール装置68に送られることで、混合ガス22から非凝縮性ガスが分離されて大気に排出されると共に、混合ガス22に比べて非凝縮性ガスが低減された再送ガス冷媒が、ガス分離モジュール装置68から排出されて、空調装置12の冷媒回路30と冷媒回収装置14の間の配管内に送られる。また、再送ガス冷媒は、再度、冷媒回収装置14を通過し、液化された状態で回収ボンベ16に戻ることになる。 According to the refrigerant recovery system 10, by sending the mixed gas 22 inside the recovery cylinder 16 to the gas separation module device 68, the non-condensable gas is separated from the mixed gas 22 and discharged to the atmosphere, and the mixed gas The rerouted gaseous refrigerant, which has reduced noncondensable gases compared to 22 , is discharged from the gas separation module arrangement 68 and directed into the piping between the refrigerant circuit 30 of the air conditioner 12 and the refrigerant recovery system 14 . Further, the retransmitted gas refrigerant passes through the refrigerant recovery device 14 again and returns to the recovery cylinder 16 in a liquefied state.
 このように、回収ボンベ16、冷媒回収装置14及び空調装置12の接続を維持したまま、回収ボンベ16内の非凝縮性ガスを低減することができる。回収ボンベ16の内圧上昇を抑制することができ、回収ボンベ16への冷媒回収速度を向上することができると共に、回収ボンベ16の冷媒充填量を増やすことができる。再送ガス冷媒は、液化されて(体積が減少した状態で)回収ボンベ16に戻るので、回収ボンベ16の冷媒充填量をさらに増加させることができる。回収ボンベ16内の混合ガス22をガス分離モジュール装置68に送るために、回収ボンベ16、ガス分離モジュール装置68、冷媒回収装置14の順で配置される点に重要な意義がある。 Thus, the non-condensable gas in the recovery cylinder 16 can be reduced while maintaining the connection between the recovery cylinder 16, the refrigerant recovery device 14 and the air conditioner 12. The increase in internal pressure of the recovery cylinder 16 can be suppressed, the speed of refrigerant recovery to the recovery cylinder 16 can be improved, and the amount of refrigerant charged in the recovery cylinder 16 can be increased. Since the resent gas refrigerant is liquefied (with a reduced volume) and returned to the recovery cylinder 16, the amount of refrigerant charged in the recovery cylinder 16 can be further increased. In order to send the mixed gas 22 in the recovery cylinder 16 to the gas separation module device 68, it is important that the recovery cylinder 16, the gas separation module device 68, and the refrigerant recovery device 14 are arranged in this order.
 さらに、ガス分離モジュール装置68が分離した空調用冷媒が冷媒回路30と冷媒回収装置14との間に再送される。この分離された空調用冷媒は、冷媒回路30に送られるか、冷媒回収装置14に送られるかを三方弁40によって切り替えることができる。気化促進モードにおいて、ガス分離モジュール装置68が分離した空調用冷媒が冷媒回路30に送られることによって、冷媒回路30内の冷媒の温度を上昇させることができる。これによって、冷媒の気化が促進され、冷媒回収を再開した際に、冷媒回収速度を向上させることができる。循環モードにおいて、ガス分離モジュール装置68が分離した空調用冷媒が冷媒回収装置14に送られることによって、ガス分離モジュール装置68が分離した空調用冷媒の回収処理が再度実行される。 Furthermore, the air-conditioning refrigerant separated by the gas separation module device 68 is resent between the refrigerant circuit 30 and the refrigerant recovery device 14 . The separated air-conditioning refrigerant can be switched by the three-way valve 40 to be sent to the refrigerant circuit 30 or sent to the refrigerant recovery device 14 . In the vaporization promotion mode, the air-conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant circuit 30, so that the temperature of the refrigerant in the refrigerant circuit 30 can be raised. As a result, vaporization of the refrigerant is accelerated, and when refrigerant recovery is resumed, the refrigerant recovery speed can be improved. In the circulation mode, the air-conditioning refrigerant separated by the gas separation module device 68 is sent to the refrigerant recovery device 14, so that the recovery process of the air-conditioning refrigerant separated by the gas separation module device 68 is performed again.
 ガス分離モジュール装置68は、回収ボンベ16の上部に取り付けられている。そのため、液冷媒や混入した水などの液成分は、回収ボンベ16内の底部に滞留し、ガス分離モジュール装置68の第1分離膜92Aおよび第2分離膜92Bに液冷媒および多量の水が混入することがなく、第1分離膜92Aおよび第2分離膜92Bのガス分離効果の低下を抑制することができる。空調用冷媒は、冷媒回収装置14で断熱圧縮され液化した状態で回収ボンベ16に充填される。そのため、回収ボンベ16内の空間部の体積分に飽和蒸気圧分のみの冷媒が気化しているだけで、ほとんどの冷媒は回収ボンベ16内では液化している。気化している冷媒(ガス冷媒)の割合が低いため、ガス分離モジュール装置68に送られるガス冷媒の量を少なくでき、ガス分離モジュール装置68における冷媒漏洩リスクを低減することもできる。 The gas separation module device 68 is attached to the top of the recovery cylinder 16. Therefore, liquid components such as the liquid refrigerant and mixed water remain at the bottom of the recovery cylinder 16, and the liquid refrigerant and a large amount of water are mixed in the first separation membrane 92A and the second separation membrane 92B of the gas separation module device 68. Therefore, it is possible to suppress the deterioration of the gas separation effect of the first separation membrane 92A and the second separation membrane 92B. The air-conditioning refrigerant is adiabatically compressed and liquefied by the refrigerant recovery device 14 and filled in the recovery cylinder 16 . Therefore, most of the refrigerant is liquefied in the recovery cylinder 16, with only the saturated vapor pressure of the refrigerant being vaporized in the volume of the space in the recovery cylinder 16. FIG. Since the proportion of vaporized refrigerant (gas refrigerant) is low, the amount of gas refrigerant sent to the gas separation module device 68 can be reduced, and the risk of refrigerant leakage in the gas separation module device 68 can also be reduced.
 分離装置18、冷媒回収装置14、及び回収ボンベ16の循環ループが形成され、ガス分離モジュール装置68により、繰り返し非凝縮性ガスの分離が行われるので、効果的に、回収ボンベ16内の非凝縮性ガスの除去が実現される。すなわち、混合ガス22が1回のみガス分離モジュール装置68を通過するような構成に比べて、分離効率を高くすることができる。 A circulation loop of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, and the separation of the non-condensable gas is repeatedly performed by the gas separation module device 68, effectively removing the non-condensable gas in the recovery cylinder 16. elimination of toxic gases is achieved. That is, the separation efficiency can be increased compared to a configuration in which the mixed gas 22 passes through the gas separation module device 68 only once.
 回収ボンベ16内に非凝縮性ガスが混入している場合に限って、制御弁64を開状態にしてガス分離モジュール装置68で非凝縮性ガスを除去するので、回収ボンベ16内に非凝縮性ガスが無い又は少ない場合の不必要なガス分離モジュール装置68の使用を回避することができる。 Only when non-condensable gas is mixed in the recovery cylinder 16, the non-condensable gas is removed by the gas separation module device 68 by opening the control valve 64. Unnecessary use of gas separation module devices 68 with no or little gas can be avoided.
 分離装置18の記憶部102には複数種類の冷媒の圧力特性112が記憶されているので、異なる種類の冷媒の回収において、共通の分離装置18を用いることができる。 Since the storage unit 102 of the separation device 18 stores the pressure characteristics 112 of multiple types of refrigerants, the common separation device 18 can be used to recover different types of refrigerants.
 ガス分離モジュール装置68を使用する場合(制御弁64が開状態の場合)であって、冷媒回路30の圧力が予め定められた圧力より高い場合には、再送ガス冷媒を、再送配管58Cから冷媒回収装置14に的確に送り込むことができる。また、ガス分離モジュール装置68を使用する場合(制御弁64が開状態の場合)であって、冷媒回路30の圧力が予め定められた圧力以下の場合には、冷媒回収装置14で断熱圧縮され、冷媒回収装置14への流入時よりも温度が高くなった冷媒が入れられた回収ボンベ16内のガス冷媒の一部である再送ガス冷媒(冷媒回路30内よりも温度が高い)を、冷媒回路30に送り込むことができる。これにより、冷媒回路30内の冷媒の温度を上昇させ、冷媒のガス化を促進させることができ、冷媒回収を再開した際に、冷媒回収速度を向上させることができる。 When the gas separation module device 68 is used (when the control valve 64 is open) and the pressure in the refrigerant circuit 30 is higher than a predetermined pressure, the resent gas refrigerant is discharged from the resending pipe 58C. It can be accurately sent to the collection device 14 . When the gas separation module device 68 is used (when the control valve 64 is open) and the pressure in the refrigerant circuit 30 is equal to or lower than a predetermined pressure, the refrigerant is adiabatically compressed in the refrigerant recovery device 14. , the resent gas refrigerant (higher in temperature than in the refrigerant circuit 30), which is a part of the gas refrigerant in the recovery cylinder 16 containing the refrigerant whose temperature is higher than when it flowed into the refrigerant recovery device 14, is used as the refrigerant It can be fed into circuit 30 . As a result, the temperature of the refrigerant in the refrigerant circuit 30 can be raised, gasification of the refrigerant can be promoted, and the refrigerant recovery speed can be improved when refrigerant recovery is restarted.
 さらに、空調用冷媒がR32を含む場合には、1つのガス分離モジュールによって、非凝縮性ガスと冷媒ガスとを分離することができない。本実施の形態では、2つのガス分離モジュールを用い、各モジュールの分離膜の内外差圧を適切な値に設定することによって、非凝縮性ガスと冷媒ガスとを分離することができる。 Furthermore, when the air-conditioning refrigerant contains R32, the non-condensable gas and the refrigerant gas cannot be separated by one gas separation module. In this embodiment, two gas separation modules are used, and the non-condensable gas and the refrigerant gas can be separated by setting the differential pressure between the inside and outside of the separation membrane of each module to an appropriate value.
 実施の形態2.
 図13は、実施の形態2に係る冷媒回収システム10Aの概略図である。
Embodiment 2.
FIG. 13 is a schematic diagram of a refrigerant recovery system 10A according to Embodiment 2. FIG.
 実施の形態2の冷媒回収システム10Aが、実施の形態1の冷媒回収システム10と相違する点は、実施の形態2の冷媒回収システム10Aが、方向切替弁251、バイパス配管252、センサ253、およびバイパス制御器254を備える。 The refrigerant recovery system 10A of the second embodiment differs from the refrigerant recovery system 10 of the first embodiment in that the refrigerant recovery system 10A of the second embodiment includes a directional switching valve 251, a bypass pipe 252, a sensor 253, and A bypass controller 254 is provided.
 センサ253は、空調用冷媒がR32を含むか否かを検出し、検出信号をバイパス制御器254に出力する。センサ253は、接続配管50に配置されるものとしてもよい。 The sensor 253 detects whether the air-conditioning refrigerant contains R32 and outputs a detection signal to the bypass controller 254 . The sensor 253 may be arranged on the connecting pipe 50 .
 方向切替弁251は、配管59と接続する。方向切替弁251には、配管59から混合ガス24が流入する。 The direction switching valve 251 connects with the pipe 59 . The mixed gas 24 flows into the direction switching valve 251 from the pipe 59 .
 方向切替弁251は、流入した混合ガス24の流出先が切替可能である。第1の流出先は、分岐配管49である。分岐配管49の第1端は、方向切替弁251と接続する。分岐配管49の第2端は、第2ガス分離モジュール68Bの入口90Bと接続する。 The direction switching valve 251 can switch the outflow destination of the mixed gas 24 that has flowed in. A first outflow destination is the branch pipe 49 . A first end of the branch pipe 49 is connected to the direction switching valve 251 . A second end of the branch pipe 49 connects with the inlet 90B of the second gas separation module 68B.
 第2の流出先は、バイパス配管252である。バイパス配管252の第1端は、方向切替弁251と接続する。バイパス配管252の第2端は、放出口94Bと接続する。 The second outflow destination is the bypass pipe 252 . A first end of the bypass pipe 252 is connected to the direction switching valve 251 . A second end of the bypass pipe 252 connects with the outlet 94B.
 バイパス制御器254は、空調用冷媒がR32を含むか否かに応じて、方向切替弁251の流出先を切り替える。バイパス制御器254は、空調用冷媒がR32を含む場合には、方向切替弁251の流出先を分岐配管49に切替ることによって、第1分離膜92Aを透過したガス24を、第2分離膜92B内に流入させる。バイパス制御器254は、空調用冷媒がR32を含まない場合に、方向切替弁251の流出先をバイパス配管252に切替ることによって、第1分離膜92Aを透過したガス22を、第2分離膜92B内に流入させない。 The bypass controller 254 switches the outflow destination of the direction switching valve 251 depending on whether the air-conditioning refrigerant contains R32. When the air-conditioning refrigerant contains R32, the bypass controller 254 switches the outflow destination of the direction switching valve 251 to the branch pipe 49 so that the gas 24 that has permeated the first separation membrane 92A is transferred to the second separation membrane 92A. flow into 92B. Bypass controller 254 switches the outflow destination of direction switching valve 251 to bypass pipe 252 when the air-conditioning refrigerant does not contain R32. Do not let it flow into 92B.
 図14は、実施の形態2における冷媒回収システム10Aを用いた具体的な冷媒回収方法を示すフローチャートである。図14において、S100~S104、S126及びS128は作業者が行うステップであり、その他のステップは冷媒回収システム10Aにより自動的に行われるステップである。 FIG. 14 is a flow chart showing a specific refrigerant recovery method using the refrigerant recovery system 10A according to Embodiment 2. FIG. In FIG. 14, S100 to S104, S126 and S128 are steps performed by the operator, and other steps are steps automatically performed by the refrigerant recovery system 10A.
 実施の形態2のフローチャートが、実施の形態1のフローチャートと相違する点は、実施の形態2のフローチャートが、S111に代えて、S201~S205を備える点と、S121に代えて、S206~S208を備える点である。 The flowchart of the second embodiment differs from the flowchart of the first embodiment in that the flowchart of the second embodiment includes S201 to S205 instead of S111, and S206 to S208 instead of S121. It is a point to be prepared.
 S201において、センサ253によって、空調用冷媒がR32を含むことが検出された場合に、処理がS202に進む。センサ253によって、空調用冷媒がR32を含まないことが検出された場合に、処理がS204に進む。 In S201, when the sensor 253 detects that the air-conditioning refrigerant contains R32, the process proceeds to S202. When the sensor 253 detects that the air-conditioning refrigerant does not contain R32, the process proceeds to S204.
 S202において、バイパス制御器254は、方向切替弁251の流出先を分岐配管49に切替る。 In S202, the bypass controller 254 switches the outflow destination of the direction switching valve 251 to the branch pipe 49.
 S203において、圧力制御器97は、第1圧力調整器の98Aを制御することによる第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧P1oの設定圧力PAへの調整を開始し、第2圧力調整器の98Bを制御することによる第2ガス分離モジュール68Bの第2分離膜92Bの内外差圧P1oの設定圧力PBへの調整を開始する。その後、処理がS112に進む。 In S203, the pressure controller 97 starts adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A. The adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB is started by controlling the two-pressure regulator 98B. After that, the process proceeds to S112.
 S204において、バイパス制御器254は、方向切替弁251の流出先をバイパス配管252に切替る。 In S204, the bypass controller 254 switches the outflow destination of the direction switching valve 251 to the bypass pipe 252.
 S205において、圧力制御器97は、第1圧力調整器98Aを制御することによる第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧P1oの設定圧力PAへの調整を開始する。 In S205, the pressure controller 97 starts adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
 S206において、センサ253によって、空調用冷媒がR32を含むことが検出された場合に、処理がS207に進む。センサ253によって、空調用冷媒がR32を含まないことが検出された場合に、処理がS208に進む。 In S206, when the sensor 253 detects that the air-conditioning refrigerant contains R32, the process proceeds to S207. When the sensor 253 detects that the air-conditioning refrigerant does not contain R32, the process proceeds to S208.
 S207において、圧力制御器97は、第1圧力調整器98Aを制御することによる第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧P1oの設定圧力PAへの調整を終了し、第2圧力調整器98Bを制御することによる第2ガス分離モジュール68Bの第2分離膜92Bの内外差圧P1oの設定圧力PBへの調整を終了する。 In S207, the pressure controller 97 finishes adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A. The adjustment of the internal and external differential pressure P1o of the second separation membrane 92B of the second gas separation module 68B to the set pressure PB by controlling the pressure regulator 98B is completed.
 S208において、圧力制御器97は、第1圧力調整器98Aを制御することによる第1ガス分離モジュール68Aの第1分離膜92Aの内外差圧P1oの設定圧力PAへの調整を終了する。 In S208, the pressure controller 97 finishes adjusting the internal and external differential pressure P1o of the first separation membrane 92A of the first gas separation module 68A to the set pressure PA by controlling the first pressure regulator 98A.
 変形例.
 本開示は、上記の実施形態に限定されるものではなく、たとえば、以下のような変形例も含む。
Modification.
The present disclosure is not limited to the above embodiments, and includes, for example, the following modifications.
 (1)R32
 上記の実施形態では、第1分離膜を透過し、第2分離膜を透過しない冷媒の例としてR32を用いたが、これに限定されるものではない。第1分離膜を透過し、第2分離膜を透過しない冷媒として、他の冷媒を用いてもよい。このような特性を有する冷媒を一般に、説明のため第1の冷媒と記すことができる。
(1) R32
In the above embodiment, R32 is used as an example of the refrigerant that permeates the first separation membrane but does not permeate the second separation membrane, but the refrigerant is not limited to this. Other refrigerants may be used as the refrigerant that permeates the first separation membrane but does not permeate the second separation membrane. Refrigerants having such properties can generally be referred to as first refrigerants for purposes of explanation.
 (2)ガス分離モジュール
 上記の実施形態では、2段のガス分離モジュールを用いたが、N段(N≧2)のガス分離モジュールを用いてもよい。
(2) Gas Separation Module In the above embodiment, a two-stage gas separation module is used, but an N-stage (N≧2) gas separation module may be used.
 (3)センサ
 実施形態2では、センサ253が、空調用冷媒がR32を含むか否かを検出するものとしたが、これに限定されるものではない。入力部から空調用冷媒に含まれる冷媒の種類を示す回収冷媒情報が入力され、記憶部に格納され、バイパス制御部が、回収冷媒情報に基づいて、空調用冷媒がR32を含むか否かを判定するものとしてもよい。
(3) Sensor In the second embodiment, the sensor 253 detects whether or not the air-conditioning refrigerant contains R32, but the present invention is not limited to this. Collected refrigerant information indicating the type of refrigerant contained in the air-conditioning refrigerant is input from the input unit and stored in the storage unit, and the bypass control unit determines whether the air-conditioning refrigerant contains R32 based on the collected refrigerant information. It may be determined.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 10,10A 冷媒回収システム、12 空調装置、14 冷媒回収装置、16 回収ボンベ、18 分離装置、22,24 ガス、28 水、30 冷媒回路、32 アキュムレータ、34 サービスポート、36,90A,90B 入口、37,61,70 圧力検出器。38,96A,96B 出口、40 三方弁、41 第1ポート、42 第2ポート、43 第3ポート、46 液出入口、48 ガス出入口、49 分岐配管、50 接続配管、52 前配管、54 後配管、56 発送配管、58A,58B,58C 再送配管、59 配管、60 ガス流入口、62 温度検出器、64 制御弁、66 減圧弁、68 ガス分離モジュール装置、68A 第1ガス分離モジュール、68B 第2ガス分離モジュール、72 圧力調整器、74 ガス流出口、76 発送制御器、78 再送制御器、80 三方弁制御器、88A,88B 筐体、92A 第1分離膜、92B 第2分離膜、94A,94B 放出口、97 圧力制御器、98A 第1圧力調整器、98B 第2圧力調整器、99A 第1逆止弁、99B 第2逆止弁、100 入力部、102 記憶部、104 参照圧力取得器、106 減圧弁制御器、108,118 判定器、110 回収冷媒情報、112 圧力特性、120 圧力閾値、122 継続時間、211 圧力取得器、212 第1圧力制御器、213 第2圧力制御器、214 第1圧力情報、215 第2圧力情報、251 方向切替弁、252 バイパス配管、253 センサ、254 バイパス制御器、ND 合流点、PA,PB 設定圧力、RP 参照圧力、TH1 第1の閾値、TH2 第2の閾値。 10, 10A refrigerant recovery system, 12 air conditioner, 14 refrigerant recovery device, 16 recovery cylinder, 18 separation device, 22, 24 gas, 28 water, 30 refrigerant circuit, 32 accumulator, 34 service port, 36, 90A, 90B inlet, 37, 61, 70 pressure detectors. 38, 96A, 96B outlet, 40 three-way valve, 41 1st port, 42 2nd port, 43 3rd port, 46 liquid inlet/outlet, 48 gas inlet/outlet, 49 branch pipe, 50 connection pipe, 52 front pipe, 54 rear pipe, 56 Shipping piping, 58A, 58B, 58C Retransmitting piping, 59 Piping, 60 Gas inlet, 62 Temperature detector, 64 Control valve, 66 Pressure reducing valve, 68 Gas separation module device, 68A First gas separation module, 68B Second gas Separation module, 72 pressure regulator, 74 gas outlet, 76 dispatch controller, 78 retransmission controller, 80 three-way valve controller, 88A, 88B housing, 92A first separation membrane, 92B second separation membrane, 94A, 94B Discharge port, 97 pressure controller, 98A first pressure regulator, 98B second pressure regulator, 99A first check valve, 99B second check valve, 100 input section, 102 storage section, 104 reference pressure acquisition device, 106 pressure reducing valve controller, 108, 118 determiner, 110 recovered refrigerant information, 112 pressure characteristics, 120 pressure threshold, 122 duration, 211 pressure acquirer, 212 first pressure controller, 213 second pressure controller, 214 second 1 pressure information, 215 second pressure information, 251 directional switching valve, 252 bypass pipe, 253 sensor, 254 bypass controller, ND junction, PA, PB set pressure, RP reference pressure, TH1 first threshold, TH2 second threshold.

Claims (12)

  1.  冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収システムであって、
     前記空調用冷媒を圧縮凝縮することによって、圧縮凝縮冷媒を生成する冷媒回収装置と、
     前記冷媒回収装置が生成した圧縮凝縮冷媒を回収する回収ボンベと、
     前記圧縮凝縮冷媒を回収した前記回収ボンベの内部から前記空調用冷媒をガス成分として分離させる第1ガス分離モジュールと第2ガス分離モジュールとを含むガス分離モジュール装置と、
     前記ガス分離モジュール装置が分離した前記空調用冷媒のガス成分を前記冷媒回路と前記冷媒回収装置との間に再送させる再送配管と、を備え、
     前記第2ガス分離モジュールは、前記第1ガス分離モジュールの後段に配置され、前記第1ガス分離モジュールは、第1分離膜を含み、前記第2ガス分離モジュールは、第2分離膜を含み、前記第1分離膜を透過したガスが、前記第2分離膜内に流入可能である、冷媒回収システム。
    A refrigerant recovery system for recovering an air-conditioning refrigerant from a refrigerant circuit of a refrigerating and air-conditioning equipment,
    a refrigerant recovery device for generating a compressed condensed refrigerant by compressing and condensing the air conditioning refrigerant;
    a recovery cylinder for recovering the compressed and condensed refrigerant generated by the refrigerant recovery device;
    a gas separation module device including a first gas separation module and a second gas separation module for separating the air-conditioning refrigerant as a gas component from the inside of the recovery cylinder in which the compressed condensed refrigerant is recovered;
    a retransmission pipe for retransmitting the gas component of the air-conditioning refrigerant separated by the gas separation module device between the refrigerant circuit and the refrigerant recovery device,
    The second gas separation module is arranged after the first gas separation module, the first gas separation module includes a first separation membrane, the second gas separation module includes a second separation membrane, A refrigerant recovery system, wherein the gas that permeates the first separation membrane can flow into the second separation membrane.
  2.  前記空調用冷媒は、第1の冷媒を含むことが可能であり、
     第1の冷媒のガス成分は、前記第1分離膜を透過可能、かつ前記第2分離膜を透過不可能であり、
     非凝縮性ガスは、前記第1分離膜および前記第2分離膜を透過可能であり、
     前記空調用冷媒に含まれる前記第1の冷媒以外の他の冷媒のガス成分は、前記第1分離膜および前記第2分離膜を透過不可能である、請求項1記載の冷媒回収システム。
    The air conditioning refrigerant can contain a first refrigerant,
    A gas component of the first refrigerant is permeable through the first separation membrane and impermeable through the second separation membrane,
    Non-condensable gas is permeable through the first separation membrane and the second separation membrane,
    2. The refrigerant recovery system according to claim 1, wherein gas components of refrigerants other than said first refrigerant contained in said air-conditioning refrigerant cannot permeate said first separation membrane and said second separation membrane.
  3.  前記冷媒回収システムは、
     前記第1分離膜の内外差圧を調整するための第1圧力調整器と、
     前記第2分離膜の内外差圧を調整するための第2圧力調整器と、
     前記第1圧力調整器を制御して、前記第1分離膜の内外差圧を調整し、前記第2圧力調整器を制御して、前記第2分離膜の内外差圧を調整する圧力制御器と、をさらに備える、請求項2記載の冷媒回収システム。
    The refrigerant recovery system includes
    a first pressure regulator for adjusting the differential pressure between the inside and outside of the first separation membrane;
    a second pressure regulator for adjusting the differential pressure between the inside and outside of the second separation membrane;
    A pressure controller that controls the first pressure regulator to adjust the differential pressure across the first separation membrane, and controls the second pressure regulator to adjust the differential pressure across the second separation membrane. 3. The refrigerant recovery system of claim 2, further comprising:
  4.  前記第1分離膜の内外差圧が第1の閾値未満のときに、前記第1の冷媒のガス成分および前記非凝縮性ガスが前記第1分離膜を透過可能であり、かつ前記他の冷媒のガス成分が前記第1分離膜を透過不可能であり、
     前記第2分離膜の内外差圧が第2の閾値未満のときに、前記非凝縮性ガスが前記第2分離膜を透過可能であり、かつ前記第1の冷媒のガス成分および前記他の冷媒のガス成分が前記第2分離膜を透過不可能であり、
     前記圧力制御器は、前記第1分離膜の内外差圧を前記第1の閾値未満の値に制御し、前記第2分離膜の内外差圧を前記第2の閾値未満の値に制御する、請求項3記載の冷媒回収システム。
    When the pressure difference between the inside and outside of the first separation membrane is less than a first threshold value, the gas component of the first refrigerant and the non-condensable gas can permeate the first separation membrane, and the other refrigerant of the gas component cannot permeate the first separation membrane,
    When the differential pressure between the inside and outside of the second separation membrane is less than a second threshold value, the non-condensable gas can permeate the second separation membrane, and the gas component of the first refrigerant and the other refrigerant of the gas component cannot permeate the second separation membrane,
    The pressure controller controls the internal and external pressure difference of the first separation membrane to a value less than the first threshold, and controls the internal and external pressure difference of the second separation membrane to a value less than the second threshold. 4. The refrigerant recovery system of claim 3.
  5.  前記圧力制御器は、前記第1分離膜の内外差圧を前記第2分離膜の内外差圧よりも大きくなるように制御する、請求項4記載の冷媒回収システム。 5. The refrigerant recovery system according to claim 4, wherein the pressure controller controls the differential pressure between the inside and outside of the first separation membrane to be greater than the differential pressure between the inside and outside of the second separation membrane.
  6.  前記第1圧力調整器は、前記第1ガス分離モジュールの後段に配置され、前記第1圧力調整器の1次側の圧力を調整する第1背圧弁を含み、
     前記第2圧力調整器は、前記第2ガス分離モジュールの後段に配置され、前記第2圧力調整器の1次側の圧力を調整する第2背圧弁を含む、請求項3~5のいずれか1項に記載の冷媒回収システム。
    The first pressure regulator includes a first back pressure valve arranged downstream of the first gas separation module and regulating the pressure on the primary side of the first pressure regulator;
    6. The second pressure regulator according to any one of claims 3 to 5, wherein the second pressure regulator includes a second back pressure valve that is arranged after the second gas separation module and regulates the pressure on the primary side of the second pressure regulator. 2. A refrigerant recovery system according to claim 1.
  7.  前記第2分離膜の分子径と、前記第1分離膜の分子径とが同一であり、前記第1分離膜は、極性を有し、前記第2分離膜は、極性を有しない、請求項1~6のいずれか1項に記載の冷媒回収システム。 The molecular diameter of the second separation membrane and the molecular diameter of the first separation membrane are the same, the first separation membrane has polarity, and the second separation membrane does not have polarity. 7. The refrigerant recovery system according to any one of 1 to 6.
  8.  前記第1の冷媒は、R-32である、請求項7記載の冷媒回収システム。 The refrigerant recovery system according to claim 7, wherein said first refrigerant is R-32.
  9.  前記冷媒回収システムは、
     前記第1分離膜を透過したガスが流入し、前記ガスの流出先が切替可能な方向切替弁と、
     前記空調用冷媒が前記第1の冷媒を含む場合に、前記方向切替弁を制御することによって、前記第1分離膜を透過したガスを、前記第2分離膜内に流入させ、前記空調用冷媒が前記第1の冷媒を含まない場合に、前記方向切替弁を制御することによって、前記第1分離膜を透過したガスを、前記第2分離膜内に流入させないバイパス制御器と、をさらに備える請求項1~8のいずれか1項に記載の冷媒回収システム。
    The refrigerant recovery system includes
    a directional switching valve into which the gas that has permeated the first separation membrane flows and that can switch the outflow destination of the gas;
    When the air-conditioning refrigerant contains the first refrigerant, by controlling the direction switching valve, the gas that has permeated the first separation membrane flows into the second separation membrane, and the air-conditioning refrigerant does not contain the first refrigerant, a bypass controller that controls the direction switching valve to prevent the gas that has permeated the first separation membrane from flowing into the second separation membrane. The refrigerant recovery system according to any one of claims 1-8.
  10.  前記冷媒回路と前記冷媒回収装置の間に配置された三方弁と、
     前記三方弁を制御する三方弁制御部と、をさらに備え、
     前記三方弁は、第1、2及び3ポートを含み、前記三方弁の前記第1ポートは前記冷媒回路に接続されており、前記三方弁の前記第2ポートは前記冷媒回収装置に接続されており、前記三方弁の前記第3ポートは前記再送配管に接続されており、
     前記三方弁制御部は、第1のモードにおいて、前記三方弁の前記第1ポートと前記第3ポートが連通状態になるように前記三方弁を制御し、第2のモードにおいて、前記三方弁の前記第2ポートと前記第3ポートが連通状態になるように前記三方弁を制御する、請求項1~9のいずれか1項に記載の冷媒回収システム。
    a three-way valve disposed between the refrigerant circuit and the refrigerant recovery device;
    A three-way valve control unit that controls the three-way valve,
    The three-way valve includes first, two and three ports, the first port of the three-way valve being connected to the refrigerant circuit and the second port of the three-way valve being connected to the refrigerant recovery device. and the third port of the three-way valve is connected to the resending pipe,
    The three-way valve control section controls the three-way valve so that the first port and the third port of the three-way valve are in communication in a first mode, and controls the three-way valve in a second mode. 10. The refrigerant recovery system according to any one of claims 1 to 9, wherein said three-way valve is controlled so that said second port and said third port are in communication.
  11.  前記回収ボンベ内の圧力を検出する圧力検出器をさらに備え、
     前記三方弁制御部は、前記回収ボンベ内の圧力が圧力閾値以下の場合には、前記三方弁の前記第1ポートと前記第3ポートが連通状態になるように前記三方弁を制御し、前記回収ボンベ内の圧力が前記圧力閾値を超える場合には、前記三方弁の前記第2ポートと前記第3ポートが連通状態になるように前記三方弁を制御する、請求項10記載の冷媒回収システム。
    Further comprising a pressure detector that detects the pressure in the recovery cylinder,
    The three-way valve control unit controls the three-way valve so that the first port and the third port of the three-way valve are in communication when the pressure in the recovery cylinder is equal to or less than the pressure threshold, and 11. The refrigerant recovery system according to claim 10, wherein the three-way valve is controlled such that the second port and the third port of the three-way valve are in communication when the pressure in the recovery cylinder exceeds the pressure threshold. .
  12.  冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収方法であって、
     冷媒回収装置が、前記空調用冷媒を圧縮凝縮して、圧縮凝縮冷媒を生成するステップと、
     回収ボンベが、前記冷媒回収装置が生成した前記圧縮凝縮冷媒を回収するステップと、
     第1ガス分離モジュールおよび第2ガス分離モジュールを含むガス分離モジュール装置が、前記圧縮凝縮冷媒を回収した前記回収ボンベの内部に含まれるガス成分から前記空調用冷媒を分離させるステップと、
     再送配管が、前記ガス分離モジュール装置が分離した空調用冷媒のガス成分を前記冷媒回路と前記冷媒回収装置との間に再送させるステップと、を備え、
     前記第2ガス分離モジュールは、前記第1ガス分離モジュールの後段に配置され、前記第1ガス分離モジュールは、第1分離膜を含み、前記第2ガス分離モジュールは、第2分離膜を含み、前記第1分離膜を透過したガスが、前記第2分離膜内に流入可能である、冷媒回収方法。
    A refrigerant recovery method for recovering an air-conditioning refrigerant from a refrigerant circuit of a refrigeration and air-conditioning equipment,
    a refrigerant recovery device compressing and condensing the air conditioning refrigerant to produce a compressed condensed refrigerant;
    a recovery cylinder recovering the compressed condensed refrigerant produced by the refrigerant recovery device;
    a gas separation module apparatus comprising a first gas separation module and a second gas separation module separating the air conditioning refrigerant from gas components contained within the recovery cylinder in which the compressed condensed refrigerant is recovered;
    a retransmission pipe retransmitting gas components of the air-conditioning refrigerant separated by the gas separation module device between the refrigerant circuit and the refrigerant recovery device;
    The second gas separation module is arranged after the first gas separation module, the first gas separation module includes a first separation membrane, the second gas separation module includes a second separation membrane, A refrigerant recovery method, wherein the gas that has permeated the first separation membrane can flow into the second separation membrane.
PCT/JP2021/033774 2021-09-14 2021-09-14 Refrigerant recovery system and refrigerant recovery method WO2023042269A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/033774 WO2023042269A1 (en) 2021-09-14 2021-09-14 Refrigerant recovery system and refrigerant recovery method
CN202180099771.9A CN117545972A (en) 2021-09-14 2021-09-14 Refrigerant recovery system and refrigerant recovery method
JP2022503972A JP7106030B1 (en) 2021-09-14 2021-09-14 Refrigerant recovery system and refrigerant recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033774 WO2023042269A1 (en) 2021-09-14 2021-09-14 Refrigerant recovery system and refrigerant recovery method

Publications (1)

Publication Number Publication Date
WO2023042269A1 true WO2023042269A1 (en) 2023-03-23

Family

ID=82556748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033774 WO2023042269A1 (en) 2021-09-14 2021-09-14 Refrigerant recovery system and refrigerant recovery method

Country Status (3)

Country Link
JP (1) JP7106030B1 (en)
CN (1) CN117545972A (en)
WO (1) WO2023042269A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611216A (en) * 1992-06-24 1994-01-21 Hitachi Bill Shisetsu Eng Kk Device and method for recovering refrigerant
JPH10259970A (en) * 1997-03-19 1998-09-29 Hitachi Bill Shisetsu Eng Kk Method and apparatus for recovery of refrigerant sealed in freezing equipment
JP2005127564A (en) * 2003-10-22 2005-05-19 Daikin Ind Ltd Refrigerating plant constructing method and refrigerating plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062994A (en) * 1992-06-19 1994-01-11 Hitachi Bill Shisetsu Eng Kk Method and apparatus for adjusting temperature and pressure for recovery of refrigerant
JPH10238909A (en) * 1997-02-24 1998-09-11 Hitachi Bill Shisetsu Eng Kk Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
JP6029565B2 (en) * 2013-11-07 2016-11-24 三菱電機ビルテクノサービス株式会社 Refrigerant recovery system and refrigerant recovery method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611216A (en) * 1992-06-24 1994-01-21 Hitachi Bill Shisetsu Eng Kk Device and method for recovering refrigerant
JPH10259970A (en) * 1997-03-19 1998-09-29 Hitachi Bill Shisetsu Eng Kk Method and apparatus for recovery of refrigerant sealed in freezing equipment
JP2005127564A (en) * 2003-10-22 2005-05-19 Daikin Ind Ltd Refrigerating plant constructing method and refrigerating plant

Also Published As

Publication number Publication date
CN117545972A (en) 2024-02-09
JP7106030B1 (en) 2022-07-25
JPWO2023042269A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP3680278B2 (en) Refrigeration equipment construction method and refrigeration equipment
KR100750790B1 (en) Freezing apparatus installation method
WO1999010686A1 (en) Cooling cycle
US20160281999A1 (en) Water collecting system, humidification system, and air conditioning system
WO2004092307A1 (en) Device and method for collecting vapor gasoline
WO2023042269A1 (en) Refrigerant recovery system and refrigerant recovery method
US20210364202A1 (en) Enhanced refrigeration purge system
JP2006308230A (en) Refrigerating cycle control device
JP2005127564A (en) Refrigerating plant constructing method and refrigerating plant
JP2007093043A (en) Hot water supply system
JP7029025B1 (en) Refrigerant recovery system and refrigerant recovery method
JP2007139347A (en) Refrigerating unit and its construction method
JP2005161115A (en) Gasoline vapor recovery device
JP4265369B2 (en) Refrigeration equipment construction method and refrigeration equipment
JP2007139346A (en) Refrigeration unit and its constructing method
JP2005127563A (en) Refrigerating plant constructing method and refrigerating plant
CN216566328U (en) Purge system with adsorbed refrigerant separation and HVACR system thereof
JP3941807B2 (en) Refrigeration equipment construction method
KR101204006B1 (en) System for extinguishing agent recovery and method therefor
JP2005127565A (en) Refrigerating plant constructing method and refrigerating plant
US20230366598A1 (en) Carbon dioxide refrigeration system and a method of operating the refrigeration system
CN116868015A (en) Air extractor
JPH0648290Y2 (en) Freon gas recovery device
JP2005127562A (en) Refrigerating plant constructing method and refrigerating plant
JP2001280718A (en) Refrigerating system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022503972

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957453

Country of ref document: EP

Kind code of ref document: A1