JPH10259970A - Method and apparatus for recovery of refrigerant sealed in freezing equipment - Google Patents

Method and apparatus for recovery of refrigerant sealed in freezing equipment

Info

Publication number
JPH10259970A
JPH10259970A JP9066348A JP6634897A JPH10259970A JP H10259970 A JPH10259970 A JP H10259970A JP 9066348 A JP9066348 A JP 9066348A JP 6634897 A JP6634897 A JP 6634897A JP H10259970 A JPH10259970 A JP H10259970A
Authority
JP
Japan
Prior art keywords
refrigerant
series
pressure
receiver tank
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9066348A
Other languages
Japanese (ja)
Other versions
JP3550616B2 (en
Inventor
Susumu Ishii
進 石井
Michio Kumaki
美知雄 熊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Building Systems Engineering Co Ltd
Priority to JP06634897A priority Critical patent/JP3550616B2/en
Publication of JPH10259970A publication Critical patent/JPH10259970A/en
Application granted granted Critical
Publication of JP3550616B2 publication Critical patent/JP3550616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To throughly recover a refirgerant until a freezer becomes high vacuum therein (e.g. -700 mmHg) by improving a technique in which refrigerant gas in freezing equipment is sucked and compressed with a compressor, and is cooled with a condenser and liquefied, and is further recovered in a receiver tank. SOLUTION: There are provided a refrigerant recovery system of an A seies composed of a compressor 4A and a condenser 5A and a receiver tank 3A and a refirgernat recovery system of a B series composed of a compressor 4B, a condenser 5B, and a receiver tank 3B. In a previous stage process both series A and B are parallerly connected and operated and a recovery work is advanced with high efficiency as illustrated in FIG. A, in a middle srage procvess a refrigerant fluid stored in the series A receiver tanlk 3A is transferred into the series B receiver tank 3B as illustrated in FIG. B, and in a later stage process both series A, B are connected in aseries and operated as illustrated in FIG. C whereby refirgerant gas in freezing equipment 1 is throughly recovered until it reaches high vacuum (e.g. -700 mmHg).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばターボ冷凍
機のように、密閉循環系内に冷媒が封入されている冷凍
設備から冷媒を抜き取って、レシーバタンクと呼ばれる
可搬式の密閉容器に回収する方法、および回収するため
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting a refrigerant from a refrigeration facility in which a refrigerant is sealed in a closed circulation system, such as a turbo refrigerator, and recovers the refrigerant in a portable closed container called a receiver tank. Method and device for recovery.

【0002】[0002]

【従来の技術】冷凍設備を整備もしくは整理するため、
密閉循環系を構成している部材を分解すると、封入され
ている冷媒が大気中に放散される虞れが有る。封入冷媒
を放散することは経済的な損失であるのみでなく、該封
入冷媒が特定フロンである場合はフロン公害を招くの
で、冷凍設備の密閉循環系を分解する場合は、予め封入
冷媒を適宜の密閉容器に移さねばならない。この作業は
「回収」と呼ばれている。また、封入されている冷媒の
中に潤滑油が混入した場合にも、封入されている冷媒を
回収して精製再生工場に搬入しなければならない。冷凍
設備に封入されている冷媒は、液状をしている部分とガ
ス状をしている部分とが有る。これらの内、液状の部分
すなわち冷媒液は、これをそのまま(液相で)レシーバ
タンクに移せば良いので比較的容易に回収することがで
き、この冷媒液回収技術は公知であるから詳細な説明を
省略する。冷凍設備から冷凍液を回収した後、該冷凍設
備内には気相成分が残る。この冷媒ガスを放置したまま
で分解整備すると、冷媒ガスが大気中に放散されて公害
を生じるので、該冷媒ガスの回収が是非必要である。
2. Description of the Related Art In order to maintain or arrange refrigeration equipment,
When the members constituting the closed circulation system are disassembled, there is a possibility that the enclosed refrigerant is released into the atmosphere. Dissipating the encapsulated refrigerant is not only an economic loss, but also causes chlorofluorocarbon pollution when the encapsulated refrigerant is a specific CFC. Must be transferred to a closed container. This operation is called "recovery." Further, even when lubricating oil is mixed in the enclosed refrigerant, the enclosed refrigerant must be recovered and carried into a refining and recycling factory. The refrigerant enclosed in the refrigeration equipment has a liquid part and a gaseous part. Of these, the liquid portion, that is, the refrigerant liquid, can be relatively easily recovered because it can be transferred as it is (in the liquid phase) to the receiver tank. Since the refrigerant liquid recovery technology is known, a detailed description will be given. Is omitted. After collecting the frozen liquid from the refrigeration facility, gas phase components remain in the refrigeration facility. If the refrigerant gas is decomposed and maintained while being left as it is, the refrigerant gas is released into the atmosphere and causes pollution, so that the refrigerant gas must be recovered.

【0003】図6は、冷凍設備内の冷媒ガスを回収する
従来技術を説明するために示したもので、圧縮機と冷却
器とから成る冷媒回収機構を冷凍設備に接続して、冷媒
ガスを圧縮するとともに冷却して液化させ、液化した冷
媒をレシーバタンクに注入している状態の系統図であ
る。圧縮機4は冷凍設備1内の冷媒ガスを吸入して吐出
する。これにより、吐出された冷媒ガスは圧力が高くな
るとともに、断熱圧縮によって昇温する。この高圧高温
の冷媒ガスを冷却器5に通過させて冷却すると冷媒ガス
は凝縮し、レシーバタンク3内に注入される。このレシ
ーバタンク3内の圧力が高いと冷媒液の注入が困難にな
る。そこで、レシーバタンク3内の圧力が高すぎるとき
は該レシーバタンク3内の冷媒液の一部を蒸発させて鎖
線矢印Rのように冷媒回収機構2に返送する。前記レシ
ーバタンク3内は、冷媒液の蒸発によって気化潜熱を奪
われて温度が下がるとともに、冷媒ガスを鎖線矢印Rの
ように抜き取られて内圧が低下し、冷媒液の注入が容易
になる。
FIG. 6 is a view for explaining a conventional technique for recovering refrigerant gas in a refrigeration facility. A refrigerant recovery mechanism comprising a compressor and a cooler is connected to the refrigeration facility, and the refrigerant gas is recovered. It is a system diagram in the state where it compressed and cooled and liquefied, and the liquefied refrigerant was injected into a receiver tank. The compressor 4 sucks and discharges the refrigerant gas in the refrigeration facility 1. Thus, the pressure of the discharged refrigerant gas is increased, and the temperature of the discharged refrigerant gas is increased by adiabatic compression. When the high pressure and high temperature refrigerant gas is passed through the cooler 5 and cooled, the refrigerant gas condenses and is injected into the receiver tank 3. If the pressure in the receiver tank 3 is high, it becomes difficult to inject the refrigerant liquid. Therefore, when the pressure in the receiver tank 3 is too high, a part of the refrigerant liquid in the receiver tank 3 is evaporated and returned to the refrigerant recovery mechanism 2 as indicated by a dashed arrow R. In the receiver tank 3, the vaporization latent heat is deprived by the evaporation of the refrigerant liquid to lower the temperature, and the refrigerant gas is drawn out as indicated by a dashed arrow R to lower the internal pressure, thereby facilitating the injection of the refrigerant liquid.

【0004】[0004]

【発明が解決しようとする課題】前掲の図6に示した従
来例の冷媒回収機構における圧縮機4に代えて真空ポン
プを用いることもできる。真空ポンプを用いた場合は冷
凍設備1内に残留している冷媒ガスが高真空になるまで
吸い出すことが出来るが、真空ポンプは吐出圧が低いの
で、冷却器5で冷却しても凝縮しにくくなる。真空ポン
プと圧縮機との間に明確な境界は無いが、一般的に、吸
入圧力が高真空であって吐出圧力が大気圧に比して余り
高くないガスポンプを真空ポンプと呼び、吸入圧力が低
真空であって吐出圧力が数気圧以上のガスポンプを圧縮
機と呼び習わしている。こうしたガスポンプの性能と冷
媒の性状との比較において次のような問題が有る。すな
わち、低圧冷媒は相対的に液化し易いので、真空ポンプ
的特性のガスポンプで圧縮して冷却すると比較的容易に
液化して回収することができるが、これに比して、高圧
冷媒は相対的に液化しにくいので、圧縮機的特性のガス
ポンプで高圧に圧縮しないと、冷却器で冷却しても容易
に液化しない。
A vacuum pump can be used in place of the compressor 4 in the conventional refrigerant recovery mechanism shown in FIG. When a vacuum pump is used, the refrigerant gas remaining in the refrigeration equipment 1 can be sucked out until a high vacuum is obtained. However, since the vacuum pump has a low discharge pressure, it is difficult to condense even when cooled by the cooler 5. Become. Although there is no clear boundary between a vacuum pump and a compressor, a gas pump whose suction pressure is high vacuum and whose discharge pressure is not much higher than the atmospheric pressure is generally called a vacuum pump. A gas pump having a low vacuum and a discharge pressure of several atmospheres or more is called a compressor. There are the following problems in comparing the performance of the gas pump with the properties of the refrigerant. That is, since the low-pressure refrigerant is relatively easily liquefied, it can be relatively easily liquefied and recovered by compressing and cooling with a gas pump having a vacuum pump characteristic. Unless it is compressed to a high pressure by a gas pump having compressor characteristics, it does not easily liquefy even when cooled by a cooler.

【0005】高圧冷媒の場合、30℃で液化させるため
には例えば10kg/cm2Gに圧縮しなければならない。
そして、10kg/cm2Gの吐出圧を有し、かつ吸入圧力
が高真空である実用的なガスポンプは存在しない(経済
性を無視した試験研究用ガスポンプを除く)。10kg/
cm2Gの吐出圧を有する実用的なガスポンプの中で、最
も吸入圧力の低いものでも、−500mmHg程度であ
る。このため、従来技術に係る冷媒回収機構(図6)を
用いて高圧冷媒(例えばフロン−12,フロン−22,
フロン−134aなど)を回収しようとすると、圧縮機
4として吐出圧力10kg/cm2G以上のガスポンプを用
いなければならず、その結果、回収後の冷凍設備1の中
に約−500mmHgの冷媒ガスが残留することになる。
この残留ガスは大気中に放散されて、冷媒の損失になる
とともに公害発生の原因になる。本発明は上述の事情に
鑑みて為されたものであって、高圧冷媒を高能率で回収
することができ、しかも、冷凍設備内に残留する冷媒ガ
スの圧力を格段に低下せしめ得る回収技術を提供するこ
とを目的とする。従来技術において−500mmHgまで
しか真空引き出来なかった冷凍設備内を−700mmHg
以下の高真空にすることが出来れば、冷媒量にして数キ
ログラムの損失を防止することが期待され、その経済効
果もさることながら、公害防止効果は多大である。
In the case of a high-pressure refrigerant, it must be compressed to, for example, 10 kg / cm 2 G in order to liquefy at 30 ° C.
Further, there is no practical gas pump having a discharge pressure of 10 kg / cm 2 G and a high vacuum suction pressure (except for a test and research gas pump ignoring economy). 10kg /
Of the practical gas pumps having a discharge pressure of cm 2 G, even the lowest suction pressure is about −500 mmHg. For this reason, using a refrigerant recovery mechanism (FIG. 6) according to the related art, a high-pressure refrigerant (for example, Freon-12, Freon-22,
In order to recover Freon-134a), a gas pump having a discharge pressure of 10 kg / cm 2 G or more must be used as the compressor 4, and as a result, about −500 mmHg of refrigerant gas Will remain.
This residual gas is released into the atmosphere, causing loss of the refrigerant and causing pollution. The present invention has been made in view of the above circumstances, and a recovery technique capable of recovering a high-pressure refrigerant with high efficiency and reducing the pressure of the refrigerant gas remaining in the refrigeration equipment significantly. The purpose is to provide. -700 mmHg in the refrigeration equipment which could only be evacuated to -500 mmHg in the prior art
If the following high vacuum can be achieved, loss of several kilograms in the amount of refrigerant is expected to be prevented, and the pollution prevention effect is enormous as well as its economic effect.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
めに創作した本発明の基本的な原理を、その1実施形態
を描いた図1を参照して略述すると次のとおりである。
すなわち、同図(A)に示すように2系列の冷媒回収機
構を設ける。上記の2系列とは、 A系列:圧縮機・甲4A→冷却器・甲5A→レシーバタ
ンク・甲3Aの系列と、 B系列:圧縮機・乙4B→冷却器・乙5B→レシーバタ
ンク・乙3Bの系列とである。前段の工程では前記A,
Bの2系列を図1(A)のように並列に接続することに
より、1系列の冷媒回収機構で回収する場合に比して2
倍の能率で回収を進める。回収作業の後段の工程では図
1(C)のように、A系列の圧縮機・甲4AとB系列の
圧縮機・乙4Bとを直列に接続する。このような接続状
態では、圧縮機の1台当たり圧縮比が小さくなり、冷凍
設備1内を高真空(例えば−730mmHg)にすること
ができる。
The basic principle of the present invention created to achieve the above object will be briefly described below with reference to FIG. 1 illustrating one embodiment of the present invention.
That is, as shown in FIG. 1A, two refrigerant recovery mechanisms are provided. The above two series are: A series: Compressor / A 4A → Cooler / A 5A → Receiver tank / A 3A series and B series: Compressor / B 4B → Cooler / B 5B → Receiver tank / B 3B. In the previous step, A,
By connecting the two series of B in parallel as shown in FIG.
Advance collection at twice the efficiency. In the latter stage of the recovery operation, as shown in FIG. 1 (C), the compressor A of series A and the compressor B of series B are connected in series. In such a connection state, the compression ratio per compressor becomes small, and the inside of the refrigeration facility 1 can be made high vacuum (for example, -730 mmHg).

【0007】この図1(C)のような直列運転状態にお
ける圧力分布を概要的に考察すると次のごとくである。
2台の圧縮機・甲,および圧縮機・乙が同一仕様であっ
て、その吐出圧がそれぞれ10kg/cm2Gであるとした
場合、下流側の圧縮機・乙の吐出側圧力は20kg/cm2
Gとはならない。その理由は、圧縮された冷媒ガスが冷
却器・乙5Bで冷却されてどんどん液化してゆくと、そ
れ以上には圧縮出来ない。すなわち、レシーバタンク・
乙3Bが満杯にならず、冷媒中に不純物(空気など)が
混入していないことを前提として、冷却器・乙5B内の
冷媒ガス温度における冷媒の蒸気圧に相当する圧力+α
よりも高い圧力は発生しない。なお、上記のαは相変化
のヒステリシスにおける液化圧力と静的な気液バランス
圧力との差である。一方、上流側の圧縮機・甲4Aの吸
入側圧力は、−760mmHgよりも高真空になり得ない
ことは自明であり、−759mmHg付近の高真空に達し
得ないことも経済的事実として広く知られている。本発
明者らの研究によると、高圧冷媒を2台の圧縮機の直列
運転で回収操作した場合、1台運転もしくは並列運転で
得られる真空度(例えば−500mmHg)よりも著しい
高真空(例えば−700mmHg)が得られることが実験
的に確認された。又、これは回収装置2台で圧縮するこ
とにより1台当たりの圧縮比が低減され、A系列圧縮機
の吸込圧が700mmHg位になると、A系列の圧縮機の
吐出圧は0kg/cm2以下となり、圧縮比の小さい運転と
なり冷凍設備内の冷媒ガスを−700mmHg以下にまる
まで回収できる。
The pressure distribution in the series operation state as shown in FIG. 1C is schematically considered as follows.
Assuming that the two compressors A and B have the same specifications and the discharge pressures thereof are 10 kg / cm 2 G, respectively, the discharge pressure of the downstream compressor B is 20 kg / cm 2 G / cm 2 G. cm 2
It does not become G. The reason is that if the compressed refrigerant gas is cooled by the cooler / part 5B and liquefies more and more, it cannot be further compressed. In other words, the receiver tank
The pressure + α corresponding to the vapor pressure of the refrigerant at the temperature of the refrigerant gas in the cooler / Otsu 5B, assuming that Otsu 3B is not full and no impurities (such as air) are mixed in the refrigerant.
No higher pressures are generated. Here, α is the difference between the liquefaction pressure and the static gas-liquid balance pressure in the hysteresis of the phase change. On the other hand, it is obvious that the suction side pressure of the upstream compressor / Exercise 4A cannot reach a high vacuum higher than -760 mmHg, and it is widely known as an economic fact that the high vacuum near -759 mmHg cannot be reached. Have been. According to the study of the present inventors, when a high-pressure refrigerant is recovered in a series operation of two compressors, a higher vacuum (for example, −500 mmHg) than the degree of vacuum (for example, −500 mmHg) obtained in a single operation or a parallel operation is obtained. It was experimentally confirmed that 700 mmHg) was obtained. In addition, the compression ratio per unit is reduced by compressing with two recovery devices. When the suction pressure of the A-series compressor is about 700 mmHg, the discharge pressure of the A-series compressor is 0 kg / cm 2 or less. The operation becomes a small compression ratio, and the refrigerant gas in the refrigeration facility can be recovered until it reaches -700 mmHg or less.

【0008】以上に説明した原理に基づいて請求項1の
発明方法は、冷凍設備に設けられている密閉循環系内の
冷媒を「気体用ポンプおよび冷却器から成る冷媒回収機
構」によってレシーバタンクに回収する方法において、
少なくとも2組の冷媒回収機構を用いるとともに冷媒回
収作業工程を区分し、冷媒回収作業の前段の工程では、
前記2組の冷媒回収機構を並列に接続して運転すること
により高能率の回収作業を遂行し、冷媒回収作業の後段
の工程では、前記2組の冷媒回収機構を直列に接続して
運転することにより、冷凍設備の密閉循環系内に残留す
る冷媒ガスの圧力を、「1組の冷媒回収機構で到達し得
る最高の真空度」よりも高度の真空ならしめることを特
徴とする。以上に説明した請求項1の発明方法による
と、前段の回収作業工程では少なくとも2組の冷媒回収
機構を並列に接続して運転するので、単位時間当たり冷
媒回収量は1組の冷媒回収機構を用いる場合に比して少
なくとも2倍になる。詳しくは、N組の冷媒回収機構の
並列運転によってN倍の冷媒回収量が得られ、高能率で
回収することができる。そして後段の回収作業工程で
は、少なくとも2組の冷媒回収機構を直列運転すること
によって、1組の冷媒回収機構では到達できない高真空
が得られ、冷凍設備内に残留する冷媒ガスを高真空にな
るまで回収して、高い回収率が得られる。高回収率によ
り、冷媒損失に伴う経済的負担を軽減し得ることは勿論
であるが、冷媒が大気中に放散されることを極度に軽減
して、いわゆるフロン公害を防止するという社会的要請
に応えることができる。
According to the method of the first aspect of the present invention, the refrigerant in the closed circulation system provided in the refrigeration facility is transferred to the receiver tank by a "refrigerant recovery mechanism comprising a gas pump and a cooler" based on the principle described above. In the method of collecting,
At least two sets of refrigerant recovery mechanisms are used and the refrigerant recovery operation process is divided, and in a process at a preceding stage of the refrigerant recovery operation,
The two sets of refrigerant recovery mechanisms are connected and operated in parallel to perform a high-efficiency recovery operation. In a later step of the refrigerant recovery work, the two sets of refrigerant recovery mechanisms are connected in series and operated. Thereby, the pressure of the refrigerant gas remaining in the closed circulation system of the refrigeration facility is set to a higher vacuum level than "the highest degree of vacuum that can be reached by one set of refrigerant recovery mechanisms". According to the method of the first aspect of the present invention described above, at least two refrigerant recovery mechanisms are connected in parallel and operated in the preceding recovery operation step, so that the amount of refrigerant recovered per unit time can be reduced by one set of refrigerant recovery mechanisms. It is at least twice as large as when used. More specifically, N-fold refrigerant recovery is obtained by parallel operation of the N sets of refrigerant recovery mechanisms, and the refrigerant can be recovered with high efficiency. In the subsequent recovery operation step, a high vacuum that cannot be reached by one set of refrigerant recovery mechanisms is obtained by operating at least two sets of refrigerant recovery mechanisms in series, and the refrigerant gas remaining in the refrigeration facility is made high vacuum. Up to a high recovery rate. The high recovery rate, of course, can reduce the economic burden associated with the loss of refrigerant, but in response to social demands to extremely reduce the release of refrigerant into the atmosphere and prevent so-called chlorofluorocarbon pollution. I can respond.

【0009】請求項2の発明方法の構成は、前記請求項
1の発明方法の構成要件に加えて、冷凍設備内に封入さ
れている冷媒の圧力を監視しつつ前段工程の並列運転を
行ない、上記冷凍設備内の冷媒ガス圧力がほぼ大気圧ま
で低下したとき、前段の並列運転を終了して次の工程に
移行することを特徴とする。以上に説明した請求項2の
発明方法によると、冷凍設備内の冷媒圧力を直接的に、
もしくは間接的に監視するという(例えば圧力センサを
設けるという)簡単な方法で、前段の並列運転を終了す
る時機を適正に判定することができる。この前段の並列
運転は高能率で回収を遂行する工程であるから、この並
列運転の終了時機が早すぎると冷媒回収能率を低下させ
る。また、並列運転では冷凍設備内の減圧(真空引き)
に限界が有るので、前段の並列運転の終了時機が遅きに
失すると遅れ期間中は全く無駄な運転をして時間とエネ
ルギーとを浪費していることになる。このため、本請求
項2の発明によって並列運転(前段の工程)の終了時機
を適正に判定することは、前記請求項1の発明をより高
能率に、より経済的に実施して実効有らしめる。
According to a second aspect of the present invention, in addition to the constituent elements of the first aspect of the present invention, a parallel operation of the first step is performed while monitoring the pressure of the refrigerant sealed in the refrigeration facility. When the refrigerant gas pressure in the refrigeration facility falls to substantially the atmospheric pressure, the parallel operation in the preceding stage is terminated and the process proceeds to the next step. According to the method of the second aspect described above, the refrigerant pressure in the refrigeration facility is directly
Alternatively, a simple method of indirectly monitoring (for example, providing a pressure sensor) makes it possible to appropriately determine the timing for ending the preceding parallel operation. Since the preceding parallel operation is a step of performing the recovery with high efficiency, if the end time of the parallel operation is too early, the refrigerant recovery efficiency is reduced. In parallel operation, the pressure inside the refrigeration equipment is reduced (evacuated).
Therefore, if the end time of the preceding parallel operation is lost lately, the operation is completely useless during the delay period, wasting time and energy. For this reason, it is effective to implement the invention of claim 1 with higher efficiency and more economically by judging the termination timing of the parallel operation (the former step) properly by the invention of claim 2. Close.

【0010】請求項3の発明方法の構成は前記請求項
1,2の発明方法の構成要件に加えて、前記前段の並列
運転工程と後段の直列運転工程との間に中段の工程とし
て冷媒液の移送工程を設け、後段の直列運転において上
流側に接続される冷媒回収機構によって冷媒液を貯溜さ
れたレシーバタンク内の冷媒を、後段の直列運転におい
て下流側に接続される冷媒回収機構によって冷媒液を貯
溜されたレシーバタンク内に移送することを特徴とす
る。以上に説明した請求項3の発明方法によると、前段
の並列運転工程と後段の直列運転工程との間に設けられ
た中段の移送工程によって、後段の直列運転における圧
力分布の中間点に相当する「上流側圧縮機の吐出側と下
流側圧縮機の吸入側との接続部」に位置するレシーバタ
ンク内の冷媒液が除去されるので、後段の直列運転工程
の初期に圧力分布を乱されなくなる。すなわち、後段の
直列運転において上流側として用いられる冷媒回収機構
に付属しているレシーバタンクは、前段の並列運転時に
は冷媒回収機構の下流側に位置して冷媒液を貯溜される
が、このレシーバタンクは、直列運転時には上流側冷媒
回収機構と下流側冷媒回収機構との接続部に位置するよ
うになる(つまり、下流側冷媒回収機構を構成している
圧縮機の吸入側に連通されるようになる)。このため、
該レシーバタンク内の圧力は冷媒の蒸気圧よりも低圧に
なり、冷媒液が沸騰して下流側冷媒回収機構に吸入され
る。このような不合理な現象(せっかく液化していた冷
媒液を沸騰させて下流側の冷媒回収機構で再度液化し直
す)は、本請求項3の適用によって防止され、前段の工
程から後段の工程へ円滑に移行できるようになる。
[0010] The structure of the method of the invention according to claim 3 is, in addition to the constituent elements of the method of invention according to claims 1 and 2, a refrigerant liquid as a middle step between the preceding parallel operation step and the subsequent series operation step. The refrigerant in the receiver tank, in which the refrigerant liquid is stored by the refrigerant recovery mechanism connected to the upstream side in the subsequent series operation, is provided by the refrigerant recovery mechanism connected to the downstream side in the subsequent series operation. The liquid is transferred into the stored receiver tank. According to the method of the third aspect described above, the middle transfer step provided between the preceding parallel operation step and the subsequent series operation step corresponds to the middle point of the pressure distribution in the subsequent series operation. Since the refrigerant liquid in the receiver tank located at the “connection point between the discharge side of the upstream compressor and the suction side of the downstream compressor” is removed, the pressure distribution is not disturbed at the beginning of the subsequent series operation process. . That is, the receiver tank attached to the refrigerant recovery mechanism used as the upstream side in the subsequent series operation is located downstream of the refrigerant recovery mechanism in the previous parallel operation and stores the refrigerant liquid. Is located at the connection between the upstream-side refrigerant recovery mechanism and the downstream-side refrigerant recovery mechanism during the series operation (that is, is connected to the suction side of the compressor that constitutes the downstream-side refrigerant recovery mechanism). Become). For this reason,
The pressure in the receiver tank becomes lower than the vapor pressure of the refrigerant, and the refrigerant liquid boils and is sucked into the downstream refrigerant recovery mechanism. Such an unreasonable phenomenon (boiling the liquefied refrigerant liquid and re-liquefying it by the refrigerant recovery mechanism on the downstream side) is prevented by the application of the present invention, and the steps from the preceding step to the subsequent steps are prevented. Will be able to move smoothly.

【0011】請求項4の発明方法の構成は、前記請求項
3の発明方法の構成要件に加えて、上流側レシーバタン
ク内冷媒液の、下流側レシーバタンク内への移送は、下
流側冷媒回収機構によって下流側レシーバタンク内を減
圧して、双方のレシーバタンク内圧力の差圧によって流
動せしめることを特徴とする。以上に説明した請求項4
の発明方法によると、冷媒回収機構に本来的に設けられ
ているガスポンプ以外に液体ポンプを用いる必要無く、
下流側冷媒回収機構に設けられている圧縮機を利用して
下流側レシーバタンク内を減圧することによって双方の
レシーバタンク間に圧力差を発生させて冷媒液を流動せ
しめて移送工程を遂行することができる。
According to a fourth aspect of the present invention, in addition to the constituent features of the third aspect of the present invention, the transfer of the refrigerant liquid in the upstream receiver tank into the downstream receiver tank is performed by collecting the downstream refrigerant. The mechanism is characterized in that the pressure in the downstream receiver tank is reduced by a mechanism, and the downstream receiver tank is caused to flow by the differential pressure between the pressures in both receiver tanks. Claim 4 described above.
According to the method of the invention, there is no need to use a liquid pump other than the gas pump originally provided in the refrigerant recovery mechanism,
Using a compressor provided in the downstream-side refrigerant recovery mechanism to reduce the pressure in the downstream-side receiver tank, thereby generating a pressure difference between the two receiver tanks, causing the refrigerant liquid to flow, and performing the transfer process. Can be.

【0012】請求項5の発明方法の構成は、前記請求項
3の発明方法の構成要件に加えて、上流側レシーバタン
ク内冷媒液の、下流側レシーバタンク内への移送は、上
流側冷媒回収機構によって上流側レシーバタンク内を加
圧して、双方のレシーバタンク内圧力の差圧によって流
動せしめることを特徴とする。以上に説明した請求項5
の発明方法によると、冷媒回収機構に本来的に設けられ
ているガスポンプ以外に液体ポンプを用いる必要無く、
上流側冷媒回収機構に設けられている圧縮機を利用して
上流側レシーバタンク内を加圧することによって双方の
レシーバタンク間に圧力差を発生させて冷媒液を流動せ
しめて移送工程を遂行することができる。
According to a fifth aspect of the present invention, in addition to the constituent elements of the third aspect of the invention, the transfer of the refrigerant liquid in the upstream receiver tank into the downstream receiver tank is performed by collecting the upstream refrigerant. The mechanism is characterized in that the inside of the upstream receiver tank is pressurized by a mechanism and caused to flow by the pressure difference between the pressures in both the receiver tanks. Claim 5 described above.
According to the invention method, there is no need to use a liquid pump other than the gas pump originally provided in the refrigerant recovery mechanism,
Using a compressor provided in the upstream-side refrigerant recovery mechanism to pressurize the inside of the upstream-side receiver tank, thereby generating a pressure difference between the two receiver tanks, causing the refrigerant liquid to flow, and performing the transfer process. Can be.

【0013】請求項6の発明方法の構成は、前記請求項
3の発明方法の構成要件に加えて、上流側レシーバタン
ク内冷媒液の、下流側レシーバタンク内への移送は、上
流側レシーバタンク内の冷媒液を蒸発させ、下流側冷媒
回収機構で加圧・冷却することにより液化せしめて下流
側レシーバタンク内へ注入して行なうことを特徴とす
る。以上に説明した請求項6の発明方法によると、液ポ
ンプを使用することなく、ガスポンプによって液状の冷
媒を移送することができる。本請求項6の発明方法にお
いては、前記請求項4,5の発明方法が冷媒液を液状の
ままで移送するのに比して、液→ガス→液の相変化を経
て移送するので所要時間が若干多いが、移送を終了した
状態における上流側レシーバタンク内の冷媒液を完全
に、液滴も残さないように除去することができる。
According to a sixth aspect of the present invention, in addition to the constituent features of the third aspect of the present invention, the transfer of the refrigerant liquid in the upstream receiver tank into the downstream receiver tank is performed in the upstream receiver tank. This is characterized in that the refrigerant liquid inside is evaporated, liquefied by being pressurized and cooled by a downstream refrigerant recovery mechanism, and then injected into a downstream receiver tank. According to the above-described method of the present invention, the liquid refrigerant can be transferred by the gas pump without using the liquid pump. In the method of the present invention, the refrigerant liquid is transferred through a phase change of liquid → gas → liquid compared to the method of transferring the liquid refrigerant in a liquid state, so that the required time is reduced. However, the refrigerant liquid in the upstream-side receiver tank after the transfer has been completed can be completely removed without leaving any liquid droplets.

【0014】請求項7の発明方法の構成は前記請求項1
〜6の発明方法の構成要件に加えて、前記後段の工程で
ある直列運転を終了した状態で、または、前段の並列運
転もしくは後段の直列運転の途中で、冷媒回収機構を構
成している管路内の圧力もしくは冷媒回収機構を他の機
器類に接続している管路内の圧力が異常に上昇した場
合、上記管路内の気体を、冷媒吸着剤に通過せしめて大
気中へ放出することを特徴とする。以上に説明した請求
項7の発明方法によると、本発明に係る冷媒回収方法の
実施中に管路内圧力が異常に上昇した場合、冷媒ガスを
大気中に放散せしめる虞れ無く異常圧の原因を為してい
る管路内気体の「ガス抜き」をすることができる。本発
明方法の基本的な構成として、複数台の圧縮機を直列運
転して、吸入側の高真空と吐出側の高圧力とを得てい
る。上述のようにして、従来技術では得られなかった高
真空を達成したため、大気中の非凝縮性ガスが漏入する
危険性は増したと考えるべきであろう。こうした非凝縮
性ガスは加圧,冷却しても液化しないので、圧縮機の吐
出側に異常高圧を生じる虞れが有るので、本請求項7の
発明は前記の非凝縮性ガスを大気中に放出するのである
が、これに冷媒ガスが随伴するとフロン公害を生じるの
で、冷媒吸着剤を通過せしめて非凝縮性ガスのみを放出
し、冷媒ガスを捕捉することによりフロン公害を生じる
虞れ無く、異常圧発生に伴うトラブルを防止することが
できる。
The structure of the method according to the present invention is the same as that of the first embodiment.
In addition to the constituent elements of the invention method of (1) to (6), the pipe constituting the refrigerant recovery mechanism in a state where the series operation as the above-mentioned step is completed, or in the middle of the parallel operation of the preceding step or the series operation of the subsequent step. If the pressure in the channel or the pressure in the channel connecting the refrigerant recovery mechanism to other equipment rises abnormally, the gas in the channel is passed to the refrigerant adsorbent and released to the atmosphere. It is characterized by the following. According to the above-described method of claim 7, when the pressure in the pipeline rises abnormally during the execution of the refrigerant recovery method according to the present invention, the cause of the abnormal pressure can be reduced without fear of dispersing the refrigerant gas into the atmosphere. "Gas release" of the gas in the pipeline which is performing the above. As a basic configuration of the method of the present invention, a plurality of compressors are operated in series to obtain a high vacuum on the suction side and a high pressure on the discharge side. As described above, it should be considered that the danger of leakage of non-condensable gas in the atmosphere has been increased by achieving a high vacuum which cannot be obtained by the prior art. Since such non-condensable gas does not liquefy even if pressurized and cooled, there is a possibility that an abnormally high pressure may be generated on the discharge side of the compressor. However, if refrigerant gas accompanies this, it causes chlorofluorocarbon pollution, so it passes through the refrigerant adsorbent and releases only non-condensable gas, and by trapping the refrigerant gas, there is no risk of chlorofluorocarbon pollution, It is possible to prevent troubles caused by abnormal pressure generation.

【0015】請求項8の発明装置の構成は、冷凍設備内
の冷媒ガスを吸入して圧縮するA系列の圧縮機、およ
び、該A系列の圧縮機によって圧縮された冷媒ガスを冷
却して液化させるA系列の冷却器、並びに、該A系列の
冷却器で液化された冷媒液を貯溜するA系列のレシーバ
タンクを具備するとともに、冷凍設備内の冷媒ガスを吸
入して圧縮するB系列の圧縮機、および、該B系列の圧
縮機によって圧縮された冷媒ガスを冷却して液化させる
B系列の冷却器、並びに、該B系列の冷却器で液化され
た冷媒液を貯溜するB系列のレシーバタンクを具備して
おり、かつ、前記A系列の圧縮機の吐出側管路をB系列
の圧縮機の吸入側管路に接続する、弁手段を有する管路
が設けられていることを特徴とする。以上に説明した請
求項8の発明装置によると、A,Bの2系列の圧縮機と
冷却器とレシーバタンクとを具備しているので、これら
2系列の冷媒回収機構構成機器を冷凍設備に対して並列
に接続して運転することにより、1系列よりなる冷媒回
収機構に比して2倍の高能率で冷媒回収作業を進めるこ
とができる。さらに本請求項8の発明装置はA系列の圧
縮機の吐出側をB系列の圧縮機の吸入側に接続する管
路、および該管路に介挿された弁手段を有しているの
で、必要に応じて2基の圧縮機を直列に接続して運転す
ることができ、この直列運転によって高い吐出圧を維持
しつつ、低い吸入圧を得ることができる。すなわち高真
空度で真空引きすることができるので、冷凍装置内に残
留する冷媒ガスを著しく稀薄にして、冷媒ガスの大気中
への放散を極度に軽減することができる。以上のように
して高能率回収と完全回収とを、実用性の有る経済的装
置として両立せしめることができる。
An eighth aspect of the present invention provides an A-series compressor for sucking and compressing a refrigerant gas in a refrigeration facility, and cooling and liquefying the refrigerant gas compressed by the A-series compressor. An A-series cooler, and an A-series receiver tank for storing the refrigerant liquid liquefied by the A-series cooler, and a B-series compression for sucking and compressing the refrigerant gas in the refrigeration facility. And a B-series cooler for cooling and liquefying the refrigerant gas compressed by the B-series compressor, and a B-series receiver tank for storing the refrigerant liquid liquefied by the B-series cooler And a line having valve means for connecting the discharge-side line of the A-series compressor to the suction-side line of the B-series compressor is provided. . According to the apparatus of the eighth aspect described above, since the two series of compressors A and B, the cooler, and the receiver tank are provided, these two series of refrigerant recovery mechanism components are provided to the refrigeration facility. And operating in parallel, the refrigerant recovery operation can be advanced twice as efficiently as the refrigerant recovery mechanism composed of one line. Further, since the device of the present invention has a pipe connecting the discharge side of the A-series compressor to the suction side of the B-series compressor, and valve means interposed in the pipe, If necessary, two compressors can be connected in series and operated, and a low suction pressure can be obtained while maintaining a high discharge pressure by this series operation. That is, since the evacuation can be performed at a high degree of vacuum, the refrigerant gas remaining in the refrigerating apparatus can be extremely diluted, and the diffusion of the refrigerant gas into the atmosphere can be extremely reduced. As described above, high-efficiency recovery and complete recovery can be compatible as a practical and economical device.

【0016】請求項9の発明装置の構成は、前記請求項
8の発明装置の構成要件に加えて、前記A系列のレシー
バタンク内の冷媒をB系列のレシーバタンクに連通せし
める、弁手段を有する管路が設けられており、かつ、前
記A系列の圧縮機によって発生する圧力差、もしくはB
系列の圧縮機によって発生する圧力差を導いて、前記A
系列のレシーバタンクとB系列のレシーバタンクとの間
に圧力差を生ぜしめる、弁手段を有する管路が設けられ
ていることを特徴とする。以上に説明した請求項9の発
明装置によると、A系列,B系列双方のレシーバタンク
を連通する管路が設けられるとともに、圧縮機によって
生じる圧力差を上記双方のレシーバタンクに導く管路が
設けられているので、前記双方のレシーバタンクの何れ
か一方に貯えられている冷媒液を他方に移送することが
でき、これによって並列運転から直列運転への切換えを
円滑に、かつ合理的に行なうことができる。しかも、前
記の管路には弁手段が設けられているので、この弁手段
を開閉制御することにより、前記の冷媒の移送を、所望
の時まで抑制し、かつ所望の時に速やかに行なわせるこ
とができる。さらに、圧縮機によって発生した差圧を前
記双方のレシーバタンクに導いて冷媒液の移送を行なう
ので、液ポンプを設けることなく冷媒液を移送すること
ができる。
According to a ninth aspect of the present invention, in addition to the constituent features of the eighth aspect of the present invention, there is provided a valve means for connecting the refrigerant in the A-series receiver tank to the B-series receiver tank. A pipeline, and a pressure difference generated by the compressor of the A series, or B
Deriving the pressure differential generated by the series compressor,
A pipeline having valve means for generating a pressure difference between the series-series receiver tank and the series-B receiver tank is provided. According to the apparatus of the ninth aspect described above, a pipe is provided for communicating both the A-series and B-series receiver tanks, and a pipe is provided for guiding the pressure difference generated by the compressor to the two receiver tanks. As a result, the refrigerant liquid stored in one of the two receiver tanks can be transferred to the other, thereby smoothly and rationally switching from parallel operation to series operation. Can be. In addition, since the pipe is provided with valve means, by controlling the opening and closing of the valve means, the transfer of the refrigerant can be suppressed until a desired time and can be promptly performed at a desired time. Can be. Further, since the differential pressure generated by the compressor is guided to the two receiver tanks to transfer the refrigerant liquid, the refrigerant liquid can be transferred without providing a liquid pump.

【0017】請求項10の発明装置の構成は前記請求項
8,9の発明の構成要件に加えて、前記冷凍設備に封入
されている冷媒の圧力を検出する圧力センサが設けられ
ているとともに、前記A系列の圧縮機の吐出側管路をB
系列の圧縮機の吸入側管路に接続する管路に設けられて
いる弁手段は電動弁もしくは電磁弁であり、かつ、前記
B系列の圧縮機が冷凍設備内の冷媒ガスを吸入する管路
の途中に、上記と異なる電動弁もしくは電磁弁が設けら
れており、さらに、前記圧力センサの出力信号を入力さ
れて上記双方の電動弁もしくは電磁弁を開閉制御する自
動制御装置が設けられていて、圧力センサの検出値が、
大気圧近傍の所定値以上であるときはA系列の圧縮機の
吐出側とB系列の圧縮機の吸入側との間に配設されてい
る電動弁もしくは電磁弁が閉じられて、B系列の圧縮機
の吸入側と冷凍設備との間に配設されている電動弁もし
くは電磁弁が開かれ、圧力センサの検出値が前記所定値
よりも低くなったとき、B系列の圧縮機の吸入側と冷凍
設備との間に配設されている電動弁もしくは電磁弁が閉
じられるとともに、A系列の圧縮機の吐出側管路とB系
列の圧縮機の吸入側管路との間に配設されている電動弁
もしくは電磁弁が開かれるように自動制御されることを
特徴とする。以上に説明した請求項10の発明装置によ
ると、冷凍設備に封入されている冷媒のガス圧力が大気
圧近傍の所定値に低下するまでの間は、A,Bの2系列
の圧縮機が自動的に並列に接続されて高能率の回収運転
が行なわれ、冷凍設備内の冷媒ガス圧力が大気圧近傍の
所定値以下になると自動的に直列運転に切り換えられて
該冷凍設備内が高真空となるように真空引きされる。上
述のようにして作業員の労力を要せず、作業員の人為的
ミスを生じる虞れ無く、高能率の回収運転と、高真空の
回収という本発明に係る回収装置の効果が充分に発揮さ
れる。
According to a tenth aspect of the present invention, in addition to the constituent features of the eighth and ninth aspects of the present invention, a pressure sensor for detecting a pressure of a refrigerant sealed in the refrigeration equipment is provided. The discharge side pipeline of the A series compressor is B
The valve means provided in the pipeline connected to the suction side pipeline of the series compressor is an electric valve or a solenoid valve, and the pipeline in which the B series compressor sucks the refrigerant gas in the refrigeration facility. In the middle, an electric valve or a solenoid valve different from the above is provided, and further, an automatic control device that receives an output signal of the pressure sensor and controls the opening and closing of the two electric valves or the solenoid valves is provided. , The detection value of the pressure sensor is
When the pressure is equal to or higher than a predetermined value near the atmospheric pressure, the motor-operated valve or the solenoid valve disposed between the discharge side of the A-series compressor and the suction side of the B-series compressor is closed, and the B-series compressor is closed. When the electric valve or the solenoid valve disposed between the suction side of the compressor and the refrigeration equipment is opened and the detection value of the pressure sensor becomes lower than the predetermined value, the suction side of the B-series compressor The motor-operated valve or the solenoid valve disposed between the compressor and the refrigeration equipment is closed, and disposed between the discharge-side pipeline of the A-series compressor and the suction-side pipeline of the B-series compressor. It is automatically controlled so that a motorized valve or a solenoid valve is opened. According to the apparatus of the tenth aspect described above, until the gas pressure of the refrigerant sealed in the refrigeration equipment drops to a predetermined value near the atmospheric pressure, the two series compressors A and B are automatically operated. When the refrigerant gas pressure in the refrigeration facility becomes equal to or less than a predetermined value near the atmospheric pressure, the operation is automatically switched to the series operation, and the inside of the refrigeration facility is switched to a high vacuum. It is evacuated to become. As described above, the effects of the recovery device according to the present invention, that is, high-efficiency recovery operation and high-vacuum recovery, do not require the labor of the worker and do not cause a human error to the worker. Is done.

【0018】請求項11の発明装置の構成は前記請求項
8〜10の発明の構成要件に加えて、前記A系列および
/またはB系列の機器類を接続する配管内の圧力を検出
する圧力センサが設けられるとともに、上記圧力センサ
の検出圧力が予め定められた値以上になったときに開弁
する電動弁もしくは電磁弁が設けられており、かつ、前
記の機器類を接続する配管が、上記圧力センサの検出圧
力に従って開弁される電動弁もしくは電磁弁を介して大
気に開放されていることを特徴とする。以上に説明した
請求項11の発明装置によると、本発明装置を構成して
いる配管内が、本発明の適用によって高真空になったと
きに空気などの非凝縮性ガスが漏入したことに起因する
異常圧を発生したとき、冷媒ガスを大気中に放散せしめ
ることなく、漏入したガスを配管内から排出することが
でき、作業員による監視の労力を要せず、フロン公害を
招く虞れ無く、異常圧によるトラブルを防止することが
できるという実用的効果を奏する。
According to a eleventh aspect of the present invention, in addition to the constituent features of the eighth to tenth aspects of the present invention, a pressure sensor for detecting a pressure in a pipe connecting the A-series and / or B-series equipments. Is provided, and a motor-operated valve or a solenoid valve that opens when the detection pressure of the pressure sensor is equal to or higher than a predetermined value is provided, and the pipe that connects the above-described devices is It is characterized by being open to the atmosphere via a motor-operated valve or an electromagnetic valve which is opened according to the pressure detected by the pressure sensor. According to the above-described device of the present invention, the non-condensable gas such as air leaks into the piping constituting the device of the present invention when a high vacuum is applied by applying the present invention. When the resulting abnormal pressure occurs, the leaked gas can be discharged from the piping without dissipating the refrigerant gas into the atmosphere, and there is no need for labor for monitoring by the operator, which may cause chlorofluorocarbon pollution. Therefore, a practical effect that trouble due to abnormal pressure can be prevented can be achieved.

【0019】[0019]

【発明の実施の形態】図1は本発明に係る冷媒回収装置
の基本的な構成とその運転方法および作用とを説明する
ために示した模式的な系統図で、(A)は前段の工程で
ある並列運転状態を、(B)は中段の工程である冷媒液
移送状態を、(C)は後段の工程である直列運転状態を
描いてある。図1(A)に表されているように、圧縮機
・甲4Aと、冷却器・甲5Aと、レシーバタンク・甲3
Aとから成る冷媒回収機構(説明の便宜上、A系列と呼
ぶ)、および圧縮機・乙4Bと、冷却器・乙5Bと、レ
シーバタンク・乙3Bと、から成る冷媒回収機構(B系
列と呼ぶ)が並列に接続されている。このようにして2
系列の冷媒回収機構を並列運転すると、1系列の場合に
比して2倍の能率で回収作業が進行する。この並列運転
は回収能率という観点からは非常に優れているのである
が、高圧冷媒を回収するために吐出圧が10kg/cm2
レベルの圧縮機を用いた場合、冷凍設備1内を−500
mmHg以上の高真空まで真空引きすることは困難であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic system diagram for explaining a basic configuration of a refrigerant recovery apparatus according to the present invention, an operation method thereof, and an operation thereof. (B) depicts a refrigerant liquid transfer state in a middle stage, and (C) depicts a series operation state in a later stage. As shown in FIG. 1 (A), a compressor / A 4A, a cooler / A 5A, a receiver tank / A 3
A, and a refrigerant recovery mechanism (referred to as a B series) composed of a compressor / part 4B, a cooler / part 5B, and a receiver tank / part 3B, for convenience of explanation. ) Are connected in parallel. In this way 2
When the refrigerant recovery mechanisms of the series are operated in parallel, the recovery operation proceeds twice as efficiently as in the case of the single series. This parallel operation is very excellent from the viewpoint of recovery efficiency, but the discharge pressure is 10 kg / cm 2 G in order to recover the high-pressure refrigerant.
When using a compressor of a level, the inside of the refrigeration facility 1 is -500.
It is difficult to evacuate to a high vacuum of at least mmHg.

【0020】そこで、前掲の図1(A)に示した構成機
器をそのまま用いて、同図(C)のように接続を変えて
A系列とB系列とを直列に接続して運転する。この例で
は、直列に接続されている2個の圧縮機のうちで、圧縮
機・甲4Aが上流側、圧縮機・乙4Bが下流側である。
以下、この接続状態で直列運転する場合について説明す
るが、本発明におけるA系列,B系列の呼称は便宜上の
ものであって、いずれをA系列,いずれをB系列と呼ん
でも良い。すなわちA系列とB系列とは置換可能であっ
て、例えばB系列を上流側として直列運転しても本発明
の技術的範囲に属する。図1(C)のように、吸入圧力
−500mmHg、吐出圧力10kg/cm2Gの圧縮機2台
を直列運転して、下流側の圧縮機・乙4Bの吐出側圧力
が10kg/cm2Gとなるように制御すると、上流側の圧
縮機・甲4Aの吸入側圧力は約−700mmHg以下とな
る。これにより、(C)図の直列運転で冷凍設備1内を
−700mmHg以下の高真空まで排気することができ
る。本実施形態において冷凍設備1内を−500mmHg
まで排気したときの冷媒回収率は約95%であり、−7
00mmHgまで真空引きしたときの冷媒回収率は約99
%となった。
Therefore, the system shown in FIG. 1A is used as it is, and the connection is changed and the system A and the system B are connected in series as shown in FIG. In this example, of the two compressors connected in series, the compressor / A 4A is on the upstream side, and the compressor / B 4B is on the downstream side.
Hereinafter, the case where the series operation is performed in this connection state will be described. However, the names of the A series and the B series in the present invention are for convenience, and any of them may be called the A series and any of the B series. That is, the A-series and the B-series can be replaced with each other. For example, even if the B-series is operated in series with the upstream side, it belongs to the technical scope of the present invention. As shown in FIG. 1 (C), two compressors having a suction pressure of -500 mmHg and a discharge pressure of 10 kg / cm 2 G are operated in series, and the discharge pressure of the downstream compressor / Otsu 4B is 10 kg / cm 2 G. , The suction side pressure of the upstream compressor 4A becomes about -700 mmHg or less. As a result, the inside of the refrigeration facility 1 can be evacuated to a high vacuum of -700 mmHg or less in the series operation shown in FIG. In this embodiment, the inside of the refrigeration facility 1 is -500 mmHg.
Refrigerant recovery rate when exhausted to about 95%,
The refrigerant recovery rate when vacuuming to 00 mmHg is about 99
%.

【0021】説明の便宜上、レシーバタンク・甲3A入
口側圧力の圧力計測点をPmと名付ける。この圧力計測
点Pmの圧力は必ずしも実測しなくても、思考実験的に
推測しても良い。図1(A)における点Pmの圧力は、
圧縮機・甲4Aの吐出側管路上に位置し、レシーバタン
ク・甲3A内に貯溜されている冷媒液と冷媒ガスとの平
衡圧力に相当し、概要的には10kg/cm2Gである。そ
して、図1(C)のように接続を変更すると前記の点P
mは、直列に接続された2台の圧縮機の接続管路上に位
置し、圧縮機・甲4Aの吐出側かつ圧縮機・乙4Bの吸
入側に当たる。従って、この点Pmの圧力は、冷媒の気
液平衡圧力よりも著しく低い圧力となる。このため、並
列運転(図1(A))から直列運転(図1(C))に切
り換えた途端、レシーバタンク・甲3A内に貯溜されて
いた冷媒液が沸騰し、円滑に直列運転を開始することが
できない。
For convenience of explanation, the pressure measuring point of the pressure on the inlet side of the receiver tank 3A will be referred to as Pm. The pressure at the pressure measurement point Pm may not necessarily be actually measured, but may be estimated by a thought experiment. The pressure at point Pm in FIG.
It corresponds to the equilibrium pressure between the refrigerant gas and the refrigerant gas stored in the receiver tank 3A, which is located on the discharge line of the compressor 4A, and is generally 10 kg / cm 2 G. When the connection is changed as shown in FIG.
m is located on the connecting line of the two compressors connected in series, and corresponds to the discharge side of the compressor 4A and the suction side of the compressor 4B. Therefore, the pressure at this point Pm is significantly lower than the gas-liquid equilibrium pressure of the refrigerant. Therefore, as soon as the operation is switched from the parallel operation (FIG. 1 (A)) to the serial operation (FIG. 1 (C)), the refrigerant liquid stored in the receiver tank / A 3A boils, and the series operation is smoothly performed. Can't start.

【0022】上述の不具合を回避するため、(A)図に
示した前段工程の並列運転と(C)図に示した後段工程
の直列運転との間に、(B)図に示すように中段工程と
して冷媒液の移送を行なう。本図1(B)の例ではA系
列(すなわち、後段工程の直列運転において上流側とな
る側)の圧縮機・甲4Aによって2個のレシーバタンク
・甲,同乙に差圧を与えて冷媒液の移送を行なっている
が、これと異なる実施形態として(図示を省略する
が)、B系列の圧縮機・乙4Bによって2個のレシーバ
タンクに差圧を与えて冷媒液を移送しても良い。さらに
上記と異なる実施形態として、図1(C)に示した点P
mの上流側の点Pnで管路を閉塞するとともにA系列の
圧縮機・甲4Aを停止し、B系列の圧縮機・乙4Bを運
転すると、レシーバタンク・甲3A内の冷媒液を蒸発さ
せて冷媒ガスとして移送し、B系列の圧縮機・乙4Bの
吐出冷媒ガスを冷却器・乙5Bで冷却して液化させてレ
シーバタンク・乙3Bに注入することもできる。この方
法は、冷媒液を気相で移送して液相に戻すので、液相の
ままで移送するよりも長時間を要する代りに、レシーバ
タンク・甲3A内に1滴の冷媒液も残さずに完全に移送
することができる。
In order to avoid the above-mentioned problem, between the parallel operation of the preceding step shown in FIG. (A) and the series operation of the latter step shown in FIG. As a process, a refrigerant liquid is transferred. In the example of FIG. 1 (B), the differential pressure is applied to the two receiver tanks, the upper and the second by the compressor A of the A-series (that is, the side that is the upstream side in the series operation of the subsequent step) and the refrigerant. Although the liquid is transferred, as another embodiment (not shown), the refrigerant liquid may be transferred by applying a differential pressure to the two receiver tanks by the B-series compressor B2B. good. Further, as an embodiment different from the above, the point P shown in FIG.
When the pipeline is closed at the point Pn on the upstream side of m and the compressor A of the A series is stopped and the compressor A of the B series is operated, the refrigerant liquid in the receiver tank 3A is evaporated. Then, the refrigerant gas discharged from the B-series compressor 4b can be cooled and liquefied by the cooler 5b and injected into the receiver tank 3b. In this method, the refrigerant liquid is transferred in the gas phase and returned to the liquid phase. Therefore, instead of taking a longer time than transferring the liquid refrigerant in the liquid phase, a single drop of the refrigerant liquid does not remain in the receiver tank 3A. Can be completely transported.

【0023】図2は、本発明に係る冷媒回収装置の1実
施形態を示す模式的な系統図であって、配管系統を実線
で描くとともに、自動制御装置に接続されている制御系
統を鎖線で描いてある。図示の2Aおよび2Bはそれぞ
れ前掲の図6に示した冷媒回収機構2と同様に圧縮機と
冷却器とを備えた冷媒回収機構であって、2AはA系列
の冷媒回収機構・甲であり、2BはB系列の冷媒回収機
構・乙である。冷凍設備1、およびA系列のレシーバタ
ンク・甲3A、並びにB系列のレシーバタンク・乙3B
は、前掲の図1について説明したのと同様ないし類似の
部材である。レシーバタンク・甲3A内には、冷媒液面
を検出するレベルセンサ・甲6Aが、レシーバタンク・
乙3B内には冷媒液面を検出するレベルセンサ・乙6B
が、それぞれ配設されていて、その検出信号は自動制御
装置10に入力される。さらに、冷凍設備1内の冷媒ガ
ス圧力を検出する設備内圧力センサ7、および、レシー
バタンク・甲3A内の冷媒ガス圧力を検出するレシーバ
圧力センサ8が設けられていて、それぞれの検出信号は
前記自動制御装置10に入力される。
FIG. 2 is a schematic system diagram showing one embodiment of the refrigerant recovery apparatus according to the present invention. The piping system is drawn by solid lines, and the control system connected to the automatic control device is shown by chain lines. It is painted. 2A and 2B shown are refrigerant recovery mechanisms each having a compressor and a cooler similarly to the refrigerant recovery mechanism 2 shown in FIG. 6 described above, and 2A is an A-series refrigerant recovery mechanism and instep; 2B is a B-series refrigerant recovery mechanism. Refrigeration equipment 1 and A-series receiver tank / A 3A, and B-series receiver tank / Otsu 3B
Are members similar to or similar to those described with reference to FIG. In the receiver tank 3A, a level sensor 6A for detecting the refrigerant liquid level is provided in the receiver tank 3A.
A level sensor for detecting the refrigerant liquid level in the second party B
, Respectively, and the detection signal is input to the automatic control device 10. Further, an in-facility pressure sensor 7 for detecting a refrigerant gas pressure in the refrigeration equipment 1 and a receiver pressure sensor 8 for detecting a refrigerant gas pressure in the receiver tank / A 3A are provided. It is input to the automatic control device 10.

【0024】前掲の図6(冷媒回収機構の一般的な説明
図)に示したように、レシーバタンク3から冷媒回収機
構2に至る戻り管路(矢印R)が設けられている。本実
施形態に示したR1,R2は、それぞれA系列,B系列の
戻り管路である。上記戻り管路R1の途中に電磁弁M1
介装接続されている。上記の電磁弁は電動弁であっても
良い。本発明の実施形態において単に電磁弁と言えば、
電動弁もしくは電磁弁の意である。前記の戻り管路R1
と冷媒回収機構・乙2Bとの間は、電磁弁M2を介して
接続されている。さらに、冷媒回収機構・甲2Aと冷媒
回収機構・乙2Bとは電磁弁M3を介して接続され、冷
凍設備1と冷媒回収機構・乙2Bとは電磁弁M4を介し
て接続されている。冷媒回収機構・乙2Bは、電磁弁M
5および冷媒吸収器9を直列に介して大気に開放されて
いる。以上に説明した電磁弁M1〜M5は、自動制御装置
10により、次に述べるように開閉制御されて、前掲の
図1について説明した並列運転と、冷媒移送運転と、直
列運転との切り換えが行なわれる。
As shown in FIG. 6 (a general explanatory view of the refrigerant recovery mechanism), a return pipe (arrow R) from the receiver tank 3 to the refrigerant recovery mechanism 2 is provided. R 1 and R 2 shown in the present embodiment are A-series and B-series return pipelines, respectively. Solenoid valve M 1 is interposed connected to the middle of the return line R 1. The above-mentioned solenoid valve may be a motor-operated valve. In the embodiment of the present invention, simply speaking of an electromagnetic valve,
It means a motor-operated valve or a solenoid valve. Said return line R 1
Between the refrigerant recovery mechanism, Party B 2B are connected via a solenoid valve M 2 and. Furthermore, the refrigerant recovery mechanism, Jia 2A and refrigerant recovery mechanism, Party B 2B are connected through a solenoid valve M 3, are connected via a solenoid valve M 4 is a cooling appliance 1 and the refrigerant recovery mechanism, Otsu 2B . Refrigerant recovery mechanism Otsu 2B uses solenoid valve M
5 and the refrigerant absorber 9 are connected in series to the atmosphere. The solenoid valves M 1 to M 5 described above are controlled to be opened and closed by the automatic control device 10 as described below, and are switched between the parallel operation, the refrigerant transfer operation, and the series operation described with reference to FIG. Is performed.

【0025】図3は、前掲の図2に示した実施形態の冷
媒回収装置における電磁弁を開閉制御して、前段の工程
である並列運転を行なっている状態を描いた系統図であ
って、開放されている電磁弁を白色で、閉塞されている
電磁弁を黒色で表すとともに、冷媒液もしくは冷媒ガス
が流動している管路を実線で表し、流動していない管路
を破線で表してある。ただし、レシーバタンク・甲3A
と冷媒回収機構・甲2Aとを結ぶ、電磁弁M1を通る管
路が破線であり、該電磁弁M1が白色であるのは、必要
に応じて(ガス抜きを要するとき)に開弁されて、必要
の無いときはこの管路内に冷媒を流動させないことを表
している。冷凍設備1内の冷媒ガスを回収し始める時点
で、該冷凍設備1内の冷媒ガス圧を検知する設備内圧力
センサ7は大気圧以上の値を検出して自動制御装置10
に入力する。該自動制御装置10は予め「大気圧近傍の
所定値」を与えられていて、設備内圧力センサ7の検出
信号値が所定値以上であると本図3のように、電磁弁M
4を開き、その他の電磁弁を閉じる。これにより、A系
統の冷媒回収機構・甲とB系統の冷媒回収機構・乙2B
とは並列に接続された状態となり、それぞれ冷凍設備1
内の冷媒ガスを吸入・加圧・冷却して、レシーバタンク
・甲,同乙の中に冷媒液を貯溜する。このように並列運
転することにより、高能率で冷媒回収が進行する。冷媒
回収の進捗に伴い、冷凍設備1内の冷媒ガス圧は次第に
低下する。この圧力低下に従って、単位時間当たり回収
量は次第に減少する。そのままで並列運転を続行すれ
ば、最終的には冷凍設備1内の冷媒ガス圧力が約−50
0mmHgになるまで真空引きすることは可能であるが、
冷凍設備1内の冷媒ガス圧力が予め設定された所定値
(大気圧近傍に設定しておくことが望ましい)まで低下
すると、この圧力低下を設備内圧力センサ7で検知して
並列運転を中止し、高真空引きに有利な直列運転に切り
替える。ただし、後段の工程である直列運転に入るに先
立って、直列運転の準備作業としての中段の工程である
冷媒液の移送運転を実施する。
FIG. 3 is a system diagram showing a state in which the solenoid valve in the refrigerant recovery apparatus of the embodiment shown in FIG. The open solenoid valve is represented by white, the closed solenoid valve is represented by black, the pipeline in which the refrigerant liquid or the refrigerant gas is flowing is represented by a solid line, and the pipeline not flowing is represented by a broken line. is there. However, receiver tank, Party 3A
And connecting the refrigerant recovery mechanism-shell 2A, a tube path through the solenoid valve M 1 is a broken line, the the solenoid valve M 1 is white, opening the optionally (when required degassing) Thus, when it is not necessary, it indicates that the refrigerant is not allowed to flow in this pipeline. At the time when the refrigerant gas in the refrigeration facility 1 is started to be collected, the in-facility pressure sensor 7 for detecting the refrigerant gas pressure in the refrigeration facility 1 detects a value higher than the atmospheric pressure, and
To enter. The automatic control device 10 is given a "predetermined value near the atmospheric pressure" in advance, and when the detection signal value of the in-facility pressure sensor 7 is equal to or more than the predetermined value, as shown in FIG.
Open 4 and close other solenoid valves. By this, the refrigerant recovery mechanism of the A system, the former and the refrigerant recovery mechanism of the B system, Otsu 2B
Are connected in parallel with each other,
The refrigerant gas inside is sucked, pressurized, and cooled, and the refrigerant liquid is stored in the receiver tank, the upper part, and the part. By performing the parallel operation in this way, the refrigerant recovery proceeds with high efficiency. As the refrigerant recovery progresses, the refrigerant gas pressure in the refrigeration facility 1 gradually decreases. With this pressure drop, the recovery per unit time gradually decreases. If the parallel operation is continued as it is, the refrigerant gas pressure in the refrigeration facility 1 eventually becomes about −50.
It is possible to evacuate to 0 mmHg,
When the refrigerant gas pressure in the refrigeration facility 1 decreases to a predetermined value (preferably set to a value near the atmospheric pressure), this pressure drop is detected by the facility pressure sensor 7 and parallel operation is stopped. Switch to series operation, which is advantageous for high vacuuming. However, prior to entering the series operation, which is the subsequent step, the refrigerant liquid transfer operation, which is the middle step, is performed as preparation work for the series operation.

【0026】図4は、前掲の図3に示した前段の工程で
ある並列運転状態から電磁弁を切り替えて中段の工程で
ある冷媒移送運転状態にしたところを描いた系統図であ
って、弁の開閉状態の表示方式、および管路内冷媒の流
動の有無の表示方式は前掲の図3におけると同様であ
る。本図4に示した実施形態においては、電磁弁M3
開くとともに、その他の電磁弁M1,M2,M4,M5を閉
じる。そして、B系列の冷媒回収機構・乙2Bの主吸入
口Inと主吐出口Outとを機構内で直通的に連通せし
めるとともに、B系列の戻り管R2に負圧を与えて、レ
シーバタンク・甲3Aとレシーバタンク・乙3Bとに差
圧を生じさせ、レシーバタンク・甲3A内の冷媒液をレ
シーバタンク・乙3Bの中へ移送する。上記の冷媒移送
運転と異なる実施形態の冷媒移送運転として、図4で開
かれている電磁弁M3を閉じるとともに、図4で閉じら
れている電磁弁M2を開き、B系列の冷媒回収機構・乙
2Bを通常の冷媒回収運転におけると同様に作動させ
て、レシーバタンク・甲3A内の冷媒液を蒸発させなが
ら吸入・圧縮・冷却・液化させてレシーバタンク・乙3
B内へ注入することもできる。さらに、図4の実施形態
においては冷媒回収機構・乙2Bを運転することによっ
てレシーバタンク・乙3Bに負圧を与えて冷媒液を差圧
で移動させたが、これと異なる実施形態として、冷媒回
収機構・乙2Bは単に直通状態にしておいて、冷媒回収
機構・甲2Aを運転してレシーバタンク・甲3Aに正圧
を与えることにより双方のレシーバタンク・甲,同乙に
差圧を与えて冷媒液を移送することもできる。
FIG. 4 is a system diagram illustrating a state in which the solenoid valve is switched from the parallel operation state, which is the former step shown in FIG. 3, to the refrigerant transfer operation state, which is the middle step. The display method of the open / closed state and the display method of the presence or absence of the flow of the refrigerant in the pipeline are the same as those in FIG. In the embodiment shown in this FIG. 4, with opening the solenoid valve M 3, other solenoid valves M 1, M 2, M 4 , M 5 Close. Then, the refrigerant recovery mechanism, Party B 2B B-series and the main inlet In and the main opening Out with occupies passed, communicating direct manner within the mechanism, giving a negative pressure to the return line R 2 in B series, a receiver tank A differential pressure is generated between the shell A and the receiver tank B, and the refrigerant liquid in the receiver tank A is transferred into the receiver tank B. As a refrigerant transporting operation of different embodiments with the above refrigerant transfer operation, closes the solenoid valve M 3 that are open in Figure 4, to open the solenoid valve M 2 which is closed in Fig. 4, B-series refrigerant recovery mechanism・ Operator 2B is operated in the same manner as in the normal refrigerant recovery operation, and the receiver liquid is sucked, compressed, cooled and liquefied while evaporating the refrigerant liquid in the upper tank 3A.
B can also be injected. Further, in the embodiment of FIG. 4, the refrigerant recovery mechanism and the second party 2B are operated to apply a negative pressure to the receiver tank and the second party 3B to move the refrigerant liquid at a differential pressure. The recovery mechanism 2B is kept in a direct state, and the refrigerant recovery mechanism 2A is operated to apply a positive pressure to the receiver tank 3A to apply a differential pressure to both receiver tanks 2A and 2B. To transfer the refrigerant liquid.

【0027】図5は、前掲の図4に示した中段の工程で
ある冷媒移送運転の状態から電磁弁を切り替えた後段の
工程である直列運転状態を示す系統図であって、弁の開
閉状態の表示方式、および管路内の冷媒の流動の有無の
表示方式は前掲の図3におけると同様である。5個の電
磁弁M1〜M5の内、電磁弁M2を開いて他の4個の電磁
弁を閉じ、A系列の冷媒回収機構・甲2AとB系列の冷
媒回収機構・乙2Bとを運転する。この接続状態におい
て、冷凍設備1→冷媒回収機構・甲2A→冷媒回収機構
・乙2B→レシーバタンク・乙2Bという直列運転系統
が形成され、冷凍設備1内の残留冷媒ガスは−700mm
Hg以下の高真空まで回収される。上記の直列運転系統
の途中にA系列のレシーバタンク・甲3Aが介挿された
形になっているが、中段の工程の冷媒移送運転によって
既に空になっているので、後段の工程である直列運転に
支障を及ぼす虞れは無い。
FIG. 5 is a system diagram showing a series operation state which is a subsequent step after switching the solenoid valve from the state of the refrigerant transfer operation which is the middle step shown in FIG. And the method of displaying whether or not the refrigerant flows in the pipeline are the same as those in FIG. 3 described above. Of the five solenoid valves M 1 ~M 5, close the other four solenoid valves by opening the solenoid valve M 2, and the refrigerant recovery mechanism, Party B 2B refrigerant recovery mechanism, Jia 2A and B series of series A To drive. In this connection state, a series operation system of refrigeration equipment 1 → refrigerant recovery mechanism / A 2A → refrigerant recovery mechanism / Otsu 2B → receiver tank / Otsu 2B is formed, and the residual refrigerant gas in the refrigeration equipment 1 is −700 mm.
It is collected up to a high vacuum of Hg or less. Although the A series receiver tank / A 3A is inserted in the middle of the above series operation system, it has already been emptied by the refrigerant transfer operation in the middle stage, so the series There is no danger of affecting driving.

【0028】冷媒の回収技術も含めて、冷媒の循環運転
を行なう冷凍技術の分野においては配管系の気密保持技
術(真空技術)は高度に発達しているが、微小リークの
皆無を期することは容易でない。ここで、本発明におい
ては冷凍設備1に設けられている密閉循環系に対して外
部管路を一時的に接続し、しかも高真空の真空引きを行
なうので、空気が漏入した場合の対策を準備しておくこ
とが望ましい。そこで本実施形態においては、冷媒回収
機構・乙2Bを構成している配管の適宜の部分(例えば
冷却器の近傍)に、電磁弁M5を直列に介して冷媒吸着
器9を接続して大気に開放してある。冷媒の冷凍サイク
ルもしくは回収系統内に空気が漏入した場合、管路内圧
力の異常な上昇を招く。その理由は、冷媒ガスは高圧に
なると、その情況における温度に応じた圧力で凝縮し、
それ以上は圧力が上昇しない気液平衡状態となるが、空
気などの非凝縮性の気体は凝縮しないので圧力が上昇す
るからである。(図5参照)そこで、圧力センサ8もし
くは圧力センサ8′が予め定められた圧力以上の異常圧
を検出したとき、電磁弁M5を開いて管路内のガスを放
出する。正常圧力よりも高い圧力の下では冷媒は殆ど完
全に液化しているので、電磁弁M5を流通するガスは殆
ど非凝縮性のガスであるが、微量の冷媒ガスが随伴する
虞れが有るので冷媒吸着器9を通して冷媒ガスを吸着捕
捉する。これにより、冷媒ガスを大気中に放散せしめる
ことなく回収することができる。
In the field of refrigeration technology for circulating the refrigerant, including the technology for recovering the refrigerant, the technology for maintaining the airtightness of the piping system (vacuum technology) is highly developed, but it is expected that there will be no minute leakage. Is not easy. Here, in the present invention, since an external pipeline is temporarily connected to the closed circulation system provided in the refrigeration facility 1 and a high vacuum is evacuated, measures to be taken in the event of air leakage are taken. It is desirable to prepare. Therefore, in this embodiment, the appropriate portion of the pipe constituting the refrigerant recovery mechanism, Otsu 2B (e.g. vicinity of the cooler), and via the solenoid valve M 5 in series is connected to the refrigerant adsorber 9 air It is open to the public. When air leaks into the refrigerant refrigeration cycle or the recovery system, an abnormal increase in pressure in the pipeline is caused. The reason is that when the refrigerant gas becomes high pressure, it condenses at a pressure corresponding to the temperature in that situation,
This is because the pressure becomes a gas-liquid equilibrium state where the pressure does not rise any more, but the pressure rises because non-condensable gas such as air does not condense. (See FIG. 5) Accordingly, when the pressure sensor 8 or the pressure sensor 8 'detects a predetermined pressure or more abnormal pressure, to release the gas in the line by opening the solenoid valve M 5. Since under the pressure higher than normal pressure refrigerant is almost completely liquefied, the gas that flows through the solenoid valve M 5 is almost non-condensable gases, risk there is refrigerant gas traces of entrained Therefore, the refrigerant gas is adsorbed and captured through the refrigerant adsorber 9. Thereby, the refrigerant gas can be collected without being released into the atmosphere.

【0029】[0029]

【発明の効果】以上に本発明の実施形態を挙げてその構
成・機能を明らかならしめたように、請求項1の発明方
法によると、前段の回収作業工程では少なくとも2組の
冷媒回収機構を並列に接続して運転するので、単位時間
当たり冷媒回収量は1組の冷媒回収機構を用いる場合に
比して少なくとも2倍になる。詳しくは、N組の冷媒回
収機構の並列運転によってN倍の冷媒回収量が得られ、
高能率で回収することができる。そして後段の回収作業
工程では、少なくとも2組の冷媒回収機構を直列運転す
ることによって、1組の冷媒回収機構では到達できない
高真空が得られ、冷凍設備内に残留する冷媒ガスを高真
空になるまで回収して、高い回収率が得られる。高回収
率により、冷媒損失に伴う経済的負担を軽減し得ること
は勿論であるが、冷媒が大気中に放散されることを極度
に軽減して、いわゆるフロン公害を防止するという社会
的要請に応えることができる。
As described above, according to the first embodiment of the present invention, at least two sets of refrigerant recovery mechanisms are used in the first recovery operation step. Since the operation is performed in parallel connection, the refrigerant recovery amount per unit time is at least twice as large as the case where one set of refrigerant recovery mechanisms is used. In detail, N times refrigerant recovery amount is obtained by parallel operation of N sets of refrigerant recovery mechanisms,
It can be recovered with high efficiency. In the subsequent recovery operation step, a high vacuum that cannot be reached by one set of refrigerant recovery mechanisms is obtained by operating at least two sets of refrigerant recovery mechanisms in series, and the refrigerant gas remaining in the refrigeration facility is made high vacuum. Up to a high recovery rate. The high recovery rate, of course, can reduce the economic burden associated with the loss of refrigerant, but in response to social demands to extremely reduce the release of refrigerant into the atmosphere and prevent so-called chlorofluorocarbon pollution. I can respond.

【0030】請求項2の発明方法によると、冷凍設備内
の冷媒圧力を直接的に、もしくは間接的に監視するとい
う(例えば圧力センサを設けるという)簡単な方法で、
前段の並列運転を終了する時機を適正に判定することが
できる。この前段の並列運転は高能率で回収を遂行する
工程であるから、この並列運転の終了時機が早すぎると
冷媒回収能率を低下させる。また、並列運転では冷凍設
備内の減圧(真空引き)に限界が有るので、前段の並列
運転の終了時機が遅きに失すると遅れ期間中は全く無駄
な運転をして時間とエネルギーとを浪費していることに
なる。このため、本請求項2の発明によって並列運転
(前段の工程)の終了時機を適正に判定することは、前
記請求項1の発明をより高能率に、より経済的に実施し
て実効有らしめる。
According to the second aspect of the present invention, the refrigerant pressure in the refrigeration facility is monitored directly or indirectly (for example, by providing a pressure sensor).
It is possible to appropriately determine the timing for ending the preceding parallel operation. Since the preceding parallel operation is a step of performing the recovery with high efficiency, if the end time of the parallel operation is too early, the refrigerant recovery efficiency is reduced. Also, in parallel operation, there is a limit to the decompression (vacuum evacuation) in the refrigeration facility, so if the end of parallel operation in the preceding stage ends up losing too late, it runs completely useless during the delay period, wasting time and energy. Will be. For this reason, it is effective to implement the invention of claim 1 with higher efficiency and more economically by judging the termination timing of the parallel operation (the former step) properly by the invention of claim 2. Close.

【0031】請求項3の発明方法によると、前段の並列
運転工程と後段の直列運転工程との間に設けられた中段
の移送工程によって、後段の直列運転における圧力分布
の中間点に相当する「上流側圧縮機の吐出側と下流側圧
縮機の吸入側との接続部」に位置するレシーバタンク内
の冷媒液が除去されるので、後段の直列運転工程の初期
に圧力分布を乱されなくなる。すなわち、後段の直列運
転において上流側として用いられる冷媒回収機構に付属
しているレシーバタンクは、前段の並列運転時には冷媒
回収機構の下流側に位置して冷媒液を貯溜されるが、こ
のレシーバタンクは、直列運転時には上流側冷媒回収機
構と下流側冷媒回収機構との接続部に位置するようにな
る(つまり、下流側冷媒回収機構を構成している圧縮機
の吸入側に連通されるようになる)。このため、該レシ
ーバタンク内の圧力は冷媒の蒸気圧よりも低圧になり、
冷媒液が沸騰して下流側冷媒回収機構に吸入される。こ
のような不合理な現象(せっかく液化していた冷媒液を
沸騰させて下流側の冷媒回収機構で再度液化し直す)
は、本請求項3の適用によって防止され、前段の工程か
ら後段の工程へ円滑に移行できるようになる。
According to the third aspect of the present invention, the middle transfer step provided between the preceding parallel operation step and the subsequent series operation step corresponds to the middle point of the pressure distribution in the subsequent series operation. Since the refrigerant liquid in the receiver tank located at the "connection part between the discharge side of the upstream compressor and the suction side of the downstream compressor" is removed, the pressure distribution is not disturbed at the beginning of the subsequent series operation process. That is, the receiver tank attached to the refrigerant recovery mechanism used as the upstream side in the subsequent series operation is located downstream of the refrigerant recovery mechanism in the previous parallel operation and stores the refrigerant liquid. Is located at the connection between the upstream-side refrigerant recovery mechanism and the downstream-side refrigerant recovery mechanism during the series operation (that is, is connected to the suction side of the compressor that constitutes the downstream-side refrigerant recovery mechanism). Become). For this reason, the pressure in the receiver tank becomes lower than the vapor pressure of the refrigerant,
The refrigerant liquid boils and is sucked into the downstream refrigerant recovery mechanism. Such an unreasonable phenomenon (the refrigerant liquid that has been liquefied is boiled and re-liquefied by the refrigerant recovery mechanism on the downstream side)
Is prevented by the application of the third aspect, and a smooth transition from the preceding step to the subsequent step becomes possible.

【0032】請求項4の発明方法によると、冷媒回収機
構に本来的に設けられているガスポンプ以外に液体ポン
プを用いる必要無く、下流側冷媒回収機構に設けられて
いる圧縮機を利用して下流側レシーバタンク内を減圧す
ることによって双方のレシーバタンク間に圧力差を発生
させて冷媒液を流動せしめて移送工程を遂行することが
できる。
According to the method of the present invention, there is no need to use a liquid pump in addition to the gas pump originally provided in the refrigerant recovery mechanism, and the downstream side refrigerant recovery mechanism utilizes a compressor. By reducing the pressure in the side receiver tank, a pressure difference is generated between the two receiver tanks so that the refrigerant liquid flows to perform the transfer process.

【0033】請求項5の発明方法によると、冷媒回収機
構に本来的に設けられているガスポンプ以外に液体ポン
プを用いる必要無く、上流側冷媒回収機構に設けられて
いる圧縮機を利用して上流側レシーバタンク内を加圧す
ることによって双方のレシーバタンク間に圧力差を発生
させて冷媒液を流動せしめて移送工程を遂行することが
できる。
According to the fifth aspect of the present invention, there is no need to use a liquid pump in addition to the gas pump originally provided in the refrigerant recovery mechanism, and the upstream side refrigerant recovery mechanism utilizes a compressor. By pressurizing the inside of the side receiver tank, a pressure difference is generated between the two receiver tanks so that the refrigerant liquid flows to perform the transfer process.

【0034】請求項6の発明方法によると、液ポンプを
使用することなく、ガスポンプによって液状の冷媒を移
送することができる。本請求項6の発明方法において
は、前記請求項4,5の発明方法が冷媒液を液状のまま
で移送するのに比して、液→ガス→液の相変化を経て移
送するので所要時間が若干多いが、移送を終了した状態
における上流側レシーバタンク内の冷媒液を完全に、液
滴も残さないように除去することができる。
According to the method of the present invention, a liquid refrigerant can be transferred by a gas pump without using a liquid pump. In the method of the present invention, the refrigerant liquid is transferred through a phase change of liquid → gas → liquid compared to the method of transferring the liquid refrigerant in a liquid state, so that the required time is reduced. However, the refrigerant liquid in the upstream-side receiver tank after the transfer has been completed can be completely removed without leaving any liquid droplets.

【0035】請求項7の発明方法によると、本発明に係
る冷媒回収方法の実施中に管路内圧力が異常に上昇した
場合、冷媒ガスを大気中に放散せしめる虞れ無く異常圧
の原因を為している管路内気体の「ガス抜き」をするこ
とができる。本発明方法の基本的な構成として、複数台
の圧縮機を直列運転して、吸入側の高真空と吐出側の高
圧力とを得ている。上述のようにして、従来技術では得
られなかった高真空を達成したため、大気中の非凝縮性
ガスが漏入する危険性は増したと考えるべきであろう。
こうした非凝縮性ガスは加圧,冷却しても液化しないの
で、圧縮機の吐出側に異常高圧を生じる虞れが有るの
で、本請求項7の発明は前記の非凝縮性ガスを大気中に
放出するのであるが、これに冷媒ガスが随伴するとフロ
ン公害を生じるので、冷媒吸着剤を通過せしめて非凝縮
性ガスのみを放出し、冷媒ガスを捕捉することによりフ
ロン公害を生じる虞れ無く、異常圧発生に伴うトラブル
を防止することができる。
According to the seventh aspect of the present invention, when the pressure in the pipeline rises abnormally during the execution of the refrigerant recovery method according to the present invention, the cause of the abnormal pressure can be determined without fear of dispersing the refrigerant gas into the atmosphere. It is possible to "degas" the gas in the pipeline. As a basic configuration of the method of the present invention, a plurality of compressors are operated in series to obtain a high vacuum on the suction side and a high pressure on the discharge side. As described above, it should be considered that the danger of leakage of non-condensable gas in the atmosphere has been increased by achieving a high vacuum which cannot be obtained by the prior art.
Since such non-condensable gas does not liquefy even if pressurized and cooled, there is a possibility that an abnormally high pressure may be generated on the discharge side of the compressor. However, if refrigerant gas accompanies this, it causes chlorofluorocarbon pollution, so it passes through the refrigerant adsorbent and releases only non-condensable gas, and by trapping the refrigerant gas, there is no risk of chlorofluorocarbon pollution, It is possible to prevent troubles caused by abnormal pressure generation.

【0036】請求項8の発明装置によると、A,Bの2
系列の圧縮機と冷却器とレシーバタンクとを具備してい
るので、これら2系列の冷媒回収機構構成機器を冷凍設
備に対して並列に接続して運転することにより、1系列
よりなる冷媒回収機構に比して2倍の高能率で冷媒回収
作業を進めることができる。さらに本請求項8の発明装
置はA系列の圧縮機の吐出側をB系列の圧縮機の吸入側
に接続する管路、および該管路に介挿された弁手段を有
しているので、必要に応じて2基の圧縮機を直列に接続
して運転することができ、この直列運転によって高い吐
出圧を維持しつつ、低い吸入圧を得ることができる。す
なわち高真空度で真空引きすることができるので、冷凍
装置内に残留する冷媒ガスを著しく稀薄にして、冷媒ガ
スの大気中への放散を極度に軽減することができる。以
上のようにして高能率回収と完全回収とを、実用性の有
る経済的装置として両立せしめることができる。
According to the eighth aspect of the present invention, two of A and B are provided.
Since the system has a compressor, a cooler, and a receiver tank of the series, the refrigerant collection mechanism of the two series is connected in parallel to the refrigeration equipment and operated, whereby the refrigerant collection mechanism of the single series is formed. In this case, the refrigerant recovery operation can be performed twice as efficiently as in the first embodiment. Further, since the device of the present invention has a pipe connecting the discharge side of the A-series compressor to the suction side of the B-series compressor, and valve means interposed in the pipe, If necessary, two compressors can be connected in series and operated, and a low suction pressure can be obtained while maintaining a high discharge pressure by this series operation. That is, since the evacuation can be performed at a high degree of vacuum, the refrigerant gas remaining in the refrigerating apparatus can be extremely diluted, and the diffusion of the refrigerant gas into the atmosphere can be extremely reduced. As described above, high-efficiency recovery and complete recovery can be compatible as a practical and economical device.

【0037】請求項9の発明装置によると、A系列,B
系列双方のレシーバタンクを連通する管路が設けられる
とともに、圧縮機によって生じる圧力差を上記双方のレ
シーバタンクに導く管路が設けられているので、前記双
方のレシーバタンクの何れか一方に貯えられている冷媒
液を他方に移送することができ、これによって並列運転
から直列運転への切換えを円滑に、かつ合理的に行なう
ことができる。しかも、前記の管路には弁手段が設けら
れているので、この弁手段を開閉制御することにより、
前記の冷媒の移送を、所望の時まで抑制し、かつ所望の
時に速やかに行なわせることができる。さらに、圧縮機
によって発生した差圧を前記双方のレシーバタンクに導
いて冷媒液の移送を行なうので、液ポンプを設けること
なく冷媒液を移送することができる。
According to the ninth aspect of the present invention, A series, B series
A line communicating the two receiver tanks of the series is provided, and a line guiding the pressure difference generated by the compressor to the two receiver tanks is provided, so that the pressure difference is stored in one of the two receiver tanks. The refrigerant liquid being transferred can be transferred to the other side, whereby the switching from the parallel operation to the series operation can be performed smoothly and rationally. In addition, since the pipe is provided with valve means, by opening and closing the valve means,
The transfer of the refrigerant can be suppressed until a desired time and can be promptly performed at a desired time. Further, since the differential pressure generated by the compressor is guided to the two receiver tanks to transfer the refrigerant liquid, the refrigerant liquid can be transferred without providing a liquid pump.

【0038】請求項10の発明装置によると、冷凍設備
に封入されている冷媒のガス圧力が大気圧近傍の所定値
に低下するまでの間は、A,Bの2系列の圧縮機が自動
的に並列に接続されて高能率の回収運転が行なわれ、冷
凍設備内の冷媒ガス圧力が大気圧近傍の所定値以下にな
ると自動的に直列運転に切り換えられて該冷凍設備内が
高真空となるように真空引きされる。上述のようにして
作業員の労力を要せず、作業員の人為的ミスを生じる虞
れ無く、高能率の回収運転と、高真空の回収という本発
明に係る回収装置の効果が充分に発揮される。
According to the tenth aspect of the present invention, the two series compressors A and B are automatically operated until the gas pressure of the refrigerant sealed in the refrigeration equipment drops to a predetermined value near the atmospheric pressure. Is connected in parallel to perform a high-efficiency recovery operation, and when the refrigerant gas pressure in the refrigeration equipment becomes equal to or less than a predetermined value near the atmospheric pressure, the operation is automatically switched to the series operation, and the inside of the refrigeration equipment becomes a high vacuum. Vacuum. As described above, the effects of the recovery device according to the present invention, that is, high-efficiency recovery operation and high-vacuum recovery, do not require the labor of the worker and do not cause a human error to the worker. Is done.

【0039】請求項11の発明装置によると、本発明装
置を構成している配管内が、本発明の適用によって高真
空になったときに空気などの非凝縮性ガスが漏入したこ
とに起因する異常圧を発生したとき、冷媒ガスを大気中
に放散せしめることなく、漏入したガスを配管内から排
出することができ、作業員による監視の労力を要せず、
フロン公害を招く虞れ無く、異常圧によるトラブルを防
止することができるという実用的効果を奏する。
According to the eleventh aspect of the present invention, the non-condensable gas such as air leaks into the piping constituting the apparatus of the present invention when a high vacuum is created by applying the present invention. When an abnormal pressure occurs, the leaked gas can be discharged from the piping without dissipating the refrigerant gas into the atmosphere, eliminating the need for labor for monitoring by workers,
There is a practical effect that trouble due to abnormal pressure can be prevented without fear of inducing Freon pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷媒回収装置の基本的な構成とそ
の運転方法および作用とを説明するために示した模式的
な系統図で、(A)は前段の工程である並列運転状態
を、(B)は中段の工程である冷媒液移送状態を、
(C)は後段の工程である直列運転状態を描いてある。
FIG. 1 is a schematic system diagram for explaining a basic configuration of a refrigerant recovery apparatus according to the present invention, an operation method thereof, and an operation thereof, wherein FIG. , (B) shows the refrigerant liquid transfer state in the middle step,
(C) depicts a series operation state, which is a subsequent step.

【図2】本発明に係る冷媒回収装置の1実施形態を示す
模式的な系統図であって、配管系統を実線で描くととも
に、自動制御装置に接続されている制御系統を鎖線で描
いてある。
FIG. 2 is a schematic system diagram showing one embodiment of a refrigerant recovery device according to the present invention, in which a piping system is drawn by a solid line and a control system connected to an automatic control device is drawn by a chain line. .

【図3】前掲の図2に示した実施形態の冷媒回収装置に
おける電磁弁を開閉制御して、前段の工程である並列運
転を行なっている状態を描いた系統図であって、開放さ
れている電磁弁を白色で、閉塞されている電磁弁を黒色
で表すとともに、冷媒液もしくは冷媒ガスが流動してい
る管路を実線で表し、流動していない管路を破線で表し
てある。
FIG. 3 is a system diagram illustrating a state in which the solenoid valve in the refrigerant recovery apparatus according to the embodiment shown in FIG. The solenoid valve is shown in white, the closed solenoid valve is shown in black, the pipeline through which the refrigerant liquid or the refrigerant gas flows is shown by a solid line, and the pipeline not flowing is shown by a broken line.

【図4】前掲の図3に示した前段の工程である並列運転
状態から電磁弁を切り替えて中段の工程である冷媒移送
運転状態にしたところを描いた系統図であって、弁の開
閉状態の表示方式、および管路内冷媒の流動の有無の表
示方式は前掲の図3におけると同様である。
FIG. 4 is a system diagram illustrating a state in which a solenoid valve is switched from a parallel operation state, which is the former step shown in FIG. 3, to a refrigerant transfer operation state, which is a middle step, and the valve is opened and closed; And the display method of the presence or absence of the flow of the refrigerant in the pipeline are the same as those in FIG.

【図5】前掲の図4に示した中段の工程である冷媒移送
運転の状態から電磁弁を切り替えた後段の工程である直
列運転状態を示す系統図であって、弁の開閉状態の表示
方式、および管路内の冷媒の流動の有無の表示方式は前
掲の図3におけると同様である。
FIG. 5 is a system diagram showing a series operation state which is a subsequent step after switching the solenoid valve from the state of the refrigerant transfer operation which is the middle step shown in FIG. The method of indicating whether or not the refrigerant flows in the pipeline is the same as in FIG. 3 described above.

【図6】冷凍設備内の冷媒ガスを回収する従来技術を説
明するために示したもので、圧縮機と冷却器とから成る
冷媒回収機構を冷凍設備に接続して、冷媒ガスを圧縮す
るとともに冷却して液化させ、液化した冷媒をレシーバ
タンクに注入している状態の系統図である。
FIG. 6 is a view for explaining a conventional technique for recovering a refrigerant gas in a refrigeration facility, in which a refrigerant recovery mechanism including a compressor and a cooler is connected to the refrigeration facility to compress the refrigerant gas; It is a system diagram in the state where it cooled and liquefied, and the liquefied refrigerant was poured into a receiver tank.

【符号の説明】[Explanation of symbols]

1…冷凍設備、2…冷媒回収機構、2A…冷媒回収機構
・甲、2B…冷媒回収機構・乙、3…レシーバタンク、
3A…レシーバタンク・甲、3B…レシーバタンク・
乙、4…圧縮機、4A…圧縮機・甲、4B…圧縮機・
乙、5…冷却器、5A…冷却器・甲、5B…冷却器・
乙、6A…レベルセンサ・甲、6B…レベルセンサ・
乙、7…設備内圧力センサ、8…レシーバ圧力センサ、
8′…配管内圧力センサ、9…冷媒吸着、10…自動制
御装置、M1〜M5…電動弁もしくは電磁弁、R1,R2
戻り管。
DESCRIPTION OF SYMBOLS 1 ... Refrigeration equipment, 2 ... Refrigerant recovery mechanism, 2A ... Refrigerant recovery mechanism / A, 2B ... Refrigerant recovery mechanism / Part 3, 3 ... Receiver tank,
3A ... Receiver tank / A, 3B ... Receiver tank /
Otsu, 4 ... Compressor, 4A ... Compressor / A, 4B ... Compressor /
Otsu, 5 ... cooler, 5A ... cooler / A, 5B ... cooler
Otsu, 6A ... Level sensor / A, 6B ... Level sensor
Otsu, 7 ... pressure sensor inside equipment, 8 ... receiver pressure sensor,
8 '... pipe pressure sensor, 9 ... refrigerant suction, 10 ... automatic control system, M 1 ~M 5 ... electric valve or electromagnetic valve, R 1, R 2 ...
Return pipe.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 冷凍設備に設けられている密閉循環系内
の冷媒を「気体用ポンプおよび冷却器から成る冷媒回収
機構」によってレシーバタンクに回収する方法におい
て、 少なくとも2組の冷媒回収機構を用いるとともに冷媒回
収作業工程を区分し、冷媒回収作業の前段の工程では、
前記2組の冷媒回収機構を並列に接続して運転すること
により高能率の回収作業を遂行し、 冷媒回収作業の後段の工程では、前記2組の冷媒回収機
構を直列に接続して運転することにより、冷凍設備の密
閉循環系内に残留する冷媒ガスの圧力を、「1組の冷媒
回収機構で到達し得る最高の真空度」よりも高度の真空
ならしめることを特徴とする、冷媒設備に封入されてい
る冷媒の回収方法。
1. A method of recovering refrigerant in a closed circulation system provided in a refrigeration facility into a receiver tank by a “refrigerant recovery mechanism comprising a gas pump and a cooler”, wherein at least two sets of refrigerant recovery mechanisms are used. Together with the refrigerant recovery work process.
The two sets of refrigerant recovery mechanisms are connected and operated in parallel to perform a high-efficiency recovery operation. In a later stage of the refrigerant recovery work, the two sets of refrigerant recovery mechanisms are connected in series and operated. The refrigerant equipment is characterized in that the pressure of the refrigerant gas remaining in the closed circulation system of the refrigeration equipment is adjusted to a higher vacuum than "the highest degree of vacuum that can be reached by one set of refrigerant recovery mechanisms". For recovering the refrigerant enclosed in the tank.
【請求項2】 冷凍設備内に封入されている冷媒の圧力
を監視しつつ前段工程の並列運転を行ない、上記冷凍設
備内の冷媒ガス圧力がほぼ大気圧まで低下したとき、前
段の並列運転を終了して次の工程に移行することを特徴
とする、請求項1に記載した冷凍設備に封入されている
冷媒の回収方法。
2. The parallel operation of the preceding step is performed while monitoring the pressure of the refrigerant sealed in the refrigeration facility, and when the refrigerant gas pressure in the refrigeration equipment falls to substantially the atmospheric pressure, the parallel operation of the preceding step is performed. The method for recovering a refrigerant enclosed in a refrigeration facility according to claim 1, wherein the method is terminated and the process proceeds to the next step.
【請求項3】 前記前段の並列運転工程と後段の直列運
転工程との間に中段の工程として冷媒液の移送工程を設
け、 後段の直列運転において上流側に接続される冷媒回収機
構によって冷媒液を貯溜されたレシーバタンク内の冷媒
を、後段の直列運転において下流側に接続される冷媒回
収機構によって冷媒液を貯溜されたレシーバタンク内に
移送することを特徴とする、請求項1もしくは請求項2
に記載した冷凍設備に封入されている冷媒の回収方法。
3. A refrigerant liquid transfer step is provided as a middle step between the first parallel operation step and the second serial operation step, and the refrigerant liquid is moved by a refrigerant recovery mechanism connected upstream in the second serial operation. The refrigerant in the receiver tank storing the refrigerant liquid is transferred to the receiver tank in which the refrigerant liquid is stored by a refrigerant recovery mechanism connected to a downstream side in a subsequent series operation. 2
3. The method for recovering a refrigerant enclosed in a refrigeration facility described in 1.
【請求項4】 上流側レシーバタンク内冷媒液の、下流
側レシーバタンク内への移送は、下流側冷媒回収機構に
よって下流側レシーバタンク内を減圧して、双方のレシ
ーバタンク内圧力の差圧によって流動せしめることを特
徴とする、請求項3に記載した冷凍設備に封入されてい
る冷媒の回収方法。
4. The transfer of the refrigerant liquid in the upstream receiver tank into the downstream receiver tank is performed by reducing the pressure in the downstream receiver tank by the downstream refrigerant recovery mechanism, and by the differential pressure between the pressures in both the receiver tanks. 4. The method for recovering a refrigerant enclosed in a refrigeration facility according to claim 3, wherein the refrigerant is caused to flow.
【請求項5】 上流側レシーバタンク内冷媒液の、下流
側レシーバタンク内への移送は、上流側冷媒回収機構に
よって上流側レシーバタンク内を加圧して、双方のレシ
ーバタンク内圧力の差圧によって流動せしめることを特
徴とする、請求項3に記載した冷凍設備に封入されてい
る冷媒の回収方法。
5. The transfer of the refrigerant liquid in the upstream receiver tank into the downstream receiver tank is performed by pressurizing the inside of the upstream receiver tank by the upstream refrigerant recovery mechanism, and by the pressure difference between the pressures in both the receiver tanks. 4. The method for recovering a refrigerant enclosed in a refrigeration facility according to claim 3, wherein the refrigerant is caused to flow.
【請求項6】 上流側レシーバタンク内冷媒液の、下流
側レシーバタンク内への移送は、上流側レシーバタンク
内の冷媒液を蒸発させ、下流側冷媒回収機構で加圧・冷
却することにより液化せしめて下流側レシーバタンク内
へ注入して行なうことを特徴とする、請求項3に記載し
た冷凍設備に封入されている冷媒の回収方法。
6. The transfer of the refrigerant liquid in the upstream receiver tank into the downstream receiver tank is performed by evaporating the refrigerant liquid in the upstream receiver tank and pressurizing and cooling the refrigerant liquid in the downstream refrigerant recovery mechanism. The method for recovering a refrigerant enclosed in a refrigeration facility according to claim 3, wherein the method is performed by injecting the refrigerant into a downstream receiver tank at least.
【請求項7】 前記後段の工程である直列運転を終了し
た状態で、または、前段の並列運転もしくは後段の直列
運転の途中で、冷媒回収機構を構成している管路内の圧
力もしくは冷媒回収機構を他の機器類に接続している管
路内の圧力が異常に上昇した場合、上記管路内の気体
を、冷媒吸着剤に通過せしめて大気中へ放出することを
特徴とする、請求項1ないし請求項6の何れかに記載し
た冷凍設備に封入されている冷媒の回収方法。
7. The pressure or the refrigerant recovery in the pipeline constituting the refrigerant recovery mechanism in a state where the serial operation as the latter step is completed, or in the middle of the preceding parallel operation or the latter series operation. If the pressure in the pipeline connecting the mechanism to other equipment rises abnormally, the gas in the pipeline is passed through a refrigerant adsorbent and released to the atmosphere. A method for recovering a refrigerant enclosed in a refrigeration facility according to any one of claims 1 to 6.
【請求項8】 冷凍設備内の冷媒ガスを吸入して圧縮す
るA系列の圧縮機、および、該A系列の圧縮機によって
圧縮された冷媒ガスを冷却して液化させるA系列の冷却
器、並びに、該A系列の冷却器で液化された冷媒液を貯
溜するA系列のレシーバタンクを具備するとともに、 冷凍設備内の冷媒ガスを吸入して圧縮するB系列の圧縮
機、および、該B系列の圧縮機によって圧縮された冷媒
ガスを冷却して液化させるB系列の冷却器、並びに、該
B系列の冷却器で液化された冷媒液を貯溜するB系列の
レシーバタンクを具備しており、 かつ、前記A系列の圧縮機の吐出側管路をB系列の圧縮
機の吸入側管路に接続する、弁手段を有する管路が設け
られていることを特徴とする、冷凍設備に封入されてい
る冷媒の回収装置。
8. An A-series compressor for sucking and compressing a refrigerant gas in a refrigeration facility, an A-series cooler for cooling and liquefying the refrigerant gas compressed by the A-series compressor, and An A-series receiver tank for storing the refrigerant liquid liquefied by the A-series cooler, a B-series compressor for sucking and compressing the refrigerant gas in the refrigeration equipment, and a B-series compressor. A B-series cooler that cools and liquefies the refrigerant gas compressed by the compressor, and a B-series receiver tank that stores the refrigerant liquid liquefied by the B-series cooler, and A pipe having valve means for connecting a discharge pipe of the A-series compressor to a suction pipe of the B-series compressor is provided. Refrigerant recovery device.
【請求項9】 前記A系列のレシーバタンク内の冷媒を
B系列のレシーバタンクに連通せしめる、弁手段を有す
る管路が設けられており、 かつ、前記A系列の圧縮機によって発生する圧力差、も
しくはB系列の圧縮機によって発生する圧力差を導い
て、前記A系列のレシーバタンクとB系列のレシーバタ
ンクとの間に圧力差を生ぜしめる、弁手段を有する管路
が設けられていることを特徴とする、請求項8に記載し
た冷凍設備に封入されている冷媒の回収装置。
9. A pipe line having valve means for communicating the refrigerant in the A-series receiver tank with the B-series receiver tank, and a pressure difference generated by the A-series compressor, Alternatively, a pipe having valve means for guiding a pressure difference generated by the compressor of the B series to generate a pressure difference between the receiver tank of the A series and the receiver tank of the B series is provided. A refrigerant recovery device sealed in a refrigeration facility according to claim 8, characterized in that:
【請求項10】 前記冷凍設備に封入されている冷媒の
圧力を検出する圧力センサが設けられているとともに、 前記A系列の圧縮機の吐出側管路をB系列の圧縮機の吸
入側管路に接続する管路に設けられている弁手段は電動
弁もしくは電磁弁であり、 かつ、前記B系列の圧縮機が冷凍設備内の冷媒ガスを吸
入する管路の途中に、上記と異なる電動弁もしくは電磁
弁が設けられており、 さらに、前記圧力センサの出力信号を入力されて上記双
方の電動弁もしくは電磁弁を開閉制御する自動制御装置
が設けられていて、 圧力センサの検出値が、大気圧近傍の所定値以上である
ときはA系列の圧縮機の吐出側とB系列の圧縮機の吸入
側との間に配設されている電動弁もしくは電磁弁が閉じ
られて、B系列の圧縮機の吸入側と冷凍設備との間に配
設されている電動弁もしくは電磁弁が開かれ、 圧力センサの検出値が前記所定値よりも低くなったと
き、B系列の圧縮機の吸入側と冷凍設備との間に配設さ
れている電動弁もしくは電磁弁が閉じられるとともに、
A系列の圧縮機の吐出側管路とB系列の圧縮機の吸入側
管路との間に配設されている電動弁もしくは電磁弁が開
かれるように自動制御されることを特徴とする、請求項
8もしくは請求項9の何れか一つに記載した冷凍設備に
封入されている冷媒の回収装置。
10. A pressure sensor for detecting a pressure of a refrigerant sealed in the refrigeration facility is provided, and a discharge-side pipe of the A-series compressor is connected to a suction-side pipe of a B-series compressor. The valve means provided in the conduit connected to the valve is an electric valve or a solenoid valve, and the electric valve is different from the above in the middle of the conduit in which the B-series compressor sucks the refrigerant gas in the refrigeration facility. Alternatively, an electromagnetic valve is provided, and an automatic control device that receives the output signal of the pressure sensor and controls opening and closing of both the electric valve or the electromagnetic valve is provided, and the detection value of the pressure sensor is large. When the pressure is equal to or higher than the predetermined value near the atmospheric pressure, the motor-operated valve or the solenoid valve disposed between the discharge side of the A-series compressor and the suction side of the B-series compressor is closed, and the B-series compressor is compressed. Installed between the suction side of the machine and the refrigeration facility When the motor-operated valve or solenoid valve is opened and the detected value of the pressure sensor becomes lower than the predetermined value, the motor-operated valve disposed between the suction side of the B-series compressor and the refrigeration facility Or, while the solenoid valve is closed,
The automatic control is performed so that an electric valve or a solenoid valve disposed between the discharge side pipe of the A series compressor and the suction side pipe of the B series compressor is opened. A refrigerant recovery device sealed in the refrigeration facility according to claim 8.
【請求項11】 前記A系列および/またはB系列の機
器類を接続する配管内の圧力を検出する圧力センサが設
けられるとともに、上記圧力センサの検出圧力が予め定
められた値以上になったときに開弁する電動弁もしくは
電磁弁が設けられており、 かつ、前記の機器類を接続する配管が、上記圧力センサ
の検出圧力に従って開弁される電動弁もしくは電磁弁を
介して大気に開放されていることを特徴とする、請求項
8ないし請求項10の何れかに記載した冷凍設備に封入
されている冷媒の回収装置。
11. A pressure sensor for detecting a pressure in a pipe connecting the A-series and / or B-series devices is provided, and when a pressure detected by the pressure sensor becomes equal to or higher than a predetermined value. An electric valve or an electromagnetic valve is provided to open the valve, and a pipe connecting the above-mentioned devices is opened to the atmosphere via the electric valve or the electromagnetic valve which is opened according to the detection pressure of the pressure sensor. The refrigerant recovery device enclosed in the refrigeration facility according to any one of claims 8 to 10, characterized in that:
JP06634897A 1997-03-19 1997-03-19 Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus Expired - Fee Related JP3550616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06634897A JP3550616B2 (en) 1997-03-19 1997-03-19 Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06634897A JP3550616B2 (en) 1997-03-19 1997-03-19 Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus

Publications (2)

Publication Number Publication Date
JPH10259970A true JPH10259970A (en) 1998-09-29
JP3550616B2 JP3550616B2 (en) 2004-08-04

Family

ID=13313278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06634897A Expired - Fee Related JP3550616B2 (en) 1997-03-19 1997-03-19 Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus

Country Status (1)

Country Link
JP (1) JP3550616B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414067A (en) * 2004-04-13 2005-11-16 Triventek As Carbon dioxide recovery in pellets production
US20140174111A1 (en) * 2007-12-07 2014-06-26 Bosch Automotive Service Solutions Llc Background tank fill based on refrigerant composition
JP2017125661A (en) * 2016-01-15 2017-07-20 株式会社中島自動車電装 Multistage variable-type gas recovery machine and multistage variable-type refrigerant recovery machine
JP7106030B1 (en) * 2021-09-14 2022-07-25 三菱電機ビルソリューションズ株式会社 Refrigerant recovery system and refrigerant recovery method
CN114877572A (en) * 2022-05-24 2022-08-09 珠海格力电器股份有限公司 Refrigerant recovery system and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293660U (en) * 1985-11-29 1987-06-15
JPH0611216A (en) * 1992-06-24 1994-01-21 Hitachi Bill Shisetsu Eng Kk Device and method for recovering refrigerant
JPH06249187A (en) * 1993-02-23 1994-09-06 Sony Corp Vacuum pump and driving method therefor
JPH074832A (en) * 1993-04-23 1995-01-10 Matsuda Sangyo Kk Chlorofluorocarbons collection method and device therefor
JPH07120111A (en) * 1993-10-25 1995-05-12 Hitachi Bill Shisetsu Eng Kk Method and apparatus for centralized administration for prevention of atmospheric pollution due to refrigerant
JPH09196521A (en) * 1996-01-22 1997-07-31 Koichi Utsuki Method and device for recovering cfcs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293660U (en) * 1985-11-29 1987-06-15
JPH0611216A (en) * 1992-06-24 1994-01-21 Hitachi Bill Shisetsu Eng Kk Device and method for recovering refrigerant
JPH06249187A (en) * 1993-02-23 1994-09-06 Sony Corp Vacuum pump and driving method therefor
JPH074832A (en) * 1993-04-23 1995-01-10 Matsuda Sangyo Kk Chlorofluorocarbons collection method and device therefor
JPH07120111A (en) * 1993-10-25 1995-05-12 Hitachi Bill Shisetsu Eng Kk Method and apparatus for centralized administration for prevention of atmospheric pollution due to refrigerant
JPH09196521A (en) * 1996-01-22 1997-07-31 Koichi Utsuki Method and device for recovering cfcs

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414067A (en) * 2004-04-13 2005-11-16 Triventek As Carbon dioxide recovery in pellets production
GB2414067B (en) * 2004-04-13 2006-12-06 Triventek As Carbon dioxide recovery
US20140174111A1 (en) * 2007-12-07 2014-06-26 Bosch Automotive Service Solutions Llc Background tank fill based on refrigerant composition
JP2017125661A (en) * 2016-01-15 2017-07-20 株式会社中島自動車電装 Multistage variable-type gas recovery machine and multistage variable-type refrigerant recovery machine
JP7106030B1 (en) * 2021-09-14 2022-07-25 三菱電機ビルソリューションズ株式会社 Refrigerant recovery system and refrigerant recovery method
WO2023042269A1 (en) * 2021-09-14 2023-03-23 三菱電機ビルソリューションズ株式会社 Refrigerant recovery system and refrigerant recovery method
CN114877572A (en) * 2022-05-24 2022-08-09 珠海格力电器股份有限公司 Refrigerant recovery system and control method

Also Published As

Publication number Publication date
JP3550616B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US3027651A (en) Process and system for removing condensable vapors
JP2631827B2 (en) Steam cryopump
JP2016125773A (en) Liquefied gas cooling device
US5501082A (en) Refrigeration purge and/or recovery apparatus
CN114739055B (en) Liquid oxygen/liquid methane comprehensive supercooling system and method based on liquid oxygen refrigeration capacity
JP3550616B2 (en) Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus
EP3627077A1 (en) Refrigerant recovery apparatus
US20060213221A1 (en) Method and apparatus for generating a high pressure fluid
TW439101B (en) Method and apparatus for recovering PFC gas
JP5677282B2 (en) Refrigeration cycle equipment
JPH0611216A (en) Device and method for recovering refrigerant
US2181854A (en) Refrigeration apparatus and method
KR930005667B1 (en) Method and arrangement for pumping refrigerants
JP2826693B2 (en) Refrigerant gas recovery device for single-port valve recovery container
RU2403517C1 (en) Installation for gas line drying
JPH06157027A (en) Apparatus for recovery and liquefaction of gaseous ammonia
CN217004998U (en) Refrigerating machine working medium purifying and recycling device
JPH062993A (en) Method and apparatus for recoverying refrigerant
JP2910499B2 (en) Refrigeration equipment
JPH06137723A (en) Air bleeding method and air bleeder device, using refrigerant recovery device
JPH0648287Y2 (en) Gas compression unit
JP2000266416A (en) Very low temperature refrigerating device
JPH03160285A (en) Refrigerator
CN117781500A (en) Helium loss preventing device for helium cryogenic system
RU2110024C1 (en) Method of preparation of pure xenon from primary krypton concentrate

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees