JPH06157027A - Apparatus for recovery and liquefaction of gaseous ammonia - Google Patents

Apparatus for recovery and liquefaction of gaseous ammonia

Info

Publication number
JPH06157027A
JPH06157027A JP4328762A JP32876292A JPH06157027A JP H06157027 A JPH06157027 A JP H06157027A JP 4328762 A JP4328762 A JP 4328762A JP 32876292 A JP32876292 A JP 32876292A JP H06157027 A JPH06157027 A JP H06157027A
Authority
JP
Japan
Prior art keywords
ammonia gas
pressure
condenser
ammonia
gaseous ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4328762A
Other languages
Japanese (ja)
Other versions
JPH0688775B2 (en
Inventor
Koji Okamoto
宏二 岡本
Masayoshi Date
応宜 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani International Corp
Original Assignee
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani International Corp filed Critical Iwatani International Corp
Priority to JP4328762A priority Critical patent/JPH0688775B2/en
Publication of JPH06157027A publication Critical patent/JPH06157027A/en
Publication of JPH0688775B2 publication Critical patent/JPH0688775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/12Separation of ammonia from gases and vapours

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To safely recover gaseous ammonia from a treatment chamber at low cost and to readily control the pressure in the treatment chamber. CONSTITUTION:A gaseous ammonia recovery passage 2 is led out from a treatment chamber 1 kept to a negative pressure and a blower 3 and a condenser 4 are set on the course of the gaseous ammonia recovery passage 2. The condenser 4 is linked to a refrigerator 5 and the gaseous ammonia in the gaseous ammonia recovery passage 2 is compressed to <2atm by using the blower 3 and condensed in the condenser 4 by the coldness of a cooling medium from the refrigerator 5. As the gaseous ammonia is compressed under a low pressure, there is no fear of leakage of the gas. The limitation as to the materials or the structure of the apparatus can be reduced and the pressure in the treatment chamber can be readily controlled by reducing the pressure difference in the apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアンモニアガス回収液化
装置に関し、安全で且つ安価に実施できるうえ、処理室
を容易に圧力制御できるものを提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for recovering and liquefying ammonia gas, which can be safely and inexpensively implemented and which can easily control the pressure of a processing chamber.

【0002】[0002]

【従来の技術】天然繊維、例えば、コットンでは、液体
アンモニアによる処理で、結晶構造とフィブリル配列に
変化が起こり、柔軟、防縮、防皺、強度向上などの性能
アップが図れることが知られている。即ち、当該天然繊
維に防縮、防皺などの加工を施すには、通常、繊維を処
理室内で液体アンモニアに浸漬したのち、加熱によりア
ンモニアガスを蒸散させて行っている。但し、この繊維
処理室は大気圧より若干低い負圧に保持されて、アンモ
ニアガスの漏出を防止するようにしてある。
2. Description of the Related Art It has been known that natural fiber, such as cotton, undergoes a change in crystal structure and fibril arrangement when treated with liquid ammonia to improve its performance such as flexibility, shrinkage resistance, wrinkle resistance and strength improvement. . That is, in order to subject the natural fiber to shrink-proofing, wrinkle-proofing and the like, usually, the fiber is immersed in liquid ammonia in the processing chamber and then the ammonia gas is evaporated by heating. However, this fiber processing chamber is kept at a negative pressure slightly lower than the atmospheric pressure to prevent leakage of ammonia gas.

【0003】本発明はこれらの処理で発生したアンモニ
アガスの回収液化装置を対象とし、その基本構造は、図
1又は図2に示すように、処理室1からアンモニアガス
回収路2を導出し、アンモニアガス回収路2に加圧処理
器3及び凝縮器4を介装して、処理室1を負圧に保持す
るとともに、当該処理室1で加熱蒸発したアンモニアガ
スをアンモニアガス回収路2を介して加圧処理器3で加
圧し、凝縮器4で凝縮して液体アンモニアを回収するよ
うに構成した形式のものである。
The present invention is directed to a recovering and liquefying apparatus for ammonia gas generated by these processes, and its basic structure is to lead out an ammonia gas recovering passage 2 from a processing chamber 1 as shown in FIG. 1 or 2. A pressure processor 3 and a condenser 4 are provided in the ammonia gas recovery passage 2 to keep the processing chamber 1 at a negative pressure, and the ammonia gas heated and evaporated in the processing chamber 1 is passed through the ammonia gas recovery passage 2. The liquid is pressurized by the pressure treatment device 3 and condensed by the condenser 4 to recover liquid ammonia.

【0004】この形式の従来技術としては、例えば、図
2に示すように、加圧処理器3をコンプレッサーで構成
し、凝縮器4に減圧手段50(具体的には、絞り弁)を連
動し、絞り弁50で液体アンモニアを減圧・膨張可能に
構成することにより、回収アンモニアガスをコンプレッ
サー3で圧縮したのちに、(1)凝縮器4で凝縮して、高
圧(最大略14気圧)、常温(最大略40℃)の液体アンモ
ニアを得るとともに、(2)これを絞り弁50で減圧・膨
張して自己冷却させ、低圧(略大気圧)、低温(略−34
℃)の液体アンモニアを得るように構成したものがあ
る。
As a conventional technique of this type, for example, as shown in FIG. 2, the pressure treatment device 3 is constituted by a compressor, and the condenser 4 is linked with a pressure reducing means 50 (specifically, a throttle valve). By constructing the throttle valve 50 so that the liquid ammonia can be decompressed / expanded, the recovered ammonia gas is compressed by the compressor 3 and then (1) condensed by the condenser 4 to generate high pressure (up to about 14 atm) at room temperature. While obtaining liquid ammonia (maximum approximately 40 ° C.), (2) decompressing / expanding this with the throttle valve 50 to self-cool it, low pressure (approximately atmospheric pressure), low temperature (approximately −34)
Some are configured to obtain liquid ammonia (° C.).

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、下
記の問題点がある。 (1)可燃性で、毒性及び腐食性を有するアンモニアガス
を10気圧以上に達する高圧に圧縮するために、装置外
にガスが漏れる危険性が強い。 (2)高圧アンモニアガスの接触にも耐えるようにするた
め、同回収装置は材質及び構造上の制約を強く受け、製
造コストが高くなる。 (3)コンプレッサー3でアンモニアガスを高圧に圧縮す
る一方で、処理室1を負圧に保持するため、処理室1の
圧力制御が容易でない。 本発明は、安全で安価にアンモニアガスを回収し、処理
室を簡便に圧力制御することを技術的課題とする。
The above-mentioned prior art has the following problems. (1) Since combustible, toxic and corrosive ammonia gas is compressed to a high pressure of 10 atm or more, there is a strong risk that the gas may leak out of the device. (2) In order to withstand the contact of high-pressure ammonia gas, the recovery device is strongly restricted in material and structure, and the manufacturing cost becomes high. (3) While the ammonia gas is compressed to a high pressure by the compressor 3, the processing chamber 1 is maintained at a negative pressure, so that the pressure control of the processing chamber 1 is not easy. An object of the present invention is to safely and inexpensively recover ammonia gas and simply control the pressure of a processing chamber.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するため
の手段を、実施例を示す図1により以下に説明する。即
ち、本発明は前記基本構造のアンモニアガス回収液化装
置において、上記加圧処理器3をブロアーで構成し、上
記凝縮器4を冷凍機5に連動し、凝縮器4内でアンモニ
アガスを冷凍機5から供給される冷媒で熱交換可能に構
成して、アンモニアガス回収路2を通るアンモニアガス
をブロアー3で2気圧未満に加圧し、凝縮器4内で冷凍
機5からの冷媒の冷熱で凝縮するように構成したことを
特徴とするものである。上記処理室1は繊維を防縮・防
皺加工する処理室などをいう。また、上記ブロアー3で
は、ゲージ圧で2気圧未満にアンモニアガスを加圧する
が、0.5気圧程度とするのが好ましい。
Means for achieving the above object will be described below with reference to FIG. 1 showing an embodiment. That is, according to the present invention, in the ammonia gas recovery liquefaction apparatus having the basic structure, the pressure treatment device 3 is composed of a blower, the condenser 4 is interlocked with the refrigerator 5, and the ammonia gas is refrigerated in the condenser 4. 5, the refrigerant supplied from 5 heat-exchangeable, the ammonia gas passing through the ammonia gas recovery passage 2 is pressurized to less than 2 atm by the blower 3, and is condensed in the condenser 4 by the cold heat of the refrigerant from the refrigerator 5. It is characterized in that it is configured to. The processing chamber 1 refers to a processing chamber for shrink-proofing and wrinkle-proofing the fibers. In the blower 3, the ammonia gas is pressurized to less than 2 atm with a gauge pressure, but it is preferably about 0.5 atm.

【0007】[0007]

【作用】処理室1から回収したアンモニアガスをブロア
ー3で2気圧未満に加圧するだけで良いので、従来のよ
うにコンプレッサーで10気圧以上にまで圧縮する必要
はなく、アンモニアガスが装置外に漏れ出す危険はな
い。また、アンモニアガスを低圧で加圧するので、アン
モニアガス回収装置の耐久性の要求は従来より大きく緩
和され、アンモニアガス回収装置の構造が簡略になる。
しかも、低圧で加圧したアンモニアガスを凝縮器4に送
るので、冷凍機5からの冷媒で熱交換させるだけで低圧
・低温の液体アンモニアが容易に得られる。このため、
従来技術のように、アンモニアガスを凝縮器4内で高圧
・常温に凝縮したのち、更に絞り弁50による減圧・膨
張で自己冷却させる必要はない。一方、ブロアー3によ
りアンモニアガスを低圧で加圧するので、コンプレッサ
ーを使用する従来技術とは異なり、処理室1と加圧部と
の圧力差が小さい。
The ammonia gas recovered from the processing chamber 1 need only be pressurized to less than 2 atm by the blower 3, so it is not necessary to compress it to 10 atm or more with a compressor as in the conventional case, and ammonia gas leaks out of the equipment. There is no danger of putting it out. Further, since the ammonia gas is pressurized at a low pressure, the requirement for durability of the ammonia gas recovery device is relaxed to a greater extent than before, and the structure of the ammonia gas recovery device is simplified.
Moreover, since the ammonia gas pressurized at a low pressure is sent to the condenser 4, only by exchanging heat with the refrigerant from the refrigerator 5, low-pressure and low-temperature liquid ammonia can be easily obtained. For this reason,
It is not necessary to condense the ammonia gas to a high pressure / normal temperature in the condenser 4 and then to perform self-cooling by pressure reduction / expansion by the throttle valve 50 as in the conventional technique. On the other hand, since the blower 3 pressurizes the ammonia gas at a low pressure, the pressure difference between the processing chamber 1 and the pressurizing section is small, unlike the conventional technique using a compressor.

【0008】[0008]

【発明の効果】(1)ブロアーの使用によりアンモニアガ
スを高圧に加圧しないので、アンモニアガスの漏れ出す
危険がなく、回収装置の安全性が飛躍的に向上する。 (2)上記(1)により、アンモニアガス回収装置の耐久性の
要求を緩和できるので、アンモニアガス回収装置の製造
コストを低減できる。また、本発明では、従来のように
凝縮と減圧膨張の2段処理の必要がなく、アンモニアガ
スを冷凍機の冷媒で熱交換するだけで良いので、速やか
に低圧・低温の液体アンモニアを回収できる。 (3)上記(1)により、装置内での設定圧力差が小さくなる
ので、処理室を容易に圧力制御できる。
EFFECTS OF THE INVENTION (1) Since the ammonia gas is not pressurized to a high pressure by using the blower, there is no risk of ammonia gas leaking, and the safety of the recovery device is dramatically improved. (2) Since the requirement of durability of the ammonia gas recovery device can be relaxed by the above (1), the manufacturing cost of the ammonia gas recovery device can be reduced. Further, in the present invention, unlike the conventional case, it is not necessary to perform the two-stage treatment of condensation and decompression expansion, and it is sufficient to exchange heat of ammonia gas with the refrigerant of the refrigerator, so that low-pressure / low-temperature liquid ammonia can be promptly recovered. . (3) Since the set pressure difference in the apparatus is reduced by the above (1), the pressure in the processing chamber can be easily controlled.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて述べ
る。図1は天然繊維の防縮・防皺加工に伴うアンモニア
ガス回収液化装置の概略系統図である。上記アンモニア
ガス回収液化装置は、天然繊維を防縮・防皺加工する処
理室1と、処理室1から蒸散したアンモニアガスを回収
するアンモニアガス回収路2と、処理室1に液体アンモ
ニアを供給する液体アンモニア供給槽6と、液体アンモ
ニア供給源6に液体アンモニアを補給する液体アンモニ
ア補給槽7とから構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic system diagram of an ammonia gas recovery liquefaction device for shrink-proof / wrinkle-proof processing of natural fibers. The ammonia gas recovery liquefaction apparatus is a processing chamber 1 for shrink-proofing and wrinkle-proofing natural fibers, an ammonia gas recovery passage 2 for recovering ammonia gas evaporated from the processing chamber 1, and a liquid for supplying liquid ammonia to the processing chamber 1. It is composed of an ammonia supply tank 6 and a liquid ammonia supply tank 7 for supplying liquid ammonia to the liquid ammonia supply source 6.

【0010】上記処理室1に加工槽8と加熱器10を配
置し、その全体を密封ケーシング12で囲繞して、コッ
トンなどの天然繊維Aをローラー11で連続供給し、加
工槽8の液体アンモニア内に浸漬して防縮・防皺加工を
施すとともに、天然繊維Aに付着した液体アンモニアの
大半を加熱器10で気化・蒸散させる。上記処理室1を
アンモニアガス回収路2を介して液体アンモニア供給槽
6に接続し、アンモニアガス回収路2に当該供給槽6に
向けて緩衝室13、ブロアー3、冷却器14及び凝縮器
4を順番に介装する。
A processing tank 8 and a heater 10 are arranged in the processing chamber 1, the whole is surrounded by a hermetically sealed casing 12, and natural fibers A such as cotton are continuously supplied by a roller 11, and liquid ammonia in the processing tank 8 is supplied. While being dipped in the container to be subjected to shrinkage-proof and wrinkle-proofing treatment, most of the liquid ammonia attached to the natural fiber A is vaporized and evaporated by the heater 10. The processing chamber 1 is connected to a liquid ammonia supply tank 6 through an ammonia gas recovery passage 2, and a buffer chamber 13, a blower 3, a cooler 14 and a condenser 4 are connected to the ammonia gas recovery passage 2 toward the supply tank 6. Insert in order.

【0011】上記緩衝室13は比較的小容量のガスタン
クである。上記ブロアー3は電動機15で駆動され、ア
ンモニアガス回収路2を介して処理室1で蒸散したアン
モニアガスを吸引したのち、低圧で加圧する。このた
め、ケーシング12で囲繞される処理室1内は、大気圧
より若干低い負圧(具体的には、数mm〜十数mm水柱の
負圧)に保持される。尚、この負圧制御はブロアー3を
駆動する電動機15のインバータ制御などにより比較的
容易に行える。上記冷却器14はブロアー3で低圧に加
圧されたアンモニアガスを冷却するものである。上記凝
縮器4はフロン冷凍機5に連動され、温度低下したアン
モニアガスを冷却凝縮するものである。このため、凝縮
器4内にはフロン冷凍機5から導出された冷媒の流通パ
イプ16が突入配置される。また、凝縮器4の上壁にガ
ス溜め室17を突設し、ガス溜め室17から排気路18
を導出し、排気路18に除害装置19を介装する。
The buffer chamber 13 is a gas tank having a relatively small capacity. The blower 3 is driven by the electric motor 15, sucks the ammonia gas evaporated in the processing chamber 1 through the ammonia gas recovery passage 2, and then pressurizes it at a low pressure. Therefore, the inside of the processing chamber 1 surrounded by the casing 12 is maintained at a negative pressure slightly lower than the atmospheric pressure (specifically, a negative pressure of several mm to several tens of mm of water column). The negative pressure control can be relatively easily performed by controlling the inverter of the electric motor 15 that drives the blower 3. The cooler 14 cools the ammonia gas pressurized to a low pressure by the blower 3. The condenser 4 is interlocked with the Freon refrigerator 5 to cool and condense the ammonia gas having a lowered temperature. For this reason, in the condenser 4, a circulation pipe 16 for the refrigerant led from the Freon refrigerator 5 is arranged in a protruding manner. Further, a gas storage chamber 17 is provided so as to project from the upper wall of the condenser 4, and the gas storage chamber 17 is connected to the exhaust passage 18 through the gas storage chamber 17.
And the abatement device 19 is provided in the exhaust passage 18.

【0012】前記液体アンモニア供給槽6を処理室1の
加工槽8に液体アンモニア供給路25を介して接続し、
当該供給槽6を上記緩衝室13にアンモニアガス還流路
20を介して接続し、当該還流路20に圧力調整弁21
を介装する。尚、前記凝縮器4の底壁から当該供給槽6
に液体アンモニア搬入路26が接続される。また、上記
液体アンモニア供給槽6に液体アンモニア補給槽7を液
体アンモニア補給路22を介して接続し、当該補給路2
2に絞り弁23を介装する。当該補給槽7は繊維の加工
処理で目減りしたアンモニアを供給槽6に補給するため
のもので、通常、アンモニアは高圧(最大略14気圧)・
常温(最大略40℃)の液体としてこの補給槽7内に貯留
され、絞り弁23により減圧・膨張させて低圧(略大気
圧)・低温(略−34℃)の液体アンモニアにしたうえ
で、供給槽6に補給される。
The liquid ammonia supply tank 6 is connected to the processing tank 8 of the processing chamber 1 via a liquid ammonia supply passage 25,
The supply tank 6 is connected to the buffer chamber 13 via the ammonia gas recirculation path 20, and the pressure regulation valve 21 is connected to the recirculation path 20.
Intervene. In addition, from the bottom wall of the condenser 4 to the supply tank 6
The liquid ammonia carry-in path 26 is connected to. Further, the liquid ammonia replenishment tank 7 is connected to the liquid ammonia supply tank 6 through the liquid ammonia replenishment passage 22, and the replenishment passage 2 is connected.
The throttle valve 23 is provided in the position 2. The replenishment tank 7 is for replenishing the supply tank 6 with the ammonia depleted in the fiber processing, and normally the ammonia is at a high pressure (up to about 14 atm).
After being stored in the replenishment tank 7 as a liquid at room temperature (maximum about 40 ° C.), it is decompressed / expanded by the throttle valve 23 into liquid ammonia at low pressure (about atmospheric pressure) / low temperature (about −34 ° C.), It is supplied to the supply tank 6.

【0013】上記減圧・膨張により液化しなかったアン
モニアガスは、液体アンモニア供給槽6からアンモニア
ガス還流路20により緩衝室13を介してブロアー3で
吸引される。但し、液体アンモニア供給槽6の気相部の
圧力は、前記圧力調整弁21により略大気圧に保持され
る。尚、アンモニア供給槽6、凝縮器4、供給路25、
搬入路26は保冷材24で囲繞される。また、処理室1
を負圧に保持することで、処理室1内に侵入したエア
は、凝縮器4のガス溜め室17から排気路18により排
出される。
The ammonia gas that has not been liquefied due to the pressure reduction / expansion is sucked by the blower 3 from the liquid ammonia supply tank 6 through the ammonia gas recirculation passage 20 through the buffer chamber 13. However, the pressure of the gas phase portion of the liquid ammonia supply tank 6 is maintained at substantially atmospheric pressure by the pressure adjusting valve 21. In addition, the ammonia supply tank 6, the condenser 4, the supply path 25,
The carry-in path 26 is surrounded by the cold insulating material 24. Also, the processing chamber 1
The air that has entered the processing chamber 1 is discharged from the gas storage chamber 17 of the condenser 4 through the exhaust passage 18 by maintaining the negative pressure.

【0014】そこで、本実施例のアンモニアガス回収液
化装置のアンモニアの流れを説明し、装置の機能を併記
する。但し、液体アンモニアは黒矢印で示し、アンモニ
アガスは白矢印で示した。先ず、処理室1の加工槽8で
防縮・防皺加工された天然繊維Aは加熱器10で加熱さ
れるが、その際に繊維Aから蒸発したアンモニアガス
は、ブロアー3の吸引によりアンモニア回収路2に導か
れる。同回収路2の緩衝室13を経たアンモニアガス
は、ブロアー3でゲージ圧にして2気圧未満(具体的に
は、0.5気圧程度)に加圧されるとともに、冷却器14
で温度低下されて、凝縮器4に入る。上記凝縮器4内で
は、低温のアンモニアガスは、冷凍機5から導出された
流通パイプ16内を通る冷媒フロン(特定フロンを除く)
の冷熱で冷却・凝縮されて、略大気圧・−34℃の液体
アンモニアになり、搬入路26を通って液体アンモニア
供給槽6に蓄えられるとともに、適宜、処理室1の加工
槽8に供給路25から送給される。
Therefore, the flow of ammonia in the ammonia gas recovery liquefaction apparatus of this embodiment will be described, and the function of the apparatus will also be described. However, liquid ammonia is shown by a black arrow and ammonia gas is shown by a white arrow. First, the natural fiber A that has been shrink-proofed and wrinkle-proofed in the processing tank 8 of the processing chamber 1 is heated by the heater 10. The ammonia gas evaporated from the fiber A at that time is sucked by the blower 3, and the ammonia recovery path is obtained. Guided to 2. Ammonia gas that has passed through the buffer chamber 13 of the recovery passage 2 is pressurized to less than 2 atm (specifically, about 0.5 atm) by the blower 3 and the cooler 14
The temperature is lowered at and enters the condenser 4. In the condenser 4, the low-temperature ammonia gas is a refrigerant chlorofluorocarbon (excluding a specific chlorofluorocarbon) that passes through the inside of the distribution pipe 16 led out from the refrigerator 5.
Is cooled and condensed by the cold heat of to become liquid ammonia at approximately atmospheric pressure and −34 ° C., which is stored in the liquid ammonia supply tank 6 through the carry-in passage 26 and is appropriately supplied to the processing tank 8 of the processing chamber 1. Sent from 25.

【0015】この場合、処理室1から回収されたアンモ
ニアガスはブロアー3で2気圧未満に加圧され、従来の
ようにコンプレッサーで高圧には圧縮されないので、ア
ンモニアガスが系外に漏れ出す危険がなく、回収装置の
安全性が向上する。また、アンモニアガスを低圧で加圧
するので、アンモニアガス回収装置の耐久性の要求は従
来より大きく緩和され、同回収装置の製造コストを低減
できる。しかも、コンプレッサーを使用した従来技術と
は異なり、装置内の圧力差が小さくなるので、処理室1
の圧力制御が容易になる。
In this case, the ammonia gas recovered from the processing chamber 1 is pressurized to less than 2 atm by the blower 3 and is not compressed to a high pressure by the compressor as in the conventional case. Therefore, there is a risk that the ammonia gas leaks out of the system. No, the safety of the recovery device is improved. Moreover, since the ammonia gas is pressurized at a low pressure, the requirement for durability of the ammonia gas recovery device is greatly relaxed compared to the conventional one, and the manufacturing cost of the recovery device can be reduced. Moreover, unlike the conventional technique using the compressor, the pressure difference in the apparatus becomes small, so that the processing chamber 1
Pressure control becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】天然繊維の防縮・防皺加工に伴うアンモニアガ
ス回収液化装置の概略系統図である。
FIG. 1 is a schematic system diagram of an ammonia gas recovery liquefaction device accompanying shrink-proof / wrinkle-proof processing of natural fibers.

【図2】従来技術を示す図1の相当図である。FIG. 2 is a view equivalent to FIG. 1 showing a conventional technique.

【符号の説明】[Explanation of symbols]

1…処理室、2…アンモニアガス回収路、3…加圧処理
器、4…凝縮器、5…冷凍機、6…液体アンモニア供給
槽、7…液体アンモニア補給槽。
DESCRIPTION OF SYMBOLS 1 ... Processing chamber, 2 ... Ammonia gas recovery path, 3 ... Pressurization processing device, 4 ... Condenser, 5 ... Refrigerator, 6 ... Liquid ammonia supply tank, 7 ... Liquid ammonia supply tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 処理室(1)からアンモニアガス回収路
(2)を導出して、アンモニアガス回収路(2)に加圧処理
器(3)及び凝縮器(4)を介装して、処理室(1)を負圧に
保持するとともに、当該処理室(1)で加熱蒸発したアン
モニアガスをアンモニアガス回収路(2)を介して加圧処
理器(3)で加圧し、凝縮器(4)で凝縮して液体アンモニ
アを回収するように構成したアンモニアガス回収液化装
置において、 上記加圧処理器(3)をブロアーで構成し、 上記凝縮器(4)を冷凍機(5)に連動し、凝縮器(4)内で
アンモニアガスを冷凍機(5)から供給される冷媒で熱交
換可能に構成して、 アンモニアガス回収路(2)を通るアンモニアガスをブロ
アー(3)で2気圧未満に加圧し、凝縮器(4)内で冷凍機
(5)からの冷媒の冷熱で凝縮するように構成したことを
特徴とするアンモニアガス回収液化装置。
1. Ammonia gas recovery passage from the processing chamber (1)
(2) is led out, the pressure treatment device (3) and the condenser (4) are interposed in the ammonia gas recovery passageway (2) to keep the treatment chamber (1) at a negative pressure and Ammonia gas heated and evaporated in the chamber (1) was pressurized by the pressure treatment device (3) through the ammonia gas recovery passageway (2) and condensed in the condenser (4) to recover liquid ammonia. In the ammonia gas recovery liquefaction device, the pressure treatment device (3) is composed of a blower, the condenser (4) is linked to a refrigerator (5), and the ammonia gas is refrigerated in the condenser (4) ( 5) The refrigerant supplied from 5) is configured to be capable of heat exchange, the ammonia gas passing through the ammonia gas recovery passageway (2) is pressurized to less than 2 atm by the blower (3), and the refrigerating machine is installed in the condenser (4).
An ammonia gas recovery liquefier characterized in that it is configured to be condensed by the cold heat of the refrigerant from (5).
JP4328762A 1992-11-13 1992-11-13 Ammonia gas recovery liquefaction device Expired - Fee Related JPH0688775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328762A JPH0688775B2 (en) 1992-11-13 1992-11-13 Ammonia gas recovery liquefaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328762A JPH0688775B2 (en) 1992-11-13 1992-11-13 Ammonia gas recovery liquefaction device

Publications (2)

Publication Number Publication Date
JPH06157027A true JPH06157027A (en) 1994-06-03
JPH0688775B2 JPH0688775B2 (en) 1994-11-09

Family

ID=18213867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328762A Expired - Fee Related JPH0688775B2 (en) 1992-11-13 1992-11-13 Ammonia gas recovery liquefaction device

Country Status (1)

Country Link
JP (1) JPH0688775B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010054721A (en) * 1999-12-08 2001-07-02 박종현 Recycling apparatus of the processing water for fabric produects
KR20030012087A (en) * 2001-07-30 2003-02-12 일성기계공업 주식회사 Recycling system for reuse of ammonia gas which generated from textile work
JP2008255520A (en) * 2007-04-04 2008-10-23 Mayekawa Mfg Co Ltd Method and device for processing fabric by using ammonia
JP2014124584A (en) * 2012-12-26 2014-07-07 Japan Pionics Co Ltd Ammonia and hydrogen collection method and ammonia and hydrogen recycling method
JP2014154792A (en) * 2013-02-13 2014-08-25 Japan Pionics Co Ltd Recovery method and reuse method of ammonia and hydrogen
CN107631552A (en) * 2017-08-21 2018-01-26 中国科学院理化技术研究所 Ammonia liquefaction system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612202A (en) * 2018-12-28 2019-04-12 山东润银生物化工股份有限公司 A method of synthesis ammonia circulating air condenses and separates liquefied ammonia

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010054721A (en) * 1999-12-08 2001-07-02 박종현 Recycling apparatus of the processing water for fabric produects
KR20030012087A (en) * 2001-07-30 2003-02-12 일성기계공업 주식회사 Recycling system for reuse of ammonia gas which generated from textile work
JP2008255520A (en) * 2007-04-04 2008-10-23 Mayekawa Mfg Co Ltd Method and device for processing fabric by using ammonia
JP2014124584A (en) * 2012-12-26 2014-07-07 Japan Pionics Co Ltd Ammonia and hydrogen collection method and ammonia and hydrogen recycling method
JP2014154792A (en) * 2013-02-13 2014-08-25 Japan Pionics Co Ltd Recovery method and reuse method of ammonia and hydrogen
CN107631552A (en) * 2017-08-21 2018-01-26 中国科学院理化技术研究所 Ammonia liquefaction system

Also Published As

Publication number Publication date
JPH0688775B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US6732536B1 (en) Method for providing cooling to superconducting cable
US4949473A (en) Freeze drying apparatus with additional condensation surface and refrigeration source
JPH06157027A (en) Apparatus for recovery and liquefaction of gaseous ammonia
KR20150094647A (en) Improvements in refrigeration
US2875589A (en) Method of and device for recovering energy when cooling compressed gases in heat exchangers
US20090113912A1 (en) Cooling System, Method for Operating the Same, and Plasma Processing System Using Cooling System
KR20060000943A (en) Refrigeration system in the refrigerator and refrigeration control method implementing it
JP3550616B2 (en) Method of recovering refrigerant enclosed in refrigeration facility and recovery apparatus
JPH0336467A (en) High temperature heat pump
JP2566337B2 (en) CO ▲ 2 ▼ Gas liquefaction method
JP5269006B2 (en) Power generator that reuses liquid air
JP4978361B2 (en) Surplus gas type surge avoidance compressor system
US3318104A (en) Method and apparatus for storing low-boiling liquids
JPH0490454A (en) Freezer
JP2000329414A (en) Hybrid refrigerating machine
KR0136083Y1 (en) Refrigeration cycle apparatus
US2932172A (en) Compression refrigerating system utilizing a free-piston compressor
JP2507452B2 (en) Cooling device and operating method thereof
JP3583171B2 (en) Fabric processing method and apparatus using ammonia
KR100207319B1 (en) A vacuum cooling apparatus
JP2000283395A (en) Liquefied gas storage and supply facility
JP3018657B2 (en) Toilet cooling system
JPH01184370A (en) Method and device for cooling superconduction material
JP4073142B2 (en) Heat pump water heater
JPH09170833A (en) Air refrigerating cycle and cold storage medium cooler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees