JP2566337B2 - CO ▲ 2 ▼ Gas liquefaction method - Google Patents

CO ▲ 2 ▼ Gas liquefaction method

Info

Publication number
JP2566337B2
JP2566337B2 JP2239001A JP23900190A JP2566337B2 JP 2566337 B2 JP2566337 B2 JP 2566337B2 JP 2239001 A JP2239001 A JP 2239001A JP 23900190 A JP23900190 A JP 23900190A JP 2566337 B2 JP2566337 B2 JP 2566337B2
Authority
JP
Japan
Prior art keywords
gas
temperature
liquefying
lng
intermediate refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2239001A
Other languages
Japanese (ja)
Other versions
JPH04121573A (en
Inventor
史雄 富川
正樹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2239001A priority Critical patent/JP2566337B2/en
Publication of JPH04121573A publication Critical patent/JPH04121573A/en
Application granted granted Critical
Publication of JP2566337B2 publication Critical patent/JP2566337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCO2ガスの液化方法に関し、特に回収CO2ガス
を液化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention [relates] relates liquefaction process of CO 2 gas, to a method especially liquefying recovered CO 2 gas.

〔従来の技術〕[Conventional technology]

従来より、LNGの冷熱を利用し、中間冷媒であるハロ
ゲン化炭化水素(以下、フロンと略称する)を冷却し、
冷却したフロンによりCO2ガスを冷却液化する方法が知
られている。
Conventionally, the cold heat of LNG is used to cool a halogenated hydrocarbon (hereinafter, abbreviated as CFC) which is an intermediate refrigerant,
A method is known in which CO 2 gas is cooled and liquefied by using cooled CFCs.

以下、第1図によって中間冷媒としてフロンを使用し
てCO2ガスを液化する方法を説明する。
Hereinafter, a method of liquefying CO 2 gas using CFC as an intermediate refrigerant will be described with reference to FIG.

第1図において、1,2は熱交換器、3はフロンの循環
ライン、4は同循環ポンプ、5はLNG(l)供給ライ
ン、6はLNG(g)排出ライン、7はCO2(g)供給ライ
ン、8はCO2(l)排出ラインである。
In FIG. 1, 1 and 2 are heat exchangers, 3 is a Freon circulation line, 4 is the same circulation pump, 5 is an LNG (l) supply line, 6 is an LNG (g) discharge line, and 7 is CO 2 (g). ) Supply line, 8 is a CO 2 (l) emission line.

供給ライン5から熱交換器1に供給されたLNG(l)
の蒸発潜熱により循環ライン3を介して循環してくるフ
ロン(g)を冷却してフロン(g)をフロン(l)に液
化する。LNG(l)はLNG(g)に蒸発して排出ライン6
より系外に取出され、LNG(g)使用源に供給される。
LNG (l) supplied from the supply line 5 to the heat exchanger 1
The chlorofluorocarbon (g) circulated through the circulation line 3 is cooled by the latent heat of vaporization of chlorofluorocarbon to liquefy the fluorocarbon (g) into chlorofluorocarbon (l). LNG (l) evaporates to LNG (g) and is discharged into the discharge line 6
It is taken out of the system and supplied to the source of LNG (g).

フロン(l)は循環ポンプ4により熱交換器2に供給
され、供給ライン7より供給されるCO2(g)はフロン
(l)の蒸発潜熱によってCO2(l)に冷却液化されて
排出ライン8より系外に取出され、同時にフロン(l)
はフロン(g)となって循環ライン3を介して上記した
ように熱交換器1に循環される。
Freon (l) is supplied to the heat exchanger 2 by the circulation pump 4, and CO 2 (g) supplied from the supply line 7 is cooled and liquefied into CO 2 (l) by the latent heat of vaporization of the freon (l) and then discharged into the discharge line. It was taken out of the system from 8 and at the same time CFC (l)
Becomes chlorofluorocarbon (g) and is circulated to the heat exchanger 1 through the circulation line 3 as described above.

CO2(g)を液化するに際しては、CO2は第3図に示す
ような温度−圧力曲線を有するため、一般的に回収され
たCO2ガスは圧縮しなければならないが、これを圧縮す
るとCO2(g)は高温になるので、この高温高圧CO
2(g)は空気又は水により冷却され、上記第1図の系
に供給される時には該CO2(g)は一般に平均40℃程度
の温度を有している。この40℃のCO2(g)を通常の熱
交換器2で中間冷媒(こゝではフロン)によって冷却す
る時には、温度の差(一般に、アプローチ温度という)
が必要であり、こゝでは熱交換器2に20℃の中間冷媒温
度と液体CO2の温度差を設定した。
When liquefying CO 2 (g), since CO 2 has a temperature-pressure curve as shown in FIG. 3, generally the recovered CO 2 gas must be compressed. CO 2 (g) becomes high temperature, so this high temperature and high pressure CO
The 2 (g) is cooled by air or water, and when supplied to the system of FIG. 1, the CO 2 (g) generally has an average temperature of about 40 ° C. When this CO 2 (g) at 40 ° C is cooled by an intermediate refrigerant (Freon in this case) in the ordinary heat exchanger 2, there is a difference in temperature (generally called the approach temperature).
In this case, the temperature difference between the intermediate refrigerant temperature of 20 ° C and the liquid CO 2 was set in the heat exchanger 2.

CO2(g)をCO2(l)に液化するには供給ライン7よ
り供給されるCO2(g)の圧力を第3図に示した温度−
圧力曲線に見合った圧力にまで圧縮する必要がある。
In order to liquefy CO 2 (g) into CO 2 (l), the pressure of CO 2 (g) supplied from the supply line 7 is set to the temperature shown in FIG.
It is necessary to compress to a pressure commensurate with the pressure curve.

この際、フロンの代表的なフロン22を中間冷媒とする
時には、フロン22の大気圧下の沸点は−40.8℃であるの
で、得られるCO2(g)の温度は約−20.8℃であり、CO2
(g)を液化するためには供給CO2(g)の圧力を約20.
4ataにしておかねばならない。このため、大気圧下のCO
2(g)を20.4ataまで圧縮するエネルギーは相当なもの
となる。
At this time, when using a typical CFC 22 of CFC as an intermediate refrigerant, the boiling point of CFC 22 under atmospheric pressure is −40.8 ° C., so the temperature of CO 2 (g) obtained is about −20.8 ° C. CO 2
To liquefy (g), supply CO 2 (g) pressure of about 20.
Must be 4ata. Therefore, CO under atmospheric pressure
The energy to compress 2 (g) to 20.4ata is considerable.

更に、フロン22は規制対象外となっているものゝフロ
ンは地球大気層のオゾン層を破壊する原因物質として近
年その使用が禁止されようとする傾向にある。
Furthermore, CFC22 is not subject to regulation. CFC tends to be banned in recent years as a causative substance that destroys the ozone layer of the earth's atmosphere.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は上記技術水準に鑑み、本発明はフロンに代わ
り、フロンのような欠点がなく、しかもフロンを中間冷
媒としてCO2ガスを液化するよりもエネルギー消費を少
なくし得る中間冷媒を使用してCO2ガスを液化し得る方
法を提供し、併せて中間冷媒を冷却するのに使用して得
られるLNG(g)の有する圧力エネルギーを動力として
回収し得る方法を提供しようとするものである。
The present invention, in view of the above technical level, the present invention, instead of CFCs, does not have the disadvantages of CFCs, and uses CFCs as an intermediate refrigerant, which uses less energy consumption than liquefying CO 2 gas. It is an object of the present invention to provide a method capable of liquefying CO 2 gas and also a method capable of recovering the pressure energy of LNG (g) obtained by being used for cooling an intermediate refrigerant as power.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、LNGの沸点においても凝固しないハロゲン
元素を含まない液体炭化水素系冷媒を中間冷媒とし、LN
Gの蒸発潜熱により該中間冷媒を冷却液化し、該冷却液
化中間冷媒の蒸発潜熱によりCO2ガスを凝固させること
なく液化させるとともに、蒸発した高圧LNG蒸気により
タービンを回転させて動力を回収することを特徴とする
CO2ガスの液化方法である。
The present invention uses a liquid hydrocarbon-based refrigerant that does not solidify even at the boiling point of LNG and does not contain a halogen element as an intermediate refrigerant.
Cooling and liquefying the intermediate refrigerant by the latent heat of vaporization of G, liquefying CO 2 gas without solidifying by the latent heat of vaporization of the cooling and liquefying intermediate refrigerant, and rotating the turbine by the vaporized high pressure LNG steam to recover power. Characterized by
This is a method of liquefying CO 2 gas.

〔作用〕[Action]

本発明において使用し得るハロゲン元素を含まない液
体炭化水素系冷媒としてはLNGの大気圧下の沸点(約−1
61.5℃)においても凝固しない下表のものがあげられ、
それぞれ単独又は混合して使用される。
As a liquid hydrocarbon-based refrigerant containing no halogen element that can be used in the present invention, the boiling point of LNG under atmospheric pressure (about −1
The ones in the table below do not solidify even at 61.5 ° C.
They are used alone or as a mixture.

なお、上記中間冷媒を単独又は混合して使用する時に
は、その沸点をCO2(g)がCO2(l)になるに十分な温
度であるが、凝固してCO2(s)にならないように、中
間冷媒の温度を高めておく必要がある。このような中間
冷媒を単独又は混合し、中間冷媒循環ラインに適宜の圧
力に封入しておくことにより、CO2(g)と熱交換する
熱交換器に供給する中間冷媒の温度を例えば従来のフロ
ン22の沸点(−40.8℃)よりも十数℃も下げることがで
きるので(勿論、それ以上低下させることもできるが、
CO2の凝固を避けるためには、これ以上沸点低下をもた
らすことは許されない)それだけ該熱交換器に供給する
CO2ガスの加圧量を低めることができ、CO2ガス圧縮に要
するエネルギー量を節約することができる。
When the above intermediate refrigerants are used alone or as a mixture, the boiling point thereof is a temperature sufficient for CO 2 (g) to become CO 2 (l), but it does not solidify into CO 2 (s). First, it is necessary to raise the temperature of the intermediate refrigerant. The temperature of the intermediate refrigerant to be supplied to the heat exchanger for exchanging heat with CO 2 (g) can be adjusted, for example, by changing the temperature of the conventional intermediate refrigerant to a heat exchanger for exchanging heat with CO 2 (g) Since it can be lowered by more than a dozen degrees Celsius than the boiling point (-40.8 ° C) of Freon 22 (of course, it can be lowered further,
In order to avoid the solidification of CO 2, no further lowering of boiling point is allowed) supply to the heat exchanger
The amount of pressurization of CO 2 gas can be reduced, and the amount of energy required for CO 2 gas compression can be saved.

さらに、蒸発したLNG(g)は高圧状態にあるので、
該ガスをタービンに供給して該タービンを回転させ動力
を回収することができるが、蒸発したLNG(g)は余り
にも低温なので、これを熱交換により例えば水で加温
し、常温程度のガス温度にまで昇温してタービンに供給
するようにすることが好ましい。
Furthermore, since the evaporated LNG (g) is in a high pressure state,
The gas can be supplied to the turbine to rotate the turbine to recover the power, but the vaporized LNG (g) is too low in temperature, so it is heated by, for example, water by heat exchange, and the gas at room temperature is used. It is preferable to raise the temperature to a temperature and supply it to the turbine.

〔実施例1〕 以下、第1図のフローに従って本発明の一実施例とし
て中間冷媒としてエタンを使用した場合と、従来の中間
冷媒であるフロン22を使用した場合とを下表に対比して
示し、本発明における特定の中間冷媒を使用する効果を
立証する。
[Example 1] The following table compares the case where ethane is used as an intermediate refrigerant and the case where Freon 22 which is a conventional intermediate refrigerant is used as an example of the present invention in accordance with the flow of FIG. Shown and demonstrate the effect of using a particular intermediate refrigerant in the present invention.

上表の条件下において、本発明の実施例ではCO2ガス
を1.03ataから12.7ataまで圧縮(2段圧縮)すれば足り
るので、CO2コンプレッサーの動力は6210KWH/Hで十分で
あるのに対し、フロン22を使用する従来例ではCO2ガス
を1.03ataから20.4ataまで圧縮(2段圧縮)する必要が
あるので、7330KWH/HのCO2コンプレッサの動力が必要で
ある。
Under the conditions shown in the above table, in the embodiment of the present invention, it is sufficient to compress the CO 2 gas from 1.03ata to 12.7ata (two-stage compression). Therefore, the power of the CO 2 compressor is 6210 KWH / H, while In the conventional example using the Freon 22, it is necessary to compress the CO 2 gas from 1.03ata to 20.4ata (two-stage compression), so the power of the CO 2 compressor of 7330KWH / H is required.

この結果、本発明実施例では従来法に比し大幅な動力
の節減が達成される。
As a result, in the embodiment of the present invention, significant power saving is achieved as compared with the conventional method.

上記実施例では中間冷媒としてエタンを使用する場合
の例を示したが、本発明はこれに限定されるものではな
く、第1表に示した他の中間冷媒を単独又は混合し、適
宜中間冷媒循環ライン中の封入圧力を設定することによ
り、それ相当の動力消費量の節減が可能である。
In the above embodiment, an example in which ethane is used as the intermediate refrigerant is shown, but the present invention is not limited to this, and the other intermediate refrigerants shown in Table 1 may be used alone or in combination, and the intermediate refrigerant may be appropriately added. By setting the charging pressure in the circulation line, it is possible to reduce the power consumption by a corresponding amount.

〔実施例2〕 第2図に示すフローに従って、本発明のLNGガスより
動力回収の実施例を示し、本発明の総合的な効果を立証
する。第2図において、符号1〜8は第1図と同じであ
るので説明は省略する。第2図の加わった符号9は熱交
換器、10は膨張タービンである。
Example 2 An example of power recovery from the LNG gas of the present invention will be shown according to the flow shown in FIG. 2 to prove the overall effect of the present invention. In FIG. 2, reference numerals 1 to 8 are the same as those in FIG. Reference numeral 9 added in FIG. 2 is a heat exchanger, and 10 is an expansion turbine.

第2図において、熱交換器1より排出ライン6を介し
て排出される低温のLNG(g)は熱交換器9により、例
えば水などと熱交換された後、膨張タービン10に供給さ
れて動力を回収される。
In FIG. 2, low-temperature LNG (g) discharged from the heat exchanger 1 through the discharge line 6 is heat-exchanged by the heat exchanger 9 with, for example, water, and then supplied to the expansion turbine 10 to generate power. Will be recovered.

実施例1に対比して示した条件で操作し、排出ライン
6より排出される低温のLNG(g)を熱交換器9で20℃
に昇温し、膨張タービン10に入口圧力10ataで供給し、
出口圧力4ataで取出した時、本発明の実施例の条件では
回収動力は3140KWH/Hである。
Operating under the conditions shown in comparison with Example 1, the low temperature LNG (g) discharged from the discharge line 6 was heated to 20 ° C. in the heat exchanger 9.
The temperature is increased to 10 and the inlet pressure is 10ata to the expansion turbine 10,
When taken out at an outlet pressure of 4ata, the recovery power is 3140 KWH / H under the conditions of the embodiment of the present invention.

該実施例2によっても本発明方法はCO2ガスの液化に
際し、動力回収が行なえ、工業的に有利なことが判る。
It can also be seen from Example 2 that the method of the present invention is industrially advantageous in that power recovery can be performed during the liquefaction of CO 2 gas.

〔発明の効果〕〔The invention's effect〕

本発明によればCO2ガスの液化に際し、CO2ガス圧縮に
よる動力エネルギーが従来法に比し大幅に節減できる効
果を奏すると共に、動力回収が行なえ、その工業的価値
は極めて顕著である。
According to the present invention, when the CO 2 gas is liquefied, the power energy due to the CO 2 gas compression can be significantly reduced as compared with the conventional method, and the power can be recovered, and its industrial value is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来技術および本発明の実施例1の説明図、第
2図は本発明の実施例2の説明図、第3図はCO2ガスの
液化曲線の温度−圧力関係図表である。
FIG. 1 is an explanatory diagram of a prior art and Example 1 of the present invention, FIG. 2 is an explanatory diagram of Example 2 of the present invention, and FIG. 3 is a temperature-pressure relationship diagram of a liquefaction curve of CO 2 gas.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LNGの沸点においても凝固しないハロゲン
元素を含まない液体炭化水素系冷媒を中間冷媒とし、LN
Gの蒸発潜熱により該中間冷媒を冷却液化し、該冷却液
化中間冷媒の蒸発潜熱によりCO2ガスを凝固させること
なく液化させるとともに、蒸発した高圧LNG蒸気により
タービンを回転させて動力を回収することを特徴とする
CO2ガスの液化方法。
1. A liquid hydrocarbon refrigerant that does not solidify even at the boiling point of LNG and does not contain halogen elements is used as an intermediate refrigerant, and LN
Cooling and liquefying the intermediate refrigerant by the latent heat of vaporization of G, liquefying CO 2 gas without solidifying by the latent heat of vaporization of the cooling and liquefying intermediate refrigerant, and rotating the turbine by the vaporized high pressure LNG steam to recover power. Characterized by
Method of liquefying CO 2 gas.
JP2239001A 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method Expired - Lifetime JP2566337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239001A JP2566337B2 (en) 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239001A JP2566337B2 (en) 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method

Publications (2)

Publication Number Publication Date
JPH04121573A JPH04121573A (en) 1992-04-22
JP2566337B2 true JP2566337B2 (en) 1996-12-25

Family

ID=17038424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239001A Expired - Lifetime JP2566337B2 (en) 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method

Country Status (1)

Country Link
JP (1) JP2566337B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150345859A1 (en) * 2013-02-25 2015-12-03 Mitsubishi Heavy Industries Compressor Corporation Carbon dioxide liquefaction device
JP7096118B2 (en) * 2018-09-26 2022-07-05 関西電力株式会社 Heat exchange equipment, power generation equipment and heat exchange method
CN113465201B (en) * 2021-08-05 2022-09-27 西安热工研究院有限公司 Cold-heat combined supply and energy storage system and method based on carbon dioxide coupling molten salt heat storage
EP4191177A1 (en) * 2021-12-01 2023-06-07 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Lng exergy optimization for sbcc
FR3128011B1 (en) * 2022-05-20 2024-06-28 Air Liquide Method and apparatus for cooling a flow rich in CO2

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663699B2 (en) * 1990-06-14 1994-08-22 財団法人電力中央研究所 Recovery method of carbon dioxide emitted from liquefied natural gas-fired power plant

Also Published As

Publication number Publication date
JPH04121573A (en) 1992-04-22

Similar Documents

Publication Publication Date Title
JP2690464B2 (en) Method for recovering volatile organic compounds from gas streams
JP2641581B2 (en) Power generation method
JP2566338B2 (en) CO ▲ 2 ▼ Liquefaction device
JP2002106987A (en) Refrigerating system equipped with stabilizing circuit of fluid for connection
JP2566337B2 (en) CO ▲ 2 ▼ Gas liquefaction method
JP4041036B2 (en) Supercritical cooling system
JP3390801B2 (en) Cooling method of crushed material in low-temperature crushing equipment
JP2548962B2 (en) heat pump
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JP3706436B2 (en) Gas turbine intake air cooling method and apparatus
WO1989002456A1 (en) Refrigerant
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
JP2686320B2 (en) Method for manufacturing liquefied CO 2
JP2004346759A (en) Heat engine
JP3500003B2 (en) Refrigerant composition
JPH05272837A (en) Compression absorption composite heat pump
JP2641587B2 (en) Power generation method
KR200257255Y1 (en) refrigerator/heat pump system
JP2001133060A (en) Heat recovery system for batch plant
JP2000018627A (en) Cogeneration system
JPS6158745B2 (en)
JP2001241785A (en) Co2 refrigerant heat pump and snow melting device
JPH07234025A (en) Vapor compression type heat pump
JPH1089788A (en) Method and apparatus for cooling material to be cooled
JPH02251060A (en) Room cooling and heating hot water supply system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

EXPY Cancellation because of completion of term