JPH04121573A - Method of liquifying co2 gas - Google Patents

Method of liquifying co2 gas

Info

Publication number
JPH04121573A
JPH04121573A JP2239001A JP23900190A JPH04121573A JP H04121573 A JPH04121573 A JP H04121573A JP 2239001 A JP2239001 A JP 2239001A JP 23900190 A JP23900190 A JP 23900190A JP H04121573 A JPH04121573 A JP H04121573A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
gas
intermediate refrigerant
lng
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2239001A
Other languages
Japanese (ja)
Other versions
JP2566337B2 (en
Inventor
Fumio Tomikawa
富川 史雄
Masaki Iijima
正樹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2239001A priority Critical patent/JP2566337B2/en
Publication of JPH04121573A publication Critical patent/JPH04121573A/en
Application granted granted Critical
Publication of JP2566337B2 publication Critical patent/JP2566337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To reduce an energy consumption and recover a power by a method wherein liquid hydro-carbon refrigerant not containing halogen element which is not condensed even at a boiling point of LNG is applied as an intermediate refrigerant, the refrigerant is cooled and liquified by evaporation latent heat of LNG and then CO2 gas is liquified by the evaporation latent heat of the intermediate refrigerant. CONSTITUTION:As liquid hydro-carbon refrigerant not containing halogen elements, methane, ethane, propane or the like not condensed even at a boiling point of LNG under an atmospheric pressure are pointed out. Although its boiling point is a sufficient temperature where CO2g becomes CO2l, a temperature of the intermediate refrigerant is increased in such a way as the refrigerant is not condensed into CO2. This intermediate refrigerant is singly applied or mixed with another substance and enclosed in an intermediate refrigerant circulation line 3, thereby a temperature of the intermediate refrigerant heat exchanged with CO2g can be decreased less than a boiling point of fluorocarbon 22 and then an amount of energy required for compressing CO2 gas can be saved. Since evaporated LNGg has a high pressure and a low temperature, this is heated with water through its heat exchanging operation, its temperature is increased up to its normal temperature and then the LNGg is supplied to a turbine and its power can be recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はC02ガスの液化方法に関し、特に回収C02
ガスを液化する方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for liquefying CO2 gas, and in particular to a method for liquefying CO2 gas.
This invention relates to a method for liquefying gas.

〔従来の技術〕[Conventional technology]

従来より、LNGの冷熱を利用し、中間冷媒であるハロ
ゲン化炭化水素(以下、フロンと略称する)を冷却し、
冷却したフロンによりCD2ガスを冷却液化する方法が
知られている。
Conventionally, the cold energy of LNG is used to cool halogenated hydrocarbons (hereinafter abbreviated as fluorocarbons), which are intermediate refrigerants.
A method is known in which CD2 gas is cooled and liquefied using cooled Freon.

以下、第1図によって中間冷媒としてフロンを使用して
CO2ガスを液化する方法を説明する。
Hereinafter, a method of liquefying CO2 gas using Freon as an intermediate refrigerant will be explained with reference to FIG.

第1図において、1.2は熱交換器、3はフロンの循環
ライン、4は同循環ポンプ、5はLNG (1)供給ラ
イン、6はLNG (g)排出ライン、7はCO2(g
)供給ライン、8はCD□(1)排出ラインである。
In Figure 1, 1.2 is a heat exchanger, 3 is a fluorocarbon circulation line, 4 is a circulation pump, 5 is an LNG (1) supply line, 6 is an LNG (g) discharge line, and 7 is a CO2 (g)
) supply line, 8 is CD□(1) discharge line.

供給ライン5から熱交換器1に供給されたLNG <1
>の蒸発潜熱により循環ライン3を介して循環してくる
フロン(g)を冷却してフロン(g)をフロン<i>に
液化する。LNG(1)はLNG (g)に蒸発して排
出ライン6より系外に取出され、LNG (g)使用源
に供給される。
LNG supplied from supply line 5 to heat exchanger 1 <1
The fluorocarbon (g) circulating through the circulation line 3 is cooled by the latent heat of vaporization of the fluorocarbon (g), and the fluorocarbon (g) is liquefied into fluorocarbon <i>. The LNG (1) is evaporated into LNG (g), taken out of the system through the discharge line 6, and supplied to the LNG (g) usage source.

フロン(1)は循環ポンプ4により熱交換器2に供給さ
れ、供給ライン7より供給されるC02(g)はフロン
(1)の蒸発潜熱によってCD。
Freon (1) is supplied to the heat exchanger 2 by the circulation pump 4, and C02 (g) supplied from the supply line 7 is converted to CD by the latent heat of vaporization of the Freon (1).

(β)に冷却液化されて排出ライン8より系外に取出さ
れ、同時にフロン(i)はフロン、(g)となって循環
ライン3を介して上言己したように熱交換器1に循環さ
れる。
(β) is cooled and liquefied and taken out of the system through the discharge line 8, and at the same time, the fluorocarbon (i) becomes fluorocarbon and (g) and is circulated through the circulation line 3 to the heat exchanger 1 as mentioned above. be done.

CD□ (g)を液化するに際しては、CD2は第3図
に示すような温度−圧力曲線を有するため、一般的に回
収されたCD2ガスは圧縮しなければならないが、これ
を圧縮するとCO2(g)は高温になるので、この高温
高圧CD□ (g)は空気又は水により冷却され、上記
第1図の系に供給される時には該COC02(は一般に
平均40℃程度の温度を有している。この40℃のCD
□(g)を通常の熱交換器2で中間冷媒(こ\ではフロ
ン)によって冷却する時には、温度の差(一般に、アプ
ローチ温度という)が必要であり、こ−では熱交換器2
に20℃の中間冷媒温度と液体CD□の温度差を設定し
た。
When liquefying CD□ (g), since CD2 has a temperature-pressure curve as shown in Figure 3, the recovered CD2 gas generally has to be compressed, but when it is compressed, CO2 ( g) becomes high temperature, this high-temperature, high-pressure CD□ (g) is cooled with air or water, and when it is supplied to the system shown in Figure 1 above, the COC02 (generally has an average temperature of about 40°C). Yes, this 40℃ CD
□When (g) is cooled by an intermediate refrigerant (in this case, Freon) in a normal heat exchanger 2, a temperature difference (generally called approach temperature) is required.
The temperature difference between the intermediate refrigerant temperature and the liquid CD□ was set at 20°C.

CO2(g)をCD□ (Il)に液化するには供給ラ
イン7より供給されるCO2(g)の圧力を第3図に示
した温度−圧力曲線に見合った圧力にまで圧縮する必要
がある。
In order to liquefy CO2 (g) into CD□ (Il), it is necessary to compress the pressure of CO2 (g) supplied from supply line 7 to a pressure commensurate with the temperature-pressure curve shown in Figure 3. .

この際、フロンの代表的なフロン22を中間冷媒とする
時には、フロン22の大気圧下の沸点は−40,8℃で
あるので、得られるC0C02(の温度は約−20,8
℃であり、CO2(g)を液化するためには供給co2
<g>の圧力を約20,4ataにしておかねばならな
い。このため、大気圧下のCOC02(を20. d 
ataまで圧縮するエネルギーは相当なものとなる。
At this time, when Freon 22, a typical type of fluorocarbon, is used as the intermediate refrigerant, the boiling point of Freon 22 under atmospheric pressure is -40.8°C, so the temperature of the obtained C0C02 is approximately -20.8°C.
℃, and in order to liquefy CO2 (g), the supply co2
The <g> pressure must be approximately 20.4 ata. For this reason, COC02 under atmospheric pressure (20. d
The energy required to compress it to ata is considerable.

更に、フロン22は規制対象外となっているもの\フロ
ンは地球大気層のオゾン層を破壊する原因物質として近
年その使用が禁止されようとする傾向にある。
Furthermore, Freon-22 is not subject to regulation. In recent years, there has been a trend toward banning the use of Freon as it is a substance that causes the destruction of the ozone layer in the earth's atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、本発明はフロンに代わり
、フロンのような欠点がなく、しかもフロンを中間冷媒
としてCO2ガスを液化するよりもエネルギー消費を少
なくし得る中間冷媒を使用してCLガスを液化し得る方
法を提供し、併せて中間冷媒を冷却するのに使用して得
られるLNG (g)の有する圧力エネルギーを動力と
して回収し得る方法を提供しようとするものである。
The present invention has been developed in view of the above-mentioned state of the art, and the present invention has been developed to replace fluorocarbons by using an intermediate refrigerant that does not have the disadvantages of fluorocarbons and can consume less energy than liquefying CO2 gas using fluorocarbons as an intermediate refrigerant. The object of the present invention is to provide a method that can liquefy gas, and also provide a method that can recover the pressure energy of LNG (g) obtained by cooling an intermediate refrigerant as power.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は (1)LNGの沸点においても凝固しないハロゲン元素
を含まない液体炭化水素系冷媒を中間冷媒とし、LNG
の蒸発潜熱により該中間冷媒を冷却液化し、該冷却液化
中間冷媒の蒸発潜熱によりC02ガスを凝固させること
なく液化させるC02ガスの液化方法。
The present invention (1) uses a halogen-free liquid hydrocarbon refrigerant that does not solidify even at the boiling point of LNG as an intermediate refrigerant;
A method for liquefying CO2 gas by cooling and liquefying the intermediate refrigerant using the latent heat of evaporation of the cooling liquefied intermediate refrigerant, and liquefying the C02 gas without solidifying it using the latent heat of evaporation of the cooled and liquefied intermediate refrigerant.

(2)上記方法において、蒸発したLNGの高圧蒸気に
よりタービンを回転させて動力を回収するCD、ガスの
液化方法。
(2) In the above method, a CD and gas liquefaction method in which power is recovered by rotating a turbine using high-pressure steam of evaporated LNG.

である。It is.

〔作用〕[Effect]

本発明において使用し得るハロゲン元素を含まない液体
炭化水素系冷媒としてはLNGの大気圧下の沸点(約−
161,5℃)においても凝固しない下表のものがあげ
られ、それぞれ単独又は混合して使用される。
As a halogen-free liquid hydrocarbon refrigerant that can be used in the present invention, the boiling point of LNG under atmospheric pressure (approximately -
The following table shows that they do not solidify even at 161.5°C), and they can be used alone or in combination.

中間冷媒の具体例 なお、上記中間冷媒を単独又は混合して使用する時には
、その沸点を[:02 (g)が002(i)になるに
十分な温度であるが、凝固してC02(s)にならない
ように、中間冷媒の温度を高めておく必要がある。この
ような中間冷媒を単独又は混合し、中間冷媒循環ライン
に適宜の圧力に封入しておくことにより、CL  (g
)と熱交換する熱交換器に供給する中間冷媒の温度を例
えば従来のフロン22の沸点(−40,8℃)よりも十
数℃も下げることができるので(勿論、それ以上低下さ
せることもできるが、co、の凝固を避けるためには、
これ以上沸点低下をもたらすことは許されない)それだ
け該熱交換器に供給するCLガスの加圧量を低めること
ができ、CD2ガス圧縮に要するエネルギー量を節約す
ることができる。
Specific examples of intermediate refrigerants When using the above-mentioned intermediate refrigerants alone or in combination, the boiling point should be set to [:02 (g) at a temperature sufficient to become 002 (i), but solidify to C02 (s ), it is necessary to raise the temperature of the intermediate refrigerant. CL (g
) The temperature of the intermediate refrigerant supplied to the heat exchanger that exchanges heat with the refrigerant can be lowered by more than ten degrees Celsius than the boiling point (-40.8℃) of conventional Freon 22 (of course, it can be lowered even further). It is possible, but to avoid coagulation,
(No further reduction in boiling point is allowed) The amount of pressurized CL gas supplied to the heat exchanger can be reduced accordingly, and the amount of energy required for CD2 gas compression can be saved.

さらに、蒸発したLNG Cg)は高圧状態にあるので
、該ガスをタービンに供給して該タービンを回転させ動
力を回収することができるが、蒸発したLNG (g)
は余りにも低温なので、これを熱交換により例えば水で
加温し、常温程度のガス温度にまで昇温しでタービンに
供給するようにすることが好ましい。
Furthermore, since the vaporized LNG (Cg) is under high pressure, the gas can be supplied to the turbine to rotate the turbine and recover power, but the vaporized LNG (Cg)
Since the temperature of the gas is too low, it is preferable to heat the gas by heat exchange with water, for example, to raise the gas temperature to about room temperature before supplying the gas to the turbine.

〔実施例1〕 以下、第11!!Iのフローに従って本発明の一実施例
として中間冷媒としてエタンを使用した場合と、従来の
中間冷媒であるフロン22を使用した場合とを下表に対
比して示し、本発明の効果を立証する。
[Example 1] Below is the 11th! ! The effect of the present invention is demonstrated by comparing the case where ethane is used as an intermediate refrigerant as an example of the present invention according to the flow of I and the case where Freon 22, which is a conventional intermediate refrigerant, is used. .

上表の条件下において、本発明の実施例ではC02ガス
を1.03 ataから12.7 ataまで圧縮(2
段圧縮)すれば足りるので、[0□コンプレツサーの動
力は6210 KW)l/Hで十分であるのに対し、フ
ロン22を使用する従来例ではC02ガスを1.03 
ataから20. d ataまで圧縮(2段圧縮)す
る必要があるので、7330 KIIIH/HのC02
コンプレツサの動力が必要である。
Under the conditions shown in the table above, in the embodiment of the present invention, C02 gas is compressed from 1.03 ata to 12.7 ata (2
Stage compression) is sufficient, so [0□ compressor power is 6210 KW) l/h is sufficient, whereas in the conventional example using Freon 22, C02 gas is 1.03
20. from ata. Since it is necessary to compress (two-stage compression) to d data, C02 of 7330 KIIIH/H
Compressor power is required.

この結果、本発明実施例では従来法に比し大幅な動力の
節減が達成される。
As a result, the embodiment of the present invention achieves a significant power saving compared to the conventional method.

上記実施例では中間冷媒としてエタンを使用する場合の
例を示したが、本発明はこれに限定されるものではなく
、第1表に示した他の中間冷媒を単独又は混合し、適宜
中間冷媒循環ライン中の封入圧力を設定することにより
、それ相当の動力消費量の節減が可能である。
Although the above embodiment shows an example in which ethane is used as the intermediate refrigerant, the present invention is not limited to this, and other intermediate refrigerants shown in Table 1 may be used alone or in a mixture, and the intermediate refrigerant may be used as appropriate. By setting the confinement pressure in the circulation line, corresponding savings in power consumption are possible.

〔実施例2〕 第2図に示すフローに従って、本発明のLNGガスより
動力回収の実施例を示し、本発明の効果を立証する。第
2図において、符号1〜8は第1図と同じであるので説
明は省略する。第2図の加わった符号9は熱交換器、1
0は膨張タービンである。
[Example 2] According to the flow shown in FIG. 2, an example of power recovery from LNG gas of the present invention will be shown to prove the effects of the present invention. In FIG. 2, numerals 1 to 8 are the same as in FIG. 1, so their explanation will be omitted. The added numeral 9 in FIG. 2 is a heat exchanger, 1
0 is an expansion turbine.

第2図において、熱交換器1より排出ライン6を介して
排出される低温のLNG (g)は熱交換器9により、
例えば水などと熱交換された後、膨張タービン10に供
給されて動力を回収される。
In FIG. 2, low-temperature LNG (g) discharged from the heat exchanger 1 through the discharge line 6 is transferred to the heat exchanger 9.
After exchanging heat with water, for example, it is supplied to the expansion turbine 10 and power is recovered.

実施例1に対比して示した条件で模作し、排出ライン6
より排出される低温のLNG (g)を熱交換器9で2
0℃に昇温し、膨張タービン10に入口圧力10ata
で供給し、出口圧力4ataで取出した時、本発明の実
施例の条件では回収動力は3140にWH/IIである
A replica was made under the conditions shown in comparison with Example 1, and the discharge line 6
The low-temperature LNG (g) discharged from the
The temperature is raised to 0°C, and the inlet pressure to the expansion turbine 10 is 10ata.
When supplied at a pressure of 4ata and taken out at an outlet pressure of 4ata, the recovery power is 3140 WH/II under the conditions of the embodiment of the present invention.

該実施例2によっても本発明方法はCD、ガスの液化に
際し、動力回収が行なえ、工業的に有利なことが判る。
It can be seen from Example 2 that the method of the present invention can recover power during liquefaction of CD and gas, and is industrially advantageous.

〔発明の効果〕〔Effect of the invention〕

本発明によればCD、ガスの液化に際し、C02ガス圧
縮による動力エネルギーが従来法に比し大幅に節減でき
る効果を奏すると共に、動力回収が行なえ、その工業的
価値は極めて顕著である。
According to the present invention, when liquefying CD gas, the power energy due to CO2 gas compression can be significantly reduced compared to the conventional method, and the power can be recovered, and its industrial value is extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術および本発明の実施例1の説明図、第
2図は本発明の実施例2の説明図、第3図はC02ガス
の液化曲線の温度−圧力関係図表である。
FIG. 1 is an explanatory diagram of the prior art and Embodiment 1 of the present invention, FIG. 2 is an explanatory diagram of Embodiment 2 of the present invention, and FIG. 3 is a temperature-pressure relationship chart of the liquefaction curve of C02 gas.

Claims (2)

【特許請求の範囲】[Claims] (1)LNGの沸点においても凝固しないハロゲン元素
を含まない液体炭化水素系冷媒を中間冷媒とし、LNG
の蒸発潜熱により該中間冷媒蒸気を冷却液化し、該冷却
液化中間冷媒の蒸発潜熱によりCO_2ガスを凝固させ
ることなく液化させることを特徴とするCO_2ガスの
液化方法。
(1) A halogen-free liquid hydrocarbon refrigerant that does not solidify even at the boiling point of LNG is used as an intermediate refrigerant, and LNG
A method for liquefying CO_2 gas, characterized in that the intermediate refrigerant vapor is cooled and liquefied by the latent heat of evaporation of the cooled liquefied intermediate refrigerant, and the CO_2 gas is liquefied without being solidified by the latent heat of evaporation of the cooled and liquefied intermediate refrigerant.
(2)請求項(1)記載の方法において、蒸発した高圧
LNG蒸気によりタービンを回転させて動力を回収する
ことを特徴とするCO_2ガスの液化方法。
(2) A method for liquefying CO_2 gas according to claim (1), characterized in that power is recovered by rotating a turbine using evaporated high-pressure LNG steam.
JP2239001A 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method Expired - Lifetime JP2566337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239001A JP2566337B2 (en) 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239001A JP2566337B2 (en) 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method

Publications (2)

Publication Number Publication Date
JPH04121573A true JPH04121573A (en) 1992-04-22
JP2566337B2 JP2566337B2 (en) 1996-12-25

Family

ID=17038424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239001A Expired - Lifetime JP2566337B2 (en) 1990-09-11 1990-09-11 CO ▲ 2 ▼ Gas liquefaction method

Country Status (1)

Country Link
JP (1) JP2566337B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932127B2 (en) * 2013-02-25 2016-06-08 三菱重工コンプレッサ株式会社 Carbon dioxide liquefaction equipment
JP2020051674A (en) * 2018-09-26 2020-04-02 関西電力株式会社 Heat exchange equipment, power generation facility and heat exchange method
CN113465201A (en) * 2021-08-05 2021-10-01 西安热工研究院有限公司 Cold-heat combined supply and energy storage system and method based on carbon dioxide compression coupling molten salt heat storage
FR3128011A1 (en) * 2022-05-20 2023-04-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cooling a CO2-rich flow
EP4191177A1 (en) * 2021-12-01 2023-06-07 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Lng exergy optimization for sbcc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448185A (en) * 1990-06-14 1992-02-18 Central Res Inst Of Electric Power Ind Recovering method of carbon dioxide discharged out of lng burning thermal power station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448185A (en) * 1990-06-14 1992-02-18 Central Res Inst Of Electric Power Ind Recovering method of carbon dioxide discharged out of lng burning thermal power station

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932127B2 (en) * 2013-02-25 2016-06-08 三菱重工コンプレッサ株式会社 Carbon dioxide liquefaction equipment
JP2020051674A (en) * 2018-09-26 2020-04-02 関西電力株式会社 Heat exchange equipment, power generation facility and heat exchange method
CN113465201A (en) * 2021-08-05 2021-10-01 西安热工研究院有限公司 Cold-heat combined supply and energy storage system and method based on carbon dioxide compression coupling molten salt heat storage
CN113465201B (en) * 2021-08-05 2022-09-27 西安热工研究院有限公司 Cold-heat combined supply and energy storage system and method based on carbon dioxide coupling molten salt heat storage
EP4191177A1 (en) * 2021-12-01 2023-06-07 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Lng exergy optimization for sbcc
WO2023101550A1 (en) * 2021-12-01 2023-06-08 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Lng exergy optimization for sbcc
FR3128011A1 (en) * 2022-05-20 2023-04-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cooling a CO2-rich flow
EP4279848A1 (en) 2022-05-20 2023-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for cooling a co2-rich flow

Also Published As

Publication number Publication date
JP2566337B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US6694774B1 (en) Gas liquefaction method using natural gas and mixed gas refrigeration
JP5684723B2 (en) Liquefaction method and liquefaction apparatus
US6301923B1 (en) Method for generating a cold gas
KR20000052603A (en) Method for liquefying an industrial gas
JP2002510010A (en) How to generate power from liquefied natural gas
JPH03215139A (en) Power generating method
KR20020016545A (en) Refrigeration system with coupling fluid stabilizing circuit
JPH04131688A (en) Co2 liquefying device
JPH04121573A (en) Method of liquifying co2 gas
US6250096B1 (en) Method for generating a cold gas
JPH0564722A (en) Separation of carbon dioxide in combustion exhaust gas
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
KR20030015857A (en) Cryogenic refrigeration system
JP2002004813A (en) Combined-cycle generating device utilizing cryogenic lng
JP3222325U (en) Nitrogen liquefier
KR102391287B1 (en) Gas turbine power generation system using liquid air
KR102474224B1 (en) Gas turbine power generation system using liquid air
KR102391289B1 (en) Gas turbine power generation system using liquid oxygen
JP3500003B2 (en) Refrigerant composition
JP7379763B2 (en) Gas liquefaction method and gas liquefaction device
JPH0784979B2 (en) Method for producing liquid air by LNG cold heat and expander cycle
KR20200033649A (en) Gas turbine power generation system using liquid air
JP2641587B2 (en) Power generation method
JPH0579717A (en) Helium refrigerator
JPH0317490A (en) Production method of liquefied co2

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

EXPY Cancellation because of completion of term