WO2023041096A1 - 用于空调器的控制方法及控制装置、存储介质 - Google Patents

用于空调器的控制方法及控制装置、存储介质 Download PDF

Info

Publication number
WO2023041096A1
WO2023041096A1 PCT/CN2022/132518 CN2022132518W WO2023041096A1 WO 2023041096 A1 WO2023041096 A1 WO 2023041096A1 CN 2022132518 W CN2022132518 W CN 2022132518W WO 2023041096 A1 WO2023041096 A1 WO 2023041096A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
air conditioner
heat exchange
compressor
mode
Prior art date
Application number
PCT/CN2022/132518
Other languages
English (en)
French (fr)
Inventor
张心怡
王飞
许文明
林超
丁爽
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211096241.1A external-priority patent/CN116045486A/zh
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023041096A1 publication Critical patent/WO2023041096A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions

Definitions

  • the present application relates to the technical field of air conditioners, for example, to a control method, a control device, and a storage medium for an air conditioner.
  • an air conditioner generally consists of a compressor, an outdoor heat exchanger, a throttling device, a four-way valve, and an indoor heat exchanger to form a refrigerant circulation loop, and the flow direction of the refrigerant in the refrigerant circulation loop is changed through the four-way valve, thereby realizing the air conditioner respectively.
  • cooling and heating functions When the air conditioner operates in cooling mode, the outdoor heat exchanger acts as a condenser; when the air conditioner operates in heating mode, the outdoor heat exchanger acts as an evaporator; the circulation direction of the refrigerant in different modes is opposite, and the circulation path of the refrigerant in different modes varies. Affect the cooling and heating performance of outdoor heat exchangers and air conditioners.
  • the related art discloses a heat exchanger and an air-conditioning device for an air-conditioning device, including a heat exchange section and a subcooling section connected in series, the subcooling section has a main pipe section and at least one bypass pipe section, and each bypass pipe section is connected to At least some sections of the main pipe section are arranged in parallel; and each bypass pipe section is equipped with a one-way check valve, and the direction of the check valve is arranged to block the heat exchanger where it is located when it is used as a condenser.
  • the bypass pipe section allows the refrigerant to flow only through the main pipe section.
  • the bypass pipe section where it is located is connected so that the refrigerant is divided into at least two flow paths in the subcooling section and flow through the main pipe section respectively. and each bypass pipe section.
  • Embodiments of the present disclosure provide a control method, a control device, and a storage medium for an air conditioner, which solve the problem that the heat exchange area cannot be adjusted in the same mode.
  • the control method for an air conditioner includes: the air conditioner includes a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger, wherein the outdoor heat exchanger Devices include:
  • a plurality of refrigerant pipes form a first heat exchange passage, a second heat exchange passage and a third heat exchange passage;
  • the first flow diversion element communicates with the first end of the first heat exchange passage, and the first flow diversion element is provided with a first refrigerant inlet and outlet;
  • the second flow diversion element communicates with the first end of the second heat exchange passage and the first end of the third heat exchange passage, and the second flow diversion element communicates with the first flow diversion element through a first bypass pipeline ;
  • a third flow splitting element communicating with the second end of the first heat exchange passage and the second end of the second heat exchange passage;
  • the fourth flow distribution element communicates with the second end of the third heat exchange passage, and the fourth flow distribution element is provided with a second refrigerant inlet and outlet, and the fourth flow distribution element communicates with the second end of the third heat exchange passage through a second bypass pipeline.
  • a first control valve arranged in the first bypass pipeline
  • a second control valve arranged in the second bypass pipeline
  • control methods include:
  • the on-off states of the first control valve and the second control valve are controlled according to the operation mode of the air conditioner.
  • control device for an air conditioner includes a processor and a memory storing program instructions, wherein the processor is configured to execute any of the above-mentioned The control method for an air conditioner described in the embodiment.
  • the storage medium stores program instructions, and when the program instructions are run, execute the control method for an air conditioner described in any of the above embodiments.
  • control method, control device, and storage medium for an air conditioner provided in the embodiments of the present disclosure can achieve the following technical effects:
  • the refrigerant When the air conditioner is in the cooling mode, the refrigerant enters the first distribution element from the first refrigerant inlet and outlet; when the air conditioner is in the heating mode, the refrigerant enters the fourth distribution element from the second refrigerant inlet and outlet. Furthermore, by controlling the on-off state of the first control valve and the second control valve, the heat exchange area of the outdoor heat exchanger in the same mode can be adjusted, which greatly improves the energy efficiency of the air conditioner.
  • FIG. 1 is a schematic diagram of a control method for an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of another control method for an air conditioner provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another control method for an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of another control method for an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of another control method for an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of an outdoor heat exchanger provided by an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a flow path of an outdoor heat exchanger provided by an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of another flow path of an outdoor heat exchanger provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of another flow path of an outdoor heat exchanger provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of another flow path of an outdoor heat exchanger provided by an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of another flow path of an outdoor heat exchanger provided by an embodiment of the present disclosure.
  • Fig. 13 is a schematic structural diagram of a fourth shunt element provided by an embodiment of the present disclosure.
  • Fig. 14 is a schematic structural diagram of another angle of the fourth flow splitting element provided by the embodiment of the present disclosure.
  • 200 the first heat exchange passage; 210: the second heat exchange passage; 220: the third heat exchange passage; 230: the first bypass pipeline; 240: the second bypass pipeline;
  • 300 the first shunt element; 310: the second shunt element; 320: the third shunt element; 330: the fourth shunt element;
  • 500 compressor; 510: outdoor heat exchanger; 520: indoor heat exchanger; 530: throttling device;
  • 600 confluence pipe; 601: first pipe section; 602: second pipe section; 610: liquid separation cavity; 611: first branch cavity; 612: second branch cavity; 620: first liquid distribution branch; 621: second branch Two branch pipes.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • correspondence may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • a terminal device refers to an electronic device with a wireless connection function.
  • the terminal device can communicate with the above-mentioned smart home appliance by connecting to the Internet, or directly communicate with the above-mentioned smart home appliance through Bluetooth, wifi, etc. communication connection.
  • the terminal device is, for example, a mobile device, a computer, or a vehicle-mounted device built into a hover vehicle, or any combination thereof.
  • the mobile device may include, for example, a mobile phone, a smart home device, a wearable device, a smart mobile device, a virtual reality device, etc., or any combination thereof, wherein the wearable device includes, for example, a smart watch, a smart bracelet, a pedometer, and the like.
  • an embodiment of the present disclosure provides an air conditioner, including a compressor 500 , a four-way valve, an outdoor heat exchanger 510 , a throttling device 530 and an indoor heat exchanger 520 .
  • the outdoor heat exchanger 510 is a heat exchanger with a variable diversion function, including a first diversion element 300, a second diversion element 310, a third diversion element 320, a fourth diversion element 330, a first control A valve 400, a second control valve 410, and a plurality of refrigerant pipes.
  • a plurality of refrigerant pipes form the first heat exchange passage 200, the second heat exchange passage 210 and the third heat exchange passage 220;
  • the second flow distribution element 310 communicates with the first end of the second heat exchange passage 210 and the first end of the third heat exchange passage 220, and the second flow distribution element 310 passes through the first bypass pipeline 230
  • the first flow distribution element 300 is connected;
  • the third flow distribution element 320 is connected with the second end of the first heat exchange passage 200 and the second end of the second heat exchange passage 210;
  • the fourth flow distribution element 330 is connected with the second end of the third heat exchange passage 220 end, and the fourth flow splitting element 330 is provided with the second refrigerant inlet and outlet 110, the fourth flow splitting element 330 communicates with the third flow splitting element 320 through the second bypass line 240;
  • the first control valve 400 is set in the first bypass line 230 ;
  • the second control valve 410 is disposed in the second bypass
  • the outdoor heat exchanger 510 acts as a condenser, and the first refrigerant inlet and outlet 100 of the outdoor heat exchanger 510 is connected to the exhaust port of the compressor 500 through a four-way valve.
  • the second refrigerant inlet and outlet 110 of the outdoor heat exchanger 510 communicates with the indoor heat exchanger 520 through a throttling device 530 .
  • the refrigerant discharged from the compressor 500 through the exhaust port enters the first distribution element 300 from the first refrigerant inlet and outlet 100 .
  • the outdoor heat exchanger 510 acts as an evaporator, and the indoor heat exchanger 520 is connected to the exhaust port of the compressor 500 through a four-way valve, and the indoor heat exchanger 520 is connected to the outdoor air outlet through a throttling device 530.
  • the second refrigerant inlet and outlet 110 of the heat exchanger 510 are connected, and the refrigerant discharged from the compressor 500 through the exhaust port sequentially enters the fourth flow distribution element 330 from the indoor heat exchanger 520 , the throttling device 530 and the second refrigerant inlet and outlet 110 .
  • an embodiment of the present disclosure provides a control method for an air conditioner, including:
  • S20 Control the on-off state of the first control valve 400 and the second control valve 410 according to the operation mode of the air conditioner.
  • the refrigerant When the air conditioner is in the cooling mode, the refrigerant enters the first distribution element 300 from the first refrigerant inlet and outlet 100 ; when the air conditioner is in the heating mode, the refrigerant enters the fourth distribution element 330 from the second refrigerant inlet and outlet 110 . Furthermore, by controlling the on-off state of the first control valve 400 and the second control valve 410, the heat exchange area of the outdoor heat exchanger 510 in the same mode can be adjusted, which greatly improves the energy efficiency of the air conditioner.
  • controlling the on-off state of the first control valve 400 and the second control valve 410 according to the operating mode of the air conditioner includes:
  • S21 Acquire the operating frequency of the compressor 500 when the operating mode of the air conditioner is cooling mode or dehumidifying mode;
  • the frequency of the compressor 500 is F
  • the first preset frequency is F1 (F1 ⁇ 40Hz).
  • the first control valve 400 is controlled to be blocked and the second control valve 410 is controlled to be blocked.
  • the frequency of the compressor 500 is higher, which is suitable for a larger heat exchange area.
  • the refrigerant flows into the outdoor heat exchanger 510 from the first refrigerant inlet and outlet 100, and the circulation path of the refrigerant in the outdoor heat exchanger 510 is: the first heat exchange passage 200, the second heat exchange passage 210 and the third heat exchange passage 210.
  • the heat exchange passage 220 finally flows out of the outdoor heat exchanger 510 through the second refrigerant inlet and outlet 110 of the fourth flow distribution element 330 .
  • the running frequency of the compressor 500 is lower than the first preset frequency, that is, F ⁇ F1
  • the frequency of the compressor 500 is lower, which is suitable for a smaller heat exchange area.
  • the first control valve 400 is controlled to be blocked and the second control valve 410 is turned on.
  • the refrigerant flows into the outdoor heat exchanger 510 from the first refrigerant inlet and outlet 100 , and then flows to the third flow distribution element 320 along the first heat exchange path 200 .
  • the refrigerant in the third flow distribution element 320 has two circulation paths, the first path flows to the fourth flow distribution element 330 along the second heat exchange passage 210 and the third heat exchange passage 220 , and the second path flows to the fourth flow distribution element 330 along the second bypass pipe 240 The fourth shunt element 330 .
  • the distance of the first path is long and the resistance along the path is large, the circulation speed of the refrigerant is slow and the flow rate is small.
  • the distance of the second path is relatively short and the resistance is small, and most of the refrigerant in the third flow dividing element 320 flows along the second path.
  • the refrigerant in the fourth flow distribution element 330 flows out of the outdoor heat exchanger 510 through the second refrigerant inlet and outlet 110 .
  • the refrigerant entering the outdoor heat exchanger 510 mainly flows through the first heat exchange passage 200 to participate in heat exchange, which improves the energy efficiency of the air conditioner.
  • controlling the on-off state of the first control valve 400 and the second control valve 410 according to the operating mode of the air conditioner includes:
  • S24 Acquire the operating frequency of the compressor 500 when the operating mode of the air conditioner is the heating mode
  • the frequency of the compressor 500 is F
  • the second preset frequency is F2 (F2 ⁇ 50Hz).
  • the first control valve 400 is controlled to be turned on and the second control valve 410 is turned on.
  • the frequency of the compressor 500 is higher, which is suitable for a larger heat exchange area.
  • the refrigerant flows into the outdoor heat exchanger 510 from the second refrigerant inlet and outlet 110, and the circulation path of the refrigerant in the outdoor heat exchanger 510 is: the first heat exchange path 200, the second heat exchange path 210, the third heat exchange path
  • the heat exchange passage 220 , the first bypass pipeline 230 and the second bypass pipeline 240 finally flow out of the outdoor heat exchanger 510 through the first refrigerant inlet and outlet 100 of the first flow splitting element 300 .
  • the first control valve 400 is controlled to be turned on and the second control valve 410 is turned off.
  • the frequency of the compressor 500 is low, which is suitable for a small heat exchange area.
  • the refrigerant flows into the outdoor heat exchanger 510 from the second refrigerant inlet and outlet 110 , and then flows to the second flow distribution element 310 along the third heat exchange path 220 .
  • the refrigerant in the second flow distribution element 310 has two flow paths, the first path flows to the first flow distribution element 300 along the second heat exchange path 210 and the first heat exchange path 200 , and the second path flows to the first flow flow path along the first bypass pipe 230 The first shunt element 300 .
  • the refrigerant in the first flow distribution element 300 flows out of the outdoor heat exchanger 510 through the first refrigerant inlet and outlet 100 . In this heating mode and the frequency of the compressor 500 is low, the refrigerant entering the outdoor heat exchanger 510 mainly flows through the third heat exchange passage 220 to participate in heat exchange, which improves the energy efficiency of the air conditioner.
  • step S20 controlling the on-off states of the first control valve 400 and the second control valve 410 according to the operating mode of the air conditioner includes:
  • the refrigerant flows in from the first refrigerant inlet and outlet 100 , and the first control valve 400 is controlled to conduct and the second control valve 410 to conduct.
  • the outdoor heat exchanger 510 acts as a condenser, and the refrigerant flows into the first distribution element 300 from the first refrigerant inlet and outlet 100 .
  • the refrigerant also flows through the first bypass line 230 and the second bypass line 240 . In this way, the circulation speed of the refrigerant in the outdoor heat exchanger 510 is accelerated, the defrosting efficiency is improved, and the heat loss on the indoor side is reduced.
  • an embodiment of the present disclosure provides another control method for an air conditioner, including:
  • S21 Acquire the operating frequency of the compressor 500 when the operating mode of the air conditioner is cooling mode or dehumidifying mode;
  • the range of the first set duration is 4-6 minutes.
  • the frequency of the compressor 500 is unstable and each temperature node of the air conditioning system is unstable.
  • the compressor 500 runs for a first set time, for example, after running for 5 minutes, so that each temperature node and the frequency of the compressor 500 tend to be stable.
  • the on-off states of the first control valve 400 and the second control valve 410 are controlled according to the operating frequency of the compressor 500 , so that the adjustment in this way reduces the vibration of the air-conditioning system.
  • adjusting the first control valve 400 and the second control valve 410 will lead to aggravated system fluctuations, which in turn will lead to large fluctuations in indoor temperature and affect user experience.
  • an embodiment of the present disclosure provides another control method for an air conditioner, including:
  • S24 Acquire the operating frequency of the compressor 500 when the operating mode of the air conditioner is the heating mode
  • the range of the second set duration is 4-6 minutes.
  • the compressor 500 runs for a second set time, for example, after running for 5 minutes, and then controls the on-off state of the first control valve 400 and the second control valve 410 according to the operating frequency of the compressor 500 .
  • adjusting each temperature node of the system and the frequency of the compressor 500 tends to be stable, so that the vibration of the air conditioning system is small, and the fluctuation of the indoor temperature can be reduced, thereby improving the user experience.
  • the fourth branching element 330 includes a casing, a confluence pipe 600 , a first liquid branch pipe 620 and a second liquid branch pipe 621 .
  • a liquid separation chamber 610 is opened inside the housing, and a first liquid distribution port and a second liquid distribution port are provided in the housing.
  • the liquid chamber 610 is in communication, and the second liquid distribution branch pipe 621 is in communication with the liquid distribution chamber 610 through the second liquid distribution port.
  • the liquid separation cavity 610 includes a confluence cavity, a first branch cavity 611 and a second branch cavity 612
  • the first liquid distribution branch pipe 620 communicates with the first branch cavity 611 through the first liquid separation port
  • the second branch cavity 612 communicates with the first branch cavity 612.
  • the liquid branch pipe 621 communicates with the second branch cavity 612 through the second liquid port.
  • the manifold 600 includes a bent and connected first pipe section 601 and a second pipe section 602 , and the first pipe section 601 directly communicates with the liquid separation chamber 610 .
  • the plane where the axes of the first pipe section 601 and the second pipe section 602 lie is the first plane.
  • the plane where the axes of the first liquid branch pipe 620 and the second liquid branch pipe 621 are located is the second plane.
  • the first plane is non-perpendicular to the second plane.
  • the manifold 600 includes a first pipe section 601 and a second pipe section 602 , the plane where the axes of the first pipe section 601 and the second pipe section 602 lie is a first plane, and the angle between the first plane and the second plane is e. As shown in Figure 14.
  • the first plane and the second plane are non-perpendicular, which means that the angle e between the first plane and the second plane is less than 90°.
  • the included angle between the first plane and the second plane is calculated as an acute angle formed by the two planes.
  • the first plane is not perpendicular to the second plane, so that the amount of refrigerant entering the first liquid branch pipe 620 and the second liquid branch pipe 621 through the first pipe section 601 is different.
  • the flow rate of the refrigerant flowing to the second liquid branch pipe 621 is greater than the flow rate to the first liquid branch pipe 620 .
  • the angle between the first plane and the second plane is on the side of the second liquid branch pipe 621, under the action of gravity, the flow rate of the refrigerant flowing to the first liquid branch pipe 620 is greater than the flow rate of the second liquid branch pipe 621 .
  • the pipe diameter scheme with the flow ratio of the branch pipe is 2:1; if the difference in the flow rate of the refrigerant separation liquid is realized by other means such as the difference in the length of the liquid separation branch pipe, bending, etc., it is not universal for mass-produced products. Therefore, only through the difference in the inner diameters of the first liquid branch pipe 620 and the second liquid branch pipe 621 , the refrigerant distribution with a refrigerant flow ratio of 2:1 cannot be accurately realized between the two liquid branch pipes.
  • An included angle is set between the first plane where the axes of the first pipe section 601 and the second pipe section 602 passing through the manifold 600 are located and the second plane where the axes of the two branch pipes are located, and the two branches are further matched.
  • the technical scheme of the inner diameter difference between the two liquid branch pipes can realize the refrigerant flow ratio of the two liquid branch pipes to be 2:1 within the allowable range of the heat exchange tube diameter of the heat exchanger.
  • the inner diameter of the second liquid branch pipe 621 does not need to be designed too thin, and the flow rate of the refrigerant in the first liquid branch pipe 620 can also be much larger than that of the second liquid branch pipe.
  • the refrigerant distribution scheme of the fourth flow distribution element 330 provided by the embodiment of the present disclosure avoids the excessive total pressure drop of the liquid distribution branch pipe and the heat exchanger of the fourth flow distribution element 330 when the refrigerant distribution ratio of the two liquid distribution branch pipes is relatively large. question.
  • the angle between the first plane where the axes of the first pipe section 601 and the second pipe section 602 of the manifold 600 are located and the second plane where the axes of the two liquid branch pipes are located is greater than or equal to 50 degrees and less than Or equal to 70 degrees.
  • the difference of refrigerant flow in the first liquid branch pipe 620 and the second liquid branch pipe 621 is improved.
  • the inner diameter of the first liquid branch pipe 620 is greater than or equal to 5.1 mm and less than or equal to 6.1 mm; the inner diameter of the second liquid branch pipe 621 is greater than or equal to 3.1 mm and less than or equal to 3.7 mm.
  • the second pipe segment 602 of the confluence pipe 600 is arranged obliquely to the side of the second liquid branch pipe 621 .
  • the outdoor heat exchanger can exert the most ideal heat exchange capacity under the following conditions: when heating, it continuously absorbs the heat in the surrounding ambient air from the low-temperature liquid state. The heat, as the temperature rises, reaches the gas-liquid two-phase state. At this time, the temperature remains unchanged at the evaporation temperature, but the phase transition from liquid to gas occurs continuously. The liquid refrigerant is less and less, and the gas refrigerant is more and more. When it reaches the outlet of the entire heat exchange branch, it just turns into a gaseous state and the temperature is 1-2°C higher than the evaporation temperature.
  • the empirical judging method for good shunting during heating is: the temperature difference at the outlet of each branch is within 2°C, and the outlet superheat is about 1°C. In this case, shunting is better.
  • the outdoor heat exchanger when the air conditioner is running in heating mode, the outdoor heat exchanger is used as an evaporator, and the parallel first heat exchange passage 200 and the second heat exchange passage 210 are connected to the first liquid branch pipe 620, the second When the three heat exchange passages 220 are in communication with the second liquid branch pipe 621 , the refrigerant temperatures at the outlets of each heat exchange branch are shown in Table 1 and Table 2 .
  • Table 1 shows that when the included angle between the first plane and the second plane is 90 degrees, under different inner diameters of the first liquid branch pipe 620 and the second liquid branch pipe 621, the maximum distance between the third heat exchange channel 220 and the first two branches temperature difference and the heating capacity of the air conditioner.
  • the inner diameter of the first liquid branch pipe 620 is 5.6 mm
  • the third heat exchange channel 220 of the heat exchanger is the same as the first two
  • the maximum temperature difference of the branch circuit is the smallest, which is 2.1°C
  • the heating capacity of the air conditioner is the largest, which is 4850.1W under this inner diameter.
  • Table 2 shows that when the inner diameter of the first liquid branch pipe 620 is 5.6 mm, and the inner diameter of the second liquid branch pipe 621 is 3.36 mm, the angles between the first plane and the second plane are different angles, the third heat exchange passage The maximum temperature difference between 220 and the first two branches and the heating capacity of the air conditioner.
  • An embodiment of the present disclosure also provides a control device for an air conditioner, including a processor (processor) and a memory (memory).
  • the device may also include a communication interface (Communication Interface) and a bus.
  • the processor, the communication interface, and the memory can communicate with each other through the bus.
  • a communication interface can be used for information transfer.
  • the processor can call the logic instructions in the memory to execute the control method for the air conditioner in the above embodiments.
  • the above logic instructions in the memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor executes the program instructions/modules stored in the memory to execute functional applications and data processing, that is, to implement the method for in the above embodiments.
  • the memory may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory may include high-speed random access memory, and may also include non-volatile memory.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned control method for an air conditioner.
  • An embodiment of the present disclosure provides a computer program.
  • the computer program When the computer program is executed by a computer, the computer is made to implement the above control method for an air conditioner.
  • An embodiment of the present disclosure provides a computer program product.
  • the computer program product includes computer instructions stored on a computer-readable storage medium. When the program instructions are executed by a computer, the computer realizes the above-mentioned air conditioner. control method.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本申请涉及空调器技术领域,公开一种用于空调器的控制方法,包括:所述空调器包括压缩机、四通阀、室外换热器、节流装置和室内换热器,其中,所述室外换热器包括第一换热通路、第二换热通路、第三换热通路、第一旁通管路和第二旁通管路。第一控制阀设置于所述第一旁通管路;第二控制阀设置于所述第二旁通管路;所述控制方法包括:获取所述空调器的运行模式;根据所述空调器的运行模式控制所述第一控制阀和所述第二控制阀的通断状态。这样能够调节室外换热器的换热面积,大幅提升了空调器的能效。本公开实施例还提供了一种用于空调器的控制装置及存储介质。

Description

用于空调器的控制方法及控制装置、存储介质
本申请基于申请号为202211096241.1、申请日为2022年9月8日的中国专利申请提出,该申请已经主张申请号为202122281454.9、申请日为2021年9月19日的中国专利申请的优先权,这些中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调器技术领域,例如涉及一种用于空调器的控制方法及控制装置、存储介质。
背景技术
目前,空调器一般由压缩机、室外换热器、节流装置、四通阀和室内换热器组成冷媒循环回路,并且通过四通阀改变冷媒在冷媒循环回路的流向,从而分别实现空调器的制冷功能和制热功能。空调器运行制冷模式时,室外换热器作为冷凝器;空调器运行制热模式时,室外换热器作为蒸发器;在不同模式下冷媒的循环流向相反,且不同模式下冷媒的流通路径会影响室外换热器及空调器的制冷和制热性能。
相关技术公开了一种用于空调装置的换热器及空调装置,包括串联连接的换热段和过冷段,过冷段具有主管段和至少一个旁通管段,每个旁通管段均与主管段的至少部分区段并联设置;且每个旁通管段上均设有单向导通的单向阀,单向阀的朝向布置成:在换热器作为冷凝器使用时阻断其所在的旁通管段以使冷媒仅流经主管段、在换热器作为蒸发器使用时导通其所在的旁通管段以使冷媒在过冷段中分流成至少两个流路并分别流经主管段和每个旁通管段。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
虽然在不同的运行模式下换热器的流路是可变的,但是在同一模式下换热面积无法进行调节,导致换热器的能效较低。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种用于空调器的控制方法及控制装置、存储介质,解决了在同一 模式下换热面积无法进行调节的问题。
在一些实施例中,所述用于空调器的控制方法包括:所述空调器包括压缩机、四通阀、室外换热器、节流装置和室内换热器,其中,所述室外换热器包括:
多个冷媒管,形成第一换热通路、第二换热通路和第三换热通路;
第一分流元件,连通所述第一换热通路的第一端,所述第一分流元件开设有第一冷媒进出口;
第二分流元件,连通所述第二换热通路的第一端和所述第三换热通路的第一端,所述第二分流元件通过第一旁通管路连通所述第一分流元件;
第三分流元件,连通所述第一换热通路的第二端和所述第二换热通路的第二端;
第四分流元件,连通所述第三换热通路的第二端,且所述第四分流元件开设有第二冷媒进出口,所述第四分流元件通过第二旁通管路连通所述第三分流元件;
第一控制阀,设置于所述第一旁通管路;
第二控制阀,设置于所述第二旁通管路;
所述控制方法包括:
获取所述空调器的运行模式;
根据所述空调器的运行模式控制所述第一控制阀和所述第二控制阀的通断状态。
在一些实施例中,所述用于空调器的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行上述任一实施例所述的用于空调器的控制方法。
在一些实施例中,所述存储介质存储有程序指令,所述程序指令在运行时,执行上述任一实施例所述的用于空调器的控制方法。
本公开实施例提供的用于空调器的控制方法及控制装置、存储介质,可以实现以下技术效果:
空调器在制冷模式下,冷媒从第一冷媒进出口进入第一分流元件;空调器在制热模式下,冷媒从第二冷媒进出口进入第四分流元件。进而,通过控制第一控制阀和第二控制阀的通断状态,能够调节同一模式下室外换热器的换热面积,大幅提升了空调器的能效。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成 比例限制,并且其中:
图1是本公开实施例提供的一种用于空调器的控制方法的示意图;
图2是本公开实施例提供的另一种用于空调器的控制方法的示意图;
图3是本公开实施例提供的另一种用于空调器的控制方法的示意图;
图4是本公开实施例提供的另一种用于空调器的控制方法的示意图;
图5是本公开实施例提供的另一种用于空调器的控制方法的示意图;
图6是本公开实施例提供的空调器的结构示意图;
图7是本公开实施例提供的室外换热器的结构示意图;
图8是本公开实施例提供的室外换热器的一种流路示意图;
图9是本公开实施例提供的室外换热器的另一种流路示意图;
图10是本公开实施例提供的室外换热器的另一种流路示意图;
图11是本公开实施例提供的室外换热器的另一种流路示意图;
图12是本公开实施例提供的室外换热器的另一种流路示意图;
图13是本公开实施例提供的第四分流元件的结构示意图;
图14是本公开实施例提供的第四分流元件另一角度的结构示意图。
附图标记:
100:第一冷媒进出口;110:第二冷媒进出口;
200:第一换热通路;210:第二换热通路;220:第三换热通路;230:第一旁通管路;240:二旁通管路;
300:第一分流元件;310:第二分流元件;320:第三分流元件;330:第四分流元件;
400:第一控制阀;410:第二控制阀;
500:压缩机;510:室外换热器;520:室内换热器;530:节流装置;
600:汇流管;601:第一管段;602:第二管段;610:分液腔;611:第一分支腔体;612:第二分支腔体;620:第一分液支管;621:第二分液支管。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
公开实施例中,终端设备是指具有无线连接功能的电子设备,终端设备可以通过连接互联网,与如上的智能家电设备进行通信连接,也可以直接通过蓝牙、wifi等方式与如上的智能家电设备进行通信连接。在一些实施例中,终端设备例如为移动设备、电脑、或悬浮车中内置的车载设备等,或其任意组合。移动设备例如可以包括手机、智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备等,或其任意组合,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
如图6所示,本公开实施例提供了一种空调器,包括压缩机500、四通阀、室外换热器510、节流装置530和室内换热器520。如图7所示,室外换热器510为具有可变分流功能的换热器,包括第一分流元件300、第二分流元件310、第三分流元件320、第四分流元件330、第一控制阀400、第二控制阀410和多个冷媒管。其中,多个冷媒管形成第一换热通路200、第二换热通路210和第三换热通路220;第一分流元件300连通第一换热通路200的第一端,第一分流元件300开设有第一冷媒进出口100;第二分流元件310连通第二换热通路210的第一端和第三换热通路220的第一端,第二分流元件310通过第一旁通管路230连通第一分流元件300;第三分流元件320连通第一换热通路200的第二端和第二换热通路210的第二端;第四分流元件330连通第三换热通路220的第二端,且第四分流元件330开设有第二冷媒进出口110,第四分流元件330通过第二旁通管路240连通第三分流元件320;第一控制阀400设置于第一旁通管路230;第二控制阀410设置于第二旁通管路240。
在本实施例中,空调器在制冷模式下,室外换热器510作为冷凝器,通过四通阀使室外换热器510的第一冷媒进出口100与压缩机500的排气口相连通,室外换热器510的第二冷媒进出口110通过节流装置530与室内换热器520相连通。压缩机500通过排气口排 出的冷媒从第一冷媒进出口100进入第一分流元件300。空调器在制热模式下,室外换热器510作为蒸发器,通过四通阀使室内换热器520与压缩机500的排气口相连通,室内换热器520通过节流装置530与室外换热器510的第二冷媒进出口110连通,压缩机500通过排气口排出的冷媒依次从室内换热器520、节流装置530和第二冷媒进出口110进入第四分流元件330。
基于上述空调器,结合图1所示,本公开实施例提供了一种用于空调器的控制方法,包括:
S10:获取空调器的运行模式;
S20:根据空调器的运行模式控制第一控制阀400和第二控制阀410的通断状态。
空调器在制冷模式下,冷媒从第一冷媒进出口100进入第一分流元件300;空调器在制热模式下,冷媒从第二冷媒进出口110进入第四分流元件330。进而,通过控制第一控制阀400和第二控制阀410的通断状态,能够调节同一模式下室外换热器510的换热面积,大幅提升了空调器的能效。
可选地,结合图2所示,步骤S20,根据空调器的运行模式控制第一控制阀400和第二控制阀410的通断状态,包括:
S21:在空调器的运行模式为制冷模式或除湿模式的情况下,获取压缩机500的运行频率;
S22:比较压缩机500的运行频率与第一预设频率的大小关系;
S23:根据大小关系控制第一控制阀400和第二控制阀410的通断状态。
在本实施例中,压缩机500的频率为F,第一预设频率为F1(F1≥40Hz)。在压缩机500的运行频率大于或等于第一预设频率的情况下,即F≥F1,控制第一控制阀400阻断且第二控制阀410阻断。此时压缩机500的频率较高,适宜较大的换热面积。如图8所示,冷媒从第一冷媒进出口100流入室外换热器510,冷媒在室外换热器510内的流通路径为:第一换热通路200、第二换热通路210和第三换热通路220,最后由第四分流元件330的第二冷媒进出口110流出室外换热器510。
在压缩机500的运行频率小于第一预设频率的情况下,即F<F1,压缩机500的频率较低,适宜较小的换热面积。此时控制第一控制阀400阻断且第二控制阀410导通。如图9所示,冷媒从第一冷媒进出口100流入室外换热器510,然后沿第一换热通路200流向第三分流元件320。第三分流元件320的冷媒具有两条流通路径,第一路径沿第二换热通路210和第三换热通路220流向第四分流元件330,第二路径沿着第二旁通管路240流向第四分流元件330。这里,由于第一路径的距离较长且沿程阻力大,故冷媒流通速度慢且 流量小。而第二路径的距离较短且阻力小,第三分流元件320的冷媒大部分沿第二路径流通。最后第四分流元件330的冷媒由第二冷媒进出口110流出室外换热器510。这样制冷模式且压缩机500频率较低的情况下,进入室外换热器510的冷媒主要流经第一换热通路200参与换热,提升了空调器的能效。
可选地,结合图3所示,步骤S20,根据空调器的运行模式控制第一控制阀400和第二控制阀410的通断状态,包括:
S24:在空调器的运行模式为制热模式的情况下,获取压缩机500的运行频率;
S25:比较压缩机500的运行频率与第二预设频率的大小关系;
S26:根据大小关系控制第一控制阀400和第二控制阀410的通断状态。
在本实施例中,压缩机500的频率为F,第二预设频率为F2(F2≥50Hz)。在压缩机500的运行频率大于或等于第二预设频率的情况下,即F≥F2,控制第一控制阀400导通且第二控制阀410导通。此时压缩机500的频率较高,适宜较大的换热面积。如图11所示,冷媒从第二冷媒进出口110流入室外换热器510,冷媒在室外换热器510内的流通路径为:第一换热通路200、第二换热通路210、第三换热通路220、第一旁通管路230和第二旁通管路240,最后由第一分流元件300的第一冷媒进出口100流出室外换热器510。
在压缩机500的运行频率小于第二预设频率的情况下,即F<F2,控制第一控制阀400导通且第二控制阀410阻断。此时压缩机500的频率较低,适宜较小的换热面积。如图12所示,冷媒从第二冷媒进出口110流入室外换热器510,然后沿第三换热通路220流向第二分流元件310。第二分流元件310的冷媒具有两条流通路径,第一路径沿第二换热通路210和第一换热通路200流向第一分流元件300,第二路径沿着第一旁通管路230流向第一分流元件300。这里,由于第一路径的距离较长且沿程阻力大,故冷媒流通速度慢且流量小。而第二路径的距离较短且阻力小,第二分流元件310的冷媒大部分沿第二路径流通。最后第一分流元件300的冷媒由第一冷媒进出口100流出室外换热器510。这样制热模式且压缩机500频率较低的情况下,进入室外换热器510的冷媒主要流经第三换热通路220参与换热,提升了空调器的能效。
可选地,步骤S20,根据空调器的运行模式控制第一控制阀400和第二控制阀410的通断状态,包括:
在空调器的运行模式为除霜模式的情况下,冷媒从第一冷媒进出口100流入,控制第一控制阀400导通且第二控制阀410导通。
在本实施例中,如图10所示,在除霜模式下室外换热器510作为冷凝器,冷媒从第一冷媒进出口100流入第一分流元件300。并且,第一控制阀400和第二控制阀410均在 导通的状态相较于均在阻断的状态下,冷媒还通过第一旁通管路230和第二旁通管路240流通。这样加快了冷媒在室外换热器510内的流通速度,提高了除霜效率,并且减少了室内侧热量损失。
结合图4所示,本公开实施例提供了另一种用于空调器的控制方法,包括:
S211:在运行制冷模式或除湿模式前的开机启动阶段,或者在切换至制冷模式或除湿模式的切换阶段,控制第一控制阀400和第二控制阀410阻断,并且控制压缩机500运行第一设定时长;
S21:在空调器的运行模式为制冷模式或除湿模式的情况下,获取压缩机500的运行频率;
S22:比较压缩机500的运行频率与第一预设频率的大小关系;
S23:根据大小关系控制第一控制阀400和第二控制阀410的通断状态。
在本实施例中,第一设定时长的范围为4-6分钟。在开机启动阶段和切换阶段,压缩机500频率不稳定且空调系统各个温度节点不稳定。压缩机500运行第一设定时长,例如运行5分钟后,使得各个温度节点和压缩机500频率趋于平稳。之后再根据压缩机500的运行频率控制第一控制阀400和第二控制阀410的通断状态,这样进行调节对空调系统振荡小。防止空调系统处于不稳定状态,对第一控制阀400和第二控制阀410进行调节而导致加剧系统波动,进而导致室内温度波动大,影响用户体验。
结合图5所示,本公开实施例提供了另一种用于空调器的控制方法,包括:
S241:在运行制热模式前的开机启动阶段,或者在切换至制热模式的切换阶段,控制第一控制阀400和第二控制阀410导通,并且控制压缩机500运行第二设定时长;
S24:在空调器的运行模式为制热模式的情况下,获取压缩机500的运行频率;
S25:比较压缩机500的运行频率与第二预设频率的大小关系;
S26:根据大小关系控制第一控制阀400和第二控制阀410的通断状态。
在本实施例中,第二设定时长的范围为4-6分钟。在开机启动阶段和切换阶段,压缩机500运行第二设定时长,例如运行5分钟后,再根据压缩机500的运行频率控制第一控制阀400和第二控制阀410的通断状态。这样,在系统各个温度节点和压缩机500频率趋于平稳后进行调节对空调系统振荡小,能够使室内温度波动较小,从而提高用户体验。
在一些实施例中,如图13所示,第四分流元件330包括壳体,汇流管600、第一分液支管620和第二分液支管621。壳体内部开设有分液腔610,壳体开设有第一分液口和第二分液口,汇流管600与分液腔610连通,第一分液支管620通过第一分液口与分液腔610连通,第二分液支管621通过第二分液口与分液腔610连通。
可选地,分液腔610包括汇流腔体,第一分支腔体611和第二分支腔体612,第一分液支管620通过第一分液口与第一分支腔体611连通,第二分液支管621通过第二分液口与第二分支腔体612连通。
可选地,汇流管600包括弯折连通的第一管段601和第二管段602,第一管段601与分液腔610直接连通。第一管段601和第二管段602的轴线所在的平面为第一平面。第一分液支管620和第二分液支管621的轴线所在的平面为第二平面。
可选地,第一平面与第二平面非垂直。汇流管600包括第一管段601和第二管段602,第一管段601和第二管段602的轴线所在的平面为第一平面,第一平面与第二平面的夹角为e。如图14所示。第一平面与第二平面非垂直,可以理解为,第一平面与第二平面的夹角e小于90°。可选地,第一平面与第二平面之间的夹角以两者形成的锐角计算。第一平面与第二平面非垂直,这样,经第一管段601进入第一分液支管620与第二分液支管621的冷媒量不同。例如,当第一平面与第二平面之间的夹角在第一分液支管620侧时,在重力作用下,冷媒流向第二分液支管621的流量大于流向第一分液支管620的流量。类似的,当第一平面与第二平面之间夹角在第二分液支管621侧时,在重力作用下,冷媒流向第一分液支管620的流量大于流量第二分液支管621的流量。
仅通过限定第一分液支管620和第二分液支管621的内径差别,很难实现第一分液支管620与第二分液支管621的流量比为2:1的冷媒流量差。原因在于,在换热器的实际制备过程中,换热器中所使用的铜管的管径均具有一定的规格,即,不能任意选取管径,因此,通常无法找到正好使两个分液支管流量比为2:1的管径方案;如通过分液支管管长差异、折弯等其他手段来实现冷媒分液流量差异,则对批量生产的产品而言不具有通用性。因此,仅通过第一分液支管620和第二分液支管621的内径差别不能准确实现两个分液支管的冷媒流量比为2:1的冷媒分配。
本公开实施例提供的通过汇流管600的第一管段601和第二管段602的轴线所在的第一平面与两个分液支管的轴线所在的第二平面之间设置夹角,并进一步配合两个分液支管之间的内径差的技术方案,在换热器的换热管管径允许的范围内,可实现两个分液支管的冷媒流量比为2:1。本公开实施例提供的实现较大的流量比的冷媒分配方案,第二分液支管621的内径不需要设计的过细,也可以实现第一分液支管620内冷媒的流量远大于第二分液支管621内冷媒的流量。因此,本公开实施例提供的第四分流元件330的冷媒分配方案,避免了两个分液支管冷媒分配比较大时第四分流元件330的分液支管及换热器的总压降过大的问题。
可选地,汇流管600的第一管段601和第二管段602的轴线所在的第一平面与两个分 液支管的轴线所在的第二平面之间设置夹角大于或等于50度,且小于或等于70度。提高了第一分液支管620和第二分液支管621内冷媒流量的差异。可选地,第一分液支管620的内径大于或等于5.1mm,且小于或等于6.1mm;第二分液支管621的内径大于或等于3.1mm,且小于或等于3.7mm。可选地,汇流管600的第二管段602向第二分液支管621侧倾斜设置。
在空调器运行制热工况时,室外换热器作为蒸发器时,室外换热器在如下情况能够发挥最理想的换热能力:在制热时,从低温液态不断吸收周围环境空气中的热量,随着温度升高到达了气液两相态,这个时候温度保持在蒸发温度不变,只是不断的发生液态到气态的相变,液态冷媒越来越少,气态冷媒越来越多,到整个换热支路的出口时刚好全部变为气态并温度高于蒸发温度1~2℃。这是因为当换热支路的出口温度过热时,全部为气态冷媒,气态冷媒焓差小换热能力低,且当过热度过大时,冷媒和环境温度换热温差小,比如当蒸发温度为0~1℃左右时,若过热度大于3℃,温度在4℃以上,而冬天环境温度也就7℃左右,换热温差很小,就更难以发挥换热器的换热能力了。
而均匀性越好,越容易每个换热支路有合适的换热,如果不均匀,很容易有的支路已经过热严重,后面几根发卡管无换热效果,而有的换热支路冷媒过多,流经整个换热支路仍有很多低温液态冷媒没有将冷量交换出去,这样一来,同样的冷媒流量下,整个换热器换热效果差,空调的能力就很低。因此制热时经验的分流好的判断方法为:各支路出口温差在2℃以内,出口过热度在1℃左右,这种情况下分流较好。
第一分液支管内径/第二分液支管内径 5.6mm/5.6mm 5.6mm/3.6mm 5.6mm/3.36mm
制热能力/W 4784.6 4825.2 4850.1
第一换热通路出口温度℃ 3.1 1.8 -0.5
第二换热通路出口温度℃ 2.8 2.6 2.3
第三换热通路出口温度℃ -1.6 -0.9 0.2
第三换热通路与前两支路的最大温差℃ 4.7 3.5 2.1
表1
第一平面与第二平面之间的角度 90° 60° 45°
制热能力/W 4850.1 5058.8 4850.1 4945.7
第一换热通路出口温度℃ -0.5 1.5 -0.5 -1.3
第二换热通路出口温度℃ 2.3 1.5 0.6 -1.1
第三换热通路出口温度℃ 0.2 0.2 1.3 2.1
第三换热通路与前两支路的最大温差℃ 2.1 1.3 1.8 3.4
表2
可选地,在空调器运行制热工况、室外换热器在作为蒸发器,且,并联的第一换热通 路200和第二换热通路210与第一分液支管620相连通,第三换热通路220与第二分液支管621相连通时,各换热支路的出口处的冷媒温度如表1和表2所示。其中,表1为第一平面与第二平面的夹角为90度时,不同第一分液支管620和第二分液支管621内径下,第三换热通路220与前两支路的最大温差以及空调器的制热能力。从表1的数据中可以看出,第一分液支管620的内径为5.6mm,且,第二分液支管621的内径为3.36mm时,换热器的第三换热通路220与前两支路的最大温差最小,为2.1℃,且,该内径下空调器的制热能力最大,为4850.1W。表2为第一分液支管620的内径为5.6mm,且,第二分液支管621的内径为3.36mm时,第一平面与第二平面的夹角为不同角度下,第三换热通路220与前两支路的最大温差与空调器的制热能力。从表2中可以看出,第一平面与第二平面的夹角为60度时,第三换热通路220与前两支路的最大温差最小,为1.3℃,且,该角度下,空调器的制热能力最大,为5058.8W。
从表1和表2中的数据可以看出,当换热器中与第一分液支管620相连通的换热支路的数量为2条,与第二分液支管621相连通的换热支路的数量为1条,第一分液支管620的内径为5.6mm、第二分液支管621的内径为3.36mm,且,第一平面与第二平面之间的夹角为60度时,第三换热通路220与前两支路的最大温差最小,各换热支路内冷媒的换热能力均匀性最好,且,空调器的制热能力最大。即,实现了第一分液支管620内冷媒量与第二分液支管621内的冷媒量比为2:1。
本公开实施例还提供一种用于空调器的控制装置,包括处理器(processor)和存储器(memory)。可选地,该装置还可以包括通信接口(Communication Interface)和总线。其中,处理器、通信接口、存储器可以通过总线完成相互间的通信。通信接口可以用于信息传输。处理器可以调用存储器中的逻辑指令,以执行上述实施例的用于空调器的控制方法。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器通过运行存储在存储器中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于…的方法。
存储器可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算 机可执行指令设置为执行上述用于空调器的控制方法。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于空调器的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于空调器的控制方法。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单 元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (12)

  1. 一种用于空调器的控制方法,其特征在于,所述空调器包括压缩机、四通阀、室外换热器、节流装置和室内换热器,其中,所述室外换热器包括:
    多个冷媒管,形成第一换热通路、第二换热通路和第三换热通路;
    第一分流元件,连通所述第一换热通路的第一端,所述第一分流元件开设有第一冷媒进出口;
    第二分流元件,连通所述第二换热通路的第一端和所述第三换热通路的第一端,所述第二分流元件通过第一旁通管路连通所述第一分流元件;
    第三分流元件,连通所述第一换热通路的第二端和所述第二换热通路的第二端;
    第四分流元件,连通所述第三换热通路的第二端,且所述第四分流元件开设有第二冷媒进出口,所述第四分流元件通过第二旁通管路连通所述第三分流元件;
    第一控制阀,设置于所述第一旁通管路;
    第二控制阀,设置于所述第二旁通管路;
    所述控制方法包括:
    获取所述空调器的运行模式;
    根据所述空调器的运行模式控制所述第一控制阀和所述第二控制阀的通断状态。
  2. 根据权利要求1所述的控制方法,其特征在于,根据所述空调器的运行模式控制所述第一控制阀和所述第二控制阀的通断状态,包括:
    在所述空调器的运行模式为制冷模式或除湿模式的情况下,获取所述压缩机的运行频率;
    比较所述压缩机的运行频率与第一预设频率的大小关系;
    根据所述大小关系控制所述第一控制阀和所述第二控制阀的通断状态。
  3. 根据权利要求2所述的控制方法,其特征在于,根据所述大小关系控制所述第一控制阀和所述第二控制阀的通断状态,包括:
    在所述压缩机的运行频率小于第一预设频率的情况下,控制所述第一控制阀阻断且所述第二控制阀导通;
    在所述压缩机的运行频率大于或等于第一预设频率的情况下,控制所述第一控制阀阻断且所述第二控制阀阻断。
  4. 根据权利要求2所述的控制方法,其特征在于,在在所述空调器的运行模式为制冷模式或除湿模式的情况下,获取所述压缩机的运行频率之前,还包括:
    在运行制冷模式或除湿模式前的开机启动阶段,或者在切换至制冷模式或除湿模 式的切换阶段,控制所述第一控制阀和所述第二控制阀阻断,并且控制所述压缩机运行第一设定时长。
  5. 根据权利要求1至4任一项所述的控制方法,其特征在于,根据所述空调器的运行模式控制所述第一控制阀和所述第二控制阀的通断状态,包括:
    在所述空调器的运行模式为制热模式的情况下,获取所述压缩机的运行频率;
    比较所述压缩机的运行频率与第二预设频率的大小关系;
    根据所述大小关系控制所述第一控制阀和所述第二控制阀的通断状态。
  6. 根据权利要求5所述的控制方法,其特征在于,根据所述大小关系控制所述第一控制阀和所述第二控制阀的通断状态,包括:
    在所述压缩机的运行频率小于第二预设频率的情况下,控制所述第一控制阀导通且所述第二控制阀阻断;
    在所述压缩机的运行频率大于或等于第二预设频率的情况下,控制所述第一控制阀导通且所述第二控制阀导通。
  7. 根据权利要求5所述的控制方法,其特征在于,在在所述空调器的运行模式为制热模式的情况下,获取所述压缩机的运行频率之前,还包括:
    在运行制热模式前的开机启动阶段,或者在切换至制热模式的切换阶段,控制所述第一控制阀和所述第二控制阀导通,并且控制所述压缩机运行第二设定时长。
  8. 根据权利要求1至7任一项所述的控制方法,其特征在于,根据所述空调器的运行模式控制所述第一控制阀和所述第二控制阀的通断状态,包括:
    在所述空调器的运行模式为除霜模式的情况下,冷媒从所述第一冷媒进出口流入,控制所述第一控制阀导通且所述第二控制阀导通。
  9. 一种用于空调器的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至8任一项所述的用于空调器的控制方法。
  10. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至8任一项所述的用于空调器的控制方法。
  11. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至8任一项所述的用于空调器的控制方法。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至8任一项所述的用于空调器的控制方法。
PCT/CN2022/132518 2021-09-19 2022-11-17 用于空调器的控制方法及控制装置、存储介质 WO2023041096A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122281454 2021-09-19
CN202122281454.9 2021-09-19
CN202211096241.1A CN116045486A (zh) 2021-09-19 2022-09-08 用于空调器的控制方法及控制装置、存储介质
CN202211096241.1 2022-09-08

Publications (1)

Publication Number Publication Date
WO2023041096A1 true WO2023041096A1 (zh) 2023-03-23

Family

ID=85602113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132518 WO2023041096A1 (zh) 2021-09-19 2022-11-17 用于空调器的控制方法及控制装置、存储介质

Country Status (1)

Country Link
WO (1) WO2023041096A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183936A (ja) * 2014-03-25 2015-10-22 三菱電機株式会社 空気調和機、および空気調和機の制御方法
CN105953360A (zh) * 2016-05-04 2016-09-21 广东美的暖通设备有限公司 空调器及空调器的控制方法
CN111578552A (zh) * 2020-05-22 2020-08-25 广东美的制冷设备有限公司 空调系统、空调器和空调系统的控制方法
CN114383217A (zh) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 用于空调器控制的方法、装置、空调器及存储介质
CN114383218A (zh) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 用于空调器控制的方法、装置、空调器及存储介质
CN216694083U (zh) * 2021-09-19 2022-06-07 青岛海尔空调器有限总公司 换热器和空调器
CN115435479A (zh) * 2022-09-08 2022-12-06 青岛海尔空调器有限总公司 用于空调器的控制方法及控制装置、存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183936A (ja) * 2014-03-25 2015-10-22 三菱電機株式会社 空気調和機、および空気調和機の制御方法
CN105953360A (zh) * 2016-05-04 2016-09-21 广东美的暖通设备有限公司 空调器及空调器的控制方法
CN111578552A (zh) * 2020-05-22 2020-08-25 广东美的制冷设备有限公司 空调系统、空调器和空调系统的控制方法
CN216694083U (zh) * 2021-09-19 2022-06-07 青岛海尔空调器有限总公司 换热器和空调器
CN114383217A (zh) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 用于空调器控制的方法、装置、空调器及存储介质
CN114383218A (zh) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 用于空调器控制的方法、装置、空调器及存储介质
CN115435479A (zh) * 2022-09-08 2022-12-06 青岛海尔空调器有限总公司 用于空调器的控制方法及控制装置、存储介质

Similar Documents

Publication Publication Date Title
CN114838531B (zh) 用于调节换热器内的冷媒温度的方法、装置、空调器
CN116045486A (zh) 用于空调器的控制方法及控制装置、存储介质
EP2889559B1 (en) Air-conditioning device
CN111288694A (zh) 可连续制热的空调及其控制方法
CN214581751U (zh) 换热器和空调
WO2024051020A1 (zh) 用于空调器的控制方法及控制装置、存储介质
CN214276219U (zh) 换热器和空调
EP3228951B1 (en) Refrigeration cycle apparatus
EP3199891B1 (en) Refrigeration cycle device
CN114383218B (zh) 用于空调器控制的方法、装置、空调器及存储介质
CN114383217A (zh) 用于空调器控制的方法、装置、空调器及存储介质
WO2023041096A1 (zh) 用于空调器的控制方法及控制装置、存储介质
CN210832379U (zh) 空调系统
CN217686006U (zh) 节流换热器和空调器
CN218296023U (zh) 换热器和空调
CN107477902B (zh) 顺序式独立制冷制热式多联机
CN104949195A (zh) 多联式空调机组
CN110953758A (zh) 避免凝露的冷媒循环系统及空调机组
CN219036869U (zh) 换热器和空调器
CN219550687U (zh) 换热器和空调器
CN115264793A (zh) 用于控制空调节能的方法、装置、空调和存储介质
CN215951815U (zh) 热泵系统及空调设备
CN218495083U (zh) 空调器
CN113390203A (zh) 热泵系统
CN113739442A (zh) 热泵系统及其控制方法、装置以及空调设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869462

Country of ref document: EP

Kind code of ref document: A1