WO2023040874A1 - 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法 - Google Patents

硅藻在水稻种植中的应用和水稻硅藻共生的培育方法 Download PDF

Info

Publication number
WO2023040874A1
WO2023040874A1 PCT/CN2022/118640 CN2022118640W WO2023040874A1 WO 2023040874 A1 WO2023040874 A1 WO 2023040874A1 CN 2022118640 W CN2022118640 W CN 2022118640W WO 2023040874 A1 WO2023040874 A1 WO 2023040874A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
diatoms
diatom
stage
cultivation
Prior art date
Application number
PCT/CN2022/118640
Other languages
English (en)
French (fr)
Inventor
张嵚
刘冬
谭文峰
姜冠杰
郑太辉
严玉鹏
Original Assignee
江西农业大学
中国科学院广州地球化学研究所
华中农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西农业大学, 中国科学院广州地球化学研究所, 华中农业大学 filed Critical 江西农业大学
Priority to US17/984,238 priority Critical patent/US11732234B1/en
Publication of WO2023040874A1 publication Critical patent/WO2023040874A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the invention relates to the technical field of rice planting, in particular to an application of diatoms in rice planting and a symbiotic cultivation method of rice diatoms.
  • Rice is one of the most important food crops and has a long history of cultivation and consumption. Rice is an annual aquatic herb. Conventional rice planting usually includes the following steps: site preparation, seedling raising, transplanting, weeding and pest control, fertilization, irrigation and drainage, and harvesting, etc. Among them, rice is more dependent on irrigation and drainage. There is also water irrigation during the heading and flowering period, but the effect of increasing rice production and silicon is not obvious at present.
  • the object of the present invention is to provide a kind of application of diatom in rice planting and the breeding method of rice diatom symbiosis.
  • the present invention provides an application of diatoms in rice cultivation.
  • the present invention provides an application of a diatom in the preparation of an additive for increasing rice yield and thickening or lodging resistance.
  • the present invention provides a rice diatom symbiotic cultivation method, which includes adding diatoms to the irrigated paddy field during the rice planting process for co-cultivation.
  • the amount of viable diatom cells added to the irrigated paddy field is not less than 104 /L;
  • the amount of living diatom cells added to the irrigated paddy field is 10 4 -10 5 /L.
  • the water level of the paddy field is maintained at 2.5-5.5 cm.
  • the growth cycle of rice in the process of planting rice includes the seedling stage, the greening stage, the tillering stage, the long earing stage and the fruiting stage, wherein, the tillering stage, the long earing stage and the The fruiting stage requires irrigation treatment, and the diatoms are added in at least one of the tillering stage, the long ear stage and the fruiting stage.
  • the soil for planting the rice is paddy soil.
  • the diatoms are freshwater diatoms
  • the freshwater diatoms include at least one of Cyclotella meenei and Nitzkirrhea.
  • the type of rice is selected from Lianjing 11, Xiangzaoxian 45, Longjing 39, Longjing 43, Longjing 31, Zhongjiazao 17, Suijing 14, and Suijing 18 At least one of , Nanjing 9108, Huanghuazhan, Meixiangzhan No. 2, 19xiang, Y Liangyou 900, Quanyou 822, Jingliangyou Huazhan, Longliangyou Huazhan, Jingliangyou 534 and Longliangyou 534 .
  • the present invention provides the application of the rice diatom symbiotic cultivation method described in any one of the preceding embodiments in rice planting.
  • the application of the diatoms provided in this application in rice planting can effectively increase the yield/silicon of rice by placing the diatoms in the irrigated paddy field and co-cultivating the rice, the straws are thicker and the lodging resistance is increased.
  • the growth of rice under conventional planting will reduce the soil pH, leading to gradual acidification of the soil.
  • the diatoms capture HCO 3 - in the water body since the diatoms capture HCO 3 - in the water body, the decrease in pH can be effectively reduced. Therefore, the co-cultivation of diatoms and rice can slow down the acidification of the soil, and the pH of the co-cultivation system does not change or increase compared with that before the cultivation.
  • the cultivation method of rice diatom symbiosis provided by the present application can reduce soil degradation and increase soil fertility (organic matter content). It has great potential in increasing rice production and income.
  • Figure 1 is a comparison of the rice obtained by the rice single cultivation system (right figure) and the diatom-rice co-cultivation system (left figure).
  • the invention provides an application of diatoms in rice planting. Specifically, diatoms are applied to the irrigation period of rice planting. It is found through research that diatoms can promote the increase of rice yield, increase the silicon content of straw, and resist Enhanced lodging.
  • the invention provides an application of a diatom in the preparation of an additive for increasing rice yield and thickening or lodging resistance.
  • Additives may also include some conventional buffers, culture solutions, and the like.
  • the invention provides a rice diatom symbiotic cultivation method, which comprises adding diatoms to an irrigated paddy field for joint cultivation during the rice planting process.
  • Diatoms are a kind of unicellular plants with chromophores, often composed of several or many individual cells connected into various groups. Diatoms can release oxygen through photosynthesis. At the same time, after diatoms die, their solid and porous shell-cell walls will not decompose, but will sink to the bottom of the water, and become diatomite after hundreds of millions of years of accumulation and geological changes. Diatomaceous earth can be mined and has a wide range of industrial uses. In the prior art, diatomaceous earth is used as the fertilizer of rice or the raw material of seedling raising substrate, and less diatoms are used directly.
  • the diatoms are innovatively put into the irrigated paddy fields for cultivation to form a rice diatom symbiosis system.
  • many researches on the symbiosis between rice and other animals and plants have been studied, such as: leech rice symbiosis, rice soft-shelled turtle symbiosis , rice-duck symbiosis, rice-field shrimp-rice symbiosis, rice-fish symbiosis, etc.
  • leech rice symbiosis rice soft-shelled turtle symbiosis
  • rice-duck symbiosis rice-field shrimp-rice symbiosis
  • rice-fish symbiosis etc.
  • the normal growth of rice and diatoms can be ensured by adding diatoms to the irrigated paddy fields and ensuring that the number of viable diatom cells is not less than 104 /L.
  • adding diatoms to the irrigated paddy fields The number of living cells of diatoms is 10 4 -10 5 /L.
  • the water level in the paddy field is kept at 2.5-5.5cm.
  • diatoms can be directly added to the irrigated paddy field without additional nutrients.
  • the growth of diatoms will not affect the rice, but can also increase the yield of rice, making the straw thicker, and The increase in silicon content increases the lodging resistance.
  • diatoms can be cultivated in near-neutral or acidic conditions, but diatoms are more suitable for cultivation in near-neutral conditions. When the rice is flooded, the pH may be low.
  • this application can add alkaline to the water body with a low pH.
  • the pH adjuster for example: plant ash
  • the pH adjuster has adjusted the pH. If the pH of the water body is around 6.5, there is no need to add it.
  • On paddy rice it is usually a growth cycle of rice to germinate seeds until new rice seeds are produced, that is, a growth cycle.
  • the growth period can be divided into seedling stage, turning green stage, tillering stage, long ear stage (ear differentiation stage), and fruiting stage.
  • Seedling stage including germination, germination, and three-leaf stages
  • Rejuvenation period the buffer period for the rice to survive from the seedling field to the Hyundai field after transplanting and cutting;
  • Tillering stage including the initial stage, peak stage, final stage (the highest tillering stage) and the effective tillering termination stage which determines the critical period of ear number;
  • Long panicle stage includes each stage of panicle differentiation, jointing stage and booting stage when the flag leaf sheath is bulging;
  • Fruiting period including heading flowering period, milk ripening period, wax ripening period, yellow ripening period and full ripening period.
  • the tillering stage, the long ear stage and the fruiting stage need irrigation treatment.
  • Diatoms are added in at least one of the tillering stage, the long panicle stage and the fruiting stage. After planting, the diatoms do not need to be scooped up, and the diatoms die naturally and are released into the soil, which can also increase the organic matter content of the soil.
  • the soil for planting rice can be various paddy field soils suitable for planting paddy rice, especially reddish soil is more suitable.
  • the paddy field soil has been in a state of anoxic state of flooding for a long time.
  • the ferric oxide is reduced to ferrous oxide which is easily soluble in water, thus effectively promoting the growth and division of diatoms.
  • the soil for planting rice is paddy soil.
  • Paddy soil refers to the conditions of long-term flooded rice planting, under the double action of human activities and natural soil-forming factors, resulting in hydroponic ripening and alternating oxidation and reduction, as well as leaching and deposition of substances, forming unique profile characteristics soil.
  • this soil is in the anoxic state of flooding for a long time, the iron oxide in the soil is reduced to the ferrous oxide which is easily soluble in water, and moves in the soil with the water.
  • the soil is drained or affected by the rice root (rice has The aerenchyma provides oxygen for the roots), and the ferrous oxide is oxidized into iron oxide precipitation, forming rust spots and rust lines, and the lower soil layer is relatively sticky.
  • paddy soil is used to plant rice.
  • the paddy soil is rich in iron ions, which can effectively promote the growth and division of diatoms.
  • the growth of rice can reduce soil pH, leading to gradual soil acidification.
  • diatoms can capture HCO 3 - in the water during the growth process, thereby effectively reducing the pH drop and alleviating soil acidification.
  • diatoms form their own organic components through photosynthesis, which can be released into the soil after the diatoms die, thereby increasing the organic matter content of the soil.
  • the co-cultivation system can effectively reduce the concentration of free Cd and reduce the risk of Cd entering rice grains.
  • the diatoms in the present application are freshwater diatoms; preferably, the freshwater diatoms include at least one of Cyclotella meenei and Nitzbug.
  • the Nitzkiri algae belongs to the benthic algae, and the benthic algae are not easily lost with the flow of water, and directly enter the soil after death, reducing the loss of dissolution in the water, and being preyed by other organisms, the effect is better .
  • the above rice diatom symbiotic breeding method has a wide range of applications and can be applied to a variety of rice types, including but not limited to Lianjing 11, Xiangzaoxian 45, Longjing 39, Longjing 43, Longjing 31, Zhongjing Jiazao 17, Suijing 14, Suijing 18, Nanjing 9108, Huanghuazhan, Meixiangzhan No. 2, 19xiang, Y Liangyou 900, Quanyou 822, Jingliangyou Huazhan, Longliangyou Huazhan, Jingliangyou At least one of 534 and Longliangyou 534.
  • the present application also provides a rice diatom symbiotic cultivation system, which includes an irrigated paddy field, rice planted in the paddy field, and diatoms placed in the paddy field.
  • This cultivation system can be widely used in rice cultivation.
  • Rice cultivation provides a new way of thinking. The inventors found that by placing diatoms in irrigated paddy fields and co-cultivating rice, rice yield/silicon increase can be effectively produced, the stalks will be thicker, and the lodging resistance will be increased.
  • the co-cultivation of diatoms and rice can slow down the acidification of the soil, and the pH of the co-cultivation system does not change or increase compared with that before the cultivation.
  • the co-cultivation of diatoms and rice can also increase the content of organic matter in the soil, reduce the concentration of free Cd, and reduce the risk of Cd entering rice grains, which has great potential in increasing rice production and income.
  • Rice was planted in the paddy field for conventional planting, and Cyclotella menieli with 10 4 living cells/L was added during irrigation, and the water level of the paddy field was kept at 4.5-5.5 cm for co-cultivation.
  • Rice was planted in the paddy field for conventional planting, and Cyclotella menieli with a living cell amount of 10 5 /L was added when watering, and the water level of the paddy field was kept at 4.5-5.5 cm for co-cultivation.
  • the rice was planted in the paddy field for conventional planting, and Nitzbrae spp. with a living cell amount of 10 5 /L was added during irrigation, and the water level of the paddy field was kept at 4.5-5.5 cm for co-cultivation.
  • the rice was planted in the paddy field for conventional planting, and Nitzia bark with a living cell amount of 10 4 /L was added when watering, and the water level of the paddy field was kept at 4.5-5.5 cm for co-cultivation.
  • Rice was planted in the paddy field for conventional planting, and Cyclotella menieli with 10 4 living cells/L was added during irrigation, and the water level of the paddy field was kept at 2.5-3.5 cm for co-cultivation.
  • Rice is planted in the paddy field for conventional planting.
  • the detection method of output is: threshing and drying weighing method.
  • the detection method of silicon content is: XRF test.
  • the detection method of straw diameter is: vernier caliper measurement.
  • the detection method of bending strength is: use the Instron3367 type double-column table-top electronic testing machine to measure.
  • the detection method of organic matter content is: potassium dichromate volumetric method.
  • the diatom-paddy soil co-cultivation system greatly increases the yield of rice, more than doubles the silicon content in the straw, increases the diameter of the straw, and increases the bending strength, so it has a high Lodging resistance.
  • the growth of diatoms in paddy fields will increase the content of organic matter in paddy soil and inhibit the decrease of soil pH caused by paddy planting.
  • the application of diatoms provided by the present application in rice planting can effectively increase rice production/silicon by placing diatoms in an irrigated paddy field and co-cultivate rice, and its stalks are thicker (see Figure 1), lodging resistance increased.
  • the growth of rice under conventional planting will reduce the soil pH, leading to gradual acidification of the soil.
  • the diatoms capture HCO 3 - in the water body since the diatoms capture HCO 3 - in the water body, the decrease in pH can be effectively reduced. Therefore, the co-cultivation of diatoms and rice can slow down the acidification of the soil, and the pH of the co-cultivation system does not change or increase compared with that before the cultivation.
  • the cultivation method of rice diatom symbiosis provided by this application can reduce soil degradation, reduce the risk of heavy metal pollution, and increase soil fertility (organic matter content). It has great potential in increasing rice production and income.

Abstract

硅藻在水稻种植中的应用,通过在水稻种植的过程中,向灌水的稻田中加入硅藻,共同培育,可以有效产生水稻增产/增硅、其秸秆更为粗壮、抗倒伏性增大、减弱土壤退化、降低重金属污染风险、增加土壤肥力的良好作用。还涉及硅藻在制备用于水稻增产增粗或抗倒伏的添加剂中的应用、水稻硅藻共生的培育方法及该方法在水稻种植中的应用。

Description

硅藻在水稻种植中的应用和水稻硅藻共生的培育方法
本申请要求于2021年9月18日提交中国专利局,申请号为202111112822.5,发明名称为“硅藻在水稻种植中的应用和水稻硅藻共生的培育方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及水稻种植技术领域,具体而言,涉及一种硅藻在水稻种植中的应用和水稻硅藻共生的培育方法。
背景技术
水稻是重要的粮食作物之一,耕种与食用的历史都相当悠久。水稻是一年生水生草本,常规的水稻种植通常包括如下步骤:整地、育苗、插秧、除草除虫、施肥、灌排水和收成等,其中,水稻比较依赖灌排水,在插秧后,幼穗形成时,还有抽穗开花期加强水分灌溉,但是目前水稻的增产增硅效果并不明显。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种硅藻在水稻种植中的应用和水稻硅藻共生的培育方法。
本发明是这样实现的:
第一方面,本发明提供一种硅藻在水稻种植中的应用。
第二方面,本发明提供一种硅藻在制备用于水稻增产增粗或抗倒 伏的添加剂中的应用。
第三方面,本发明提供一种水稻硅藻共生的培育方法,其包括在水稻种植的过程中,向灌水的稻田中加入硅藻,共同培育。
在可选的实施方式中,灌水的所述稻田中加入的硅藻的活细胞量不低于10 4个/L;
优选地,灌水的所述稻田中加入的硅藻的活细胞量为10 4-10 5个/L。
在可选的实施方式中,所述稻田的水位保持于2.5-5.5cm。
在可选的实施方式中,所述水稻种植的过程中水稻的生育周期包括幼苗期、返青期、分蘖期、长穗期和结实期,其中,所述分蘖期、所述长穗期和所述结实期需要灌水处理,所述硅藻于所述分蘖期、所述长穗期和所述结实期中的至少一个时期加入。
在可选的实施方式中,种植所述水稻的土壤为水稻土。
在可选的实施方式中,所述硅藻为淡水硅藻;
优选地,所述淡水硅藻包括梅尼小环藻和谷皮菱形藻中的至少一种。
在可选的实施方式中,所述水稻的种类选自连粳11号、湘早籼45号、龙粳39、龙粳43、龙粳31、中嘉早17、绥粳14、绥粳18、南粳9108、黄华占、美香占2号、19香、Y两优900、荃优822、晶两优华占、隆两优华占、晶两优534和隆两优534中的至少一种。
第四方面,本发明提供如前述实施方式任一项所述的水稻硅藻共生的培育方法在水稻种植中的应用。
本发明具有以下有益效果:
本申请提供的硅藻在水稻种植中的应用,通过将硅藻置于灌水的稻田中与水稻共同培育,可有效产生水稻增产/增硅、其秸秆更为粗 壮,抗倒伏性增大。常规种植下水稻生长会降低土壤pH,导致土壤逐渐酸化,然而采用本申请的培育方法与硅藻共培育后,由于硅藻捕获了水体的中HCO 3 -,从而可有效降低pH的降低。因此,硅藻与水稻共培育可使得土壤酸化减缓,共培养体系的pH相较于培育前不发生改变或增高。进一步地,硅藻通过光合作用形成了自身有机组分,并在死亡后释放至土壤,有效增加了土壤中有机质的含量。因此,采用本申请提供的水稻硅藻共生的培育方法可以减弱土壤退化、增加土壤肥力(有机质含量)的良好作用。其在水稻增产增收方面具有巨大潜力。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为水稻单独培育体系(右图)和硅藻-水稻共培育体系(左图)所获水稻的对比图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明提供了一种硅藻在水稻种植中的应用,具体来说,是将硅藻应用于水稻种植的灌水时期,经研究发现,硅藻可以促进水稻产量 增加,秸秆含硅量增多,抗倒伏性增强。
本发明提供了一种硅藻在制备用于水稻增产增粗或抗倒伏的添加剂中的应用。添加剂中还可以包括一些常规的缓冲剂、培养液等。
本发明提供了一种水稻硅藻共生的培育方法,其包括在水稻种植的过程中,向灌水的稻田中加入硅藻,共同培育。
硅藻是一类具有色素体的单细胞植物,常由几个或很多细胞个体连结成各式各样的群体。硅藻能够通过光合作用释放氧气,同时,硅藻死后,它们坚固多孔的外壳-细胞壁也不会分解,而会沉于水底,经过亿万年的积累和地质变迁成为硅藻土。硅藻土可被开采,在工业上用途很广。现有技术中通过采用硅藻土作为水稻的肥料或育秧基质的原料,直接使用硅藻的较少。
本申请中创新性的将硅藻投入灌水的稻田中进行养殖,形成水稻硅藻共生的体系,现有技术中研究了许多水稻与其他动植物共生的研究,例如:蛭稻共生、稻鳖共生、稻鸭共生、稻田虾稻共生以及稻鱼共生等等。但是完全未对水稻硅藻共生的体系进行研究,甚至在水稻养殖中直接使用硅藻的都很少。
本申请中,通过在灌水的稻田中加入的硅藻,并且保证硅藻的活细胞量不低于10 4个/L即可保证水稻和硅藻的正常生长,优选地,灌水的稻田中加入的硅藻的活细胞量为10 4-10 5个/L。稻田的水位保持于2.5-5.5cm。
通常来说,在进行硅藻的淡水养殖时,需要为硅藻的生长分裂提供充足的营养,而在水稻养殖时,想要水稻产量增加、秸秆含硅量增加,抗倒伏性增强,也需要提供充足的肥料等。然而经发明人研究发现,在灌水的稻田中直接投入硅藻即可,无需格外添加营养成分,硅藻的生长不仅不会影响水稻,同时还能够提高水稻的产量,使秸秆更 为粗壮,且含硅量增加,抗倒伏性增强。但是需要说明的是,硅藻可以在接近中性的条件或酸性条件下培养,但是硅藻更适宜于接近中性的条件培养。水稻淹水的时候,可能存在pH较低的情况,当pH低于6.0时,硅藻的培养依然能够进行但是效果会降低,为此,本申请可以在pH较低的水体中加入碱性的pH调节剂(例如:草木灰),调节了pH,若水体的pH在6.5附近时,则无需加入。在水稻上通常把种子萌发到水稻新的种子产生为水稻的一个生育周明,即生育明。生育期可分为幼苗期、返青期、分蘖期、长穗期(穗分化期)、结实期。
幼苗期:包括萌动、发芽、三叶期;
返青期:移裁后水稻从秧田到本田成活的缓冲期;
分蘖期:包括始期、盛期、末期(最高分蘖期)以及决定穗数关键时期的有效分蘖终止期;
长穗期(穗分化期):包括穗分化各期、拔节期以及外观看到剑叶鞘膨鼓时的孕穗期;
结实期:包括抽穗开花期、乳熟期、蜡熟期、黄熟期和完熟期。
其中,分蘖期、长穗期和结实期需要灌水处理。硅藻于分蘖期、长穗期和结实期中的至少一个时期加入。在种植结束后,硅藻无需捞起,硅藻自然死亡并释放到土壤内,还可以增加土壤的有机质含量。
本申请中,种植水稻的土壤可以为各种适宜种植水稻的稻田土,尤其是颜色偏红的土壤更为适宜,稻田土在种植水稻的过程中,长期处于水淹的缺氧状态,土壤中的氧化铁被还原成易溶于水的氧化亚铁,从而有效促进硅藻的生长和分裂。优选地,种植水稻的土壤为水稻土。水稻土是指在长期淹水种稻条件下,受到人为活动和自然成土因素的双重作用,而产生水耕熟化和氧化与还原交替,以及物质的淋溶、淀积,形成特有剖面特征的土壤。这种土壤由于长期处于水淹的 缺氧状态,土壤中的氧化铁被还原成易溶于水的氧化亚铁,并随水在土壤中移动,当土壤排水后或受稻根的影响(水稻有通气组织为根部提供氧气),氧化亚铁又被氧化成氧化铁沉淀,形成锈斑、锈线,土壤下层较为粘重。本申请中采用水稻土对水稻进行种植,水稻土内含有丰富的铁离子,可以有效促进硅藻的生长和分裂。由于水稻生长可降低土壤pH,导致土壤逐渐酸化,然而与硅藻共培育后,硅藻在生长过程中可以捕获水体中的HCO 3 -,从而有效降低pH的降低,使土壤酸化得到缓解。此外,硅藻在生长过程中,通过光合作用形成其自身的有机组分,在硅藻死后可以释放到土壤内,从而增加了土壤的有机质含量。进一步地,由于硅藻对Cd有良好的喜好性,共培育体系可有效降低游离态Cd的浓度,减少Cd进入水稻籽粒的风险。
本申请中的硅藻为淡水硅藻;优选地,淡水硅藻包括梅尼小环藻和谷皮菱形藻中的至少一种。本申请中的谷皮菱形藻属于底栖藻类,底栖藻类不容易随水流动损失,而且死亡后直接进入土体,减少了在水中的溶解损失,还有被其它生物的捕食,效果要佳。
上述水稻硅藻共生的培育方法适用范围广,可以适用于多种水稻,水稻的种类包括但不限于连粳11号、湘早籼45号、龙粳39、龙粳43、龙粳31、中嘉早17、绥粳14、绥粳18、南粳9108、黄华占、美香占2号、19香、Y两优900、荃优822、晶两优华占、隆两优华占、晶两优534和隆两优534中的至少一种。
此外,本申请还提供了一种水稻硅藻共生的培育体系,其包括灌水的稻田、种植于稻田内的水稻以及置于稻田内的硅藻,该培育体系可以广泛应用于水稻种植中,为水稻种植提供了一种新的思路。经发明人研究发现,通过将硅藻置于灌水的稻田中与水稻共同培育,可有效产生水稻增产/增硅、其秸秆更为粗壮,抗倒伏性增大。硅藻与水 稻共培育可使得土壤酸化减缓,共培养体系的pH相较于培育前不发生改变或增高。进一步地,硅藻和水稻共同培育还可以增加土壤中有机质的含量,降低游离态Cd的浓度,减少Cd进入水稻籽粒的风险,其在水稻增产增收方面具有巨大潜力。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
将水稻种植于水稻田内,进行常规种植,并于灌水时加入活细胞量为10 4个/L的梅尼小环藻,保持稻田的水位高度为4.5-5.5cm,共同培育。
实施例2
将水稻种植于水稻田内,进行常规种植,并于灌水时加入活细胞量为10 5个/L的梅尼小环藻,保持稻田的水位高度为4.5-5.5cm,共同培育。
实施例3
将水稻种植于水稻田内,进行常规种植,并于灌水时加入活细胞量为10 5个/L的谷皮菱形藻,保持稻田的水位高度为4.5-5.5cm,共同培育。
实施例4
将水稻种植于水稻田内,进行常规种植,并于灌水时加入活细胞量为10 4个/L的谷皮菱形藻,保持稻田的水位高度为4.5-5.5cm,共同培育。
实施例5
将水稻种植于水稻田内,进行常规种植,并于灌水时加入活细胞量为10 4个/L的梅尼小环藻,保持稻田的水位高度为2.5-3.5cm,共同培育。
对比例1
将水稻种植于水稻田内,进行常规种植。
对上述实施例1-5以及对比例1获得的水稻和用于种植水稻的土壤进行检测与观察;种植前水稻田土壤的pH为4.74。
其中,产量的检测方法为:脱粒晒干称重法。
硅含量的检测方法为:XRF测试。
秸秆直径的检测方法为:游标卡尺测定。
抗弯强度的检测方法为:使用Instron3367型双立柱台式电子试验机测定。
有机质含量的检测方法为:重铬酸钾容量法。
Figure PCTCN2022118640-appb-000001
从上表可以看出,硅藻-水稻土共培育体系,水稻的产量大大增加,秸秆中含硅量可增至原来的一倍以上,秸秆直径增加,抗弯强度增大,因此具有高的抗倒伏性。另外,硅藻在水稻田中生长后,会提高稻田土壤中有机质的含量,并抑制了水稻种植导致的土壤pH降低。
综上所述,本申请提供的硅藻在水稻种植中的应用,通过将硅藻 置于灌水的稻田中与水稻共同培育,可有效产生水稻增产/增硅、其秸秆更为粗壮(请参阅图1),抗倒伏性增大。常规种植下水稻生长会降低土壤pH,导致土壤逐渐酸化,然而采用本申请的培育方法与硅藻共培育后,由于硅藻捕获了水体的中HCO 3 -,从而可有效降低pH的降低。因此,硅藻与水稻共培育可使得土壤酸化减缓,共培养体系的pH相较于培育前不发生改变或增高。进一步地,硅藻通过光合作用形成了自身有机组分,并在死亡后释放至土壤,有效增加了土壤中有机质的含量。因此,采用本申请提供的水稻硅藻共生的培育方法可以减弱土壤退化、降低重金属污染风险、增加土壤肥力(有机质含量)的良好作用。其在水稻增产增收方面具有巨大潜力。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 硅藻在水稻种植中的应用。
  2. 硅藻在制备用于水稻增产增粗或抗倒伏的添加剂中的应用。
  3. 一种水稻硅藻共生的培育方法,其特征在于,其包括在水稻种植的过程中,向灌水的稻田中加入硅藻,共同培育。
  4. 根据权利要求3所述的水稻硅藻共生的培育方法,其特征在于,灌水的所述稻田中加入的硅藻的活细胞量不低于10 4个/L;
    优选地,灌水的所述稻田中加入的硅藻的活细胞量为10 4-10 5个/L。
  5. 根据权利要求3所述的水稻硅藻共生的培育方法,其特征在于,所述稻田的水位保持于2.5-5.5cm。
  6. 根据权利要求3所述的水稻硅藻共生的培育方法,其特征在于,所述水稻种植的过程中水稻的生育周期包括幼苗期、返青期、分蘖期、长穗期和结实期,其中,所述分蘖期、所述长穗期和所述结实期需要灌水处理,所述硅藻于所述分蘖期、所述长穗期和所述结实期中的至少一个时期加入。
  7. 根据权利要求3所述的水稻硅藻共生的培育方法,其特征在于,种植所述水稻的土壤为水稻土。
  8. 根据权利要求3所述的水稻硅藻共生的培育方法,其特征在于,所述硅藻为淡水硅藻;
    优选地,所述淡水硅藻包括梅尼小环藻和谷皮菱形藻中的至少一种。
  9. 根据权利要求3所述的水稻硅藻共生的培育方法,其特征在于,所述水稻的种类选自连粳11号、湘早籼45号、龙粳39、龙粳43、龙粳31、中嘉早17、绥粳14、绥粳18、南粳9108、黄华占、美香 占2号、19香、Y两优900、荃优822、晶两优华占、隆两优华占、晶两优534和隆两优534中的至少一种。
  10. 如权利要求3-9任一项所述的水稻硅藻共生的培育方法在水稻种植中的应用。
PCT/CN2022/118640 2021-09-18 2022-09-14 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法 WO2023040874A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/984,238 US11732234B1 (en) 2021-09-18 2022-11-10 Use of diatom in rice planting and cultivation method of rice in symbiosis with diatom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111112822.5 2021-09-18
CN202111112822.5A CN113632701B (zh) 2021-09-18 2021-09-18 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/984,238 Continuation US11732234B1 (en) 2021-09-18 2022-11-10 Use of diatom in rice planting and cultivation method of rice in symbiosis with diatom

Publications (1)

Publication Number Publication Date
WO2023040874A1 true WO2023040874A1 (zh) 2023-03-23

Family

ID=78426121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118640 WO2023040874A1 (zh) 2021-09-18 2022-09-14 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法

Country Status (4)

Country Link
US (1) US11732234B1 (zh)
CN (1) CN113632701B (zh)
LU (1) LU503038B1 (zh)
WO (1) WO2023040874A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632701B (zh) * 2021-09-18 2022-11-04 中国科学院广州地球化学研究所 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法
CN114605193A (zh) * 2022-03-23 2022-06-10 重庆大学 一种复合液态硅肥的制备方法和用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087167A (zh) * 2013-01-09 2013-05-08 中国农业科学院生物技术研究所 来源于硅藻的与植物氮利用和生长相关的蛋白质及其编码基因与应用
CN106242816A (zh) * 2016-08-22 2016-12-21 青岛海大生物集团有限公司 一种海藻有机硅肥的制备方法
CN107245011A (zh) * 2017-06-09 2017-10-13 中国科学院广州地球化学研究所 一种硅藻土基硅肥及其制备方法
CN110249939A (zh) * 2018-03-12 2019-09-20 谢小球 一种高产优质水稻的种植方法
CN110506588A (zh) * 2019-09-16 2019-11-29 福建省农业科学院土壤肥料研究所 一种生产低重金属污染稻米的综合农艺调控方法
CN110692466A (zh) * 2019-11-13 2020-01-17 华中农业大学 一种稻虾共作的改土丰产增效方法
CN110972849A (zh) * 2019-11-12 2020-04-10 潜山县下河有机茶厂 一种改良稻田土壤的种植方法
CN111955297A (zh) * 2020-08-19 2020-11-20 中国科学院南京土壤研究所 一种钝化稻田重金属并增加氮固持量的方法
CN113632701A (zh) * 2021-09-18 2021-11-12 中国科学院广州地球化学研究所 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054027A (ja) * 2005-07-29 2007-03-08 Saihatsu Ko 藻類の培養基質
JP2009120434A (ja) * 2007-11-14 2009-06-04 Hiroshi Hitomi とんぷんとケイフンとを混合した植物栽培用の有機肥料
US9428425B2 (en) * 2012-09-20 2016-08-30 Core Intellectual Properties Holdings, Llc Methods and compositions for treating soil and plants
US9198416B2 (en) * 2013-08-13 2015-12-01 Plant Response Biotech S.L. Method for enhancing drought tolerance in plants
CN104756808A (zh) * 2015-04-23 2015-07-08 湖南杂交水稻研究中心 杂交水稻防衰壮籽抗倒高产栽培技术
CN106831272A (zh) * 2016-12-30 2017-06-13 天津地天科技发展有限公司 一种复合硅藻速肥的制备方法
CN107459410A (zh) * 2017-07-28 2017-12-12 安徽省陶寓米业有限公司 一种促进水稻增产的种植方法
CN107567791A (zh) * 2017-08-25 2018-01-12 安徽太白庄园生态农业有限公司 一种沙质土壤的水稻抗病种植方法
CN112005825B (zh) * 2020-07-14 2023-04-25 常德市农林科学研究院 一种水稻抗倒伏方法
CN113080116A (zh) * 2021-03-16 2021-07-09 安徽省农业科学院水产研究所 一种稻田虾苗分阶段繁育方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087167A (zh) * 2013-01-09 2013-05-08 中国农业科学院生物技术研究所 来源于硅藻的与植物氮利用和生长相关的蛋白质及其编码基因与应用
CN106242816A (zh) * 2016-08-22 2016-12-21 青岛海大生物集团有限公司 一种海藻有机硅肥的制备方法
CN107245011A (zh) * 2017-06-09 2017-10-13 中国科学院广州地球化学研究所 一种硅藻土基硅肥及其制备方法
CN110249939A (zh) * 2018-03-12 2019-09-20 谢小球 一种高产优质水稻的种植方法
CN110506588A (zh) * 2019-09-16 2019-11-29 福建省农业科学院土壤肥料研究所 一种生产低重金属污染稻米的综合农艺调控方法
CN110972849A (zh) * 2019-11-12 2020-04-10 潜山县下河有机茶厂 一种改良稻田土壤的种植方法
CN110692466A (zh) * 2019-11-13 2020-01-17 华中农业大学 一种稻虾共作的改土丰产增效方法
CN111955297A (zh) * 2020-08-19 2020-11-20 中国科学院南京土壤研究所 一种钝化稻田重金属并增加氮固持量的方法
CN113632701A (zh) * 2021-09-18 2021-11-12 中国科学院广州地球化学研究所 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUNNAN ALFA ASTAXANTHIN: "Microalgae have more Functions than you can Imagine! Enhancing Stress Resistance in Rice and Increasing Rice Yields", SOHU, CN, CN, pages 1 - 4, XP009544541, Retrieved from the Internet <URL:https://www.sohu.com/a/478021770_120218946> *

Also Published As

Publication number Publication date
LU503038B1 (en) 2023-03-24
CN113632701B (zh) 2022-11-04
US11732234B1 (en) 2023-08-22
CN113632701A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023040874A1 (zh) 硅藻在水稻种植中的应用和水稻硅藻共生的培育方法
Liu et al. Effects of plastic film mulch and tillage on maize productivity and soil parameters
Chapagain et al. Achieving more with less water: Alternate wet and dry irrigation (AWDI) as an alternative to the conventional water management practices in rice farming
Mohammad et al. Wheat responses to vesicular‐arbuscular mycorrhizal fungal inoculation of soils from eroded toposequence
Narayanan et al. Effect of deficit irrigation on maize under conventional, fixed and alternate furrow irrigation systems at Melkassa, Ethiopia
Du et al. Soil properties and apricot growth under intercropping and mulching with erect milk vetch in the loess hilly-gully region
CN104938204B (zh) 一种提高花生水、肥利用效率的栽培方法
CN107517675A (zh) 一种黄花菜种植技术
CN110244001B (zh) 一种杂草定量监控方法
Radanović et al. Cultivation trials on Gentiana lutea L. in Southern and South-eastern Europe
Maboko et al. Swiss chard (Beta vulgaris L.) water use efficiency and yield under organic and inorganic mulch application
Kumar et al. Growing pulses in rice fallow: Ensuring nutritional security in India
CN104956868A (zh) 一种红壤缓坡旱地花生与黄花菜间作方法
Rao et al. In situ rainwater conservation practices in sorghum (Sorghum bicolor) under rainfed conditions in arid regions
CN108886901A (zh) 一种针对山地梨园的保水固土方法
CN106879408A (zh) 山区旱稻及其种植方法
CN105830723A (zh) 一种莲藕套种超级稻高效栽培方法
Parthasarathi et al. Effect of various micro irrigation treatments on growth and yield response of aerobic rice
Khan et al. Response of range grasses to salinity levels at germination and seedling stage.
Shete et al. Yield performance of soybean (Glycine max. L) under BBF sowing with improved variety MACS-1188 under Western Maharashtra Condition
Praharaj et al. Scaling soil fertility and productivity of pulses under rice fallows in Eastern India
Lewthwaite et al. Preliminary study of the spatial distribution of sweet potato storage roots.
Kumari et al. Effect of irrigation scheduling based on water limiting conditions to growth, yield and yield response factor for mustard crop
MUKHAMADKHAN et al. THE EFFICIENCY OF BIOMELIORATION OF SALINE SOILS IN CONDITIONS OF A SHORTAGE OF WATER RESOURCES
Reddy et al. Water productivity of rabi maize (Zea mays L.) as influenced by planting geometry and moisture regimes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869243

Country of ref document: EP

Kind code of ref document: A1