WO2023040831A1 - 有机气体回收模块化组件及涂布机废气处理系统 - Google Patents
有机气体回收模块化组件及涂布机废气处理系统 Download PDFInfo
- Publication number
- WO2023040831A1 WO2023040831A1 PCT/CN2022/118464 CN2022118464W WO2023040831A1 WO 2023040831 A1 WO2023040831 A1 WO 2023040831A1 CN 2022118464 W CN2022118464 W CN 2022118464W WO 2023040831 A1 WO2023040831 A1 WO 2023040831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic gas
- recovery
- unit
- oven
- gas recovery
- Prior art date
Links
- 239000007789 gas Substances 0.000 title claims abstract description 209
- 238000011084 recovery Methods 0.000 title claims abstract description 135
- 238000000576 coating method Methods 0.000 title claims abstract description 66
- 239000011248 coating agent Substances 0.000 title claims abstract description 65
- 239000002912 waste gas Substances 0.000 title claims abstract description 16
- 238000001179 sorption measurement Methods 0.000 claims abstract description 49
- 238000000746 purification Methods 0.000 claims abstract description 28
- 230000008929 regeneration Effects 0.000 claims description 28
- 238000011069 regeneration method Methods 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 7
- 239000000498 cooling water Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 abstract description 12
- 238000004891 communication Methods 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 69
- 238000004519 manufacturing process Methods 0.000 description 34
- 238000000034 method Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 239000007788 liquid Substances 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000005494 condensation Effects 0.000 description 3
- 238000012938 design process Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/06—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
- B05D3/0254—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
- B01D2259/4009—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the invention relates to the technical field of organic gas recovery, in particular to an organic gas recovery modular assembly and a coating machine exhaust gas treatment system using the modular assembly.
- coating is a very important step.
- the main equipment used in this step is a coating machine, and the oven, as the most important part of the coating machine, includes multiple oven units, and each oven unit is connected to each other. Connected and integrated, the coated substrate advances in the same direction in the oven, and is continuously baked and dried by the high temperature in each oven unit during the advancement process.
- manufacturers often set up multiple continuous oven units in a multi-layer structure to save limited production workshops.
- high-temperature N-methylpyrrolidone (NMP) waste gas will be produced.
- NMP itself is expensive, which not only endangers human health, but also affects production safety; if it is directly discharged Not only pollute the environment, but also cause energy waste. Therefore, in the production of lithium batteries, it is necessary to treat the NMP waste gas generated during the coating process to achieve emission standards.
- the current NMP recycling method for cathode coating ovens is shown in Figure 1.
- N sections usually 10-12 sections
- a set of NMP recovery equipment is used for centralized processing. That is to say, the N-section ovens use a main air duct, share a large fan for exhaust, and share a large NMP recycling device for processing.
- the temperature of the electrode sheet in each oven is different, and the amount of volatilized NMP is also different.
- the design method of a centralized NMP recovery device to deal with N-section ovens can only be designed according to the maximum possible NMP volatilization, so as to ensure that the NMP concentration in each section of the oven does not exceed the maximum process allowable concentration. Therefore, the problem of excessive exhaust air volume and low NMP concentration will appear at the head end with lower temperature and the tail end where NMP is almost completely volatilized (as shown in Figure 2). This will result in waste of energy such as excessive power of the exhaust fan and blower, and excessive load on the oven heater, resulting in an increase in battery manufacturing costs.
- the object of the present invention is to provide a modular assembly for organic gas recovery and a coating machine exhaust gas treatment system using the modular assembly, so as to achieve the technical effect of efficient recovery of organic gas and energy saving.
- the first aspect of the present invention provides an organic gas recovery modular assembly, including a heat recovery organic gas recovery unit, an organic gas adsorption purification unit and an automatic air volume adjustment system.
- the heat recovery organic gas recovery unit includes at least one heat exchanger, at least one condenser, at least one frequency conversion fan and an organic gas concentration sensor; the heat exchanger and the condenser are connected to each other to form an organic gas heat exchange-condensation recovery circulation flow path;
- the organic gas concentration sensor is arranged at the high temperature inlet of the heat exchanger;
- the organic gas adsorption purification unit includes an adsorption runner, an electric damper, and a regeneration heater;
- the adsorption runner includes at least one adsorption zone, cooling zone and regeneration zone;
- the electric air valve is connected to the outlet of the adsorption zone;
- the regeneration heater is connected to the inlet of the regeneration zone;
- the inlet of the organic gas adsorption purification unit is connected to the heat recovery organic gas recovery unit
- the outlet of the condenser is connected, and the condensed gas is introduced into the adsorption area of the adsorption wheel; the outlet of the regeneration area is connected with the
- the automatic air volume adjustment system compares the organic gas concentration detected by the organic gas concentration sensor in real time with the set value. When the organic gas concentration is higher than the set value, the air volume automatic adjustment system will automatically increase the frequency of the variable frequency fan When the concentration of organic gas is lower than the set value, the automatic air volume control system will automatically reduce the exhaust air volume of the frequency conversion fan and reduce the electric air valve proportionally exhaust air volume.
- the regenerative heater is an electric heater and/or a steam heater, and other gas heaters.
- the gas heater is formed by converging condensed cooling gas and high-temperature organic gas.
- outlet of the regeneration zone is connected with the high temperature inlet of the heat exchanger or the inlet of the condenser.
- thermoelectric coolers there are at least two heat exchangers arranged in series.
- the condenser includes at least two of a normal temperature water cooler, a cooling water condenser, a heat pipe, and a direct expansion pipe.
- the heat recovery organic gas recovery unit and the organic gas adsorption purification unit are split modular structures.
- the heat recovery organic gas recovery unit is a split modular structure; wherein the heat exchanger and the organic gas concentration sensor are arranged in the first split module; the condenser and the frequency conversion fan are arranged in the A second split module; the first split module is detachably connected to the second split module.
- the coating machine includes one layer or at least two layers of coating ovens, each layer of the coating ovens is provided with several oven units, each oven The units are all provided with exhaust gas outlets and exhaust gas inlets, and the exhaust gas outlets and exhaust gas inlets of each oven unit or at least every two adjacent oven units are respectively connected to the high-temperature inlets of the heat exchangers of the above-mentioned organic gas recovery modular assembly. It is connected with the low temperature outlet.
- the coating machine has more than two layers, and more than two layers of ovens on the machine head side share a set of the above-mentioned integrated organic gas recovery modular assembly; Gas recovery modular components.
- the exhaust gas treatment system of the coating machine adopts the above-mentioned split-type organic gas recovery modular assembly, wherein each oven unit in the one-layer coating oven or the corresponding oven in each column of the at least two-layer coating oven
- the unit is equipped with at least one heat recovery organic gas recovery unit.
- the organic gas discharged from each heat recovery organic gas recovery unit is collected and then introduced to an organic gas adsorption purification unit for centralized treatment.
- the air after centralized treatment is exported from the outlet of the regeneration area to The nearest heat recovery organic gas recovery unit or lead to each heat recovery organic gas recovery unit respectively.
- the single-layer oven unit on the head side or the oven unit corresponding to each row of at least two layers of coating ovens share a set of heat recovery organic gas recovery units; each oven unit on the tail side uses a set of heat recovery organic gas recovery units. Gas recovery unit.
- the unitized modular treatment scheme that precisely controls the exhaust air volume of each production device can realize the recovery and purification of organic gas under the condition of the lowest energy consumption in system operation;
- An organic gas concentration sensor is installed on the exhaust duct of the oven, and an electric air valve is installed at the exhaust port of the organic gas adsorption and purification unit to purify the gas, and an automatic air volume adjustment system is set to automatically control the exhaust air volume of each oven.
- the automatic air volume adjustment system will automatically increase the operating frequency of the organic gas recovery unit fan and increase the exhaust air volume of the oven to ensure that the organic gas concentration in the oven is maintained.
- the automatic air volume control system will also transmit control signals to the electric air valve actuator of the organic gas adsorption purification unit, and the exhaust air volume of the purified gas of the organic gas adsorption purification unit is in accordance with The proportion is increased to ensure the condition of micro-negative pressure inside the production device; and when the concentration of organic gas in the production device is lower than the set value, the automatic air volume control system will automatically adjust the operating frequency of the fan of the organic gas recovery unit to reduce the exhaust air of the production device
- the power consumption of the fan is reduced, and the heating load required by the oven heater is also reduced, so as to achieve energy saving and reduce system operating costs; in addition, due to the An organic gas concentration sensor is installed in the exhaust duct of each production unit, and is linked with the automatic exhaust control system of the production unit.
- the product When a new battery needs to be replaced during the production process, the product is shut down and then restarted, or restarted after maintenance.
- the adjustment time of the system will be greatly reduced, thereby reducing invalid operation time, improving production efficiency, and reducing manufacturing costs; in addition, taking the cathode coating oven exhaust NMP recovery modular device as an example, several ovens on the side of the machine head Due to the small amount of NMP volatilization, the upper and lower ovens are used as a group to install a NMP recovery modular device, and on the tail side of the machine, due to the large amount of NMP volatilization in the oven, the upper and lower ovens are individually installed with a modular device.
- this setting method can ensure that the NMP concentration in each oven does not exceed the maximum allowable concentration of the process, and the head end with a lower temperature and the tail end where NMP is almost completely volatilized will not have excessive exhaust air volume and NMP concentration.
- the problem of too low so as to solve the energy waste of the exhaust fan, the excessive power of the blower, the overload of the oven heater, etc., and reduce the battery manufacturing cost;
- the exhaust gas treatment unit proposed by the present invention adopts a modular structure, wherein The exchanger and the organic gas concentration sensor are arranged in the first split module; the condenser and the frequency conversion fan are arranged in the second split module; the two modules are manufactured independently, which simplifies the manufacturing process and facilitates production and installation. It is convenient for maintenance and transportation, and also has high sealing performance; at the same time, it also realizes exhaust gas purification, filtration, heat recovery and reuse, and waste liquid recovery and reuse in the entire waste gas treatment cycle process.
- Fig. 1 is a schematic diagram of the NMP recovery principle of the cathode coating drying waste gas treatment system in the prior art
- Fig. 2 is a schematic diagram of the NMP concentration of each section of the oven in the cathode coating drying waste gas treatment system in the prior art
- Fig. 3 is a schematic diagram of the principle of the lithium battery cathode coating oven NMP recycling modular assembly of the present invention
- Fig. 4 is a schematic diagram of the first embodiment of the cathode coating drying exhaust gas treatment system of the present invention.
- Fig. 5 is a schematic diagram of the second embodiment of the cathode coating drying waste gas treatment system of the present invention.
- Fig. 6 is a schematic diagram of the third embodiment of the cathode coating drying exhaust gas treatment system of the present invention.
- Coating machine oven 200. Heat recovery organic gas recovery unit; 210. Heat exchanger; 220. Cooling water coil; 230. Low temperature cold water coil; 240. Liquid baffle; 250. First fan; 260. Filter screen; 270. Inverter; 280. NMP concentration sensor; 300. Organic gas adsorption purification unit; 310. Adsorption runner; 320. Regeneration heater; 330. Second fan; 340. Electric damper; Valve actuator; 400. Air volume automatic adjustment system; 500. NMP recovery modular device.
- orientation such as orientations or positional relationships indicated by up, down, left, right, front, back, inside, outside, longitudinal, horizontal, vertical, horizontal, etc.
- orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present invention .
- connection should be understood in a broad sense, for example, it can be a fixed connection or a A detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, and it may be an internal communication between two components.
- installation should be understood in a broad sense, for example, it can be a fixed connection or a A detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, and it may be an internal communication between two components.
- each preferred embodiment of the present invention selects the coating machine cathode oven as the production device, and focuses on the NMP recovery and energy saving principles of the coating machine cathode oven using the organic gas recovery modular assembly, but it should be understood that the present invention
- the production equipment mentioned in the above should not be limited to the electrode oven of the coating machine. Any production equipment that generates organic gas waste gas during production needs air supply and exhaust, such as: mainly for lithium battery coating ovens, printing, semiconductors, adhesives, etc. Tape manufacturing, etc. can be used in conjunction with the organic gas recovery modular assembly of the present invention.
- the coating machine cathode oven should not be construed as a limitation to the production device in the claims, and NMP should not be construed as a limitation to the organic gas in the claims. limits.
- FIG. 3 is a schematic diagram of the principle of the NMP recovery modular assembly of the lithium battery cathode coating oven of the present invention, wherein the organic gas recovery modular assembly includes a heat recovery organic gas recovery unit 200, an organic gas adsorption purification unit 300 and an automatic air volume adjustment System 400, the heat recovery organic gas recovery unit 200 includes a heat exchanger 210, a condenser, a first fan 250 and an NMP concentration sensor 280; wherein the heat exchanger 210 includes a high-temperature gas inlet, a low-temperature gas outlet, and a low-temperature gas inlet And a high-temperature gas outlet, wherein one end of the high-temperature gas inlet is connected to the gas outlet of the coating machine cathode oven 100, and the other end is connected to the low-temperature gas outlet, and one end of the high-temperature gas outlet is connected to the gas inlet of the coating machine cathode oven 100, and the other end is connected to the gas outlet of the coating machine cathode oven 100.
- the low-temperature gas outlet is connected to the low-temperature gas inlet through the condenser inlet and the condenser outlet.
- the high-temperature waste gas generated by the cathode oven 100 of the coating machine enters the hot air from the gas outlet.
- the high-temperature gas inlet of the exchanger 210 it exchanges heat with the low-temperature exhaust gas flowing in from the low-temperature inlet of the heat exchanger 210.
- the low-temperature gas after condensation and recovery flows from the outlet of the condenser to the low-temperature gas inlet of the heat exchanger 210, and after heat exchange with the high-temperature gas in the heat exchanger 210, it is converted into a high-temperature gas and returned to the coating machine
- the cathode oven 100 forms an organic gas heat exchange-condensation recovery circulation flow path.
- the heat exchanger in this embodiment is preferably a plate heat exchanger, and it is inclined at an angle of 45° to the bottom surface of the housing. In other embodiments, there are at least two heat exchangers arranged in series. However, it should be understood that the type, quantity and arrangement of the heat exchangers in this embodiment are only a preferred example, and any other conventional heat exchangers in the prior art, such as shell-and-tube heat exchangers, double Tube-sheet heat exchangers, ceramic heat exchangers, regenerative heat exchangers, etc. should also be included in the scope of protection of the claims.
- the condenser in this embodiment is preferably a combination of the cooling water coil 220 and the low-temperature cooling water coil 230 .
- this embodiment is only a preferred example, and those skilled in the art can select at least two of cooling water coils, low-temperature cold water coils, heat pipes, and direct expansion tubes as condensers according to actual needs; Coils and low-temperature cold water coils should not be regarded as limiting the protection scope of the condenser in the claims.
- the first fan 250 for air supply can also be preferably arranged in the lithium battery cathode coating oven NMP recovery modular assembly of the present embodiment, and the first fan 250 is preferably a variable frequency fan; the downstream of the condenser is preferably provided with a The liquid baffle 240 that blocks the condensate and the filter screen 260 that blocks the dust in the exhaust air, the filter screen 260 is preferably arranged at the first entrance of the heat exchanger 210, and the first fan 250 is preferably arranged on the liquid baffle 240 and filter screen 260.
- the organic gas adsorption and purification unit 300 includes an adsorption wheel 310 , an electric damper 340 , and a regeneration heater 320 ; the adsorption wheel 310 includes at least one adsorption zone, a cooling zone, and a regeneration zone.
- part of the low-temperature gas condensed and recovered by the condenser enters the heat exchanger from the low-temperature inlet of the heat exchanger 210, and returns to the cathode oven 100 after heat exchange with the high-temperature gas; Guided by 330, it is introduced into the adsorption area of the adsorption runner 310.
- the concentration of NMP in the remaining exhaust gas will be further reduced to less than 10ppm, reaching the emission standard, and it will be discharged to the outside through the electric air valve 340;
- the NMP adsorbed on the adsorption runner is heated to the regeneration temperature by the regeneration heater 320, and the desorbed regenerated concentrated NMP will return to the high-temperature gas inlet of the heat exchanger 210 and enter the next organic gas heat exchange-condensation recovery circulation flow path;
- the regenerated and concentrated NMP gas after desorption can also be directly passed into the condenser for the next round of condensation recovery of NMP.
- a cooling zone is also arranged on the adsorption runner.
- This cooling zone can accept the split gas of the other part of the low-temperature gas that has been condensed and recovered.
- the split gas is heated through the cooling zone. After the exchange, the temperature rises, and as the heating medium of the regeneration heater 320, the NMP adsorbed in the regeneration zone is heated and desorbed after being heated by the heating device of the regeneration heater 320.
- the split gas should not be understood as the only way to cool the cooling zone, and any solution that can cool the cooling zone, such as: direct cooling of external air, electric cooling, and cooling of other refrigerants should be covered by the present invention within the scope of protection;
- the regenerative heater 320 uses the confluence gas formed after the heat exchanged gas passing through the cooling zone and part of the high-temperature gas exported from the oven directly merges as a heating source to heat and decompose the regeneration zone. Attached, this embodiment can decide whether to install a heating device according to the actual situation, or decide whether to start the heating device according to the actual temperature. If the temperature of the confluent gas reaches the regeneration temperature, there is no need to install the heating device or even if the heating device is installed, it will be kept closed. state; if the temperature of the confluence gas cannot reach the regeneration temperature, a heating device is required to reheat the confluence gas to ensure that it reaches the regeneration temperature. This embodiment can further save product production costs or further reduce system energy consumption, which is beneficial to large-scale production.
- the present invention dynamically adjusts the air supply volume and exhaust air volume through the real-time detection of the NMP gas concentration in the oven, while ensuring that the NMP concentration in the oven is maintained within the allowable concentration range required by the design process, as much as possible. Possibility to reduce energy consumption on exhaust and supply air.
- an NMP concentration sensor 280 and an automatic air volume control system 290 are set in the NMP recovery modular assembly of the lithium battery cathode coating oven, wherein the NMP concentration sensor 280 is set at the high temperature inlet of the heat exchanger 210 to control the temperature of the oven.
- the NMP concentration inside is detected in real time, the input end of the automatic control system 290 is connected to the NMP concentration sensor 280 to obtain the NMP concentration data in real time, and the output end is respectively connected to the first fan frequency converter 270 and the electric damper actuator 350 by communication , so as to dynamically adjust the air supply and exhaust volumes of the first fan 250 and the electric damper 340 according to the control logic.
- the control logic is as follows: the NMP concentration sensor 280 detects the concentration of NMP in the oven in real time. When the NMP concentration in the oven is higher than the set value (such as 4500ppm), the air volume automatic adjustment system 400 will automatically increase the first fan in the NMP recovery unit 200.
- the operating frequency is 250, and the exhaust air volume of the oven is increased to ensure that the NMP concentration in the oven is maintained within the allowable concentration range required by the design process; at the same time, the air volume automatic control system 400 will also transmit control signals to the NMP adsorption purification unit 300
- the electric air valve actuator 350 increases the exhaust volume of the purified gas of the NMP adsorption purification unit 300 in proportion (according to the ratio of 5-10% of the high-temperature exhaust air of the oven), so as to ensure the condition of slight negative pressure inside the oven.
- the air volume automatic control system 400 will automatically adjust the operating frequency of the first fan 250 in the NMP recovery unit 200 to reduce the exhaust air volume of the oven.
- the set value of the NMP (organic gas) concentration, and/or the ratio of the air supply volume to the exhaust air volume can be artificially set according to actual conditions.
- the heat recovery organic gas recovery unit 200 and the organic gas adsorption purification unit 300 can be set as split modular structures according to actual needs; and/or the heat recovery
- the organic gas recovery unit 200 itself can also be set as a split modular structure, wherein the heat exchanger 210 and the organic gas concentration sensor 280 are arranged in the first split module; the condenser, the first fan 250 , the liquid baffle 240 (optional), and the filter screen 260 (optional) are arranged on the second split module; the first split module is detachably connected to the second split module.
- an appropriate sealing structure and/or fastening structure is required between the modules, even though it is not shown in the drawings, it should not be an obstacle to the understanding of the claims and description.
- Fig. 4 shows the schematic diagram of the technical principle of the first embodiment of the exhaust gas treatment system of the coating machine composed of a plurality of cathode coating machine ovens and NMP recovery modular components, wherein the heat recovery organic gas recovery unit 200 is connected with the The organic gas adsorption and purification unit 300 adopts a combined form, and the two together form the NMP recovery modular device 500; in this embodiment, the coating machine includes two layers of coating ovens, and each layer of the coating ovens is equipped with several ovens Each oven unit is equipped with an exhaust gas outlet and an exhaust gas inlet. Since the volatilization of NMP in several oven units on the head side is less, the corresponding oven units on the upper and lower layers of the head side share one NMP recovery module.
- a modular device 500 is independently installed in the oven unit corresponding to each layer above and below.
- the exhaust gas outlet and exhaust gas inlet of each oven unit or at least every two upper and lower layers of the oven unit are respectively connected to the high temperature inlet and the low temperature outlet of the heat exchanger of the NMP recovery modular device 500 .
- each oven can dynamically adjust the exhaust air of the oven unit in real time according to the NMP concentration in the oven unit.
- the air supply volume ensures that each oven meets the requirements of the production process while reducing energy consumption as much as possible.
- the system adjustment time will be greatly reduced when the product is shut down and restarted, or restarted after maintenance, thereby reducing invalid operating time, improving production efficiency, and reducing manufacturing cost.
- Fig. 5 shows the schematic diagram of the technical principle of the second embodiment of the exhaust gas treatment system of the coating machine composed of a plurality of cathode coating machine ovens and NMP recovery modular components.
- the heat recovery organic gas recovery unit 200 and the organic gas adsorption and purification unit 300 are set in a separate form. Since the volatilization of NMP in the several oven units on the side of the machine head is less, the corresponding oven units on the upper and lower layers of the machine head side are shared.
- each oven unit or the oven units corresponding to the upper and lower floors are respectively connected with the high temperature inlet and the low temperature outlet of the heat exchanger of the heat recovery organic gas recovery unit 200 .
- the organic gas discharged from each heat recovery organic gas recovery unit 200 is collected and introduced to an organic gas adsorption purification unit 300 for centralized treatment, and the air after centralized treatment is exported from the outlet of the regeneration area to the nearest heat recovery organic gas unit.
- Recovery unit 200 .
- the organic gas recovery unit 200 and the organic gas adsorption and purification unit 300 are arranged separately, and only one organic gas adsorption and purification unit 300 is arranged in the entire system, which can be further improved on the basis of Embodiment 1.
- FIG. 6 is a schematic diagram of the technical principle of the third embodiment of the exhaust gas treatment system of the coating machine composed of multiple cathode coating machine ovens and NMP recovery modular components.
- the improvement points of this embodiment The only thing is that the air that has been intensively treated by the organic gas adsorption and purification unit 300 is exported from the outlet of the regeneration zone to each heat recovery organic gas recovery unit.
- This arrangement method can improve the stability of the air supply and exhaust of each section of the oven, and can also reduce the fluctuation of the negative pressure required in each section of the oven.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
Abstract
一种有机气体回收模块化组件以及涂布机废气处理系统,有机气体回收模块化组件包括热回收有机气体回收单元(200)、有机气体吸附净化单元(300)与风量自动调节系统(400)。涂布机包括一层或至少两层涂布烘箱(100),每层涂布烘箱(100)设置有若干烘箱单元,每个烘箱单元或者至少两个相邻的烘箱单元的废气出口和废气入口分别与有机气体回收单元(200)的热交换器(210)的高温入口和低温出口相连通。风量自动调节系统(400)输入端连接有机气体浓度传感器(280),输出端连接电动风阀(340)与变频风机。
Description
本发明涉及有机气体回收技术领域,特别涉及一种有机气体回收模块化组件,以及应用该模块化组件的涂布机废气处理系统。
在锂电池生产流程中,涂布是一个非常重要的步骤,该步骤主要应用的设备为涂布机,而烘箱作为涂布机中最为重要的一部分,包括多节烘箱单元,每节烘箱单元相互连通成一体,涂布基材在烘箱内按相同的方向前进,在前进过程中连续受各烘箱单元内的高温烘烤,并进行烘干。目前在锂电池极片涂布烘干过程中,为了节省空间和提高生产效率,厂家往往将多个连续的烘箱单元设置成多层结构,以节省有限的生产车间。并且,锂电池极片在进行涂布烘干的过程中,会伴随有高温N-甲基吡咯烷酮(NMP)废气的产生,NMP本身成本高,不仅危害人类健康,而且影响生产安全;若直接排放不仅污染环境,还会造成能源浪费。因此,在锂电池生产中需要对涂布过程中产生的NMP废气进行处理,实现达标排放。
现行阴极涂布烘箱NMP回收方法如图1所示,对于每条涂布机生产线上的N节(通常是10-12节)烘箱,采用一套NMP回收装置集中进行处理。也就是说,N节烘箱通过一条主风管、共用一台大风机进行排风以及共用一台大型NMP回收回收装置进行处理。
另一方面,由于涂布后的电极片是由烘箱机头端进入烘箱、机尾端离开烘箱,电极片在每节烘箱中的温度不同,挥发出的NMP的量也就不同,所以,采用一台集中式NMP回收装置来处理N节烘箱的设计方式,只能按照最大可能的NMP挥发量来进行设计,以保证每节烘箱内的NMP浓度都不超出最高工艺允许浓度。因此,温度较低的机头端、以及NMP几乎全部挥发干净的机尾端就会出现排风量过大,NMP浓度过低的问题(如图2所示)。这样就会造成排风机、送风机运行动力过大、烘箱加热器负荷过大等的能量浪费,造成电池制造成本上升的问题。
发明内容
本发明的目的在于提供一种有机气体回收模块化组件以及应用该模块化组件的涂布机废气处理系统,以达到有机气体高效回收,能源节约的技术效果。
为实现上述发明目的,本发明采用如下技术方案:本发明第一方面提供了一种有机气体回收模块化组件,包括热回收有机气体回收单元、有机气体吸附净化单元与风量自动调节系统,所述热回收有机气体回收单元包括至少一热交换器,至少一冷凝器, 至少一变频风机及有机气体浓度传感器;所述热交换器、冷凝器相互连接形成有机气体热交换-冷凝回收循环流路;所述有机气体浓度传感器设置于所述热交换器的高温入口处;所述有机气体吸附净化单元包括吸附转轮、电动风阀、再生加热器;所述吸附转轮包括至少一吸附区、冷却区与再生区;所述电动风阀与所述吸附区出口相连接;所述再生加热器与所述再生区入口相连接;所述有机气体吸附净化单元入口与所述热回收有机气体回收单元的冷凝器出口相连,并将冷凝后的气体导入所述吸附转轮的吸附区;所述再生区出口与所述热交换器的高温入口或冷凝器入口连接;所述风量自动调节系统输入端通讯连接所述有机气体浓度传感器,输出端通讯连接所述电动风阀与所述变频风机。
进一步的,所述风量自动调节系统将有机气体浓度传感器实时检测的有机气体浓度与设定值相比较,当有机气体浓度高于设定值时,风量自动调节系统会自动提高所述变频风机的排风量,并按比例提高电动风阀排风量;而当有机气体浓度低于设定值时,风量自动控制系统会自动降低所述变频风机的排风量的同时按比例降低电动风阀的排风量。
可选择的,所述再生加热器为电加热器和/或蒸汽加热器、以及其它气体加热器。
进一步的,所述气体加热器由冷凝后的冷却气体与高温有机气体汇流后形成。
进一步的,所述再生区出口与所述热交换器的高温入口或冷凝器入口连接。
优选的,所述热交换器为至少两个,且呈串联设置。
优选的,所述冷凝器包括常温水冷却器、冷却水冷凝器、热管、直膨管中至少两者。
优选的,所述热回收有机气体回收单元与所述有机气体吸附净化单元为分体式模块化结构。
优选的,所述热回收有机气体回收单元为分体式模块化结构;其中所述热交换器和所述有机气体浓度传感器设置于第一分体模块;所述冷凝器与所述变频风机设置于第二分体模块;所述第一分体模块与所述第二分体模块可拆卸连接。
本发明的另一方面提供了一种涂布机废气处理系统,所述涂布机包括一层或至少两层涂布烘箱,每层所述涂布烘箱均设置有若干烘箱单元,每个烘箱单元均设置有废气出口和废气入口,每一个所述烘箱单元或者至少每两个相邻所述烘箱单元的废气出口和废气入口分别与上述的有机气体回收模块化组件的热交换器的高温入口和低温出口相连通。
优选的,所述涂布机为两层以上,机头侧两层以上的烘箱共用一套上述合体式的有机气体回收模块化组件;机尾侧上下层烘箱各用一套上述合体式的有机气体回收模块化组件。
优选的,所述涂布机废气处理系统采用上述分体式的有机气体回收模块化组件,其中所述一层涂布烘箱中的每节烘箱单元或者至少两层涂布烘箱中每列对应的烘箱单元至少配置有一热回收有机气体回收单元,各热回收有机气体回收单元排出的有机气体收集后导入到一台有机气体吸附净化单元集中处理,经集中处理后的空气从所述再生区出口导出到距离最近的一台热回收有机气体回收单元或分别导出到每个热回收有机气体回收单元。
进一步的,机头侧的单层烘箱单元或者至少两层涂布烘箱中每列对应的烘箱单元共用一套热回收有机气体回收单元;机尾侧的每节烘箱单元各用一套热回收有机气体回收单元。
本发明的有益效果是:精确控制每节生产装置排风量的单元化模块式处理方案能够在系统运行能耗最低的条件下实现对有机气体的回收净化处理;在有机气体回收模块化装置连接烘箱排风管道上设置一个有机气体浓度传感器,在有机气体吸附净化单元净化气体排气口设置一个电动风阀,通过设置的一个风量自动调节系统对每节烘箱的排风量进行自动控制,当有机气体浓度传感器检测到生产装置内有机气体浓度高于设定值时,风量自动调节系统会自动提高有机气体回收单元风机的运行频率、加大烘箱排风量,以保证烘箱内有机气体浓度维持在设计工艺要求的允许浓度范围内,与此同时,该风量自动控制系统也会传递控制信号给有机气体吸附净化单元的电动风阀执行器,对有机气体吸附净化单元的净化气体排风量按照比例加大,以保证生产装置内部微负压的条件;而当生产装置内有机气体浓度低于设定值时,风量自动控制系统会自动调节有机气体回收单元风机运转频率、减少生产装置排风量,在保证生产装置内工艺/安全上对有机气体浓度要求的前提下,降低风机运行动力能耗,同时也减少烘箱加热器所需加热负荷,实现节能以及降低系统运行成本;另外,由于在每节生产装置排风管道中都安装了有机气体浓度传感器,并与生产装置排风自控系统联动,当出现生产过程中需要更换新的电池产品停机后再开机、或者是维保后的再开机时系统调节时间会极大缩小,从而降低无效操业时间,提高生产效率,进而降低制造成本;另外,以阴极涂布烘箱排气NMP回收模块化装置为例,机头侧的几节烘箱中由于NMP挥发量较少,上下两层烘箱为一组设置一台NMP回收模块化装置,而在机尾侧由于烘箱中NMP挥发量较多,上下每层烘箱独自设置一个模块化装置的设置方法,此设置方法可以保证每节烘箱内的NMP浓度都不超出最高工艺允许浓度,温度较低的机头端、以及NMP 几乎全部挥发干净的机尾端不会出现排风量过大,NMP浓度过低的问题,从而解决排风机、送风机运行动力过大、烘箱加热器负荷过大等的能量浪费,降低电池制造成本;此外,本发明提出的废气处理机组采用模块化结构,其中所述热交换器和所述有机气体浓度传感器设置于第一分体模块;所述冷凝器与所述变频风机设置于第二分体模块;两个模块独立制造,简化了制造工艺,利于生产和安装,便于维修和运输,也具有较高的密封性;同时也使整个废气处理的循环过程实现了废气净化、过滤和热量回收再利用,以及废液的回收再利用。
图1是现有技术中阴极涂布烘干废气处理系统NMP回收原理示意图;
图2是现有技术中阴极涂布烘干废气处理系统中各节烘箱NMP浓度示意图;
图3是本发明锂电池阴极涂布烘箱NMP回收模块化组件原理示意图;
图4是本发明阴极涂布烘干废气处理系统第一实施例原理示意图;
图5是本发明阴极涂布烘干废气处理系统第二实施例原理示意图;
图6是本发明阴极涂布烘干废气处理系统第三实施例原理示意图;
附图标记说明
100.涂布机烘箱;200.热回收有机气体回收单元;210.热交换器;220.冷却水盘管;230.低温冷水盘管;240.挡液板;250.第一风机;260.过滤网;270.变频器;280.NMP浓度传感器;300.有机气体吸附净化单元;310.吸附转轮;320.再生加热器;330.第二风机;340.电动风阀;350.电动风阀执行器;400.风量自动调节系统;500.NMP回收模块化装置。
为了使本技术领域的人员更好地理解本发明的技术方案,下面将结合附图所示的各实施方式对本发明实施例中的技术方案进行清楚、完整地描述。但应当说明的是,这些实施方式并非对本发明的限制,本领域普通技术人员根据这些实施方式所作的功能、方法、或者结构上的等效变换或替代,均属于本发明的保护范围之内。
同时,在本说明书中,涉及方位的描述,例如上、下、左、右、前、后、内、外、纵向、横向、竖直、水平等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
并且,在本说明书的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可 以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义,不能理解为对本发明的限制。
为了便于描述,本发明各优选实施例选择涂布机阴极烘箱作为生产装置,重点阐述使用有机气体回收模块化组件的涂布机阴极烘箱的NMP回收与能源节约原理,但应理解的是本发明中所述的生产装置不应局限于涂布机电极烘箱,凡是在生产中产生有机气体废气需要送风、排风的生产装置,如:主要为锂电池涂布烘箱、印刷、半导体、粘合胶带制造等都可与本发明的有机气体回收模块化组件结合使用,所述涂布机阴极烘箱不应理解为对权利要求中生产装置的限制,NMP同样不应理解为对权利要求中有机气体的限制。
图3所示为是本发明锂电池阴极涂布烘箱NMP回收模块化组件原理示意图,其中所述有机气体回收模块化组件包括热回收有机气体回收单元200、有机气体吸附净化单元300与风量自动调节系统400,所述热回收有机气体回收单元200包括一热交换器210,一冷凝器,第一风机250及NMP浓度传感器280;其中热交换器210包括高温气体入口、低温气体出口、低温气体入口以及高温气体出口,其中所述高温气体入口一端连接涂布机阴极烘箱100的气体出口,另一端连接所述低温气体出口,所述高温气体出口一端连接涂布机阴极烘箱100的气体入口,另一端连接所述低温气体入口,所述低温气体出口通过冷凝器入口、冷凝器出口与所述低温气体入口相连,在废气处理过程中,涂布机阴极烘箱100产生的高温废气自气体出口进入热交换器210高温气体入口后,与热交换器210低温入口流入的低温废气进行热交换,高温废气经过热交换后转化成的低温废气从热交换器210低温出口进入冷凝器入口,在冷凝器进行NMP的冷凝回收,经冷凝回收后的低温气体从冷凝器出口流入热交换器210的低温气体入口,经过与热交换器210内的高温气体热交换后转化成高温气体并重新回输涂布机阴极烘箱100,从而形成有机气体热交换-冷凝回收循环流路。
本实施例中的热交换器优选为板式热交换器,且其与壳体底面呈45°角倾斜设置。在其他的实施例中,热交换器数量为至少两个,且呈串联设置。但应该理解的是,本实施例中的换热器种类、数量及其布置方式只是较佳的一种示例,现有技术中任何其他常规的热交换器,如管壳式换热器、双管板换热器、陶瓷换热器、蓄热式换热器等也都应纳入到权利要求的保护范围。
本实施例中的冷凝器优选为冷却水盘管220与低温冷水盘管230两者的组合。但应该理解的是该实施例只是较佳的一种示例,本领域技术人员能够根据实际需要选择 冷却水盘管、低温冷水盘管、热管、直膨管中至少两者作为冷凝器;冷却水盘管与低温冷水盘管不应视为对权利要求中冷凝器保护范围的限制。
此外,本实施例的锂电池阴极涂布烘箱NMP回收模块化组件内还可优选设置用于送风的第一风机250,所述第一风机250优选为变频风机;冷凝器下游优选设置有用于阻挡冷凝液的挡液板240以及阻挡排风中灰尘的过滤网260,所述过滤网260优选设置于热交换器210第一入口处,所述第一风机250优选设置于所述挡液板240与过滤网260之间。但应该理解的是上文提及的挡液板240、过滤网260以及第一风机250和过滤网260的安装位置只是NMP回收模块化组件优选的实施例,并非其为实现技术方案的技术效果所必须的特征,不应理解为对有机气体回收模块化组件保护范围的限缩。
所述有机气体吸附净化单元300包括吸附转轮310、电动风阀340、再生加热器320;所述吸附转轮310包括至少一吸附区、冷却区与再生区。在本实施例中,经冷凝器冷凝回收后的低温气体部分从热交换器210的低温入口进入热交换器,并与高温气体进行热交换后回流阴极烘箱100;另一部分低温气体在第二风机330的引导下导入吸附转轮310的吸附区,低温气体经吸附区吸附后,剩余废气中NMP的浓度将进一步降低到小于10ppm,达到排放标准,并通过电动风阀340将其排出到室外;吸附转轮上吸附的NMP被再生加热器320加热至再生温度后脱附的再生浓缩NMP将重新返回至热交换器210的高温气体入口,进入下一个有机气体热交换-冷凝回收循环流路;在其他实施例中,脱附后的再生浓缩NMP气体也可以直接通入冷凝器中进行下一轮NMP的冷凝回收。为了降低吸附转轮加热后的温度,吸附转轮上同样也设置有冷却区,该冷却区可接受上述另一部分经冷凝回收后的低温气体的分流气体,所述分流气体经所述冷却区热交换后温度升高,作为再生加热器320的加热媒介,经再生加热器320的加热装置加热后对吸附于再生区的NMP进行加热脱附。应该理解的是所述分流气体不应理解为对冷却区进行冷却的唯一方式,任何能够对冷却区实施冷却的方案,如:外界空气直接冷却、电冷却,其他冷媒冷却都应涵盖在本发明的保护范围之内;
此外,在另一优选的实施例中,所述再生加热器320将通过冷却区热交换后的气体与从烘箱导出的部分高温气体直接汇流后形成的汇流气体作为加热源对再生区进行加热脱附,本实施例可根据实际情况决定是否需要设置加热装置,或根据实际温度决定是否启动加热装置,如果汇流气体的温度达到再生温度,则无需设置加热装置或即使设置加热装置也保持其处于关闭状态;如果汇流气体的温度无法达到再生温度,则需要加热装置对所述汇流气体进行二次加热以确保其达到再生温度。该实施例能够进一步节约产品生产成本或进一步降低系统能耗,有利于大规模生产。
为了进一步降低系统能耗,本发明通过对烘箱内NMP气体浓度的实时检测,动态调节送风量与排风量,在保证烘箱内NMP浓度维持在设计工艺要求的允许浓度范围内的同时,尽可能降低在排风和送风上的能耗。具体而言,在锂电池阴极涂布烘箱NMP回收模块化组件内设置NMP浓度传感器280和风量自动控制系统290,其中,所述NMP浓度传感器280设置于所述热交换器210高温入口处以对烘箱内的NMP浓度进行实时检测,所述自动控制系统290输入端通循连接NMP浓度传感器280以实时获取NMP浓度数据,输出端分别通讯连接所述第一风机变频器270和电动风阀执行器350,以根据控制逻辑动态调节第一风机250与电动风阀340的送风与排风量。所述控制逻辑如下:NMP浓度传感器280实时检测烘箱内NMP的浓度,当烘箱内NMP浓度高于设定值(如4500ppm)时,风量自动调节系统400会自动提高NMP回收单元200内第一风机250的运行频率,加大烘箱排风量,以保证烘箱内NMP浓度维持在设计工艺要求的允许浓度范围内;与此同时,该风量自动控制系统400也会传递控制信号给NMP吸附净化单元300的电动风阀执行器350,对NMP吸附净化单元300的净化气体排风量按照比例加大(按照烘箱高温排风的5-10%的比例),以保证烘箱内部微负压的条件。反之,当烘箱内NMP浓度低于设定值(例如小于300ppm)时,风量自动控制系统400会自动调节NMP回收单元200内第一风机250的运转频率,减少烘箱排风量,在保证烘箱内工艺/安全上对NMP浓度要求的前提下,降低第一风机250运行动力能耗,减少烘箱加热器所需加热负荷,并同时按比例缩小电动风阀340的排风量(按照烘箱高温排风的5-10%的比例),实现节能以及降低系统运行成本。优选的,所述NMP(有机气体)浓度设定值,和/或送风量与排风量比例可根据实际情况进行人为设定。
优选的,为了生产、运输以及维修的便利性,所述热回收有机气体回收单元200与所述有机气体吸附净化单元300可根据实际需要设置为分体式模块化结构;和/或所述热回收有机气体回收单元200本身亦可设置为分体式模块化结构,其中所述热交换器210和所述有机气体浓度传感器280设置于第一分体模块;所述冷凝器、所述第一风机250、挡液板240(可选)、过滤网260(可选)设置于第二分体模块;所述第一分体模块与所述第二分体模块可拆卸连接。在该实施例中,应理解为各模块之间需要适当的密封结构和/或紧固结构,即使附图未示出,但不应成为对权利要求及说明书理解的障碍。
图4所示为由多个阴极涂布机烘箱及NMP回收模块化组件组成的涂布机废气处理系统第一实施例的技术原理示意图,其中,所述热回收有机气体回收单元200与所述有机气体吸附净化单元300采用合体形式,两者共同组成NMP回收模块化装置500;本实施例中,所述涂布机包括两层涂布烘箱,每层所述涂布烘箱均设置有若干烘箱单元, 每个烘箱单元均设置有废气出口和废气入口,由于机头侧的几节烘箱单元中NMP挥发量较少,因此机头侧上下两层对应的烘箱单元共用一台所述NMP回收模块化装置500,而在机尾侧由于烘箱中NMP挥发量较多,上下每层对应的烘箱单元独自设置一个模块化装置500。上述每一个烘箱单元或者至少每两个上下层对应的所述烘箱单元的废气出口和废气入口分别与上述NMP回收模块化装置500的热交换器的高温入口和低温出口相连通。本实施例由于在每节烘箱单元排风管道中都安装了NMP浓度传感器,并与烘箱排风自控系统联动,每节烘箱都能够根据烘箱单元内NMP浓度实时动态调节该节烘箱的排风与送风量,确保每节烘箱在满足生产工艺要求的同时尽可能降低能耗。另一方面,当生产过程中出现需要更换新的电池产品停机后再开机、或者是维保后的再开机时系统调节时间会极大缩小,从而降低无效操业时间,提高生产效率,进而降低制造成本。
图5所示为由多个阴极涂布机烘箱及NMP回收模块化组件组成的涂布机废气处理系统第二实施例的技术原理示意图,与第一实施例相比,本实施例将所述热回收有机气体回收单元200与所述有机气体吸附净化单元300采用分体形式设置,由于机头侧的几节烘箱单元中NMP挥发量较少,因此机头侧上下两层对应的烘箱单元共用一台所述热回收有机气体回收单元200,而在机尾侧由于烘箱中NMP挥发量较多,上下每层对应的烘箱单元独自设置一个所述热回收有机气体回收单元200。上述每一个烘箱单元或者每两个上下层对应的所述烘箱单元的废气出口和废气入口分别与上述热回收有机气体回收单元200的热交换器的高温入口和低温出口相连通。各热回收有机气体回收单元200排出的有机气体收集后导入到一台有机气体吸附净化单元300集中处理,经集中处理后的空气从所述再生区出口导出到距离最近的一台热回收有机气体回收单元200。与实施例一相比,本实施例将有机气体回收单元200与有机气体吸附净化单元300分体设置,整个系统只需布置一台有机气体吸附净化单元300,可以在实施例一的基础上进一步降低生产成本,便于运输,减少现场风管使用量,降低送风阻力。从而不仅可以减少设备投资,而且可以降低运行成本。
图6所示为由多个阴极涂布机烘箱及NMP回收模块化组件组成的涂布机废气处理系统第三实施例的技术原理示意图,与第二实施例相比,本实施例的改进点仅在于经有机气体吸附净化单元300集中处理后的空气从所述再生区出口分别导出到每个热回收有机气体回收单元。此种布置方法可以提高各节烘箱送风、排风的稳定性,同时也可以降低各节烘箱内所要求负压的波动性。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当 将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
Claims (13)
- 一种有机气体回收模块化组件,包括热回收有机气体回收单元、有机气体吸附净化单元与风量自动调节系统,其特征在于:所述热回收有机气体回收单元包括至少一热交换器,至少一冷凝器,至少一变频风机及有机气体浓度传感器;所述热交换器、冷凝器相互连接形成有机气体热交换-冷凝回收循环流路;所述有机气体浓度传感器设置于所述热交换器的高温入口处;所述有机气体吸附净化单元包括吸附转轮、电动风阀、再生加热器;所述吸附转轮包括至少一吸附区、冷却区与再生区;所述电动风阀与所述吸附区出口相连接;所述再生加热器与所述再生区入口相连接;所述有机气体吸附净化单元入口与所述热回收有机气体回收单元的冷凝器出口相连,并将冷凝后的气体导入所述吸附转轮的吸附区;所述再生区出口与所述热交换器的高温入口或冷凝器入口连接;所述风量自动调节系统输入端通讯连接所述有机气体浓度传感器,输出端通讯连接所述电动风阀与所述变频风机。
- 根据权利要求1所述的有机气体回收模块化组件,其特征在于,所述风量自动调节系统将有机气体浓度传感器实时检测的有机气体浓度与设定值相比较,当有机气体浓度高于设定值时,风量自动调节系统会自动提高所述变频风机的排风量,并按比例提高电动风阀排风量;而当有机气体浓度低于设定值时,风量自动控制系统会自动降低所述变频风机的排风量的同时按比例降低电动风阀的排风量。
- 根据权利要求1所述的有机气体回收模块化组件,其特征在于,所述再生加热器为电加热器和/或气体加热器。
- 根据权利要求3所述的有机气体回收模块化组件,其特征在于,所述气体加热器由经过吸附转轮冷却区的气体与高温有机气体汇流后形成。
- 根据权利要求1所述的有机气体回收模块化组件,所述再生区出口与所述热交换器的高温入口或冷凝器入口连接。
- 根据权利要求1所述的有机气体回收模块化组件,所述热交换器为至少两个,且呈串联设置。
- 根据权利要求1所述的有机气体回收模块化组件,所述冷凝器包括常温水冷却器、冷却水冷凝器、热管、直膨管中至少两者。
- 根据权利要求1-7任一项所述的有机气体回收模块化组件,其特征在于,所述热回收有机气体回收单元为分体式模块化结构;其中所述热交换器和所述有机气体浓度传感器设置于第一分体模块;所述冷凝器与所述变频风机设置于第二分体模块;所述第一分体模块与所述第二分体模块可拆卸连接。
- 根据权利要求1-7任一项所述的有机气体回收模块化组件,其特征在于,所述热回收有机气体回收单元与所述有机气体吸附净化单元为分体式模块化结构。
- 一种涂布机废气处理系统,其特征在于,所述涂布机包括一层或至少两层涂布烘箱,每层所述涂布烘箱均设置有若干烘箱单元,每个烘箱单元均设置有废气出口和废气入口,每一个所述烘箱单元或者至少每两个相邻所述烘箱单元的废气出口和废气入口分别与如权利要求1-9中任一所述的有机气体回收模块化组件的热交换器的高温入口和低温出口相连通。
- 根据权利要求10所述的涂布机废气处理系统,其特征在于,所述涂布机为两层以上,机头侧两层以上的烘箱共用一套如权利要求1-8中任一所述的有机气体回收模块化组件;机尾侧上下层烘箱各用一套如权利要求1-8中任一所述的有机气体回收模块化组件。
- 根据权利要求10所述的涂布机废气处理系统,其特征在于,所述涂布机废气处理系统采用如权利要求9所述的有机气体回收模块化组件,其中所述一层涂布烘箱中的每节烘箱单元或者至少两层涂布烘箱中每列对应的烘箱单元至少配置有一热回收有机气体回收单元,各热回收有机气体回收单元排出的有机气体收集后导入到一台有机气体吸附净化单元集中处理,经集中处理后的空气从所述再生区出口导出到距离最近的一台热回收有机气体回收单元或分别导出到每个热回收有机气体回收单元。
- 根据权利要求12所述的涂布机废气处理系统,其特征在于,机头侧的单层烘箱单元或者至少两层涂布烘箱中每列对应的烘箱单元共用一套热回收有机气体回收单元;机尾侧的每节烘箱单元各用一套热回收有机气体回收单元。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111090707.2A CN113842746B (zh) | 2021-09-17 | 2021-09-17 | 有机气体回收模块化组件及涂布机废气处理系统 |
CN202111090707.2 | 2021-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023040831A1 true WO2023040831A1 (zh) | 2023-03-23 |
Family
ID=78974498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/118464 WO2023040831A1 (zh) | 2021-09-17 | 2022-09-13 | 有机气体回收模块化组件及涂布机废气处理系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113842746B (zh) |
WO (1) | WO2023040831A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116592616A (zh) * | 2023-05-23 | 2023-08-15 | 辽宁大唐国际锦州热电有限责任公司 | 一种环保型火力发电余热利用装置 |
WO2024199529A1 (zh) * | 2023-03-30 | 2024-10-03 | 蜂巢能源科技股份有限公司 | 锂电生产中nmp的回收方法及回收系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113842746B (zh) * | 2021-09-17 | 2024-08-20 | 苏州兆和环能科技有限公司 | 有机气体回收模块化组件及涂布机废气处理系统 |
DE102022104813A1 (de) * | 2022-03-01 | 2023-09-07 | Dürr Systems Ag | Prozessluftbehandlungsanordnung und verfahren zum behandeln von prozessluft |
CN114798369B (zh) * | 2022-04-21 | 2024-06-04 | 苏州兆和环能科技有限公司 | 一种涂布机烘箱以及涂布机废气回收系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080227A (en) * | 1997-11-05 | 2000-06-27 | Nichias Corporation | Gas treating apparatus |
CN105797420A (zh) * | 2016-03-23 | 2016-07-27 | 东莞塔菲尔新能源科技有限公司 | 一种nmp气体回收系统及其工艺 |
CN107362653A (zh) * | 2016-05-11 | 2017-11-21 | 中微惠创科技(上海)有限公司 | 一种带有在线voc浓度测量装置的空气净化处理设备及方法 |
CN207545875U (zh) * | 2017-10-18 | 2018-06-29 | 四川西丹孚能源科技有限公司 | 一种nmp回收系统 |
CN108479304A (zh) * | 2018-04-27 | 2018-09-04 | 正当红环保科技(苏州)有限公司 | 一种nmp回收净化方法及系统 |
CN209626320U (zh) * | 2019-04-25 | 2019-11-12 | 昆山宝创新能源科技有限公司 | 低nmp浓度低露点回风循环回收系统 |
CN110935285A (zh) * | 2019-12-31 | 2020-03-31 | 西部技研环保节能设备(常熟)有限公司 | 再生空气部分配比循环voc浓缩工艺 |
CN111544920A (zh) * | 2020-05-19 | 2020-08-18 | 东莞欧赛莱机电科技有限公司 | Nmp回收系统及锂电池涂布系统 |
CN113842746A (zh) * | 2021-09-17 | 2021-12-28 | 苏州兆和通风设备制造有限公司 | 有机气体回收模块化组件及涂布机废气处理系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201182965Y (zh) * | 2007-11-09 | 2009-01-21 | 范维林 | 复合式实验室废气净化处理装置 |
JP5779310B2 (ja) * | 2009-02-27 | 2015-09-16 | 日本リファイン株式会社 | 揮発性有機化合物の回収方法及び回収装置 |
CN105056651A (zh) * | 2015-07-15 | 2015-11-18 | 上海永冠胶粘制品股份有限公司 | 胶粘带环保涂布工艺 |
CN110590633A (zh) * | 2019-10-12 | 2019-12-20 | 西部技研环保节能设备(常熟)有限公司 | 复合式nmp回收系统 |
CN113244739A (zh) * | 2021-05-31 | 2021-08-13 | 扬州海通电子科技有限公司 | 一种船舶分段涂装废气处理系统与方法 |
-
2021
- 2021-09-17 CN CN202111090707.2A patent/CN113842746B/zh active Active
-
2022
- 2022-09-13 WO PCT/CN2022/118464 patent/WO2023040831A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080227A (en) * | 1997-11-05 | 2000-06-27 | Nichias Corporation | Gas treating apparatus |
CN105797420A (zh) * | 2016-03-23 | 2016-07-27 | 东莞塔菲尔新能源科技有限公司 | 一种nmp气体回收系统及其工艺 |
CN107362653A (zh) * | 2016-05-11 | 2017-11-21 | 中微惠创科技(上海)有限公司 | 一种带有在线voc浓度测量装置的空气净化处理设备及方法 |
CN207545875U (zh) * | 2017-10-18 | 2018-06-29 | 四川西丹孚能源科技有限公司 | 一种nmp回收系统 |
CN108479304A (zh) * | 2018-04-27 | 2018-09-04 | 正当红环保科技(苏州)有限公司 | 一种nmp回收净化方法及系统 |
CN209626320U (zh) * | 2019-04-25 | 2019-11-12 | 昆山宝创新能源科技有限公司 | 低nmp浓度低露点回风循环回收系统 |
CN110935285A (zh) * | 2019-12-31 | 2020-03-31 | 西部技研环保节能设备(常熟)有限公司 | 再生空气部分配比循环voc浓缩工艺 |
CN111544920A (zh) * | 2020-05-19 | 2020-08-18 | 东莞欧赛莱机电科技有限公司 | Nmp回收系统及锂电池涂布系统 |
CN113842746A (zh) * | 2021-09-17 | 2021-12-28 | 苏州兆和通风设备制造有限公司 | 有机气体回收模块化组件及涂布机废气处理系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024199529A1 (zh) * | 2023-03-30 | 2024-10-03 | 蜂巢能源科技股份有限公司 | 锂电生产中nmp的回收方法及回收系统 |
CN116592616A (zh) * | 2023-05-23 | 2023-08-15 | 辽宁大唐国际锦州热电有限责任公司 | 一种环保型火力发电余热利用装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113842746A (zh) | 2021-12-28 |
CN113842746B (zh) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023040831A1 (zh) | 有机气体回收模块化组件及涂布机废气处理系统 | |
WO2023202332A1 (zh) | 一种涂布机烘箱以及涂布机废气回收系统 | |
CN107155280A (zh) | 一种一体化通风冷却热回收装置 | |
CN113357715A (zh) | 一种智慧式降耗转轮除湿净化系统及其控制方法 | |
CN106196125B (zh) | 一种应用于焚烧装置的废气处理结构 | |
CN205262239U (zh) | 双回路水冷却的烟气冷凝器 | |
CN203642387U (zh) | 一种用于洁净室的新风机组系统 | |
CN203323272U (zh) | 一种立式热管与圆管组合的多级蒸发冷却空调器 | |
JP3204512U (ja) | 高湿度コークス炉装入用コークス用炭の調湿プロセスに用いられる装置 | |
CN102522157A (zh) | 漆包线生产过程余热综合利用的系统和方法 | |
CN202427328U (zh) | 吸附干燥机 | |
CN206018671U (zh) | 一种应用于焚烧装置的废气处理结构 | |
CN218380391U (zh) | 一种烘干设备用热量回收装置 | |
CN114593454B (zh) | 一种太阳能光热耦合柔性蓄供暖系统 | |
CN108481899A (zh) | 一种热平衡的回热式空气能干燥利用方法及系统 | |
CN108726520A (zh) | 一种还原炉余热回收系统 | |
CN205208600U (zh) | 多热源的烟气余热回收系统 | |
CN211025691U (zh) | 一种吸附剂热再生系统 | |
CN203385310U (zh) | 一种蒸发冷凝设备用节水除白雾装置 | |
CN206478721U (zh) | 一种热电厂循环冷却水冷凝废热利用系统 | |
CN212741116U (zh) | 污泥干化系统 | |
CN219829530U (zh) | 一种水泥窑头锅炉废气余热利用与备用降温系统 | |
CN216480919U (zh) | 一种循环流化床热电联产机组余热利用系统 | |
CN216815149U (zh) | 一种气气能量交换装置及烘干机系统 | |
CN218721531U (zh) | 一种用于碳纤维余热回收的氮气换热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22869200 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22869200 Country of ref document: EP Kind code of ref document: A1 |