WO2023040794A1 - 通信方法以及通信装置 - Google Patents
通信方法以及通信装置 Download PDFInfo
- Publication number
- WO2023040794A1 WO2023040794A1 PCT/CN2022/118307 CN2022118307W WO2023040794A1 WO 2023040794 A1 WO2023040794 A1 WO 2023040794A1 CN 2022118307 W CN2022118307 W CN 2022118307W WO 2023040794 A1 WO2023040794 A1 WO 2023040794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel access
- channel
- neural network
- access mode
- queue
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 199
- 238000000034 method Methods 0.000 title claims abstract description 197
- 238000013528 artificial neural network Methods 0.000 claims abstract description 158
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 claims abstract description 98
- 238000001514 detection method Methods 0.000 claims description 37
- 238000012545 processing Methods 0.000 claims description 27
- 238000004590 computer program Methods 0.000 claims description 18
- 230000007613 environmental effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 description 35
- 230000006870 function Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 22
- 230000000875 corresponding effect Effects 0.000 description 18
- 101100161473 Arabidopsis thaliana ABCB25 gene Proteins 0.000 description 16
- 101100096893 Mus musculus Sult2a1 gene Proteins 0.000 description 16
- 101150081243 STA1 gene Proteins 0.000 description 16
- OVGWMUWIRHGGJP-WVDJAODQSA-N (z)-7-[(1s,3r,4r,5s)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@H](O)CCCCC)C[C@@H]2S[C@H]1C2 OVGWMUWIRHGGJP-WVDJAODQSA-N 0.000 description 15
- 101000988961 Escherichia coli Heat-stable enterotoxin A2 Proteins 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000013507 mapping Methods 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 101000752249 Homo sapiens Rho guanine nucleotide exchange factor 3 Proteins 0.000 description 3
- 102100021689 Rho guanine nucleotide exchange factor 3 Human genes 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
Definitions
- the present application relates to the field of communication technologies, and in particular, to a communication method and a communication device.
- the channel is shared, that is to say, multiple nodes in the wireless network will use the same shared channel for communication transmission. If two or more nodes send messages at the same time, communication conflicts will occur, resulting in node transmission failure. As a result, the throughput of the channel is affected and the communication delay of the nodes is increased, which greatly affects the user experience. Therefore, the node's channel access decision plays an important role in communication.
- a carrier-sense multiple access with collision avoidance (CSMA/CA) mechanism is used to share the channel to avoid communication conflicts.
- CSMA/CA carrier-sense multiple access with collision avoidance
- a node listens to a channel for a period of time, and if the channel is idle during this time, the node accesses the channel.
- the technical solution above requires that all nodes in the network use the CSMA/CA mechanism to compete for channels.
- the hidden terminals or devices in the heterogeneous system can use other mechanisms to compete for channels, resulting in communication conflicts with nodes in the WIFI system, affecting the communication quality of nodes. resulting in poor user experience.
- the present application provides a communication method and a communication device, which are used for a first device to select a first channel access method according to network status information, and to send data through the first channel access method. Therefore, communication conflicts between the first device and other nodes in the network are avoided, and interference avoidance is realized. Improve the communication quality of nodes and improve user experience.
- the first aspect of the present application provides a communication method, and the method is executed by a first device, or, the method is executed by some components (for example, a processor, a chip, or a chip system, etc.) in the first device.
- the method includes:
- the first device determines the first channel access method according to the network status information.
- the first channel access method is the CSMA/CA channel access method, or the intelligent channel access method, and the intelligent channel access method is a channel obtained based on a neural network.
- a channel access mode for access decision; the first device sends data on the channel through the first channel access mode.
- the first device may select a channel access method according to the network state information, and send data through the selected channel access method.
- the channel access mode may be a CSMA/CA channel access mode or an intelligent channel access mode, and the intelligent channel access mode is a channel access mode based on a channel access decision obtained by a neural network.
- the intelligent channel access method is based on the channel access decision obtained by the neural network according to the environmental state parameters to access the channel.
- the first device may select an intelligent channel access mode, and the intelligent channel access mode is a channel access mode based on a channel access decision obtained by a neural network according to an environment state parameter. Therefore, the first device can send data based on the channel access decision output by the neural network. It is beneficial to avoid communication conflicts between the first device and other nodes, realize interference avoidance, and improve communication quality.
- the environmental state parameter includes at least one of the following: a received signal strength indicator (received signal strength indicator, RSSI) acquired by the first device, an energy detection (energy detection) obtained by the first device performing signal energy detection. , ED) value, and a carrier sensing (carrier sensing, CS) value obtained by the first device performing carrier sensing.
- a received signal strength indicator received signal strength indicator, RSSI
- an energy detection energy detection obtained by the first device performing signal energy detection.
- ED energy detection
- carrier sensing carrier sensing
- the above implementation manners show some possible implementation manners of the environment state parameters, which is beneficial to the implementation of the solution.
- the neural network in the first device may output a channel access decision based on one or more environmental state parameters shown above.
- the first device may send data based on the channel access decision output by the neural network. It is beneficial to avoid communication conflicts between the first device and other nodes, realize interference avoidance, and improve communication quality.
- the CSMA/CA channel access method includes any of the following: distributed coordination function (distributed coordination function, DCF) channel access method, enhanced distributed channel access (enhanced distributed channel access) , EDCA) way.
- DCF distributed coordination function
- enhanced distributed channel access enhanced distributed channel access
- EDCA enhanced distributed channel access
- the first device determines the first channel access method according to network state information, including:
- the first device determines the number of times M that the energy detection value of the first device is greater than the first threshold in multiple signal energy detections within the first preset time length, and the first device detects multiple times of carrier sensing within the first preset time length
- M and N are both integers greater than or equal to 1; if the ratio of M to N is greater than or equal to the third threshold, the first device determines that the first channel access method is CSMA /CA channel access mode; if the ratio of M to N is less than the third threshold, the first device determines that the first channel access mode is an intelligent channel access mode.
- the foregoing provides a specific determination manner for the first device to determine the first channel access manner according to the network state parameters.
- the first device may select a corresponding channel access mode according to the degree of network interference (characterized by the energy detection value and the carrier sense value). For example, when the interference degree of the network is relatively large, the first device may select an intelligent channel access mode to facilitate interference avoidance, thereby avoiding communication conflicts between the first device and other nodes and improving communication transmission performance. When the degree of network interference is small, the first device may select a CSMA/CA channel access manner.
- the first device determines the first channel access method according to network status information, including:
- the first device determines that the first channel access mode is an intelligent channel access mode; if there is no hidden terminal in the BSS where the first device is located terminal, the first device determines that the first channel access mode is the CSMA/CA channel access mode.
- BSS basic service set
- the foregoing provides another specific determination manner in which the first device determines the first channel access manner according to the network state parameters.
- the first device may select a corresponding channel access manner according to the network topology. For example, when there is no hidden terminal in the BSS where the first device is located, the first device selects a CSMA/CA channel access mode to avoid communication conflict between the first device and the hidden terminal.
- the first device determines the first channel access method according to network state information, including:
- the first device determines the total duration of the channel transmitting data packets within the second preset duration
- the first device determines that the first channel access mode is an intelligent channel access mode
- the first device determines that the first channel access mode is a CSMA/CA channel access mode.
- the foregoing provides another specific determination manner in which the first device determines the first channel access manner according to the network state parameters.
- the first device may select a corresponding channel access mode according to the busyness of the channel. For example, when the channel is relatively busy, the first device selects an intelligent channel access mode to avoid communication conflicts with other nodes on the channel.
- the first channel access method is an intelligent channel access method; the first device sends data on the channel through the first channel access method, including: the first device maps the data to the intelligent channel access method; Entering the queue, the intelligent channel access queue is used to carry the data accessed through the intelligent channel access mode; the first device outputs the queue parameters of the intelligent channel access queue through the neural network to send data on the channel.
- the first device may send data on the channel by mapping the data to the intelligent channel access queue, and outputting the queue parameters of the intelligent channel access queue through the neural network. In this way, communication conflicts with other nodes on the channel are avoided.
- the queue parameter of the smart channel access queue includes a data sending probability, or a first indication, where the first indication is used to indicate whether the data is sent.
- the above implementations provide two possible implementations of the queue parameters of the intelligent channel access queue, which is beneficial to the implementation of the solution.
- the first device may output the sending probability or the first indication to send data on the channel through the neural network. In this way, communication conflicts with other nodes on the channel are avoided.
- the method also includes:
- the first device acquires the RSSI within the first preset time period; the first device obtains the queue parameters of the smart channel access queue according to the RSSI within the first preset time period and the neural network.
- the first device can obtain the queue parameters of the smart channel access queue through the RSSI and the neural network within the first preset time period, so that the first device can send the queue parameters of the smart channel access queue on the channel data.
- the queue parameters of the smart channel access queue include the probability of sending data; the first device outputs the queue parameters of the smart channel access queue through the neural network to send data on the channel, including: the first device generates A random number corresponding to the data; the first device judges whether the random number is greater than the sending probability; if yes, the first device does not send data on the channel; if not, the first device sends data on the channel.
- the above implementation manner shows a process in which the first device can output the sending probability through the neural network to send data on the channel, so as to avoid communication conflicts with other nodes on the channel.
- the queue parameters of the smart channel access queue include a first indication; the first device outputs the queue parameters of the smart channel access queue through the neural network to send data on the channel, including: if the first indication indicates To send the data, the first device sends the data on the channel; if the first instruction indicates not to send the data, the first device does not send the data on the channel.
- the above implementation manner shows that the first device can output the first instruction to send data on the channel through the neural network, so as to avoid communication conflicts with other nodes on the channel.
- the method also includes:
- the first device receives the first frame from the second device, the first frame includes an information unit, the information unit includes first information, the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the neural network The gradient of the network and the structure of the neural network; the first device determines the neural network according to the first information.
- the first device may acquire the first information from the second device.
- the first device determines the neural network according to the first information, so that the first device outputs the queue parameters of the smart channel access queue through the neural network. This enables the first device to send data through an intelligent channel access manner, so as to avoid communication conflicts between the first device and other nodes.
- the first frame is a beacon frame or a detection frame.
- two possible bearers of the first information are shown, which is beneficial to the implementation of the solution.
- the second aspect of the present application provides a communication method, and the method is executed by a second device, or, the method is executed by some components (for example, a processor, a chip, or a chip system, etc.) in the second device.
- the method includes:
- the second device determines the first information, the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the gradient of the neural network and the structure of the neural network, and the first information is used by the first device to determine the neural network;
- the second device sends a first frame to the first device, where the first frame includes an information unit, and the information unit includes first information.
- the second device may send the first information to the first device, so that the first device determines the neural network.
- the first device can output the queue parameters of the intelligent channel access queue through the neural network. This enables the first device to send data through an intelligent channel access method, so as to avoid communication conflicts between the first device and other nodes and improve communication quality.
- the second device determines the first information, including: the second device obtains the RSSI of the multiple first devices and the historical data transmission results of the multiple first devices, and the multiple first devices are the second device
- the associated first device and the second device perform neural network training according to the RSSI of the multiple first devices, the historical data transmission results of the multiple first devices, and the neural network structure to obtain the first information.
- the above implementation manner provides a process for the second device to acquire the first information, making the solution more comprehensive.
- the first frame is a beacon frame or a detection frame.
- two possible bearers of the first information are shown, which is beneficial to the implementation of the solution.
- the third aspect of the present application provides a communication device, including a processing unit and a transceiver unit;
- the processing unit is configured to determine a first channel access method according to network state information, the first channel access method is a CSMA/CA channel access method, or an intelligent channel access method, and the intelligent channel access method is based on a neural network The obtained channel access decision access channel method;
- the transceiver unit is configured to send data on the channel through the first channel access method.
- the intelligent channel access mode is a channel access mode based on a channel access decision obtained by a neural network according to an environment state parameter.
- the environment state parameter includes at least one of the following: RSSI obtained by the first device, an energy detection value obtained by the first device performing signal energy detection, and a carrier sense signal obtained by the first device performing carrier sense value.
- the CSMA/CA channel access method includes any of the following: DCF channel access method, EDCA method.
- processing unit is specifically used for:
- the first channel access mode is a CSMA/CA channel access mode
- the first channel access mode is an intelligent channel access mode.
- processing unit is specifically used for:
- the first channel access method is the smart channel access method
- the first channel access mode is a CSMA/CA channel access mode.
- processing unit is specifically used for:
- the first channel access mode is a CSMA/CA channel access mode.
- the first channel access mode is an intelligent channel access mode; the transceiver unit is specifically used for:
- the queue parameter of the smart channel access queue includes a data sending probability, or a first indication, where the first indication is used to indicate whether the data is sent.
- processing unit is also used for:
- the queue parameters of the smart channel access queue are obtained according to the RSSI and the neural network within the first preset time period.
- the queue parameters of the smart channel access queue include data transmission probability; the transceiver unit is specifically used for:
- the queue parameters of the smart channel access queue include a first indication; the transceiver unit is specifically used for:
- the transceiver unit is also used for:
- the first frame includes an information unit, the information unit includes first information, the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the gradient of the neural network and the neural network the structure of the network;
- the processing unit is used specifically for:
- a neural network is determined according to the first information.
- the first frame is a beacon frame or a detection frame.
- the fourth aspect of the present application provides a communication device, including a processing unit and a transceiver unit;
- the processing unit is configured to determine first information, the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the gradient of the neural network and the structure of the neural network, and the first information is used by the first device to determine the neural network network;
- a transceiver unit configured to send a first frame to the first device, where the first frame includes an information unit, and the information unit includes first information.
- the processing unit is specifically used for:
- the neural network is trained according to the RSSIs of the multiple first devices, the historical data transmission results of the multiple first devices, and the neural network structure to obtain the first information.
- the first frame is a beacon frame or a detection frame.
- a fifth aspect of the embodiment of the present application provides a communication device, including at least one processor, and the at least one processor is coupled to a memory;
- the memory is used to store programs or instructions
- the at least one processor is used to execute the program or instructions, so that the device implements the method described in the first aspect or any possible implementation manner of the first aspect, or enables the device to implement the second aspect or the first aspect The method described in any one possible implementation manner of the second aspect.
- the sixth aspect of the embodiment of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
- the processor executes any one of the first aspect or the first aspect.
- the processor executes the method described in the second aspect or any possible implementation manner of the second aspect.
- the seventh aspect of the embodiment of the present application provides a computer program product (or computer program) storing one or more computers.
- the processor executes the above-mentioned first aspect or the first The method in any possible implementation manner of the second aspect, or, the processor executes the method described in the second aspect or any possible implementation manner of the second aspect.
- the eighth aspect of the embodiment of the present application provides a chip system, where the chip system includes at least one processor, configured to support the communication device to implement the functions involved in the first aspect or any possible implementation manner of the first aspect; Alternatively, the communication device is configured to implement the functions involved in the foregoing second aspect or any possible implementation manner of the second aspect.
- the chip system may further include a memory for storing necessary program instructions and data of the communication device.
- the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
- the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
- a ninth aspect of the embodiments of the present application provides a communication system, and the communication system includes the communication device of the third aspect and the communication device of the fourth aspect.
- the technical effects brought about by any one of the design methods in the third aspect to the ninth aspect can refer to the technical effects brought about by the different implementation methods in the above-mentioned first aspect to the second aspect, and will not be repeated here.
- the technical solution of the present application has the following advantages:
- the first device determines the first channel access method according to the network state information, and the first channel access method is carrier sense multiple access/collision avoidance CSMA/CA channel access method, or smart channel access
- the intelligent channel access method is a channel access method based on the channel access decision obtained by the neural network; the first device sends data on the channel through the first channel access method.
- the first device may select a channel access mode according to the network state information, and send data through the selected channel access mode.
- the channel access mode may be a CSMA/CA channel access mode or an intelligent channel access mode, and the intelligent channel access mode is a channel access mode based on a channel access decision obtained by a neural network. In this way, communication conflicts with other nodes in the network are avoided, interference avoidance is achieved, communication quality of nodes is improved, and user experience is improved.
- FIG. 1A is a schematic diagram of a multi-link device according to an embodiment of the present application.
- FIG. 1B is a schematic diagram of a communication system according to an embodiment of the present application.
- FIG. 2 is a schematic diagram of an embodiment of a communication method in an embodiment of the present application.
- FIG. 3A is a schematic diagram of a media access control (media access control, MAC) architecture of a first device according to an embodiment of the present application;
- media access control media access control, MAC
- FIG. 3B is another schematic diagram of the MAC architecture of the first device in the embodiment of the present application.
- FIG. 4A is a schematic diagram of the effect of the communication method of the embodiment of the present application.
- FIG. 4B is a schematic diagram of another effect of the communication method of the embodiment of the present application.
- FIG. 5 is a schematic structural diagram of an information unit in an embodiment of the present application.
- FIG. 6 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
- FIG. 7 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
- FIG. 8 is a schematic diagram of another embodiment of the communication method of the embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
- FIG. 10 is another schematic structural diagram of a communication device according to an embodiment of the present application.
- Embodiments of the present application provide a communication method and a communication device, which are used for a first device to select a first channel access method according to network state information, and to send data through the first channel access method. Therefore, communication conflicts between the first device and other nodes in the network are avoided, and interference avoidance is realized. Improve the communication quality of nodes and improve user experience.
- WLAN wireless local area network
- IEEE Institute of Electrical and Electronics Engineers 802.11 series standards.
- the network nodes that can be included in the WLAN are stations (station, STA), and the stations include access point stations (access point, AP) and non-access point stations (none access point station, Non-AP STA).
- stations of the access point type are referred to as APs
- stations of non-access point types are referred to as STAs.
- the technical solution of this application is also applicable to unlicensed frequency bands in cellular systems, such as long term evolution in unlicensed spectrum (LTE-U), new air interface unlicensed spectrum (new radio in unlicensed spectrum, NR -U).
- LTE-U long term evolution in unlicensed spectrum
- NR -U new radio in unlicensed spectrum
- the technical solution of the present application will be introduced by taking the WIFI network as an example.
- Access point stations are also called wireless access points or hotspots.
- AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings, and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
- the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
- the AP may be a terminal device or a network device with a WiFi chip.
- the AP may be a device supporting the 802.11ax standard.
- the AP can be a device that supports multiple WLAN standards such as 802.11be, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a, and can also be an access network that is applicable to a certain future generation of Wi-Fi standards. point site.
- multiple WLAN standards such as 802.11be, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a
- a non-access point station can be a wireless communication chip, a wireless sensor or a wireless communication terminal.
- the STA may be a terminal device or a network device with a wireless fidelity chip.
- the site can support the 802.11ax standard. Further optional, the site supports multiple WLAN standards such as 802.11be, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a. -Fi standard non-access point stations.
- the communication method and device provided in the embodiments of the present application can be applied to a wireless communication system.
- the wireless communication system can be a WLAN.
- the method can be implemented by a communication device in the wireless communication system or a chip or a processor in the communication device.
- the communication The device may be a wireless communication device that supports multiple links for parallel transmission, for example, it is called a multi-link device (Multi-link device) or a multi-band device (multi-band device). Compared with devices that only support single-link transmission, multi-link devices have higher transmission efficiency and higher throughput.
- Multi-link device multi-link device
- multi-band device multi-band device
- the communication system includes multi-link devices.
- a multi-link device includes one or more affiliated STAs (affiliated STAs).
- An affiliated STA is a logical station that can work on one link. Wherein, the affiliated station can be AP or non-AP STA.
- the multi-link device whose affiliated site is AP can be called multi-link AP or multi-link AP device or AP multi-link device (AP multi-link device), and the affiliated site is non-
- the multi-link device of the AP STA may be called a multi-link STA or a multi-link STA device or an STA multi-link device (STA multi-link device).
- STA multi-link device STA multi-link device
- “the multi-link device includes the subordinate STA” may also be briefly described as "the multi-link device includes the STA”.
- the communication system to which the technical solution of the present application is applied includes a first device, and the first device may be an AP or an STA.
- the communication device further includes a second device.
- the second device is an AP
- the first device is an STA.
- FIG. 1B is a schematic diagram of a communication system according to an embodiment of the present application.
- the communication system includes an AP and an STA.
- a communication link 1 is established between AP1 and STA1 , and AP1 can provide communication services for STA1 .
- AP2 establishes communication link 2 and communication link 3 with STA2 and STA3 respectively, and AP2 can provide communication services for STA2 and STA3.
- communication link 1 and communication link 2 share channel 1
- STA1 and STA2 can use the communication method provided in this application to access the channel to send data.
- the communication link 1 and the communication link 3 share the channel 2, and the AP1 and the STA3 may access the channel through the communication method provided in this application to send data.
- FIG. 2 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application.
- communication methods include:
- the first device determines a first channel access manner according to network status information.
- the first channel access mode is a CSMA/CA channel access mode or an intelligent channel access mode.
- the CSMA/CA channel access mode is a channel access mode using the CSMA/CA mechanism.
- the intelligent channel access method is based on the channel access decision obtained by the neural network to access the channel.
- the CSMA/CA channel access method includes at least one of the following: DCF channel access method and EDCA method.
- the intelligent channel access mode is a channel access mode based on the channel access decision obtained by the neural network according to the environment state parameters.
- the environmental state parameters include at least one of the following: a received signal strength indicator (received signal strength indicator, RSSI) obtained by the first device detecting the signal, and an energy detection (energy detection, RSSI) obtained by the first device performing signal energy detection. ED) value, and a carrier sensing (carrier sensing, CS) value obtained by the first device performing carrier sensing.
- the network state information includes at least one of the following: network interference level, network topology, and service busyness.
- the interference degree of the network may be represented by the ED value and the CS value detected by the first device.
- the network topology structure may be used to determine whether the BSS where the first device is located has a hidden terminal.
- the business busyness can be represented by the busyness of the channel, for example, the business busyness can be represented by the duration of data packets transmitted on the channel.
- the first device may select the first channel access mode according to the busyness of the business.
- step S201 there are many ways for the first device to determine the access mode of the first channel according to the network status information.
- Several possible implementation modes are introduced through the embodiments shown in FIG. 6 , FIG. 7 and FIG. 8 , specifically You can refer to the related introduction later, so I won’t go into details here.
- the MAC architecture of the first device includes an access mode mapping module, and the access mode mapping module is used for mapping data channel access modes and data QoS mapping.
- the MAC architecture includes a CSMA/CA queue and an intelligent channel access queue.
- the CSMA/CA queue is used to carry data accessed through the CSMA/CA channel access mode, and the intelligent channel access queue is used to carry data
- the channel access method accesses the data of the channel.
- the MAC architecture also includes a queue parameter decision module and a virtual conflict resolution module.
- the queue parameter decision module is used to determine the queue parameters of the intelligent channel access queue.
- the virtual conflict resolution module is used to determine the final queue to be dequeued when the data in multiple queues are dequeued at the same time. Usually, the virtual conflict resolution module can select the data of the queue with higher priority to dequeue.
- the queue parameter decision module includes an environmental state parameter acquisition submodule and a neural network submodule.
- the environment state parameter acquisition sub-module is used to obtain the environment state parameters.
- the neural network sub-module is used to output the queue parameters of the intelligent channel access queue according to the environment state parameters.
- the first device is an STA.
- the STA's MAC architecture includes CSMA/CA queues and intelligent channel access queues.
- the STA determines whether to map the data to the CSMA/CA queue or to the smart channel access queue through the access mode mapping module. For example, if the first channel access mode is the smart channel access mode, the STA maps the data to the smart channel access queue. Optionally, there are multiple smart channel access queues, and different smart channel access queues have different priorities.
- the STA can map the data to the corresponding priority intelligent channel access queue according to the Qos indication. For example, if the first channel access mode is the CSMA/CA channel access mode, the STA maps data to the CSMA/CA queue.
- the STA can map the data to the corresponding priority CSMA/CA queue according to the Qos indication.
- the virtual conflict resolution module decides that only one queue will be dequeued.
- the virtual conflict resolution module can select a queue with a higher priority.
- the first device sends data on a channel by using a first channel access manner.
- the first channel access mode is a CSMA/CA channel access mode or an intelligent channel access mode.
- the first channel access manner is a CSMA/CA channel access manner
- the first device sends data on the channel by using the CSMA/CA channel access manner.
- the first device maps the data to the CSMA/CA queue, and sends the data on the channel through the queue parameters of the CSMA/CA queue.
- the STA maps the data to CSMA/CA queue 1 through the access mode mapping module of the MAC architecture.
- the priority of CSMA/CA queue 1 (AC_VO) is higher than that of CSMA/CA queue 2 (AC_VI)
- the priority of CSMA/CA queue 2 (AC_VI) is higher than that of CSMA/CA queue 3 (AC_BE).
- the priority of CSMA/CA queue 3 (AC_BE) is higher than that of CSMA/CA queue 4 (AC_BK).
- the queue parameters of the CSMA/CA queue can include minimum contention window (minimum contention window, CWmin), maximum contention window (maximum contention window, Cwmax), arbitrary frame interval (arbitration inter-frame space, AIFSN) and maximum transmission time (maximum transmit opportunity, Max TXOP).
- the STA sends data on the channel through the queue parameter of CSMA/CA queue 1.
- the first channel access manner is an intelligent channel access manner, and the first device sends data on the channel through the intelligent channel access manner.
- the first device sends data on the channel through the smart channel access mode.
- the MAC architecture of the first device includes an intelligent channel access queue and a decision module for queue parameters.
- the smart channel access queue is used to carry the data that is accessed through the smart channel access mode.
- the queue parameter decision module is used to determine the queue parameters of the intelligent channel access queue.
- the first device maps the data to the smart channel access queue, and sends the data on the channel through the queue parameters of the smart channel access queue.
- step S202 is described below based on Implementation Mode 1.
- the above step S202 specifically includes step S202a and step S202b.
- Implementation mode 1 is described below in conjunction with step S202a and step S202b.
- the first device maps the data to an intelligent channel access queue.
- the smart channel access queue is used to carry the data that is accessed through the smart channel access mode.
- the first device determines that the first channel access mode is the smart channel access mode, and the first device can map the data to the smart channel access queue 1 based on the Qos indication of the data.
- the first device outputs the queue parameters of the smart channel access queue through the neural network, and sends data on the channel.
- the structure of the neural network may be a residual neural network (residual neural network, RestNet) structure.
- residual neural network residual neural network
- the queue parameters of the smart channel access queue include data sending probability p, or the first indication.
- the first indication is used to indicate whether data is sent.
- the transmission probability p is greater than or equal to 0 and less than or equal to 1.
- step S202b will be described below in combination with the specific content of the queue parameters of the smart channel access queue.
- the queue parameters of the smart channel access queue include data transmission probability.
- the above step S202b specifically includes steps S2001 to S2004.
- the first device generates a random number corresponding to the data
- the first device judges whether the random number is greater than the sending probability, if yes, execute step S2003; if not, execute step S2004.
- the first device does not send the data on the channel.
- the first device sends data on the channel.
- the queue parameter of the smart channel access queue includes the first indication.
- the above step S202b specifically includes: if the first instruction indicates to send data, the first device sends the data on the channel; if the first instruction indicates not to send data, the first device does not send the data on the channel.
- the first indication is “0", which means that the first device does not send data on the channel, and the first indication is "1", which means that the first device sends data on the channel.
- the first device keeps the backoff value of the CSMA/CA queue in the first device unchanged, or resets the backoff value of the CSMA/CA queue.
- step S202b the first device obtains the queue parameters of the smart channel access queue through the neural network.
- a possible implementation manner in which the first device obtains the queue parameters of the smart channel access queue through a neural network is introduced below in conjunction with steps a and b.
- step a the first device obtains the received signal strength indicator (RSSI) within a first preset time period.
- RSSI received signal strength indicator
- the first device may perform signal detection within the first preset time period to obtain the RSSI within the first preset time period.
- the first device may perform signal energy detection within a first preset time period to obtain an energy detection value, and perform carrier sense within the first preset time period to obtain a carrier sense value.
- the RSSI within the first preset time period may be a ratio of an energy detection value to a carrier sense value.
- the RSSI within the first preset time period can be understood as the environmental state parameter acquired by the queue parameter decision module.
- Step b The first device obtains the queue parameters of the smart channel access queue according to the RSSI and the neural network within the first preset time period.
- the first device performs normalization processing on the RSSI within the first preset time period. Then, the first device inputs the normalized RSSI into the neural network to obtain the queue parameters of the intelligent channel access queue output by the neural network. For example, the transmission probability of data, or the first indication.
- the first device samples the RSSI at a sampling interval of 9 us (microseconds) to obtain the RSSI within the first preset time period.
- the RSSI in the first preset time period includes 360 RSSIs.
- the value range of 360 RSSI is [-100,-40].
- the first device normalizes the value range of RSSI from [-100,-40] to [-1,1], and the first device inputs the normalized RSSI into the neural network to obtain the intelligence output of the neural network. Queue parameter of the channel access queue.
- the first device may periodically update the RSSI input in the neural network; or the first device may periodically update the RSSI input in the neural network; or, the first device may update the neural network every time it sends data. RSSI of network input.
- the first device may replace the RSSI obtained within the first preset time period with the RSSI obtained by the first device at the current moment, and use it as the input parameter of the neural network , so that the neural network outputs the sending probability or sending instruction of the data to be sent next time.
- the first device if the first device sends data on the channel, the first device cannot obtain the RSSI during data transmission, so the first device can update the RSSI input by the neural network after the data transmission is completed.
- the first device may use X lower RSSI values as input parameters of the neural network. For example, 120 random numbers belonging to the interval [-0.8,-0.5]. If the first device fails to transmit the data on the channel, the first device may use X higher RSSI values as input parameters of the neural network. For example, 120 random numbers belonging to the interval [0.5,0.8]. X is the length of the data.
- STA1 and STA2 share channel 1 .
- STA1 adopts the intelligent channel access mode
- STA2 adopts the CSMA/CA channel access mode.
- STA1 accesses channel 1 through the procedures shown in step S202a and step S202b above.
- STA1 can send data on the channel through the queue parameters of the intelligent channel access queue output by the neural network, thereby reducing the probability of communication conflicts between STA1 and STA2 on channel 1.
- the neural network of STA1 can use the RSSI within a period of time to determine the regularity of STA2 sending data within the period of time. For example, if STA2 sends data once every second, STA1 can avoid the time when STA2 sends data on channel 1. In this way, communication conflicts between STA1 and STA2 are avoided, and communication performance is improved.
- Implementation mode 2 the first device multiplexes the CSMA/CA queue, the first device maps the data accessed through the intelligent channel to the CSMA/CA queue, and sends the data on the channel through the queue parameter output by the queue parameter decision module.
- the first device is an STA
- the MAC architecture of the STA includes an access mode mapping module, a CSMA/CA queue, a queue parameter decision module, and a virtual conflict resolution module.
- the access method mapping module is used for mapping channel access methods of data and Qos mapping of data.
- the CSMA/CA queue can carry the data accessed to the channel through the CSMA/CA channel access mode and the intelligent channel access mode. That is to say, the STA multiplexes the CSMA/CA queue.
- the queue parameter decision-making module is used to determine the queue parameters of the data accessing the channel through the intelligent channel access mode.
- the queue parameter decision module includes an environment state parameter submodule and a neural network submodule.
- the environment state parameter sub-module is used to obtain the environment state parameters.
- the neural network sub-module is used to determine the queue parameters of the intelligent channel access queue according to the environment state parameters. That is to say, for the data on the CSMA/CA queue that accesses the channel through the intelligent channel access mode, the queue parameters used may be determined by the neural network.
- the STA maps the data through the intelligent channel access method to the CSMA/CA queue, and sends the data on the channel through the queue parameters output by the neural network.
- the virtual conflict resolution module is used to determine the final queue to be dequeued when the data in multiple queues are dequeued at the same time. Usually, the virtual conflict resolution module can select the data of the queue with higher priority to dequeue.
- step S202 will be described below based on Implementation Mode 2.
- the above step S202 specifically includes step S202c and step S202d.
- the first device maps the data to the first CSMA/CA queue.
- the first device determines, through the access mode mapping module, to use the smart channel access mode to send data.
- the first device maps data to CSMA/CA queue 1 .
- the queue parameters of CSMA/CA queue 1 may include: minimum contention window, maximum contention window, arbitrary frame interval and maximum sending time.
- the first device may set the minimum contention windows of all CSMA/CA queues in the MAC architecture to 0.
- the first device sends the data on the channel through the queue parameter output by the neural network.
- the queue parameters output by the neural network may include a minimum contention window, a maximum contention window, an arbitrary frame interval, and a maximum sending time.
- the neural network can determine that the probability of data transmission is low through the RSSI of the first device within the first preset time period, the neural network can set the minimum contention window to a larger value. Therefore, the first device is controlled not to send the data.
- the neural network determines that the probability of data transmission is high through the RSSI of the first device within the first preset time period, the neural network can set the minimum contention window to 0, so that the first device can send the data on the channel.
- the queue parameter output by the neural network is the queue parameter adopted by the CSMA/CA queue, so as to adapt to the queue parameter adopted by the CSMA/CA queue in the MAC architecture. It is convenient for the first device to multiplex the CSMA/CA queue to transmit the data sent through the intelligent channel access mode.
- step S202c to step S202d except for the first CSMA/CA queue in the MAC architecture of the first device, the backoff values of other CSMA/CA queues remain unchanged.
- FIG. 4A is a schematic diagram of an effect of the communication method of the embodiment of the present application.
- the abscissa represents the starting time of the channel-interference data.
- the abscissa is 9-180s, indicating that the 180th s on channel 9 is the interference data at the starting time.
- the ordinate represents the average throughput, and the average throughput is obtained through the corresponding abscissa representing the data statistics within 60 seconds from the starting time indicated by the abscissa on the channel.
- FIG. 4A is a schematic diagram of an effect of the communication method of the embodiment of the present application.
- the abscissa represents the starting time of the channel-interference data.
- the abscissa is 9-180s, indicating that the 180th s on channel 9 is the interference data at the starting time.
- the ordinate represents the average throughput, and the average throughput is obtained through the corresponding abscissa representing the data statistics within 60 seconds from the starting time indicated
- 4A shows the optimal value that the average throughput can achieve under ideal conditions, and shows the average throughput obtained by sharing the channel with the CSMA/CA mechanism, and the average throughput obtained by using the communication method provided in this application. It can be seen that the average throughput obtained by using the communication method provided by the present application is obviously greater than the average throughput obtained by sharing the channel based on the CSMA/CA mechanism. It can be known that the first device can improve the throughput of the system by implementing the communication method of the present application.
- FIG. 4B is a schematic diagram of another effect of the communication method of the embodiment of the present application.
- the abscissa represents the start time of the channel-interference data.
- the abscissa is 9-180s, indicating that the 180th s on channel 9 is the interference data at the starting time.
- the vertical axis represents the average delay.
- the average time delay is obtained by statistics of the data within 60s from the starting time indicated by the abscissa on the corresponding channel indicated by the abscissa.
- Figure 4B shows the optimal value that the average delay can achieve under ideal conditions, the average delay obtained by the first device using the CSMA/CA mechanism to share the channel, and the average delay obtained by the first device using the communication method provided by this application . It can be seen from this that the average time delay obtained by the first device using the communication method provided in this application is obviously smaller than the average time delay obtained by the first device using the CSMA/CA mechanism to share the channel. It can be seen that, by implementing the communication method of the present application, the first device can reduce data transmission delay and improve communication transmission quality.
- the first device determines the first channel access method according to the network status information.
- the first channel access method is the CSMA/CA channel access method or the intelligent channel access method.
- the intelligent channel access method is based on neural network
- the channel access decision obtained by the network is the way to access the channel.
- the first device sends data on the channel by using the first channel access manner. It can be known from this that the first device may select a channel access mode according to the network state information, and send data through the selected channel access mode.
- the channel access mode may be a CSMA/CA channel access mode or an intelligent channel access mode, and the intelligent channel access mode is a channel access mode based on a channel access decision obtained by a neural network. In this way, communication conflicts between the first device and other nodes in the network are avoided, interference avoidance is achieved, communication quality of nodes is improved, and user experience is enhanced.
- the second device may send the first information to the first device.
- the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the gradient of the neural network and the structure of the neural network. It is convenient for the first device to determine the neural network according to the first information.
- the above embodiment shown in FIG. 2 further includes step S201a to step S201c. Step S201a to step S201c may be performed before step S201.
- the second device determines first information.
- the first information includes the parameters of the neural network and the structure of the neural network, or, the first information includes the gradient of the neural network and the structure of the neural network.
- the parameters of the neural network include weights, biases, and the like.
- the structure of the neural network includes the type of the neural network, the number of layers of the neural network, the number of neurons in each layer, and the activation function used in each layer of the neural network.
- the types of neural networks include fully connected neural networks, convolutional neural networks, or recurrent neural networks.
- step S201a specifically includes step 1 and step 2.
- Step 1 The second device acquires RSSIs of multiple first devices and historical data transmission results of multiple first devices.
- the multiple first devices are first devices associated with the second device.
- the first device is an STA
- the second device is an AP
- the multiple STAs may be understood as STAs managed by the AP, and the multiple STAs may be within the signal coverage of the AP, and may establish a communication connection with the AP.
- the historical data transmission results of the multiple first devices include historical data transmission conditions of the multiple first devices. For example, information about successful or failed transfers of historical data.
- Step 2 The second device trains the neural network according to the RSSIs of the multiple first devices, the historical data transmission results of the multiple first devices, and the structure of the neural network to obtain parameters of the neural network or gradients of the neural network.
- the second device uses the RSSIs of the plurality of first devices and the historical data transmission results of the plurality of first devices as training data, performs neural network training based on the structure of the neural network, and obtains the parameters of the neural network or the neural network gradient.
- the second device sends the first frame to the first device.
- the first frame includes an information unit, and the information unit includes first information, and the first information includes the parameters of the neural network and the structure of the neural network, or, the first information includes the gradient of the neural network and the structure of the neural network.
- the first frame is a beacon frame or a detection frame, which is not limited in this application.
- the information unit further includes element identifier, length, element identifier extension and first information.
- the element ID or element ID extension is used to indicate the function of the first frame, that is, the neural network function. Length is used to indicate the length of the first frame.
- the information unit includes an element ID (element ID), a length (length), an element ID extension (element ID extension) and first information.
- the first device sends a probe request (probe request) to the second device.
- the first device cannot recognize the element identifier, that is, it cannot recognize the function (neural network function) of the first frame, so the first device can ignore the first frame.
- the first device determines the neural network according to the first information.
- the first device may parse the first frame and read the first information from the first frame.
- the first device determines the neural network according to the first information.
- the second device may periodically obtain RSSIs of multiple first devices and historical data transmission results of multiple first devices, and update the first information. After the first device receives the updated first information, the first device may determine the neural network based on the updated first information. Therefore, the neural network used by the first device is adapted to the network environment, so that the first device can better perform data transmission, avoid communication conflicts between nodes, and improve communication performance.
- FIG. 6 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application.
- communication methods include:
- the first device determines the number of times M that the energy detection value is greater than the first threshold in the multiple signal energy detections performed by the first device within the first preset time period, and the multiple carrier detection times M of the first device within the first preset time length.
- the first preset duration may be 1s
- the first threshold may be -82dBm (decibel milliwatt)
- the second threshold may be -62dBm.
- the first device judges whether the ratio of M to N is greater than or equal to a third threshold, if yes, execute step S603, and if not, execute step S604.
- the third threshold may be set according to empirical values.
- the third threshold is 0.7 or 0.8.
- the first device performs channel energy detection, so that the first device can detect signal energy of all systems in the environment. While the first device performs carrier sense, the first device can only detect the signal energy of the system where the first device is located. Therefore, if the ratio of M to N is greater than or equal to the third threshold, it indicates that there are many homogeneous nodes in the environment, that is, most nodes use the CSMA/CA channel access method to access the channel, and the first device can determine that the first channel access
- the access mode is CSMA/CA channel access mode.
- a homogeneous node refers to a node that accesses a channel using a CSMA/CA channel access method.
- the first device may determine that there are many heterogeneous nodes in the environment and the interference is relatively large, and the first device may determine that the first channel access mode is an intelligent channel access mode.
- a heterogeneous node refers to a node that uses a channel access method other than the CSMA/CA channel access method to access a channel.
- the first device determines that the first channel access mode is a CSMA/CA channel access mode.
- the first device may send data in a CSMA/CA channel access manner. For example, the first device maps data to a CSMA/CA queue, and sends the data on the channel through a queue parameter of the CSMA/CA queue.
- the first device determines that the first channel access mode is an intelligent channel access mode.
- the first device may send data in an intelligent channel access manner. For example, the first device maps the data to the intelligent channel access queue, and sends the data on the channel through the queue parameters of the intelligent channel access queue output by the neural network.
- the above-mentioned embodiment shown in FIG. 6 provides a specific solution for the first device to determine the first channel access mode according to the network state parameters.
- the first device may select a corresponding channel access mode according to the degree of network interference (characterized by the energy detection value and the carrier sense value). For example, when the interference degree of the network is relatively large, the first device may select an intelligent channel access mode to facilitate interference avoidance, thereby avoiding communication conflicts between the first device and other nodes and improving communication transmission performance. When the degree of network interference is small, the first device may select a CSMA/CA channel access manner.
- FIG. 7 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application.
- communication methods include:
- step S701 The first device judges whether there is a hidden terminal in the BSS where the first device is located. If yes, perform step S702, and if not, perform step S703.
- STA1 and STA2 are located in the BSS where the AP is located, STA1 communicates with the AP, and STA2 communicates with the AP.
- STA1 can monitor the signal of the AP, but cannot monitor the signal of STA2. That is, STA1 is located in the BSS where the AP is located, but not within the signal coverage of STA2. But for STA1, STA2 is a hidden terminal. Then the AP can determine that there is a hidden terminal in the BSS.
- the first device determines that the first channel access mode is an intelligent channel access mode.
- the first device selects an intelligent channel access mode.
- the first device determines that the first channel access mode is a CSMA/CA channel access mode.
- the first device selects a CSMA/CA channel access mode.
- the above-mentioned embodiment shown in FIG. 7 provides another solution in which the first device determines the first channel access mode according to network state parameters.
- the first device may select a corresponding channel access manner according to the network topology. For example, when there is no hidden terminal in the BSS where the first device is located, the first device selects a CSMA/CA channel access mode to avoid communication conflict between the first device and the hidden terminal.
- FIG. 8 is a schematic diagram of another embodiment of a communication method according to an embodiment of the present application.
- communication methods include:
- the first device determines a total duration of data packet transmission by the channel within a second preset duration.
- the second preset duration may fall within the range of 5s to 20s.
- the second preset duration may be 5s, 10s, 12s and so on.
- the first device judges whether the total duration is greater than or equal to a fourth threshold; if yes, execute step S803; if not, execute step S804.
- the fourth threshold may be set according to empirical values.
- the second preset duration is 5s
- the fourth threshold may be 2.5s.
- the first device can determine the busyness of the channel, and when the channel is relatively busy, the first device can use the intelligent channel access method to send data, otherwise, the first device can use the CSMA/CA channel access method to send data.
- the first device may determine the busyness of the channel according to the total duration of data packet transmission by the channel within the second preset duration. For example, when the total time length is greater than the fourth threshold, it means that the channel is relatively busy, and if the total time length is less than the fourth threshold, it means that the channel is relatively idle.
- the first device determines that the first channel access mode is an intelligent channel access mode.
- the first device determines that the first channel access mode is an intelligent channel access mode.
- the first device determines that the first channel access mode is a CSMA/CA channel access mode.
- the first device determines that the first channel access mode is a CSMA/CA channel access mode.
- the above-mentioned embodiment shown in FIG. 8 provides another solution in which the first device determines the first channel access mode according to network state parameters.
- the first device may select a corresponding channel access mode according to the busyness of the channel. For example, when the channel is relatively busy, the first device selects an intelligent channel access mode to avoid communication conflicts with other nodes on the channel.
- FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
- a communication device 900 includes a processing unit 901 and a transceiver unit 902 .
- a processing unit 901 includes a processing unit 901 and a transceiver unit 902 .
- a transceiver unit 902 optional,
- the transceiving unit 902 is used to perform the receiving or sending process of the communication device 900, therefore, the transceiving unit 902 may also be denoted as the sending unit 9021 used to perform the sending process of the communication device 900, and/or , the transceiver unit 902 may also be represented as a receiving unit 9022 for performing a receiving process of the communication device 900 .
- the communications apparatus 900 is configured to execute the implementation process of the first device in the foregoing embodiments of the present application.
- the processing unit 901 is configured to determine the first channel access method according to the network status information.
- the first channel access method is a CSMA/CA channel access method, or an intelligent channel access method.
- the intelligent channel access method is based on neural network The channel access decision method obtained by the network to access the channel;
- the transceiver unit 902 is configured to send data on a channel through a first channel access manner.
- the intelligent channel access mode is a channel access mode based on a channel access decision obtained by a neural network according to an environment state parameter.
- the environment state parameter includes at least one of the following: RSSI obtained by the communication device 900, an energy detection value obtained by the communication device 900 performing signal energy detection, and a carrier sense value obtained by the communication device 900 performing carrier sense value.
- the CSMA/CA channel access method includes any one of the following: a DCF channel access method, and an EDCA method.
- processing unit 901 is specifically configured to:
- the first channel access mode is a CSMA/CA channel access mode
- the first channel access mode is an intelligent channel access mode.
- processing unit 901 is specifically used to:
- the first channel access mode is the smart channel access mode
- the first channel access mode is the CSMA/CA channel access mode.
- processing unit 901 is specifically configured to:
- the first channel access mode is a CSMA/CA channel access mode.
- the first channel access mode is an intelligent channel access mode; the transceiver unit 902 is specifically used for:
- the queue parameter of the smart channel access queue includes a data sending probability, or a first indication, where the first indication is used to indicate whether the data is sent.
- processing unit 901 is further configured to:
- the queue parameters of the smart channel access queue are obtained according to the RSSI and the neural network within the first preset time period.
- the queue parameters of the smart channel access queue include data transmission probability; the transceiver unit 902 is specifically used for:
- the queue parameters of the smart channel access queue include a first indication; the transceiver unit is specifically used for:
- the transceiver unit 902 is further configured to:
- the first frame includes an information unit, the information unit includes first information, the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the gradient of the neural network and the neural network the structure of the network;
- the processing unit 901 is specifically used for:
- a neural network is determined according to the first information.
- the first frame is a beacon frame or a detection frame.
- the communication apparatus 900 is configured to execute the implementation process of the second device in the foregoing embodiments of the present application.
- the processing unit 901 is configured to determine first information, the first information includes the parameters of the neural network and the structure of the neural network, or the first information includes the gradient of the neural network and the structure of the neural network, and the first information is used by the first device to determine Neural Networks;
- the transceiver unit 902 is configured to send a first frame to the first device, where the first frame includes an information unit, and the information unit includes first information.
- processing unit 901 is specifically configured to:
- the neural network is trained according to the RSSIs of the multiple first devices, the historical data transmission results of the multiple first devices, and the neural network structure to obtain the first information.
- the first frame is a beacon frame or a detection frame.
- the communication device 900 can also be used to execute other embodiments executed by the first device in FIG. 2, FIG. 6, FIG. 7 and FIG. The description in , will not be repeated here.
- the communication device 900 can also be used to execute other embodiments executed by the second device in FIG. 2 and achieve corresponding beneficial effects. For details, reference can be made to the descriptions in the foregoing embodiments, which will not be repeated here. .
- the first device and the second device described in the embodiment of the present application may be implemented by a general bus architecture.
- FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
- the communication apparatus 1000 may be the first device or the second device, or a chip therein.
- FIG. 10 only shows main components of a communication device 1000 , and the communication device 1000 includes at least a processor 1001 and an input and output port 1002 .
- the input and output port 1002 may also be called a communication port, or a communication interface.
- the communication device 1000 may further include a memory 1003 .
- the apparatus 1000 may further add a bus 1004, which is used to establish a connection between the input and output ports 1002 and/or the memory 1003 and the processor 1001.
- the processor 1001 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
- the memory 1003 is mainly used to store software programs and data.
- the input and output port 1002 may include a control circuit and an antenna, and the control circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal. Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- the input and output port 1002 can be a touch screen, a display screen, a keyboard, etc., and is mainly used to receive data input by the user and output data to the user.
- the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor 1001 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit, and the radio frequency circuit performs radio frequency processing on the baseband signal, and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001, and the processor 1001 converts the baseband signal into data and processes the data deal with.
- the memory 1003 may be located in the processor 1001.
- the processor 1001 may include a communication interface for implementing receiving and sending functions.
- the communication interface may be a transceiver circuit, or an interface, or an interface circuit.
- the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
- the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
- the processor 1001 may store instructions, the instructions may be computer programs, and the computer programs run on the processor 1001 to enable the communication device 1000 to execute the method described in any of the above embodiments.
- the computer program may be fixed in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
- the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in any of the foregoing embodiments.
- the processor and communication interface described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency integrated circuit, RFIC), mixed signal IC, application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
- the processor and communication interface can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
- CMOS complementary metal oxide semiconductor
- NMOS nMetal-oxide-semiconductor
- PMOS P-type Metal oxide semiconductor
- BJT bipolar junction transistor
- BiCMOS bipolar CMOS
- SiGe silicon germanium
- GaAs gallium arsenide
- a communication device may be a stand-alone device or may be part of a larger device.
- the communication device may be:
- a set of one or more ICs may also include storage components for storing data and computer programs;
- ASIC such as modem (Modem);
- the first device and the second device described in the embodiment of the present application may be implemented by a general-purpose processor.
- the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored, and when the above-mentioned processor executes the computer program code, the electronic device executes the method in any one of the above-mentioned embodiments.
- An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the foregoing embodiments.
- the embodiment of the present application also provides a communication device, which can exist in the product form of a chip.
- the structure of the device includes a processor and an interface circuit.
- the processor is used to communicate with other devices through a receiving circuit, so that the device performs the aforementioned The method in any of the examples.
- An embodiment of the present application further provides a wireless communication system, including a first device and a second device, where the first device and the second device can execute the method in any one of the foregoing embodiments.
- the steps of the methods or algorithms described in connection with the disclosure of this application can be implemented in the form of hardware, or can be implemented in the form of a processor executing software instructions.
- Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
- the storage medium may also be a component of the processor.
- the processor and storage medium can be located in the ASIC.
- Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
- references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referring to the same embodiment throughout the specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in various embodiments of the present application, the serial numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application. The implementation process constitutes no limitation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种通信方法以及装置。本申请实施例方法包括:第一设备根据网络状态信息确定第一信道接入方式,所述第一信道接入方式为载波侦听多址访问/冲突避免CSMA/CA信道接入方式,或,智能信道接入方式,所述智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式;所述第一设备通过所述第一信道接入方式在所述信道上发送数据。由此可知,第一设备根据网络状态信息选择第一信道接入方式,并通过第一信道接入方式发送数据。从而避免第一设备与网络中的其他节点发生通信冲突,实现干扰规避。提高节点的通信质量,提升用户体验。
Description
本申请要求于2021年9月15日提交中国专利局,申请号为202111096200.8,发明名称为“通信方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种通信方法以及通信装置。
在短距离传输网络系统和无线保真(wireless fidelity,WIFI)系统等无线网络中,信道是共享的,也就是说无线网络中的多个节点会使用同一共享信道进行通信传输。如果两个或两个以上的节点同时发送报文,会产生通信冲突,导致节点传输失败。从而影响信道的吞吐量和节点的通信时延增大,极大地影响了用户体验。因此,节点的信道接入决策对通信起到重要的影响。
目前,在WIFI系统中采用载波侦听冲突避免(carrier-sense multiple access with collision avoidance,CSMA/CA)机制共享信道以避免通信冲突。在CSMA/CA机制中,节点侦听信道一段时间,如果在该时间内信道一直是空闲的,则节点接入该信道。
上述技术方案要求网络中所有节点都采用CSMA/CA机制竞争信道。但是在实际环境中还存在异质系统和隐藏终端等情况,隐藏终端或异质系统中的设备可以采用其他竞争信道的机制,导致与WIFI系统中的节点发生通信冲突,影响节点的通信质量,导致用户体验较低。
发明内容
本申请提供了一种通信方法以及通信装置,用于第一设备根据网络状态信息选择第一信道接入方式,并通过第一信道接入方式发送数据。从而避免第一设备与网络中的其他节点发生通信冲突,实现干扰规避。提高节点的通信质量,提升用户体验。
本申请第一方面提供一种通信方法,该方法由第一设备执行,或者,该方法由第一设备中的部分组件(例如,处理器、芯片、或芯片系统等)执行。该方法包括:
第一设备根据网络状态信息确定第一信道接入方式,第一信道接入方式为CSMA/CA信道接入方式,或,智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式;第一设备通过第一信道接入方式在信道上发送数据。
上述技术方案中,第一设备可以根据网络状态信息选择信道接入方式,并通过选择的信道接入方式发送数据。而信道接入方式可以为CSMA/CA信道接入方式或智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式。从而避免第一设备与网络中的其他节点发生通信冲突,以实现干扰规避,提高节点的通信质量,提升用户体验。
一种可能的实现方式中,智能信道接入方式是基于神经网络根据环境状态参数得到的 信道接入决策接入信道的方式。
由此可知,第一设备可以选择智能信道接入方式,智能信道接入方式基于神经网络根据环境状态参数得到的信道接入决策接入信道的方式。从而使得第一设备可以基于神经网络输出的信道接入决策进行发送数据。有利于避免第一设备与其他节点发生通信冲突,实现干扰规避,提升通信质量。
另一种可能的实现方式中,环境状态参数包括以下至少一项:第一设备获取的接收信道强度指示(received signal strength indicator,RSSI)、第一设备进行信号能量检测得到的能量检测(energy detection,ED)值、第一设备进行载波侦听得到的载波侦听(carrier sensing,CS)值。
上述实现方式示出了环境状态参数的一些可能的实现方式,有利于方案的执行。第一设备中的神经网络可以基于上述示出的一项或多项环境状态参数输出信道接入决策。第一设备可以基于神经网络输出的信道接入决策进行发送数据。有利于避免第一设备与其他节点发生通信冲突,实现干扰规避,提升通信质量。
另一种可能的实现方式中,CSMA/CA信道接入方式包括以下任一项:分布式协调功能(distributed coordination function,DCF)信道接入方式、增强的分布式信道接入(enhanced distributed channel access,EDCA)方式。该实现方式提供了CSMA/CA信道接入方式的一些可能的实现方式,便于方案的实施。
另一种可能的实现方式中,第一设备根据网络状态信息确定第一信道接入方式,包括:
第一设备确定第一设备在第一预设时长内的多次信号能量检测中能量检测值大于第一阈值的次数M,以及第一设备在第一预设时长内的多次载波侦听中载波侦听值大于第二阈值的次数N,M和N都为大于或等于1的整数;若M与N的比值大于或等于第三阈值,则第一设备确定第一信道接入方式为CSMA/CA信道接入方式;若M与N的比值小于第三阈值,则第一设备确定第一信道接入方式为智能信道接入方式。
上述提供了第一设备根据网络状态参数确定第一信道接入方式的一种具体确定方式。第一设备可以根据网络的干扰程度(通过能量检测值和载波侦听值表征)选择相应的信道接入方式。例如,当网络的干扰程度较大时,第一设备可以选择智能信道接入方式,以便于进行干扰规避,从而避免第一设备与其他节点发生通信冲突,提升通信传输性能。当网络的干扰程度较小时,第一设备可以选择CSMA/CA信道接入方式。
另一种可能的实现方式中,第一设备根据网络状态信息确定第一信道接入方式,包括:
若第一设备所在的基本服务集(basic service set,BSS)中存在隐藏终端,则第一设备确定第一信道接入方式为智能信道接入方式;若第一设备所在的BSS中不存在隐藏终端,则第一设备确定第一信道接入方式为CSMA/CA信道接入方式。
上述提供了第一设备根据网络状态参数确定第一信道接入方式的另一种具体确定方式。第一设备可以根据网络拓扑结构选择相应的信道接入方式。例如,当第一设备所在的BSS不存在隐藏终端,第一设备选择CSMA/CA信道接入方式,避免第一设备与隐藏终端发生通信冲突。
另一种可能的实现方式中,第一设备根据网络状态信息确定第一信道接入方式,包括:
第一设备确定信道在第二预设时长内传输数据包的总时长;
若总时长大于或等于第四阈值,则第一设备确定第一信道接入方式为智能信道接入方式;
若总时长小于第四阈值,则第一设备确定第一信道接入方式为CSMA/CA信道接入方式。
上述提供了第一设备根据网络状态参数确定第一信道接入方式的另一种具体确定方式。第一设备可以根据信道的繁忙程度选择相应的信道接入方式。例如,当信道较为繁忙时,第一设备选择智能信道接入方式,以避免与其他节点在信道上发生通信冲突。
另一种可能的实现方式中,第一信道接入方式为智能信道接入方式;第一设备通过第一信道接入方式在信道上发送数据,包括:第一设备将数据映射到智能信道接入队列,智能信道接入队列用于承载通过智能信道接入方式接入信道的数据;第一设备通过神经网络输出智能信道接入队列的队列参数在信道上发送数据。由此可知,提供了第一设备通过智能信道接入方式在信道上发送的数据的一种方案。第一设备可以通过将数据映射到智能信道接入队列,并通过神经网络输出智能信道接入队列的队列参数在信道上发送数据。从而避免与其他节点在信道上发生通信冲突。
另一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率,或者,第一指示,第一指示用于指示数据是否发送。上述实现方式提供了智能信道接入队列的队列参数的两种可能的实现方式,有利于方案的执行。第一设备可以通过神经网络输出发送概率或第一指示在信道上发送数据。从而避免与其他节点在信道上发生通信冲突。
另一种可能的实现方式中,方法还包括:
第一设备获取第一预设时长内的RSSI;第一设备根据第一预设时长内的RSSI和神经网络得到智能信道接入队列的队列参数。
在该实现方式中,第一设备可以第一预设时长内的RSSI和神经网络得到智能信道接入队列的队列参数,以便于第一设备通过该智能信道接入队列的队列参数在信道上发送数据。
另一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率;第一设备通过神经网络输出智能信道接入队列的队列参数在信道上发送数据,包括:第一设备生成数据对应的随机数;第一设备判断随机数是否大于发送概率;若是,则第一设备在信道上不发送数据;若否,则第一设备在信道上发送数据。
上述实现方式示出了第一设备可以通过神经网络输出发送概率在信道上发送数据的过程,从而避免与其他节点在信道上发生通信冲突。
另一种可能的实现方式中,智能信道接入队列的队列参数包括第一指示;第一设备通过神经网络输出智能信道接入队列的队列参数在信道上发送数据,包括:若第一指示指示发送所述数据,第一设备在信道上发送数据;若第一指示指示不发送所述数据,第一设备在信道上不发送数据。
上述实现方式示出了第一设备可以通过神经网络输出第一指示在信道上发送数据的过 程,从而避免与其他节点在信道上发生通信冲突。
另一种可能的实现方式中,方法还包括:
第一设备接收来自第二设备的第一帧,第一帧包括信息单元,信息单元包括第一信息,第一信息包括神经网络的参数和神经网络的结构,或者,所述第一信息包括神经网络的梯度和神经网络的结构;第一设备根据第一信息确定神经网络。
在该实现方式中,第一设备可以从第二设备获取第一信息。第一设备根据第一信息确定神经网络,以便于第一设备通过神经网络输出智能信道接入队列的队列参数。使得第一设备可以通过智能信道接入方式发送数据,以避免第一设备与其他节点发生通信冲突。
另一种可能的实现方式中,第一帧为信标帧或探测帧。在该实现方式示出了第一信息的两种可能的承载载体,有利于方案的实施。
本申请第二方面提供一种通信方法,该方法由第二设备执行,或者,该方法由第二设备中的部分组件(例如,处理器、芯片、或芯片系统等)执行。该方法包括:
第二设备确定第一信息,第一信息包括神经网络的参数和神经网络的结构,或者,第一信息包括神经网络的梯度和神经网络的结构,第一信息用于第一设备确定神经网络;第二设备向第一设备发送第一帧,第一帧包括信息单元,信息单元包括第一信息。
上述技术方案中,第二设备可以向第一设备发送第一信息,以便于第一设备确定神经网络。这样第一设备可以通过神经网络输出智能信道接入队列的队列参数。使得第一设备可以通过智能信道接入方式发送数据,以避免第一设备与其他节点发生通信冲突,提升通信质量。
一种可能的实现方式中,第二设备确定第一信息,包括:第二设备获取多个第一设备的RSSI和多个第一设备的历史数据传输结果,多个第一设备为第二设备关联的第一设备;第二设备根据多个第一设备的RSSI、多个第一设备的历史数据传输结果和神经网络结构进行神经网络的训练,得到第一信息。
上述实现方式中提供第二设备获取第一信息的过程,使得方案更为全面。
另一种可能的实现方式中,第一帧为信标帧或探测帧。在该实现方式示出了第一信息的两种可能的承载载体,有利于方案的实施。
本申请第三方面提供一种通信装置,包括处理单元和收发单元;
该处理单元,用于根据网络状态信息确定第一信道接入方式,第一信道接入方式为CSMA/CA信道接入方式,或,智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式;
该收发单元,用于通过第一信道接入方式在信道上发送数据。
一种可能的实现方式中,智能信道接入方式是基于神经网络根据环境状态参数得到的信道接入决策接入信道的方式。
另一种可能的实现方式中,环境状态参数包括以下至少一项:第一设备获取的RSSI、第一设备进行信号能量检测得到的能量检测值、第一设备进行载波侦听得到的载波侦听值。
另一种可能的实现方式中,CSMA/CA信道接入方式包括以下任一项:DCF信道接入方 式、EDCA方式。
另一种可能的实现方式中,处理单元具体用于:
确定通信装置在第一预设时长内的多次信号能量检测中能量检测值大于第一阈值的次数M,以及通信装置在第一预设时长内的多次载波侦听中载波侦听值大于第二阈值的次数N,M和N都为大于或等于1的整数;
若M与N的比值大于或等于第三阈值,则确定第一信道接入方式为CSMA/CA信道接入方式;
若M与N的比值小于第三阈值,则确定第一信道接入方式为智能信道接入方式。
另一种可能的实现方式中,处理单元具体用于:
若通信装置所在的BSS中存在隐藏终端,则确定第一信道接入方式为所述智能信道接入方式;
若通信装置所在的BSS中不存在隐藏终端,则确定第一信道接入方式为CSMA/CA信道接入方式。
另一种可能的实现方式中,处理单元具体用于:
确定信道在第二预设时长内传输数据包的总时长;
若总时长大于或等于第四阈值,则确定第一信道接入方式为智能信道接入方式;
若总时长小于第四阈值,则确定第一信道接入方式为CSMA/CA信道接入方式。
另一种可能的实现方式中,第一信道接入方式为智能信道接入方式;收发单元具体用于:
将数据映射到智能信道接入队列,智能信道接入队列用于承载通过智能信道接入方式接入信道的数据;
通过神经网络输出智能信道接入队列的队列参数在信道上发送数据。
另一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率,或者,第一指示,第一指示用于指示数据是否发送。
另一种可能的实现方式中,处理单元还用于:
获取第一预设时长内的RSSI;
根据第一预设时长内的RSSI和神经网络得到智能信道接入队列的队列参数。
另一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率;收发单元具体用于:
生成数据对应的随机数;
判断随机数是否大于发送概率;
若是,则在信道上不发送数据;
若否,则在信道上发送数据。
另一种可能的实现方式中,智能信道接入队列的队列参数包括第一指示;收发单元具体用于:
若第一指示指示发送数据,在信道上发送数据;
若第一指示指示不发送所述数据,在信道上不发送数据。
另一种可能的实现方式中,收发单元还用于:
接收来自第二设备的第一帧,第一帧包括信息单元,信息单元包括第一信息,第一信息包括神经网络的参数和神经网络的结构,或者,第一信息包括神经网络的梯度和神经网络的结构;
处理单元具体用于:
根据第一信息确定神经网络。
另一种可能的实现方式中,第一帧为信标帧或探测帧。
本申请第四方面提供一种通信装置,包括处理单元和收发单元;
处理单元,用于确定第一信息,第一信息包括神经网络的参数和神经网络的结构,或者,第一信息包括神经网络的梯度和神经网络的结构,第一信息用于第一设备确定神经网络;
收发单元,用于向第一设备发送第一帧,第一帧包括信息单元,信息单元包括第一信息。
一种可能的实现方式中,处理单元具体用于:
获取多个第一设备的RSSI和多个第一设备的历史数据传输结果,多个第一设备为该通信装置关联的第一设备;
根据多个第一设备的RSSI、多个第一设备的历史数据传输结果和神经网络结构进行神经网络的训练,得到第一信息。
另一种可能的实现方式中,第一帧为信标帧或探测帧。
本申请实施例第五方面提供了一种通信装置,包括至少一个处理器,该至少一个处理器与存储器耦合;
该存储器用于存储程序或指令;
该至少一个处理器用于执行该程序或指令,以使该装置实现前述第一方面或第一方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第六方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法,或者,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第七方面提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能实现方式的方法,或者,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第八方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持通信装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能;或者,用于支持通信装置实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,用于保存该通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,该芯片系统还包括接口电路,该接口电路为该至少一个处理器提供程序指令和/或数据。
本申请实施例第九方面提供了一种通信系统,该通信系统包括上述第三方面的通信装置和第四方面的通信装置。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面至第二方面中不同实现方式所带来的技术效果,在此不再赘述。
从以上技术方案可以看出,本申请的技术方案具有以下优点:
经由上述技术方案可知,第一设备根据网络状态信息确定第一信道接入方式,第一信道接入方式为载波侦听多址访问/冲突避免CSMA/CA信道接入方式,或,智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式;第一设备通过第一信道接入方式在信道上发送数据。由此可知,第一设备可以根据网络状态信息选择信道接入方式,并通过选择的信道接入方式发送数据。而信道接入方式可以为CSMA/CA信道接入方式或智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式。从而避免与网络中的其他节点发生通信冲突,以实现干扰规避,提高节点的通信质量,提升用户体验。
图1A为本申请实施例多链路设备的一个示意图;
图1B为本申请实施例通信系统的一个示意图;
图2为本申请实施例通信方法的一个实施例示意图;
图3A为本申请实施例第一设备的媒体接入控制(media access control,MAC)架构的一个示意图;
图3B为本申请实施例第一设备的MAC架构的另一个示意图;
图4A为本申请实施例通信方法的一个效果示意图;
图4B为本申请实施例通信方法的另一个效果示意图;
图5为本申请实施例信息单元的一个结构示意图;
图6为本申请实施例通信方法的另一个实施例示意图;
图7为本申请实施例通信方法的另一个实施例示意图;
图8为本申请实施例通信方法的另一个实施例示意图;
图9为本申请实施例通信装置的一个结构示意图;
图10为本申请实施例通信装置的另一个结构示意图。
本申请实施例提供了一种通信方法以及通信装置,用于第一设备根据网络状态信息选择第一信道接入方式,并通过第一信道接入方式发送数据。从而避免第一设备与网络中的其他节点发生通信冲突,实现干扰规避。提高节点的通信质量,提升用户体验。
本申请的技术方案可以应用于无线局域网(wireless local area network,WLAN),通常被称为无线WiFi网络,采用的标准为电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11系列标准。WLAN可以包括的网络节点为站点(station,STA),站点包括接入点类的站点(access point,AP)和非接入点类的站点(none access point station,Non-AP STA)。后文将接入点类站点称为AP,将非接入点类的站点称为STA。本申请的技术方案也适用于蜂窝系统中的非授权频段,例如长期演进的非授权频谱(long term evolution in unlicensed spectrum,LTE-U),新空口的非授权频谱(new radio in unlicensed spectrum,NR-U)。后文以WIFI网络为例介绍本申请的技术方案。
接入点类站点,也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有WiFi芯片的终端设备或者网络设备。可选的,AP可以为支持802.11ax制式的设备。进一步,可选的,该AP可以为支持802.11be、802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备,还可以是适用未来某代Wi-Fi标准的接入点类站点。
非接入点类的站点(none access point station,Non-AP STA),可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机。具体地,STA可以是带有无线保真芯片的终端设备或者网络设备。可选的,站点可以支持802.11ax制式,进一步可选的,该站点支持802.11be、802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式,还可以是适用未来某代Wi-Fi标准的非接入点类站点。
本申请实施例所提供的通信方法及装置可以应用于无线通信系统,该无线通信系统可以为WLAN,该方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,该通信设备可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(Multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。
如图1A所示,通信系统包括多链路设备。多链路设备包括一个或多个隶属的站点STA(affiliated STA),隶属的STA是一个逻辑上的站点,可以工作在一条链路上。其中,隶属的站点可以为AP或non-AP STA。为描述方便,本申请将隶属的站点为AP的多链路设备可以称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device),隶属的站点为non-AP STA的多链路设备可以称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device)。为描述方便,“多链路设备包括隶属STA”在也可以简要描述为“多链路设备包括STA”。
本申请的技术方案应用的通信系统包括第一设备,第一设备可以为AP或STA。可选的, 该通信设备还包括第二设备。例如,第二设备为AP,第一设备为STA。
图1B为本申请实施例通信系统的一个示意图。请参阅图1B,通信系统包括AP和STA。如图1B所示,AP1与STA1之间建立通信链路1,AP1可以为STA1提供通信服务。AP2与STA2和STA3分别建立通信链路2和通信链路3,AP2可以为STA2和STA3提供通信服务。例如,通信链路1和通信链路2共享信道1,STA1与STA2可以通过本申请提供的通信方法接入信道以发送数据。或者,例如,通信链路1与通信链路3共享信道2,AP1与STA3可以可以通过本申请提供的通信方法接入信道以发送数据。
下面结合具体实施例介绍本申请的技术方案。
图2为本申请实施例通信方法的另一个实施例示意图。请参阅图2,通信方法包括:
S201、第一设备根据网络状态信息确定第一信道接入方式。
第一信道接入方式为CSMA/CA信道接入方式或智能信道接入方式。CSMA/CA信道接入方式是采用CSMA/CA机制接入信道的方式。智能信道接入方式是基于神经网络得到的的信道接入决策接入信道的方式。
可选的,CSMA/CA信道接入方式包括以下至少一项:DCF信道接入方式、EDCA方式。
可选的,智能信道接入方式是基于神经网络根据环境状态参数得到的信道接入决策接入信道的方式。在一些实施方式中,环境状态参数包括以下至少一项:第一设备检测信号得到的接收信号强度指示(received signal strength indicator,RSSI)、第一设备进行信号能量检测得到的能量检测(energy detection,ED)值、第一设备进行载波侦听得到的载波侦听(carrier sensing,CS)值。
在一些实施方式中,网络状态信息包括以下至少一项:网络的干扰程度、网络拓扑结构、业务忙闲程度。
例如,网络的干扰程度可以通过第一设备检测得到的ED值和CS值表征。网络拓扑结构可以用于判断第一设备所在的BSS是否有隐藏终端。业务忙闲程度可以通过信道的繁忙程度表征,例如,业务忙闲程度可以通过信道上传输数据包的时长表征。第一设备可以根据业务忙闲程度选择第一信道接入方式。
上述步骤S201中,第一设备根据网络状态信息确定第一信道接入方式的方式有多种,后文通过图6、图7和图8所示的实施例介绍几种可能的实现方式,具体可以参阅后文的相关介绍,这里不再赘述。
本申请中,第一设备的MAC架构包括接入方式映射模块,该接入方式映射模块用于数据的信道接入方式的映射以及数据的Qos映射。
可选的,该MAC架构包括CSMA/CA队列和智能信道接入队列,CSMA/CA队列用于承载通过CSMA/CA信道接入方式接入信道的数据,智能信道接入队列用于承载通过智能信道接入方式接入信道的数据。该MAC架构还包括队列参数决策模块和虚拟冲突分解模块。队列参数决策模块用于确定智能信道接入队列的队列参数。虚拟冲突分解模块用于当多个队列中的数据同时出队时,决策最终的一个队列出队。通常虚拟冲突分解模块可以选择优先级较大的队列的数据出队。
在一些实施方式中,队列参数决策模块包括环境状态参数获取子模块和神经网络子模 块。环境状态参数获取子模块用于获取环境状态参数。神经网络子模块用于根据环境状态参数输出智能信道接入队列的队列参数。
例如,如图3A所示,第一设备为STA。STA的MAC架构包括CSMA/CA队列和智能信道接入队列。STA通过接入方式映射模块确定将数据映射到CSMA/CA队列还是映射到智能信道接入队列。例如,第一信道接入方式为智能信道接入方式,则STA将数据映射到智能信道接入队列。可选的,智能信道接入队列有多个,不同智能信道接入队列的优先级不同。STA可以根据Qos指示将数据映射到对应优先级的智能信道接入队列中。例如,第一信道接入方式为CSMA/CA信道接入方式,则STA将数据映射到CSMA/CA队列。可选的,CSMA/CA队列有多个,不同CSMA/CA队列的优先级不同。STA可以根据Qos指示将数据映射到对应的优先级的CSMA/CA队列中。当多个队列中的数据同时出队时,虚拟冲突分解模块决策最终只有一个队列出队。通常虚拟冲突分解模块可以选择优先级较大的队列。
S202、第一设备通过第一信道接入方式在信道上发送数据。
第一信道接入方式为CSMA/CA信道接入方式或智能信道接入方式。
一种可能的实现方式中,第一信道接入方式为CSMA/CA信道接入方式,第一设备通过CSMA/CA信道接入方式在信道上发送数据。
具体的,第一设备将该数据映射到CSMA/CA队列,并通过CSMA/CA队列的队列参数在信道上发送数据。
例如,如图3A所示,STA通过MAC架构的接入方式映射模块将该数据映射到CSMA/CA队列1。其中,CSMA/CA队列1(AC_VO)的优先级高于CSMA/CA队列2(AC_VI)的优先级,CSMA/CA队列2(AC_VI)的优先级高于CSMA/CA队列3(AC_BE)的优先级,CSMA/CA队列3(AC_BE)的优先级高于CSMA/CA队列4(AC_BK)的优先级。CSMA/CA队列的队列参数可以包括最小竞争窗口(minimum contention window,CWmin)、最大竞争窗口(maximum contention window,Cwmax)、任意帧间隔(arbitration inter-frame space,AIFSN)和最大发送时间(maximum transmit opportunity,Max TXOP)。STA通过CSMA/CA队列1的队列参数在信道上发送数据。
另一种可能的实现方式,第一信道接入方式为智能信道接入方式,第一设备通过智能信道接入方式在信道上发送数据。关于第一设备通过智能信道接入方式在信道上发送数据的方式有多种,下面介绍两种可能的实现方式。
实现方式1:第一设备的MAC架构包括智能信道接入队列以及队列参数的决策模块。智能信道接入队列用于承载通过智能信道接入方式接入信道的数据。队列参数的决策模块用于确定智能信道接入队列的队列参数。第一设备将数据映射到智能信道接入队列,并通过智能信道接入队列的队列参数在信道上发送数据。
下面基于实现方式1介绍上述步骤S202。可选的,上述步骤S202具体包括步骤S202a和步骤S202b。下面结合步骤S202a和步骤S202b介绍实现方式1。
S202a、第一设备将数据映射到智能信道接入队列。
智能信道接入队列用于承载通过智能信道接入方式接入信道的数据。
例如,如图3A所示,第一设备确定第一信道接入方式为智能信道接入方式,第一设 备基于数据的Qos指示可以将数据映射到智能信道接入队列1。
S202b、第一设备通过神经网络输出智能信道接入队列的队列参数在信道上发送数据。
例如,神经网络的结构可以为残差神经网络(residual neural network,RestNet)结构。
可选的,智能信道接入队列的队列参数包括数据的发送概率p,或者,第一指示。第一指示用于指示数据是否发送。其中,发送概率p大于或等于0且小于或等于1。
下面结合智能信道接入队列的队列参数的具体内容介绍上述步骤S202b。
一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率。上述步骤S202b具体包括步骤S2001至步骤S2004。
S2001、第一设备生成该数据对应的随机数;
S2002、第一设备判断该随机数是否大于该发送概率,若是,则执行步骤S2003;若否,则执行步骤S2004。
S2003、第一设备在信道上不发送该数据。
S2004、第一设备在该信道上发送数据。
另一种可能的实现方式中,智能信道接入队列的队列参数包括第一指示。上述步骤S202b具体包括:若第一指示指示发送数据,则第一设备在信道上发送该数据;若第一指示指示不发送数据,则第一设备在信道上不发送该数据。
例如,第一指示为“0”,代表第一设备在信道上不发送数据,第一指示为“1”,代表第一设备在信道上发送数据。
需要说明的是,上述步骤S202a至步骤S202b中,可选的,第一设备保持第一设备中的CSMA/CA队列的退避值不变,或者,重置CSMA/CA队列的退避值。
上述步骤S202b中,第一设备通过神经网络得到智能信道接入队列的队列参数。下面结合步骤a和步骤b介绍第一设备通过神经网络获取该智能信道接入队列的队列参数的一种可能的实现方式。
步骤a、第一设备获取第一预设时长内的接收信号强度指示RSSI。
例如,第一设备在第一预设时长内可以进行信号检测,得到第一预设时长内的RSSI。可选的,第一设备可以在第一预设时长内进行信号能量检测得到能量检测值,在第一预设时长内进行载波侦听得到载波侦听值。第一预设时长内的RSSI可以是能量检测值与载波侦听值的比值。第一预设时长内的RSSI可以理解为队列参数决策模块获取到的环境状态参数。
步骤b、第一设备根据第一预设时长内的RSSI和神经网络,得到该智能信道接入队列的队列参数。
例如,第一设备对第一预设时长内的RSSI进行归一化处理。然后,第一设备将经过归一化处理的RSSI输入神经网络,得到神经网络输出的智能信道接入队列的队列参数。例如,数据的发送概率、或第一指示。
例如,第一设备以9us(微秒)的采样间隔对采样得到第一预设时长内的RSSI。第一 预设时长内的RSSI包括360个RSSI。360个RSSI的取值范围为[-100,-40]。第一设备将RSSI的取值范围为[-100,-40]归一化至[-1,1]区间,第一设备将经过归一化处理的RSSI输入神经网络,得到神经网络输出的智能信道接入队列的队列参数。
需要说明的是,可选的,第一设备可以定期更新神经网络中输入的RSSI;或者第一设备可以周期性的更新神经网络中输入的RSSI;或者,第一设备每发送一次数据更新一次神经网络输入的RSSI。
对于第一设备每发送一次数据更新一次神经网络输入的RSSI的方式。上述步骤S201b中,若第一设备在信道上不发送数据,则第一设备可以将第一设备当前时刻获取到的RSSI代替上述第一预设时长内获取的RSSI,并作为神经网络的输入参数,以使得神经网络输出下一次待发送数据的发送概率或发送指示。上述步骤S201b中,若第一设备在信道上发送数据,第一设备在数据传输过程中无法获取RSSI,因此第一设备可以在该数据发送结束后更新神经网络输入的RSSI。例如,若第一设备在信道上成功传输该数据,则第一设备可以将X个较低的RSSI值作为神经网络的输入参数。例如,120个属于[-0.8,-0.5]区间的随机数。若第一设备在信道上该数据传输失败,则第一设备可以将X个较高的RSSI值作为神经网络的输入参数。例如,120个属于[0.5,0.8]区间的随机数。X为该数据的长度。
例如,如图1B所示,STA1与STA2共享信道1。STA1采用智能信道接入方式,STA2采用CSMA/CA信道接入方式。STA1通过上述步骤S202a和步骤S202b示出的过程接入信道1。STA1可以通过神经网络输出的智能信道接入队列的队列参数在信道上发送数据,从而降低STA1与STA2在信道1上发生通信冲突的概率。例如,STA1的神经网络可以通过一段时间内的RSSI确定STA2在该段时间内发送数据的规律。例如,STA2每1秒发送一次数据,则STA1可以避开STA2在信道1上发送数据的时间。从而避免STA1与STA2出现通信冲突,提升通信性能。
实现方式2:第一设备复用CSMA/CA队列,第一设备将通过智能信道接入方式的数据映射到CSMA/CA队列,并通过队列参数决策模块输出的队列参数在信道上发送该数据。
例如,如图3B所示,第一设备为STA,STA的MAC架构包括接入方式映射模块、CSMA/CA队列、队列参数决策模块和虚拟冲突分解模块。该接入方式映射模块用于数据的信道接入方式的映射以及数据的Qos映射。CSMA/CA队列可以承载通过CSMA/CA信道接入方式和智能信道接入方式接入信道的数据。也就是说STA复用CSMA/CA队列。而队列参数决策模块用于确定通过智能信道接入方式接入信道的数据的队列参数。可选的,队列参数决策模块包括环境状态参数子模块和神经网络子模块。环境状态参数子模块用于获取环境状态参数。神经网络子模块用于根据环境状态参数确定智能信道接入队列的队列参数。也就是说对于CSMA/CA队列上通过智能信道接入方式接入信道的数据,其采用的队列参数可以是神经网络确定的。STA将通过智能信道接入方式的数据映射到CSMA/CA队列,并通过神经网络输出的队列参数在信道上发送该数据。虚拟冲突分解模块用于当多个队列中的数据同时出队时,决策最终的一个队列出队。通常虚拟冲突分解模块可以选择优先级较大的队列的数据出队。
下面基于实现方式2介绍上述步骤S202。可选的,上述步骤S202具体包括步骤S202c 和步骤S202d。
S202c、第一设备将数据映射到第一CSMA/CA队列。
例如,如图3B所示,第一设备通过接入方式映射模块确定采用智能信道接入方式发送数据。第一设备将数据映射到CSMA/CA队列1。CSMA/CA队列1的队列参数可以包括:最小竞争窗口、最大竞争窗口、任意帧间隔和最大发送时间。可选的,第一设备可以将MAC架构中的所有CSMA/CA队列的最小竞争窗口设置为0。
S202d、第一设备通过神经网络输出的队列参数在信道上发送该数据。
具体的,神经网络输出的队列参数可以包括最小竞争窗口、最大竞争窗口、任意帧间隔和最大发送时间。例如,当神经网络可以通过第一设备在第一预设时长内的RSSI确定数据的发送概率较低时,则神经网络可以将最小竞争窗口设置为较大的数值。从而控制第一设备不发送该数据。当神经网络通过第一设备在第一预设时长内的RSSI确定数据的发送概率较高时,则神经网络可以将最小竞争窗口设置为0,这样第一设备可以在信道上发送该数据。也就是说神经网络输出的队列参数为CSMA/CA队列采用的队列参数,以适配MAC架构中CSMA/CA队列采用的队列参数。便于第一设备复用CSMA/CA队列传输通过智能信道接入方式发送的数据。
需要说明的是,上述步骤S202c至步骤S202d中,第一设备的MAC架构中除了第一CSMA/CA队列之外,其他CSMA/CA队列的退避值保持不变。
第一设备通过本申请提供的通信方法可以提高第一设备的通信质量,避免节点之间的通信冲突。例如,图4A为本申请实施例通信方法的一个效果示意图。如图4A所示,横坐标代表信道-干扰数据的起始时刻。例如,横坐标为9-180s,表示信道9上第180s为起始时刻的干扰数据。纵坐标代表平均吞吐量,该平均吞吐量是通过对应的横坐标表示信道上以该横坐标表示的起始时刻开始60s内的数据统计得到的。图4A示出了理想状态下平均吞吐量可以达到的最优值,示出了CSMA/CA机制共享信道得到的平均吞吐量,以及采用本申请提供的通信方法得到的平均吞吐量。由此可知,采用本申请提供的通信方法得到的平均吞吐量明显都要大于基于CSMA/CA机制共享信道得到的平均吞吐量。由此可知,第一设备通过执行本申请的通信方法可以提高系统的吞吐量。
例如,图4B为本申请实施例通信方法的另一个效果示意图。如图4B所示,横坐标代表信道-干扰数据的起始时刻。例如,横坐标为9-180s,表示信道9上第180s为起始时刻的干扰数据。纵坐标代表平均时延。平均时延是通过对应的横坐标表示的信道上以该横坐标表示的起始时刻开始60s内的数据统计得到的。图4B示出了理想状态下平均时延可以达到的最优值,第一设备采用CSMA/CA机制共享信道得到的平均时延,以及第一设备采用本申请提供的通信方法得到的平均时延。由此可知,第一设备采用本申请提供的通信方法得到的平均时延明显都要小于第一设备采用CSMA/CA机制共享信道得到的平均时延。由此可知,第一设备通过执行本申请的通信方法可以降低数据的传输时延,提升通信传输质量。
本申请实施例中,第一设备根据网络状态信息确定第一信道接入方式,第一信道接入方式为CSMA/CA信道接入方式或智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式。第一设备通过第一信道接入方式在信道上发送数据。 由此可知,第一设备可以根据网络状态信息选择信道接入方式,并通过选择的信道接入方式发送数据。而信道接入方式可以为CSMA/CA信道接入方式或智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式。从而避免第一设备与网络中的其他节点发生通信冲突,以实现干扰规避,提高节点的通信质量,提升用户体验。
本申请中,可选的,第二设备可以向第一设备发送第一信息。第一信息包括神经网络的参数和神经网络的结构,或者,第一信息包括神经网络的梯度和神经网络的结构。便于第一设备根据第一信息确定神经网络。可选的,上述图2所示的实施例还包括步骤S201a至步骤S201c。步骤S201a至步骤S201c可以在步骤S201之前执行。
S201a、第二设备确定第一信息。
其中,第一信息包括神经网络的参数和神经网络结构,或者,第一信息包括神经网络的梯度和神经网络的结构。可选的,神经网络的参数包括权值、偏置等。神经网络的结构包括神经网络的类型、神经网络的层数、每层神经元个数、每层神经网络所采用的激活函数。例如,神经网络的类型包括全连接神经网络、卷积神经网络、或循环神经网络等。
下面介绍步骤S201a中第二设备确定神经网络的参数或神经网络的梯度的一种可能的实现方式。可选的,步骤S201a具体包括步骤1和步骤2。
步骤1、第二设备获取多个第一设备的RSSI和多个第一设备的历史数据传输结果。多个第一设备为第二设备关联的第一设备。
例如,第一设备为STA,第二设备为AP。多个STA可以理解为AP管理的STA,多个STA可以在AP的信号覆盖范围内,与该AP可以建立有通信连接。
多个第一设备的历史数据传输结果包括多个第一设备的历史数据传输情况。例如,历史数据传输成功或传输失败的信息。
步骤2、第二设备根据多个第一设备的RSSI、多个第一设备的历史数据传输结果和神经网络的结构进行神经网络的训练,得到神经网络的参数或神经网络的梯度。
具体的,第二设备将该多个第一设备的RSSI、多个第一设备的历史数据传输结果作为训练数据,基于神经网络的结构进行神经网络的训练,得到该神经网络的参数或神经网络的梯度。
S201b、第二设备向第一设备发送第一帧。第一帧包括信息单元,该信息单元包括第一信息,第一信息包括神经网络的参数和神经网络结构,或者,第一信息包括神经网络的梯度和神经网络的结构。
可选的,第一帧为信标帧或探测帧,具体本申请不做限定。
在一些实施方式中,信息单元还包括元素标识、长度、元素标识扩展和第一信息。
元素标识或元素标识扩展用于指示第一帧的功能,即神经网络功能。长度用于指示该第一帧的长度。
例如,如图5所示,信息单元包括元素标识(element ID)、长度(length)、元素标识扩展(element ID extension)和第一信息。
针对第一帧为探测帧的方式,可选的,在步骤S201b之前,第一设备向第二设备发送探测请求(probe request)。
需要说明的是,对于不支持神经网络功能的第一设备来说,该第一设备无法识别元素标识,即无法识别该第一帧的功能(神经网络功能),因此该第一设备可以忽略该第一帧。
S201c、第一设备根据第一信息确定神经网络。
具体的,第一设备接收到第一帧后,第一设备可以解析第一帧,并从第一帧中读取第一信息。第一设备根据该第一信息确定神经网络。
需要说明的是,可选的,第二设备可以定期获取多个第一设备的RSSI和多个第一设备的历史数据传输结果,并更新第一信息。第一设备接收到更新的第一信息后,第一设备可以通过更新的第一信息确定神经网络。从而使得第一设备使用的神经网络与网络环境适配,这样第一设备可以更好地进行数据传输,避免节点之间的通信冲突,提升通信性能。
下面结合图6至图8介绍上述图2所示的实施例的步骤S201中第一设备根据网络状态信息确定第一信道接入方式的几种可能的实现方式。
图6为本申请实施例通信方法的另一个实施例示意图。请参阅图6,通信方法包括:
S601、第一设备确定第一设备在第一预设时长内的多次信号能量检测中能量检测值大于第一阈值的次数M,以及第一设备在第一预设时长内的多次载波侦听中载波侦听值大于第二阈值的次数N。M和N都为大于或等于1的整数。
例如,第一预设时长可以为1s,第一阈值可以为-82dBm(分贝毫瓦),第二阈值可以为-62dBm。
S602、第一设备判断M与N的比值是否大于或等于第三阈值,若是,则执行步骤S603,若否,则执行步骤S604。
可选的,第三阈值可以是根据经验值设定的。例如,第三阈值为0.7或0.8。
第一设备执行信道能量检测,这样第一设备可以检测到环境中所有系统的信号能量。而第一设备执行载波侦听,第一设备只能侦听到该第一设备所在的系统的信号能量。因此,若M与N的比值大于或等于第三阈值,说明环境中同质节点较多,即大多数节点都采用CSMA/CA信道接入方式接入信道,第一设备可以确定第一信道接入方式为CSMA/CA信道接入方式。同质节点是指采用CSMA/CA信道接入方式接入信道的节点。若M与N的比值小于第三阈值,则第一设备可以确定环境中异质节点较多,干扰较大,第一设备可以确定第一信道接入方式为智能信道接入方式。异质节点是指采用除CSMA/CA信道接入方式之外的其他信道接入方式接入信道的节点。
S603、第一设备确定第一信道接入方式为CSMA/CA信道接入方式。
若M与N的比值大于或等于第三阈值,则第一设备可以采用CSMA/CA信道接入方式发送数据。例如,第一设备将数据映射到CSMA/CA队列,并通过CSMA/CA队列的队列参数在信道上发送数据。
S604、第一设备确定第一信道接入方式为智能信道接入方式。
若M与N的比值小于第三阈值,则第一设备可以采用智能信道接入方式发送数据。例如,第一设备将数据映射到智能信道接入队列,并通过神经网络输出的智能信道接入队列的队列参数在信道上发送数据。
上述图6所示的实施例中提供了第一设备根据网络状态参数确定第一信道接入方式的 具体方案。第一设备可以根据网络的干扰程度(通过能量检测值和载波侦听值表征)选择相应的信道接入方式。例如,当网络的干扰程度较大时,第一设备可以选择智能信道接入方式,以便于进行干扰规避,从而避免第一设备与其他节点发生通信冲突,提升通信传输性能。当网络的干扰程度较小时,第一设备可以选择CSMA/CA信道接入方式。
图7为本申请实施例通信方法的另一个实施例示意图。请参阅图7,通信方法包括:
S701、第一设备判断第一设备所在的BSS中是否存在隐藏终端,若是,则执行步骤S702,若否,则执行步骤S703。
例如,STA1和STA2位于AP所在的BSS中,STA1与AP进行通信,STA2与AP进行通信。STA1可以监听到AP的信号,但无法监听到STA2的信号。也就是STA1位于AP所在的BSS内,但是不位于STA2的信号覆盖范围内。但是对于STA1来说,STA2是隐藏终端。那么AP可以确定该BSS中存在隐藏终端。
S702、第一设备确定第一信道接入方式为智能信道接入方式。
如果第一设备所在的BSS存在隐藏终端,第一设备选择智能信道接入方式。
S703、第一设备确定第一信道接入方式为CSMA/CA信道接入方式。
如果第一设备所在的BSS不存在隐藏终端,第一设备选择CSMA/CA信道接入方式。
上述图7所示的实施例提供了第一设备根据网络状态参数确定第一信道接入方式的另一种方案。第一设备可以根据网络拓扑结构选择相应的信道接入方式。例如,当第一设备所在的BSS不存在隐藏终端,第一设备选择CSMA/CA信道接入方式,避免第一设备与隐藏终端发生通信冲突。
图8为本申请实施例通信方法的另一个实施例示意图。请参阅图8,通信方法包括:
S801、第一设备确定信道在第二预设时长内传输数据包的总时长。
可选的,第二预设时长可以属于在5s至20s的范围内。第二预设时长可以为5s、10s、12s等。
S802、第一设备判断该总时长是否大于或等于第四阈值;若是,则执行步骤S803,若否,则执行步骤S804。
可选的,第四阈值可以是根据经验值设定的。例如,第二预设时长为5s,第四阈值可以为2.5s。
具体的,第一设备可以确定信道的繁忙程度,当信道较为繁忙时,第一设备可以采用智能信道接入方式发送数据,反之,第一设备可以采用CSMA/CA信道接入方式发送数据。具体的,第一设备可以通过信道在第二预设时长内传输数据包的总时长确定信道的繁忙程度。例如,总时长大于第四阈值时,代表信道较为繁忙,总时长小于第四阈值,代表信道较为空闲。
S803、第一设备确定第一信道接入方式为智能信道接入方式。
如果该总时长大于或等于第四阈值,则第一设备确定第一信道接入方式为智能信道接入方式。
S804、第一设备确定第一信道接入方式为CSMA/CA信道接入方式。
如果该总时长小于第四阈值,则第一设备确定第一信道接入方式为CSMA/CA信道接入 方式。
上述图8所示的实施例提供了第一设备根据网络状态参数确定第一信道接入方式的另一种方案。第一设备可以根据信道的繁忙程度选择相应的信道接入方式。例如,当信道较为繁忙时,第一设备选择智能信道接入方式,以避免与其他节点在信道上发生通信冲突。
上面对本申请实施例提供的通信方法进行介绍,下面将对本申请提供的通信装置进行描述。
图9为本申请实施例通信装置的一个结构示意图。请参阅图9,通信装置900包括处理单元901和收发单元902。可选的,
可选地,该收发单元902用于执行该通信装置900的接收或发送的过程,因此,该收发单元902也可以表示为用于执行该通信装置900的发送过程的发送单元9021,和/或,该收发单元902也可以表示为用于执行该通信装置900的接收过程的接收单元9022。
可选的,该通信装置900用于执行本申请前述实施例中第一设备的实现过程。
该处理单元901,用于根据网络状态信息确定第一信道接入方式,第一信道接入方式为CSMA/CA信道接入方式,或,智能信道接入方式,智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式;
该收发单元902,用于通过第一信道接入方式在信道上发送数据。
一种可能的实现方式中,智能信道接入方式是基于神经网络根据环境状态参数得到的信道接入决策接入信道的方式。
另一种可能的实现方式中,环境状态参数包括以下至少一项:通信装置900获取的RSSI、通信装置900进行信号能量检测得到的能量检测值、通信装置900进行载波侦听得到的载波侦听值。
另一种可能的实现方式中,CSMA/CA信道接入方式包括以下任一项:DCF信道接入方式、EDCA方式。
另一种可能的实现方式中,处理单元901具体用于:
确定通信装置900在第一预设时长内的多次信号能量检测中能量检测值大于第一阈值的次数M,以及通信装置900在第一预设时长内的多次载波侦听中载波侦听值大于第二阈值的次数N,M和N都为大于或等于1的整数;
若M与N的比值大于或等于第三阈值,则确定第一信道接入方式为CSMA/CA信道接入方式;
若M与N的比值小于第三阈值,则确定第一信道接入方式为智能信道接入方式。
另一种可能的实现方式中,处理单元具体901用于:
若通信装置900所在的BSS中存在隐藏终端,则确定第一信道接入方式为所述智能信道接入方式;
若通信装置900所在的BSS中不存在隐藏终端,则确定第一信道接入方式为CSMA/CA信道接入方式。
另一种可能的实现方式中,处理单元901具体用于:
确定信道在第二预设时长内传输数据包的总时长;
若总时长大于或等于第四阈值,则确定第一信道接入方式为智能信道接入方式;
若总时长小于第四阈值,则确定第一信道接入方式为CSMA/CA信道接入方式。
另一种可能的实现方式中,第一信道接入方式为智能信道接入方式;收发单元902具体用于:
将数据映射到智能信道接入队列,智能信道接入队列用于承载通过智能信道接入方式接入信道的数据;
通过神经网络输出智能信道接入队列的队列参数在信道上发送数据。
另一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率,或者,第一指示,第一指示用于指示数据是否发送。
另一种可能的实现方式中,处理单元901还用于:
获取第一预设时长内的RSSI;
根据第一预设时长内的RSSI和神经网络得到智能信道接入队列的队列参数。
另一种可能的实现方式中,智能信道接入队列的队列参数包括数据的发送概率;收发单元902具体用于:
生成数据对应的随机数;
判断随机数是否大于发送概率;
若是,则在信道上不发送数据;
若否,则在信道上发送数据。
另一种可能的实现方式中,智能信道接入队列的队列参数包括第一指示;收发单元具体用于:
若第一指示指示发送数据,在信道上发送数据;
若第一指示指示不发送所述数据,在信道上不发送数据。
另一种可能的实现方式中,收发单元902还用于:
接收来自第二设备的第一帧,第一帧包括信息单元,信息单元包括第一信息,第一信息包括神经网络的参数和神经网络的结构,或者,第一信息包括神经网络的梯度和神经网络的结构;
处理单元901具体用于:
根据第一信息确定神经网络。
另一种可能的实现方式中,第一帧为信标帧或探测帧。
可选的,该通信装置900用于执行本申请前述实施例中第二设备的实现过程。
处理单元901,用于确定第一信息,第一信息包括神经网络的参数和神经网络的结构,或者,第一信息包括神经网络的梯度和神经网络的结构,第一信息用于第一设备确定神经网络;
收发单元902,用于向第一设备发送第一帧,第一帧包括信息单元,信息单元包括第一信息。
一种可能的实现方式中,处理单元901具体用于:
获取多个第一设备的RSSI和多个第一设备的历史数据传输结果,多个第一设备为该 通信装置900关联的第一设备;
根据多个第一设备的RSSI、多个第一设备的历史数据传输结果和神经网络结构进行神经网络的训练,得到第一信息。
另一种可能的实现方式中,第一帧为信标帧或探测帧。
需要说明的是,该通信装置900还可以用于执行前述图2、图6、图7和图8中第一设备所执行的其它实施例,并实现相应的有益效果,具体可以参考前述实施例中的描述,此处不再赘述。
需要说明的是,该通信装置900还可以用于执行前述图2中第二设备所执行的其它实施例,并实现相应的有益效果,具体可以参考前述实施例中的描述,此处不再赘述。
以上介绍了本申请实施例的第一设备和第二设备,以下介绍所述第一设备和第二设备可能的产品形态。应理解,以下介绍仅为举例,不限制本申请实施例的第一设备和第二设备的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由一般性的总线体系结构来实现。
为了便于说明,参见图10,图10是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为第一设备或第二设备,或其中的芯片。图10仅示出了通信装置1000的主要部件,该通信装置1000至少包括处理器1001和输入输出端口1002。
可选的,该输入输出端口1002也可以称为通信端口,或者,通信接口等。
可选的,通信装置1000还可以进一步包括存储器1003。
可选地,该装置1000还可以增加总线1004,该总线1004用于建立输入输出端口1002和/或存储器1003与处理器1001的连接。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。输入输出端口1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。例如输入输出端口1002可以为触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置1000开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
可选的,存储器1003可以位于处理器1001中。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的通信接口。例如该通信接口可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、 接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述任一实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述任一实施例中发送或接收或者通信的功能。本申请中描述的处理器和通信接口可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和通信接口也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、+手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由通用处理器来实现。
应理解,上述各种产品形态的通信装置,具有上述任一实施例中第一设备或第二设备的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信系统,包括第一设备和第二设备,该第一设备和第二设备可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
Claims (17)
- 一种通信方法,其特征在于,所述方法包括:第一设备根据网络状态信息确定第一信道接入方式,所述第一信道接入方式为载波侦听多址访问/冲突避免CSMA/CA信道接入方式,或,智能信道接入方式,所述智能信道接入方式是基于神经网络得到的信道接入决策接入信道的方式;所述第一设备通过所述第一信道接入方式在所述信道上发送数据。
- 根据权利要求1所述的方法,其特征在于,所述智能信道接入方式是基于所述神经网络根据环境状态参数得到的信道接入决策接入信道的方式。
- 根据权利要求2所述的方法,其特征在于,所述环境状态参数包括以下至少一项:所述第一设备获取的接收信道强度指示RSSI、所述第一设备进行信号能量检测得到的能量检测ED值、所述第一设备进行载波侦听得到的载波侦听CS值。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一设备根据网络状态信息确定第一信道接入方式,包括:所述第一设备确定所述第一设备在第一预设时长内的多次信号能量检测ED中能量检测ED值大于第一阈值的次数M,以及所述第一设备在所述第一预设时长内的多次载波侦听CS中CS值大于第二阈值的次数N,所述M和所述N都为大于或等于1的整数;若所述M与所述N的比值大于或等于第三阈值,则所述第一设备确定所述第一信道接入方式为所述CSMA/CA信道接入方式;若所述M与所述N的比值小于所述第三阈值,则所述第一设备确定所述第一信道接入方式为所述智能信道接入方式。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一设备根据网络状态信息确定第一信道接入方式,包括:若所述第一设备所在的基本服务集BSS中存在隐藏终端,则所述第一设备确定所述第一信道接入方式为所述智能信道接入方式;若所述第一设备所在的BSS中不存在隐藏终端,则所述第一设备确定所述第一信道接入方式为所述CSMA/CA信道接入方式。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一设备根据网络状态信息确定第一信道接入方式,包括:所述第一设备确定所述信道在第二预设时长内传输数据包的总时长;若所述总时长大于或等于第四阈值,则所述第一设备确定所述第一信道接入方式为智能信道接入方式;若所述总时长小于第四阈值,则所述第一设备确定所述第一信道接入方式为所述CSMA/CA信道接入方式。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一信道接入方式为智能信道接入方式;所述第一设备通过所述第一信道接入方式在信道上发送数据,包括:所述第一设备将所述数据映射到智能信道接入队列,所述智能信道接入队列用于承载通过所述智能信道接入方式接入信道的数据;所述第一设备通过所述神经网络输出所述智能信道接入队列的队列参数在所述信道上发送所述数据。
- 根据权利要求7所述的方法,其特征在于,所述智能信道接入队列的队列参数包括所述数据的发送概率,或者,第一指示,所述第一指示用于指示所述数据是否发送。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:所述第一设备接收来自第二设备的第一帧,所述第一帧包括信息单元,所述信息单元包括第一信息,所述第一信息包括所述神经网络的参数和所述神经网络的结构,或者,所述第一信息包括所述神经网络的梯度和所述神经网络的结构;所述第一设备根据所述第一信息确定所述神经网络。
- 一种通信方法,其特征在于,所述方法包括:第二设备确定第一信息,所述第一信息包括神经网络的参数和所述神经网络的结构,或者,所述第一信息包括所述神经网络的梯度和所述神经网络的结构,所述第一信息用于第一设备确定所述神经网络;所述第二设备向所述第一设备发送第一帧,所述第一帧包括信息单元,所述信息单元包括所述第一信息。
- 一种通信装置,其特征在于,所述通信装置包括用于执行上述权利要求1至9中任一项所述方法的收发操作的收发单元,和用于执行上述权利要求1至9中任一项所述方法的处理操作的处理单元。
- 一种通信装置,其特征在于,所述通信装置包括用于执行上述权利要求10所述方法的收发操作的收发单元,和用于执行上述权利要求10所述方法的处理操作的处理单元。
- 一种通信装置,其特征在于,所述通信装置包括:存储器,用于存储计算机指令;处理器,用于执行所述存储器中存储的计算机程序或计算机指令,使得所述通信装置执行如权利要求1至9中任一项所述的方法;或者,使得所述通信装置执行如权利要求10所述的方法。
- 一种通信装置,其特征在于,所述通信装置包括处理器:所述处理器用于执行所述存储器中的计算机程序或计算机指令,以执行如权利要求1至9中任一项所述的方法;或者,以执行如权利要求10所述的方法。
- 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于执行如权利要求1至9中任一项所述的方法,或者,所述处理器用于执行如权利要求10所述的方法。
- 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至9中任一项所述的方法,或者,使得所述通信装置执行如权利要求10所述的方法。
- 一种计算机程序产品,其特征在于,当所述计算机程序产品被运行时,执行如权利要求1至9中任一项所述的方法,或者,执行如权利要求10所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22869163.0A EP4387371A1 (en) | 2021-09-15 | 2022-09-13 | Communication method and communication apparatus |
US18/602,856 US20240224331A1 (en) | 2021-09-15 | 2024-03-12 | Communication method and communication apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111096200.8A CN115811802A (zh) | 2021-09-15 | 2021-09-15 | 通信方法以及通信装置 |
CN202111096200.8 | 2021-09-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/602,856 Continuation US20240224331A1 (en) | 2021-09-15 | 2024-03-12 | Communication method and communication apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023040794A1 true WO2023040794A1 (zh) | 2023-03-23 |
Family
ID=85482261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/118307 WO2023040794A1 (zh) | 2021-09-15 | 2022-09-13 | 通信方法以及通信装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240224331A1 (zh) |
EP (1) | EP4387371A1 (zh) |
CN (1) | CN115811802A (zh) |
WO (1) | WO2023040794A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106922034A (zh) * | 2015-12-25 | 2017-07-04 | 华为技术有限公司 | 一种接入方法及装置 |
WO2020172825A1 (zh) * | 2019-02-27 | 2020-09-03 | 华为技术有限公司 | 一种确定传输策略的方法及装置 |
CN111860828A (zh) * | 2020-06-15 | 2020-10-30 | 北京仿真中心 | 一种神经网络的训练方法、存储介质和设备 |
CN111867139A (zh) * | 2020-07-06 | 2020-10-30 | 上海交通大学 | 基于q学习的深度神经网络自适应退避策略实现方法及系统 |
US20210144767A1 (en) * | 2019-11-07 | 2021-05-13 | Mitsubishi Electric Research Laboratories, Inc. | Hybrid Carrier Sense Multiple Access System with Collision Avoidance for IEEE 802.15.4 to Achieve Better Coexistence with IEEE 802.11 |
-
2021
- 2021-09-15 CN CN202111096200.8A patent/CN115811802A/zh active Pending
-
2022
- 2022-09-13 WO PCT/CN2022/118307 patent/WO2023040794A1/zh unknown
- 2022-09-13 EP EP22869163.0A patent/EP4387371A1/en active Pending
-
2024
- 2024-03-12 US US18/602,856 patent/US20240224331A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106922034A (zh) * | 2015-12-25 | 2017-07-04 | 华为技术有限公司 | 一种接入方法及装置 |
WO2020172825A1 (zh) * | 2019-02-27 | 2020-09-03 | 华为技术有限公司 | 一种确定传输策略的方法及装置 |
US20210144767A1 (en) * | 2019-11-07 | 2021-05-13 | Mitsubishi Electric Research Laboratories, Inc. | Hybrid Carrier Sense Multiple Access System with Collision Avoidance for IEEE 802.15.4 to Achieve Better Coexistence with IEEE 802.11 |
CN111860828A (zh) * | 2020-06-15 | 2020-10-30 | 北京仿真中心 | 一种神经网络的训练方法、存储介质和设备 |
CN111867139A (zh) * | 2020-07-06 | 2020-10-30 | 上海交通大学 | 基于q学习的深度神经网络自适应退避策略实现方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115811802A (zh) | 2023-03-17 |
US20240224331A1 (en) | 2024-07-04 |
EP4387371A1 (en) | 2024-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116193632B (zh) | 多链路通信方法和装置 | |
EP3968724A1 (en) | Frame transmission method and device using multiple random backoff operation in broadband wireless communication network | |
US9635614B2 (en) | Power management method for station in wireless LAN system and station that supports same | |
CN102484845B (zh) | 无线局域网系统中的信道扫描方法 | |
WO2014027847A1 (ko) | 무선랜에서 채널 액세스 방법 및 장치 | |
WO2013191448A1 (ko) | 무선랜에서 초기 액세스 분산 방법 및 장치 | |
AU2021336597A1 (en) | Channel access method for multi-link device and related apparatus | |
US11956037B2 (en) | Spatial reuse for wireless network | |
US11184775B2 (en) | Method for transmitting frame on basis of spatial reuse in wireless LAN system and wireless terminal using same | |
US20230319640A1 (en) | Method for determining data buffer status, and apparatus | |
JP2024014880A (ja) | マルチリンクデバイスのためのチャネルアクセス方法、および関連装置 | |
CN107637135A (zh) | 一种基于异构优先级的随机接入方法、装置、设备及系统 | |
TWI829422B (zh) | 多鏈路通信方法、裝置及可讀儲存介質 | |
US11082887B2 (en) | Method for retransmitting frame in wireless LAN system, and wireless terminal using same | |
WO2023040794A1 (zh) | 通信方法以及通信装置 | |
US10959264B2 (en) | Method for transmitting frame in wireless LAN system and wireless terminal using same | |
US10743348B2 (en) | Method for multi-user transmission in wireless LAN system and wireless terminal using same | |
CN107509251B (zh) | 一种退避方法和装置 | |
WO2023040812A1 (zh) | 通信方法以及相关装置 | |
JP2024515227A (ja) | Emlsrモードでのビーコンフレーム送信方法および関連装置 | |
US11877318B2 (en) | Channel assessment in a single contention-free channel access period | |
WO2024148549A1 (en) | Efficient way of twt overlapping | |
CN113228746B (zh) | 无线接入建立 | |
WO2023179368A1 (zh) | 感知方法及装置 | |
WO2024067517A1 (zh) | 一种通信方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22869163 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022869163 Country of ref document: EP Effective date: 20240312 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |