WO2023040479A1 - 一种防水光伏一体化屋面的施工方法 - Google Patents

一种防水光伏一体化屋面的施工方法 Download PDF

Info

Publication number
WO2023040479A1
WO2023040479A1 PCT/CN2022/108575 CN2022108575W WO2023040479A1 WO 2023040479 A1 WO2023040479 A1 WO 2023040479A1 CN 2022108575 W CN2022108575 W CN 2022108575W WO 2023040479 A1 WO2023040479 A1 WO 2023040479A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
waterproof
construction method
leveling
roof
Prior art date
Application number
PCT/CN2022/108575
Other languages
English (en)
French (fr)
Inventor
姚壮志
黄亮
计琪琪
Original Assignee
江苏凯伦建材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏凯伦建材股份有限公司 filed Critical 江苏凯伦建材股份有限公司
Publication of WO2023040479A1 publication Critical patent/WO2023040479A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D11/00Roof covering, as far as not restricted to features covered by only one of groups E04D1/00 - E04D9/00; Roof covering in ways not provided for by groups E04D1/00 - E04D9/00, e.g. built-up roofs, elevated load-supporting roof coverings
    • E04D11/02Build-up roofs, i.e. consisting of two or more layers bonded together in situ, at least one of the layers being of watertight composition
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1687Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure the insulating material having provisions for roof drainage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/61Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing to the ground or to building structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention belongs to the technical field of building roof construction, and in particular relates to a construction method of a waterproof photovoltaic integrated roof.
  • Cida patent CN206360228U discloses a waterproof photovoltaic power generation device for reinforced concrete roofs, including a steel plate arranged on the reinforced concrete roof, a photovoltaic support is fixed on the steel plate and a photovoltaic panel is fixed on the photovoltaic support, and a photovoltaic panel is fixed on the steel plate.
  • the waterproof bolts include a screw and a metal sheet fixed on the circumferential surface of the screw.
  • the metal sheet is arranged between the steel plate and the reinforced concrete roof.
  • the screw passes through the steel plate and is fixed on the reinforced concrete roof to achieve both photovoltaic
  • the plate is fixed on the reinforced concrete roof and can prevent the reinforced concrete roof from cracking and leaking.
  • the power generation device still drills holes on the reinforced concrete roof, and then inserts screws to install the photovoltaic support, which still damages the waterproof layer of the roof and increases the risk of leakage.
  • the object of the present invention is to provide a construction method of a waterproof photovoltaic integrated roof with low leakage rate and easy maintenance in order to overcome the deficiencies of the prior art.
  • a construction method for a waterproof photovoltaic integrated roof comprising the following steps:
  • step (1) when constructing the base layer, all or part of the laminated plates containing ribs are selected so that the middle part of the base layer contains the ribs.
  • a slope is formed circumferentially on the upper end of the rib, and the slope of the slope is 0.5-2%.
  • the ribs are used as templates and elevations, and the leveling layer for construction can also play a slope finding effect.
  • the photovoltaic support is fixed on the laminated board of the base layer by structural glue or welding, and when the laminated board is preset with steel bars, the The photovoltaic support is fixed on the reinforcement of the laminated plate of the base layer through the welding.
  • step (2) the construction method further includes the step of installing wire pipes on the base layer, and the wire pipes are fixed on the laminated board of the base layer by structural glue or welding .
  • step (5) when constructing the leveling layer, the upper surface of the leveling layer is flush with the upper surface of the ribs.
  • step (5) the construction method further includes the step of vibrating the concrete after pouring the concrete.
  • step (6) when applying the waterproof coating, the waterproof coating is extended from the leveling layer to the upper surface of the rib to form an overall waterproof.
  • the waterproof coating includes a first polyurethane waterproof coating and a second polyurethane waterproof coating, and the second polyurethane waterproof coating adopts a white exposed polyurethane waterproof coating, and the waterproof coating is constructed.
  • the first polyurethane waterproof coating is applied on the leveling layer first, and after curing, the first waterproof layer is formed, and then the second polyurethane waterproof coating is applied on the first waterproof layer, and the second polyurethane waterproof coating is formed after curing.
  • the polyurethane waterproof coating is used to prepare the waterproof layer, which can avoid the rupture of the waterproof layer caused by the deformation of the roof and cause the problem of leakage.
  • the first polyurethane waterproof coating when applying the first polyurethane waterproof coating, multiple coats are applied, and after the surface of the first coat is dry, the polyester fiber mesh cloth is fully spread, and then the next coat is applied.
  • the present invention has the following advantages compared with the prior art:
  • the construction method of the present invention forms the base layer by splicing laminated plates, and the circumferential ribs not only play the role of formwork but also play the role of elevation.
  • the photovoltaic support is installed on the base layer, and then the insulation layer, leveling layer and waterproof layer are installed.
  • photovoltaic modules are installed directly on the photovoltaic support to avoid damage to the waterproof layer by drilling, and the waterproof nodes are also easy to handle, increasing waterproof reliability.
  • the waterproof layer is exposed. If there is a leakage problem in the later stage, it can be directly repaired by thick coating without dismantling the roof components or structures. The maintenance is convenient and economical.
  • the construction method of the present invention innovatively constructs the polyurethane foam insulation layer before the concrete leveling layer, and embeds the insulation layer inside the roof to greatly improve the waterproof performance.
  • the construction method of the present invention integrates the insulation layer and the leveling layer into the laminated slab , the roof structure is simple, the cost is low, and the construction period is reduced.
  • Fig. 1 is the roof structure obtained by the construction method of the waterproof photovoltaic integrated roof according to an embodiment of the present invention
  • the construction method of the waterproof photovoltaic integrated roof provided in this example includes the following steps:
  • the photovoltaic support 8 and the wire pipe are fixed on the upper surface of the base layer 1 by structural glue 9.
  • the fixed position and distance between the photovoltaic support 8 and the wire pipe can be determined according to the installation position of the later photovoltaic modules.
  • the rigid polyurethane foam material is evenly sprayed on the base layer 1, and the construction is performed twice, and the foaming is formed to form the insulation layer 3, and the thickness of the insulation layer 3 is constructed according to the designed thickness.
  • the anti-cracking steel mesh 5 is laid on the insulation layer 3 in time, specifically: use steel bars with a diameter of 4 to 8 mm, and the spacing is 100 to 120 mm, and the grid is laid, and fixed firmly with wire binding.
  • the concrete strength grade is C20-C30, and the specific value is C30;
  • Concrete should be poured densely and fully vibrated. After the pouring is completed, the upper surface of the rib plate 2 should be leveled and water-retained and maintained in time to form a concrete leveling layer 4.
  • the upper surface of the leveling layer 4 is flush with the upper surface of the rib plate 2.
  • the leveling layer 4 has a certain slope and has a slope-making effect.
  • the first polyurethane waterproof coating can be conventional polyurethane waterproof coating without exposure. After the first pass of spraying is completed, after the surface is dry, the polyester fiber mesh cloth is fully covered for reinforcement, and then the next pass of paint is sprayed.
  • the thickness of the first waterproof layer 6 formed by the construction is 2 to 3 mm, specifically 3 mm.
  • the first polyurethane waterproof coating When applying the first polyurethane waterproof coating, it needs to extend from the leveling layer 4 to the rib 2 to form the overall waterproofing of the roof. At the same time, thick coating treatment is carried out on the node parts such as photovoltaic support 8 and wire pipe to increase the waterproof reliability.
  • Construction of the second waterproof layer 7 Spray the second polyurethane waterproof coating on the first waterproof layer 6.
  • the second polyurethane waterproof coating adopts white exposed polyurethane waterproof coating, such as aliphatic polyurethane waterproof coating, which has ultraviolet resistance and wear resistance. Require.
  • Adopt two times of spraying completely cover the first waterproof layer 6 without accumulation, and do not expose the bottom.
  • the roof structure formed by the above construction method, as shown in Figure 1, includes a base layer 2 made of laminated panels, the circumference of the base layer 2 contains ribs 2, and the roof structure also includes a polyurethane foam insulation layer arranged on the base layer 2 in sequence 3.
  • the roof structure also includes a pre-embedded photovoltaic support 8.
  • the lower end of the photovoltaic support 8 is relatively fixed to the base layer 2 through structural glue 9.
  • the photovoltaic support The upper end of the seat 8 passes through the insulation layer 3 , the leveling layer 4 , the first waterproof layer 6 and the second waterproof layer 7 in sequence and extends out of the second waterproof layer 7 .
  • the middle part of the base layer 2 is also provided with ribs 2 (not shown in the figure), the insulation layer 3 and the leveling layer 4 are located between the circumferential ribs 2, and each rib 2 in the middle passes through the insulation layer 3 and the leveling layer respectively.
  • the layer 4, the first waterproof layer 6 is formed on the upper surface of the screed 4 and all the ribs 2.
  • the above construction method has the following advantages:
  • the waterproof layer of the present invention adopts a polyurethane waterproof coating waterproof layer with good integrity and adaptable to roof deformation, which is directly applied on the leveling layer and ribs to form the overall waterproof of the roof without the risk of water storage.
  • the invention innovatively embeds the polyurethane foam insulation layer inside the precast concrete roof laminated slab, and at the same time uses the precast concrete roof laminated slab rib as the formwork and elevation, constructs the leveling layer, and simultaneously To find the slope effect. And because the photovoltaic support and wire pipes are buried in advance, the waterproof nodes are easy to handle, which increases the reliability of waterproofing.
  • the present invention integrates the leveling layer and thermal insulation layer into the prefabricated concrete roof laminate, reducing a large number of building structures, reducing construction cost and construction period.
  • the roof waterproof layer is made of exposed paint. If there is a local leakage problem in the later stage, it can be directly repaired by thick coating without dismantling the roof components or structures. The maintenance is convenient and economical.
  • the outer surface is a white waterproof layer, which has good solar reflectivity, and the light energy can be reused, especially suitable for double-glass module solar power generation systems.
  • the photovoltaic module bracket can be directly anchored to the photovoltaic support embedded in advance, which is convenient for installation and disassembly, and does not need to be drilled later.
  • the wire conduit embedded in advance can facilitate the routing of wires without the need for later drilling.
  • Photovoltaic supports and photovoltaic modules are structurally anchored, which can ensure the stability and safety of photovoltaic components in extreme weather such as strong winds. There is no harmful solvent volatilization, hot work, etc. in the waterproofing and other construction processes, so as to achieve sufficient environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种防水光伏一体化屋面的施工方法,包括以下步骤:安装预制混凝土屋面叠合板,形成周向含有肋板的基层;在基层上安装光伏支座;在基层上喷涂聚氨酯发泡材料,发泡成型形成保温层;在保温层上铺设钢筋网;浇筑混凝土,表面找平,形成找平层;在找平层上施工防水涂料,形成防水层。本发明以叠合板拼接构成基层,周向的肋板既起到模板又起标高的作用,先在基层上安装光伏支座,然后进行保温层、找平层和防水层的施工,光伏组件安装时,直接安装在光伏支座上,避免打孔对防水层的破坏,且防水节点也易处理,增加防水可靠性。同时防水层为外露做法,后期若出现渗漏问题,直接进行厚涂修复,无需对屋面构件或结构进行拆除,维修方便,经济。

Description

一种防水光伏一体化屋面的施工方法 技术领域
本发明属于建筑屋面施工技术领域,具体涉及一种防水光伏一体化屋面的施工方法。
背景技术
根据2014年7月4日,中国建筑防水协会与北京零点市场调查与分析公司联合发布的《2013年全国建筑渗漏状况调查项目报告》。目前,我国的屋面渗漏率达到95.33%,平均每到5~8年,必须对防水整体翻修一次,产生大量的建筑垃圾,造成严重的资源浪费。特别是目前分布式建筑光伏一体化屋面的大量应用,安装在屋面上部的各种设备及构件繁多,屋面一旦出现渗漏需要维修时,上部所有构件必须先要进行拆除,大大增加了屋面防水维修难度和维修成本,故提升分布式建筑光伏一体化屋面的防水性能显得尤为重要。
目前的分布式建筑光伏一体化屋面往往在屋面建筑设计前没有做太多考虑,屋面构造完全建成后,后期在屋面构造上钻孔安装光伏支座,该做法容易破坏屋面下部的防水层,加大渗漏风险。如中国专利CN206360228U公开了一种钢筋混凝土屋面用防水光伏发电装置,包括设置在钢筋混凝土屋面上的钢板,在钢板上固设有光伏支架并且在光伏支架上固设有光伏板,在钢板上设有防水螺栓,防水螺栓包括螺杆以及固设在螺杆圆周面上的金属片,金属片设置在钢板与钢筋混凝土屋面之间,螺杆穿过钢板并且固设在钢筋混凝土屋面上,达到既能将光伏板固设在钢筋混凝土屋面上又能够防止钢筋混凝土屋面开裂漏水的效果。然而该发电装置仍然是在钢筋混凝土屋面钻孔,然后插设螺杆,用以安装光伏支架,仍然存在破坏屋面防水层的现象,加大渗漏风险。
发明内容
本发明的目的是为了克服现有技术的不足而提供一种渗漏率低且便于维修的防水光伏一体化屋面的施工方法。
为达到上述目的,采取的技术方案为:
一种防水光伏一体化屋面的施工方法,所述施工方法包括以下步骤:
(1)安装预制混凝土屋面叠合板,形成周向含有肋板的基层;
(2)在所述基层上安装光伏支座;
(3)在所述基层上喷涂聚氨酯发泡材料,发泡成型形成保温层;
(4)在所述保温层上铺设钢筋网;
(5)浇筑混凝土,表面找平,形成混凝土找平层;
(6)在所述找平层上施工防水涂料,形成防水层。
在一些实施方式中,步骤(1)中,施工所述基层时,全部或部分选用含有肋板的叠合板 使得所述基层的中部含有所述肋板。
在一些优选且具体实施方式中,步骤(1)中,周向所述肋板的上端部形成一斜坡,所述斜坡的坡度为0.5~2%。将所述肋板作为模板和标高,施工的找平层,还能起到找坡效果。
在一些优选且具体实施方式中,步骤(2)中,所述光伏支座通过结构胶或焊接固定在所述基层的叠合板上,且当所述叠合板上预设有钢筋时,所述光伏支座通过所述焊接固定在所述基层的叠合板的钢筋上。
在一些优选且具体实施方式中,步骤(2)中,所述施工方法还包括在所述基层上安装线管的步骤,所述线管通过结构胶或焊接固定在所述基层的叠合板上。
在一些优选且具体实施方式中,步骤(5)中,施工所述找平层时,使得所述找平层的上表面与所述肋板的上表面齐平。
在一些优选且具体实施方式中,步骤(5)中,所述施工方法还包括浇筑所述混凝土后,对所述混凝土进行振捣的步骤。
在一些优选且具体实施方式中,步骤(6)中,施工所述防水涂料时,使得所述防水涂料由所述找平层延伸至所述肋板的上表面,形成整体防水。
在一些优选且具体实施方式中,步骤(6)中,所述防水涂料包括第一聚氨酯防水涂料和第二聚氨酯防水涂料,所述第二聚氨酯防水涂料采用白色外露聚氨酯防水涂料,施工所述防水涂料时,先在所述找平层上施工所述第一聚氨酯防水涂料,固化后,形成第一防水层,然后在所述第一防水层上施工所述第二聚氨酯防水涂料,固化后形成第二防水层。采用聚氨酯防水涂料制备防水层,能够避免屋面变形带来的防水层破裂,导致渗漏的问题。
进一步地,施工所述第一聚氨酯防水涂料时,多遍涂刷,且在第一遍喷涂表干后,满铺聚酯纤维网格布,然后进行下遍涂刷。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明施工方法以叠合板拼接构成基层,周向的肋板既起到模板的作用还能起到标高的作用,先在基层上安装光伏支座,然后进行保温层、找平层和防水层的施工,光伏组件安装时,直接安装在光伏支座上,避免打孔对防水层的破坏,且防水节点也易处理,增加防水可靠性。同时防水层为外露做法,后期如果出现渗漏问题,可直接进行厚涂修复,无需对屋面构件或结构进行拆除,维修方便,经济。
本发明施工方法创新地将聚氨酯发泡保温层先于混凝土找平层施工,将保温层埋置于屋面内部,大大提升防水性能,采用本发明的施工方法将保温层、找平层集成在叠合板内,屋面结构简单,造价低,减少工期。
附图说明
图1为本发明一个实施例的防水光伏一体化屋面的施工方法得到的屋面结构;
图中:1、基层;2、肋板;3、保温层;4、找平层;5、钢筋网;6、第一防水层;7、第二防水层;8、光伏支座;9、结构胶。
具体实施方式
下面结合具体实施例详细说明本发明的技术方案,以便本领域技术人员更好理解和实施本发明的技术方案,但并不因此将本发明限制在所述的实例范围之中。
本例提供的防水光伏一体化屋面的施工方法,包括以下步骤:
(1)施工基层
选择多个叠合板,各叠合板内部预设应力筋,具有承载力高、尺寸稳定、不开裂等特点,叠合板具有完全承担屋面载荷的性能,为保证叠合板的刚度和稳定性,叠合板可以部分或全部选择含有肋板2的叠合板;
将多个叠合板进行拼接,相邻二个叠合板外露的钢筋之间通过焊接固定,然后在相邻二个叠合板之间浇筑混凝土,固化形成一体,得到基层1,且在叠合板进行拼接时,需使后续形成的基层1的周向及中部含有肋板2。基层1四周的肋板2高度形成一斜坡,该斜坡的坡度为0.5~2%,具体坡度值可根据屋面跨度大小进行选择。
(2)安装光伏支座和线管
在基层1上通过结构胶9将光伏支座8和线管固定在基层1的上表面,光伏支座8和线管固定的位置和间距可根据后期光伏组件的安装位置确定。
(3)施工保温层
在基层1上均匀喷涂硬质聚氨酯发泡材料,两遍施工,发泡成型形成保温层3,保温层3厚度按设计厚度进行施工。
(4)布设抗裂钢筋网
保温层3施工完成后,及时在保温层3上布设抗裂钢筋网5,具体地:采用4~8mm直径的钢筋,布设间距为100~120mm,布设方格网,采用扎丝绑扎固定牢固。
(5)施工找平层
以肋板2为模板和标高,进行细石混凝土浇筑,混凝土强度等级为C20-C30,具体值如C30;
混凝土应浇筑密实,充分振捣,浇筑完成后以肋板2的上表面为标准及时进行找平和保水养护,形成混凝土找平层4,找平层4的上表面与肋板2的上表面齐平,且该找平层4具有一定坡度,具有找坡效果。
(6)施工防水涂料
施工第一防水层6:待混凝土达到强度后,在找平层4上喷涂多遍第一聚氨酯防水涂料,第一聚氨酯防水涂料采用常规聚氨酯防水涂料即可,无需外露。在第一遍喷涂完成,表干后,满铺聚酯纤维网格布增强,然后进行下一遍涂料的喷涂。
多遍喷涂,每遍施工的方向应垂直,上遍涂料达到表干后,方可进行下遍施工,施工形成的第一防水层6厚度为2~3mm,具体如3mm。
施工第一聚氨酯防水涂料时,需从找平层4上延伸至肋板2上,以形成屋面整体防水。同时在光伏支座8、线管等节点部位进行厚涂处理,增加防水可靠性。
施工第二防水层7:在第一防水层6上喷涂第二聚氨酯防水涂料,第二聚氨酯防水涂料采用白色的外露型聚氨酯防水涂料,如采用脂肪族聚氨酯防水涂料,具有耐紫外线、耐磨等要求。
采用两遍喷涂,完全覆盖第一防水层6无堆积,不露底。
(7)安装光伏组件
测量、标注好光伏支座8的安装高度,切掉过长部分,安装光伏组件。
通过上述施工方法形成的屋面结构,如图1所示,包括由叠合板构成的基层2,基层2的周向含有肋板2,该屋面结构还包括依次设置在基层2上的聚氨酯泡沫保温层3、找平层4、第一防水层6和第二防水层7,该屋面结构还包括预埋的光伏支座8,光伏支座8的下端部通过结构胶9与基层2相对固定,光伏支座8的上端部依次穿过保温层3、找平层4、第一防水层6和第二防水层7并延伸出第二防水层7。
基层2的中部还设有肋板2(图中未画出),保温层3、找平层4位于周向的肋板2之间,中部的各肋板2均分别穿过保温层3和找平层4,第一防水层6形成在找平层4和所有肋板2的上表面上。
采用上述施工方法,相比现有的屋面结构具有如下优点:
1)渗漏率低:传统屋面之所以渗漏率高,是因为屋面防水层下有轻质找坡层、块状保温层等构造,一旦防水层局部出现问题,水即会在找坡层和保温层中蓄积,导致渗漏高。本发明的防水层采用整体性好,适应屋面变形的聚氨酯防水涂料防水层,直接施工于找平层和肋板上,形成屋面整体防水,且无蓄水风险。同时为了保证整个屋面的排水性能和保温性能,本发明创新地将聚氨酯泡沫保温层埋置于预制混凝土屋面叠合板内部,同时将预制混凝土屋面叠合板肋作为模板和标高,施工找平层,同时起到找坡效果。又由于光伏支座、线管都是提前埋设,防水节点易于处理,增加了防水可靠性。
2)提升屋面防火性能:由于保温层是埋置在预制混凝土屋面叠合板内部,可大大提升屋面的防火性能。
3)优化构造,降低造价和工期:本发明将找平层、保温层构造层全部集成在预制混凝土屋面叠合板中,减少了大量建筑构造,同时降低造价,减少工期。
4)便于维修:屋面防水层为涂料外露做法,后期如果出现局部渗漏问题,可直接进行厚涂修复,无需对屋面构件或结构进行拆除,维修方便、经济。
5)提高光伏组件发电效率:外表面为白色防水层,具有良好的太阳反射率,光能可二次利用,特别适用于双玻组件太阳能发电系统。
6)利于光伏组件安装:光伏组件支架可直接和提前埋置的光伏支座锚固,安装和拆卸方便,无需后期进行打孔。提前埋置的线管可方便电线的走线,无需后期钻孔。
7)安全环保:光伏支座和光伏组件结构锚固,在大风等极端天气下,能确保光伏构件的稳定安全。防水及其它施工过程没有有害溶剂挥发、动火作业等,做到足够的绿色环保。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种防水光伏一体化屋面的施工方法,其特征在于,所述施工方法包括以下步骤:
    (1)安装预制混凝土屋面叠合板,形成周向含有肋板的基层;
    (2)在所述基层上安装光伏支座;
    (3)在所述基层上喷涂聚氨酯发泡材料,发泡成型形成保温层;
    (4)在所述保温层上铺设钢筋网;
    (5)浇筑混凝土,表面找平,形成混凝土找平层;
    (6)在所述找平层上施工防水涂料,形成防水层。
  2. 根据权利要求1所述的施工方法,其特征在于:步骤(1)中,施工所述基层时,全部或部分选用含有肋板的叠合板使得所述基层的中部含有所述肋板。
  3. 根据权利要求1所述的施工方法,其特征在于:步骤(1)中,周向所述肋板的上端部形成一斜坡,所述斜坡的坡度为0.5~2%。
  4. 根据权利要求1所述的施工方法,其特征在于:步骤(2)中,所述光伏支座通过结构胶或焊接固定在所述基层的叠合板上,且当所述叠合板上预设有钢筋时,所述光伏支座通过所述焊接固定在所述基层的叠合板的钢筋上。
  5. 根据权利要求1所述的施工方法,其特征在于:步骤(2)中,所述施工方法还包括在所述基层上安装线管的步骤,所述线管通过结构胶或焊接固定在所述基层的叠合板上。
  6. 根据权利要求1所述的施工方法,其特征在于:步骤(5)中,施工所述找平层时,使得所述找平层的上表面与所述肋板的上表面齐平。
  7. 根据权利要求1所述的施工方法,其特征在于:步骤(5)中,所述施工方法还包括浇筑所述混凝土后,对所述混凝土进行振捣的步骤。
  8. 根据权利要求1所述的施工方法,其特征在于:步骤(6)中,施工所述防水涂料时,使得所述防水涂料由所述找平层延伸至所述肋板的上表面。
  9. 根据权利要求1所述的施工方法,其特征在于:步骤(6)中,所述防水涂料包括第一聚氨酯防水涂料和第二聚氨酯防水涂料,所述第二聚氨酯防水涂料采用白色外露聚氨酯防水涂料,施工所述防水涂料时,先在所述找平层上施工所述第一聚氨酯防水涂料,固化后,形成第一防水层,然后在所述第一防水层上施工所述第二聚氨酯防水涂料,固化后,形成第二防水层。
  10. 根据权利要求9所述的施工方法,其特征在于:施工所述第一聚氨酯防水涂料时,多遍涂刷,且在第一遍喷涂表干后,满铺聚酯纤维网格布,然后进行下遍涂刷。
PCT/CN2022/108575 2021-09-17 2022-07-28 一种防水光伏一体化屋面的施工方法 WO2023040479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111093003.0 2021-09-17
CN202111093003.0A CN113668779A (zh) 2021-09-17 2021-09-17 一种防水光伏一体化屋面的施工方法

Publications (1)

Publication Number Publication Date
WO2023040479A1 true WO2023040479A1 (zh) 2023-03-23

Family

ID=78549571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108575 WO2023040479A1 (zh) 2021-09-17 2022-07-28 一种防水光伏一体化屋面的施工方法

Country Status (2)

Country Link
CN (1) CN113668779A (zh)
WO (1) WO2023040479A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668779A (zh) * 2021-09-17 2021-11-19 苏州凯伦高分子新材料科技有限公司 一种防水光伏一体化屋面的施工方法
CN115142617B (zh) * 2022-07-06 2023-12-15 武汉日新科技股份有限公司 一种屋面光伏支架支座防水安装方法
CN115233898B (zh) * 2022-08-31 2024-03-29 河北省凤凰谷零碳发展研究院 一种bipv与绿色建筑安装方法
CN115504739A (zh) * 2022-09-27 2022-12-23 云南欣城防水科技有限公司 石墨烯改性光伏屋面高分子防水涂料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134889A (zh) * 2010-02-03 2011-07-27 曹树梁 混凝土结构平板式集热体太阳能房顶
CN204001463U (zh) * 2014-08-01 2014-12-10 任丘市永基建筑安装工程有限公司 装配式住房屋面光热防水安装结构
CN104806017A (zh) * 2015-04-22 2015-07-29 中国十七冶集团有限公司 一种装配式钢筋混凝土防水屋面施工方法
CN111335352A (zh) * 2020-03-01 2020-06-26 山西四建集团有限公司 屋面太阳能基础支墩定位防水一体化施工方法
KR102261203B1 (ko) * 2019-12-10 2021-06-08 주식회사 나눔에너지 경사형 태양광 발전 시스템
CN113668779A (zh) * 2021-09-17 2021-11-19 苏州凯伦高分子新材料科技有限公司 一种防水光伏一体化屋面的施工方法
CN215907216U (zh) * 2021-09-17 2022-02-25 苏州凯伦高分子新材料科技有限公司 一种防水光伏一体化屋面结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960520B2 (ja) * 2012-06-22 2016-08-02 鹿島建設株式会社 多機能屋上基礎
CN206360228U (zh) * 2017-01-02 2017-07-28 南京国电南自新能源工程技术有限公司 一种钢筋混凝土屋面用防水光伏发电装置
CN211949246U (zh) * 2019-12-27 2020-11-17 山西五建集团有限公司 建有防水一体化太阳能支墩的屋面
CN212984396U (zh) * 2020-06-17 2021-04-16 江苏铭格锻压设备有限公司 一种保温坡屋面集热器安装连接节点结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134889A (zh) * 2010-02-03 2011-07-27 曹树梁 混凝土结构平板式集热体太阳能房顶
CN204001463U (zh) * 2014-08-01 2014-12-10 任丘市永基建筑安装工程有限公司 装配式住房屋面光热防水安装结构
CN104806017A (zh) * 2015-04-22 2015-07-29 中国十七冶集团有限公司 一种装配式钢筋混凝土防水屋面施工方法
KR102261203B1 (ko) * 2019-12-10 2021-06-08 주식회사 나눔에너지 경사형 태양광 발전 시스템
CN111335352A (zh) * 2020-03-01 2020-06-26 山西四建集团有限公司 屋面太阳能基础支墩定位防水一体化施工方法
CN113668779A (zh) * 2021-09-17 2021-11-19 苏州凯伦高分子新材料科技有限公司 一种防水光伏一体化屋面的施工方法
CN215907216U (zh) * 2021-09-17 2022-02-25 苏州凯伦高分子新材料科技有限公司 一种防水光伏一体化屋面结构

Also Published As

Publication number Publication date
CN113668779A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023040479A1 (zh) 一种防水光伏一体化屋面的施工方法
US20190257094A1 (en) Building based on large-space structure and freestanding external envelope as well as construction method
CN104863274B (zh) 建筑伸缩缝防水结构
CN114658219B (zh) 单侧装配式模板支设施工方法
CN110872869A (zh) 一种外墙板接缝防水施工方法
CN215907216U (zh) 一种防水光伏一体化屋面结构
CN103806647A (zh) 大跨度混凝土双向密肋梁模壳的安装和拆除工艺
CN110821023A (zh) 别墅平瓦大坡度斜屋面施工方法
CN109024987B (zh) 一种卫生间剪力墙的后浇施工方法
CN111549826A (zh) 一种主楼筏板内后浇带预制模板拦截施工方法
CN109057189B (zh) 一种泛水施工方法及搬运装置
JP6027389B2 (ja) 既設構造物の躯体を利用して構築された基礎構造
CN111456085A (zh) 一种管廊节段的现浇混凝土施工方法
CN208251141U (zh) 一种采用珠光砂混凝土预制板的冷箱基础结构
CN109339355A (zh) 采用alc板做结构板的铝板屋面防水节点的施工方法
CN204662676U (zh) 建筑伸缩缝防水结构
CN108589765B (zh) 一种采用珠光砂混凝土预制板的冷箱基础结构及其施工方法
CN112761245A (zh) 一种装配式钢筋混凝土建筑主体结构及其安装施工方法
CN112922030A (zh) 底板预铺防水卷材搭接边的施工方法及底板侧模支撑结构
CN111894266A (zh) 仿古建筑板椽一体式屋面一次支模整体施工方法
JP2011144572A (ja) 屋上での設備機器等の支持構造
CN112127501A (zh) 一种组合式墙体结构及其施工方法
CN111535578A (zh) 一种现浇结构的模板的安装工艺
CN111622263A (zh) 一种基于复合材料组合式模板体系的综合管廊施工方法
CN111254937A (zh) 一种装配式建筑的安装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE