WO2023040458A1 - 电池阵列的管理系统和管理方法 - Google Patents

电池阵列的管理系统和管理方法 Download PDF

Info

Publication number
WO2023040458A1
WO2023040458A1 PCT/CN2022/107000 CN2022107000W WO2023040458A1 WO 2023040458 A1 WO2023040458 A1 WO 2023040458A1 CN 2022107000 W CN2022107000 W CN 2022107000W WO 2023040458 A1 WO2023040458 A1 WO 2023040458A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bus
unit
battery cells
management system
Prior art date
Application number
PCT/CN2022/107000
Other languages
English (en)
French (fr)
Inventor
赵恩海
严晓
Original Assignee
上海玫克生储能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海玫克生储能科技有限公司 filed Critical 上海玫克生储能科技有限公司
Priority to CN202280033105.XA priority Critical patent/CN117280565A/zh
Publication of WO2023040458A1 publication Critical patent/WO2023040458A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure generally relates to a management system and a management method of a battery array, and more particularly, to a management system configured to facilitate high integration through integrated circuit technology and a management method using the management system.
  • high-capacity rechargeable batteries such as lead-acid batteries and lithium ion batteries
  • multiple high-capacity rechargeable batteries may be connected in series into a battery pack, and multiple such battery packs may be connected in parallel to form a high-capacity battery array.
  • Such high-capacity battery arrays are becoming increasingly important in a range of applications. Such applications may include, for example, power sources for automobiles, ships, and other vehicles, domestic and uninterruptible power supplies, and storage of electrical energy generated from intermittent and renewable sources for power needs and loads in domestic and grid-connected power networks balance and so on.
  • each battery cell can be maintained in a proper operating state by controlling the charging and discharging of the individual battery cells (also known as cells).
  • the management system of the battery array used for this purpose also known as the battery management system (BMS)
  • BMS battery management system
  • the management system of the battery array used for this purpose also known as the battery management system (BMS)
  • BMS can be configured to sense the battery parameters of each battery cell, so that the deviation between the battery parameters of individual battery cells or battery packs is maintained at Expected range, so as to ensure that each battery unit maintains the same working state during normal use, so as to ensure the safety and stability of the battery array and prolong the service life of the battery array.
  • This management of the BMS is called consistency management of the battery array.
  • the management system of the battery array is usually composed of power semiconductor devices, analog circuits and digital circuits, so it is difficult to integrate in a single integrated circuit chip.
  • the present disclosure proposes a battery array management system and a management method.
  • the battery array management system realizes the functions of parameter sensing, active equalization and passive equalization of each battery unit in a time-division multiplexing manner by using a switch array, thereby simplifying the hardware structure of the battery array management system.
  • the management system of the battery array according to the present disclosure can further simplify the hardware structure of the management system of the battery array by optimizing the DC-DC converter used for charging the battery cells.
  • a battery array management system configured to control the connection unit to sequentially connect a plurality of battery cells to the bus, and control the active balancing unit and the passive balancing unit to perform balancing operations on the battery cells based on the battery parameters of the battery cells connected to the bus, wherein the control unit is based on a
  • connection unit is a switch array including a plurality of switches, each of which is connected to a corresponding battery unit.
  • the switch is one of a field effect transistor, an insulated gate bipolar transistor, a thyristor, a triode, a solid state switch and a relay.
  • control unit controls the connection unit to sequentially connect a plurality of battery packs to the bus, the sensing unit senses battery parameters of the battery packs connected to the bus, and the control unit based on the battery parameters of the battery packs connected to the bus.
  • the active balancing unit and the passive balancing unit are controlled to perform balancing operations on the battery pack.
  • the passive equalization unit includes a resistor, a transistor, and an operational amplifier, and the operational amplifier collects the voltage across the resistor to control the transistor to work in a linear region to achieve constant current discharge.
  • the battery parameter includes at least one of voltage, current, internal resistance, and temperature of the battery cell.
  • the battery parameter further includes at least one of a state of charge, a power state, a safety state, and a state of health of the battery unit.
  • control unit determines whether to perform active balancing and/or passive balancing on the battery units connected to the bus through the active balancing unit and/or the passive balancing unit according to the battery parameters sensed by the sensing unit.
  • the equalization operations performed by the active equalization unit and the passive equalization unit are based on the parameter P calculated as follows:
  • V and V0 represent the voltage of the battery cells connected to the bus and the average value of the voltages of all battery cells, respectively
  • SOC and SOC0 represent the state of charge of the battery cells connected to the bus and the average value of the state of charge of all battery cells, respectively.
  • Values, SOH and SOH0 represent the state of health of the battery cells connected to the bus and the average value of the state of health of all battery cells, respectively
  • a management method of a battery array using the management system comprising: sequentially connecting battery cells to a bus; sensing battery parameters of the battery cells connected to the bus ; Determine whether the battery cells connected to the bus need to perform active balancing and/or passive balancing according to the sensed battery parameters; and perform active balancing and/or passive balancing on the battery cells connected to the bus according to the determination result.
  • FIG. 1 is a block diagram illustrating a management system of a battery array according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a management system of a battery array according to an embodiment of the present disclosure.
  • FIG. 3 is a circuit diagram illustrating a connection unit according to an embodiment of the present disclosure.
  • FIG. 4 is a circuit diagram illustrating an active equalization unit according to an embodiment of the present disclosure.
  • FIG. 5 is a circuit diagram illustrating a secondary synchronous rectification circuit integrated in an active equalization unit according to an embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram illustrating a primary-side feedback circuit integrated in an active equalization unit according to an embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram illustrating a passive equalization unit according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a method of managing a battery array according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a management system 100 of a battery array according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a battery array management system 100 according to an embodiment of the present disclosure.
  • a battery array management system 100 may include: a bus 101 ; a connection unit 102 disposed between the battery array 200 and the bus 102 ; an active balancing unit 103 configured to -
  • the DC converter 1031 charges the battery cells connected to the bus 101 with a constant current to perform active balancing of the battery cells; the passive balancing unit 104 is configured to discharge the battery cells connected to the bus 101 with a constant current to perform the battery cell balancing passive balancing of cells; a sensing unit 105 configured to sense battery parameters of battery cells connected to the bus 101; and a control unit 106 configured to control the connection unit 102 to sequentially connect a plurality of battery cells to the bus 101, And control the active balancing unit 103 and the passive balancing unit 104 to perform balancing operations on the battery cells based on the battery parameters of the battery cells connected to the bus 101, wherein the control unit 106 controls the active balancing unit based on the primary current of the DC
  • the input terminals Vin+ and Vin- of the DC-DC converter 1031 may be connected to the output of a battery, an auxiliary battery or an AC-DC switching power supply.
  • the output ports Vo+ and Vo ⁇ of the DC-DC converter 1031 can be respectively connected to the positive terminal P+ and the negative terminal P ⁇ of the bus, and then connected to the positive terminal BAT+ and the negative terminal BAT ⁇ of the corresponding battery cells via the connection unit 102 .
  • the battery array 200 may include a plurality of battery packs 200-1, 200-2, ..., 200-n (n is a natural number greater than 1) connected in parallel, each The battery pack 200-i (1 ⁇ i ⁇ n,) includes a plurality of battery cells 200-i-1, 200-i-2, . . . , 200-i-m (m is a natural number greater than 1) connected in series. Therefore, a plurality of battery cells 200-i-j (1 ⁇ j ⁇ m) can form an m ⁇ n battery array 200 .
  • connection unit 101 may be a switch array including a plurality of switches, each of which is connected to a corresponding battery unit 200 - i - j .
  • the control unit 106 can control each switch in the switch array to be turned on and off, so as to connect each of the plurality of battery cells 200 - i - j to the bus 101 in sequence.
  • each of the active balancing unit 103, the passive balancing unit 104, and the sensing unit 105 is connected to the bus 101, and then connected to a plurality of batteries in turn via a connecting unit 102 composed of, for example, a switch array.
  • a connecting unit 102 composed of, for example, a switch array.
  • the control unit 106 controls the connection unit 102 such that only one battery unit is connected to the bus 101 .
  • FIG. 3 is a circuit diagram illustrating the connection unit 102 according to an embodiment of the present disclosure.
  • the bus 101 may include a positive terminal P+ and a negative terminal P ⁇ .
  • the connection unit 101 may be realized as an array of electronic switches for connecting each battery pack 200 - i to the bus 101 .
  • each switch constituting the electronic switch array can be a field effect transistor, an insulated gate bipolar One of Transistors, Thyristors, Triodes, Solid State Switches and Relays.
  • the switch can also be another element with the same switching function.
  • the electronic switch array can be realized by using a common-gate and common-source dual-power NMOS transistor array, wherein the positive terminal P+ of the bus 101 passes through a common-gate and common-source dual-power NMOS transistor array.
  • the transistor is connected to the positive terminal BAT+ of each battery cell 200-i-j in the battery pack 200-i, and the negative terminal P- of the bus 101 is connected to each of the battery pack 200-i through a dual power NMOS transistor with a common gate and a common source.
  • the negative terminals BAT- of the battery cells 200-i-j are electrically connected.
  • the control unit 106 is connected to the gate G-i-j of each common-gate and common-source dual-power NMOS transistor to control the turn-on and turn-off of each common-gate and common-source dual-power NMOS transistor, so that the corresponding The battery cells 200 - i - j are connected to the bus 101 .
  • the driving circuit of the electronic switch array needs to generate a driving voltage higher than the voltage of the source terminal at the driving terminal of the electronic switch and be controllable.
  • the driving circuit can be arranged near the battery array, and the control unit 106 can realize selective control of the switch through, for example, isolated communication (such as optical communication).
  • the driving circuit can be powered by the battery array, and generate the required driving voltage through, for example, a charge pump, for example, through the charge pump to boost the voltage of the battery array (that is, the voltage of the battery pack) to the required driving voltage.
  • This drive voltage must enable the switch connected to the battery cell with the highest voltage to be turned on.
  • the driving voltages of other switches can be obtained from the voltage division of the driving voltage generated by the charge pump. Specifically, resistors or field effect transistors can be used to obtain divided voltage. Alternatively, a transformer can be used to derive the required drive voltage from the battery array.
  • the active balancing unit 103 and the passive balancing unit 104 are used to perform balancing operations on the battery cells connected to the bus 101 .
  • the significance of equalization is to use electronic technology to keep the deviation of each battery unit within the expected range, so as to ensure that each battery unit will not be damaged during normal use. If no equalization control is performed, the voltage of each battery unit will gradually differentiate with the increase of charge and discharge cycles, resulting in a greatly reduced service life of the battery array.
  • Active balancing is performed by means of power transfer between battery cells, which has the advantages of high efficiency and low loss, while passive balancing generally discharges battery cells with higher voltage through load discharge, which has the advantages of low cost and circuit design. The advantage of simplicity. According to the embodiments of the present disclosure, by using active balancing and passive balancing in combination, different balancing strategies can be applied to different scenarios, thereby efficiently implementing consistent management of battery arrays.
  • the active balancing unit 103 charges the battery unit connected to the bus 101 with a constant current through the DC-DC converter 1031 to perform active balancing of the battery unit.
  • FIG. 4 is a circuit diagram illustrating the active equalization unit 103 according to an embodiment of the present disclosure.
  • the active equalization unit 103 may include a DC-DC converter 1031 composed of a primary side feedback circuit, a transformer and a secondary side synchronous rectification circuit.
  • the input terminals Vin+ and Vin- of the DC-DC converter 1031 may be connected to the output of a battery, an auxiliary battery, or an alternating current-direct current (AC-DC) switching power supply.
  • the output terminals Vo+ and Vo ⁇ of the DC-DC converter 1031 can be respectively connected to the positive terminal P+ and the negative terminal P ⁇ of the bus, and then connected to the corresponding battery cells via the connection unit 102 .
  • control unit 106 controls the constant current charging current of the battery cells connected to the bus 101 by the active balancing unit 103 based on the primary current of the DC-DC converter 1031 , and based on the secondary current of the DC-DC converter 1031 The output of the side performs synchronous rectification of the secondary side of the DC-DC converter.
  • the secondary side circuit of the DC-DC converter has two schemes of synchronous rectification and non-synchronous rectification.
  • the secondary circuit in order to reduce energy loss, the secondary circuit usually uses a Schottky diode with a lower conduction voltage as the rectifier diode.
  • the conduction voltage of the Schottky diode is reduced (typically 0.5V)
  • the conduction There is still a large efficiency loss (0.5V/3.2V) in the voltage drop, and it generates large heat.
  • the synchronous rectification scheme uses a pulse width modulation (PWM) controller on the primary circuit side to generate a PWM signal for the MOS transistor of the primary circuit and a PWM signal for the MOS transistor of the secondary circuit, and controls the two PWM The timing and dead time of the signals further control the MOS transistors of the primary circuit and the MOS transistors of the secondary circuit.
  • PWM controller usually realizes the driving of the MOS transistor of the secondary side circuit by the PWM controller of the primary side circuit through an isolation drive transformer or an isolation drive dedicated circuit.
  • this driving method is costly and has a large isolation driving area, making it difficult to integrate into the chip, which is not conducive to integrated design.
  • control unit 106 performs synchronous rectification of the secondary side of the DC-DC converter 1031 directly based on the output of the secondary side of the DC-DC converter 1031 without the control of the primary side of the DC-DC converter 1031 Signal.
  • FIG. 5 is a circuit diagram illustrating a secondary synchronous rectification circuit integrated in an active equalization unit according to an embodiment of the present disclosure.
  • the secondary synchronous rectification circuit includes a Schottky diode D1 and a MOS transistor Q1 .
  • the conduction of the MOS transistor Q1 is controlled by collecting the voltage across the Schottky diode D1. After the MOS transistor is turned on, the voltage drop across it is reduced from the turn-on voltage of the Schottky diode of about 0.5V to the turn-on voltage of the MOS transistor Q1 of about 20mV, which can greatly improve the efficiency of the management system.
  • the secondary-side synchronous rectification circuit is directly powered by the secondary-side output, and its operating voltage is only 1.5V to 5V, which can meet the needs of most application scenarios.
  • the output terminals Vo+ and Vo ⁇ of the active balancing unit 103 are directly connected to the two ends of the battery unit to establish the battery voltage.
  • the battery voltage can generate a higher voltage through the charge pump circuit for power supply and driving of the driving circuit.
  • the driving circuit controls the MOS transistor Q1 to be turned on according to the voltage across the Schottky diode D1 (ie, the source voltage and the drain voltage of the MOS transistor Q1 ), which can reduce the overall power consumption of the management system 100 .
  • the secondary-side synchronous rectification circuit enters a dormant state and is in an extremely low static power consumption state, so as to avoid damage to the battery cells.
  • control unit 106 can control the constant charging current of the active balancing unit 103 to the battery cells connected to the bus 101 based on the primary current of the DC-DC converter 1031 .
  • the constant current charging of the active balancing unit 103 can be realized by means of primary side current feedback, thereby
  • the primary side feedback circuit can be integrated with other components of the management system 100 to increase the degree of integration, thereby realizing a design with high reliability, low cost and small size.
  • the DC-DC converter 1031 of the active equalization unit 103 does not require an isolated communication circuit between the primary side and the secondary side, and does not need to use a complex transformer with auxiliary windings, which further simplifies the circuit structure of the management system 100 .
  • FIG. 6 is a circuit diagram illustrating a primary-side feedback circuit integrated in the active equalization unit 103 according to an embodiment of the present disclosure.
  • the primary side feedback circuit uses the resistor R2 to collect the primary side current of the DC-DC converter 1031 to calculate the stable current of the secondary side.
  • the primary side feedback circuit it is not necessary to obtain the feedback of the output voltage of the secondary side through a voltage acquisition circuit such as an auxiliary winding or other means, and the voltage of the battery cell (that is, the voltage of the secondary side) sensed by the sensing unit 105 as described below can be used. output voltage) to get the feedback of the output voltage directly.
  • the driving circuit can use the combination of the current and voltage of the secondary side obtained as described above to realize accurate constant current charging control.
  • a feedback circuit can also be formed indirectly through the monitoring of the voltage of the battery unit by the sensing unit 105 .
  • the control unit 105 can control the drive in the primary side feedback circuit circuit to cut off the power output or reduce the power output.
  • the passive balancing unit 104 is shared among multiple battery units through the bus 101 and the connection unit 102 , a larger passive balancing current can be obtained, resulting in lower cost.
  • the current passive equalization circuit is usually composed of MOS transistors and resistors, wherein the MOS transistors only work in the on state or off state, and perform passive equalization through the discharge of the resistors in the on state. In this working state, the MOS transistor is only used as a switch, so the passive equalization current is determined according to the voltage of the battery cell and the resistance value of the resistor, resulting in a non-constant discharge current, making it difficult to estimate the discharge capacity.
  • the passive equalization unit 104 may include a resistor R3, a MOS transistor Q3, and an operational amplifier Amp1, and the voltage of the resistor R3 is collected by the operational amplifier Amp1 to control the MOS transistor Q3 to work in a linear region to achieve constant current discharge. .
  • the discharge current flowing through resistor R3 generates a voltage across resistor R3.
  • the operational amplifier Amp1 collects the voltage and adjusts the MOS transistor Q3 to work in the linear region based on the reference voltage Vref, thereby realizing constant current discharge.
  • the discharge current is Vref/R, where R is the resistance value of the resistor R3.
  • the battery parameter sensed by the sensing unit 105 may include at least one of voltage, current, internal resistance and temperature of the battery unit.
  • the battery parameters may also include the battery unit's state of charge (SOC, such as the percentage of remaining battery power), power state (SOP, such as the input/output power range of the battery array, including charging and discharge safety limit value), safe state (SOS, such as the probability of no failure (such as thermal runaway) under the condition of ensuring the normal charging and discharging function of the battery array.) and state of health (SOH, such as the current capacity of the battery At least one of the percentages of the factory capacity of the battery).
  • SOC state of charge
  • SOP power state
  • SOS safe state
  • SOH state of health
  • control unit 106 may determine according to the battery parameters sensed by the sensing unit 105 whether to perform active balancing and/or active balancing on the battery cells connected to the bus 101 through the active balancing unit 103 and/or the passive balancing unit 104 or passive equilibrium.
  • the functions of battery parameter collection, passive equalization and active equalization of the management system 100 can be implemented by polling in a time-division multiplexed manner, so logic control needs to be performed according to time sequence.
  • control unit 106 can control the connection unit 102 to connect the battery cells to the bus 101 in sequence, so that the sensing unit 105 can sense the voltage sequence of all the battery cells in a polling manner, and obtain, for example, Battery parameters such as SOC, SOH and internal resistance.
  • the sensing operation can be continuously repeated to obtain real-time information of each battery cell.
  • control unit 106 may perform a balancing operation according to a balancing strategy based on battery parameters.
  • the balancing policy is used to determine whether to perform the balancing operation, for which battery pack to perform the balancing operation, and whether to perform the active balancing operation or the passive balancing operation.
  • the balancing strategy is described in more detail below.
  • a time period T for performing the balancing operation is set, during which the sensing unit 105 is controlled to stop sensing battery parameters in a polling manner, And a balancing operation is performed on the battery cells that need to be balanced.
  • the sensing unit 105 may continuously sense battery parameters of battery cells that need to be balanced.
  • the sensing unit 105 senses the battery parameters of the battery cells that need to be balanced, such as obtaining the voltage Vt0 of the battery cells.
  • the actual voltage Vr of the battery unit is approximately Vs ⁇ Vt.
  • control unit 106 can monitor whether the voltage Vr is within a normal preset range during the balancing operation. If the voltage Vr is not within the preset range, the balancing operation is stopped, the polling state is entered, and fault diagnosis and protection actions are performed.
  • the control unit 106 stops the balancing operation, and the control sensing unit 105 continues to sense battery parameters of other battery units in a polling manner.
  • the management system 100 implements consistent management of all battery cells in the battery array by repeating the above steps.
  • the purpose of the balancing operation performed by the management system 100 is to make the battery array 200 have the maximum available capacity.
  • the balancing strategy is set based on the calculation of the following parameters:
  • V and V0 respectively represent the voltage of the battery cells connected to the bus 101 and the average value of the voltages of all the battery cells
  • SOC and SOC0 respectively represent the state of charge of the battery cells connected to the bus 101 and the state of charge of all the battery cells
  • the average value of , SOH and SOH0 represent the health status of the battery cells connected to the bus 101 and the average value of the health states of all battery cells, respectively
  • R and R0 represent the current internal resistance and initial internal resistance of the battery cells connected to the bus 101 resistance.
  • the parameter P can be expressed as a percentage.
  • the equalization strategy may be based on a number of rules regarding the parameter P.
  • the balancing operation is always performed on the cell with the smallest value of the parameter P.
  • the control unit 106 controls the active balancing unit 103 to perform active balancing on the battery cells with the minimum value of the parameter P, and controls passive balancing Unit 104 performs passive balancing on the cell with the maximum value of parameter P.
  • Other rules can be envisioned by those skilled in the art in light of the teachings of this disclosure.
  • the control unit 106 may control the connecting unit 102 to connect the bus 101 to a battery unit that needs to be balanced, control the sensing unit 105 to sense the battery parameters of the battery unit, and The balancing operation is performed on the battery unit within a preset time period (eg, the time period T mentioned above).
  • the weights ⁇ , ⁇ , ⁇ and ⁇ may be set according to specific application scenarios.
  • the weights ⁇ , ⁇ , ⁇ , and ⁇ may have different values according to the operating state of the management system 100 and the operating state of the battery array 200 .
  • the values of weights ⁇ and ⁇ may be increased to ensure that active balancing is performed on the battery unit with the least amount of charge, thereby increasing the dischargeable capacity of the battery array.
  • the battery unit is a lithium iron phosphate battery
  • increasing the values of the weights ⁇ and ⁇ can improve the effectiveness of the equalization.
  • the management system 100 may also perform various operations on a battery pack including a plurality of battery cells, including sensing battery parameters and performing balancing operations.
  • control unit 106 may control the connection unit 102 to sequentially connect a plurality of battery packs 200-i to the bus 101, control the sensing unit 205 to sense battery parameters of the battery packs 200-i connected to the bus 101, And based on the battery parameters of the battery pack 200-i connected to the bus 101, the active balancing unit 103 and the passive balancing unit 104 are controlled to perform a balancing operation on the battery pack 200-i.
  • FIG. 8 is a flowchart illustrating a method 800 of managing a battery array according to an embodiment of the present disclosure.
  • the management method 800 may include the following steps:
  • Step S801 sequentially connecting the battery units to the bus
  • Step S802 sensing battery parameters of battery cells connected to the bus
  • Step S803 Determine whether the battery cells connected to the bus need active balancing and/or passive balancing according to the sensed battery parameters
  • Step S804 Perform active balancing and/or passive balancing on the battery cells connected to the bus according to the determination result.
  • step S802 to step S804 may be repeatedly executed for each battery unit sequentially connected to the bus to achieve consistent management of the battery array.
  • the battery array management system realizes the functions of parameter sensing, active equalization and passive equalization of each battery unit in a time-division multiplexing manner by using a switch array, thereby simplifying the hardware structure of the battery array management system.
  • the management system of the battery array according to the present disclosure can further simplify the hardware structure of the management system of the battery array by optimizing the DC-DC converter used for charging the battery cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开涉及电池阵列的管理系统和管理方法。该电池阵列包括并联连接的多个电池组,每个电池组包括串联连接的多个电池单元。根据本公开的电池阵列的管理系统包括:总线;连接单元,设置在电池阵列和总线之间;主动均衡单元,通过直流-直流转换器对电池单元进行恒流充电以执行主动均衡;被动均衡单元,对电池单元进行恒流放电以执行被动均衡;感测单元,感测电池单元的电池参数;以及控制单元,控制连接单元以将多个电池单元依次连接到总线,并且基于电池参数控制主动均衡单元和被动均衡单元执行均衡操作,其中,控制单元基于直流-直流转换器的原边电流控制恒流充电电流,并且基于直流-直流转换器的副边的输出执行副边的同步整流。

Description

电池阵列的管理系统和管理方法 技术领域
本公开总体上涉及电池阵列的管理系统和管理方法,更具体地,涉及被构造为利于通过集成电路技术高度集成的管理系统和使用该管理系统的管理方法。
背景技术
目前,具有高的能量密度的可再充电电池,例如铅酸电池和锂离子电池近来已得到广泛使用。多个高容量可再充电电池(在本文中还可被称为电池单元或电池芯)可以串联连接成电池组,并且多个这样的电池组可以并联连接以形成大容量电池阵列。这种大容量电池阵列在一系列应用中变得越来越重要。这样的应用可以包括例如汽车、船舶和其他交通工具的动力源,家用和不间断电源,以及存储由间歇性和可再生电源产生的电能以用于家用和并网电力网络中的电力需求和负载均衡等等。
通常,通过控制各个电池单元(又称为电池芯)的充电和放电,可以将每个电池单元维持在适当的操作状态。用于此目的的电池阵列的管理系统,又称电池管理系统(BMS),可以被构造为感测每个电池单元的电池参数,使单个电池单元或电池组的电池参数之间的偏差保持在预期的范围内,从而保证每个电池单元在正常使用期间保持在相同的工作状态,以确保电池阵列的安全性和稳定性并且延长电池阵列的使用寿命。BMS的这种管理被称为电池阵列的一致性管理。
电池阵列的管理系统通常由功率半导体器件、模拟电路和数字电路构成,因而难于集成在单个集成电路芯片中。
发明内容
为了解决现有技术中存在的上述问题,本公开提出了电池阵列的管理系统和管理方法。
根据本公开的电池阵列的管理系统通过利用开关阵列以时分复用的方式实现各电池单元的参数感测、主动均衡和被动均衡的功能,从而简化了电池阵列的管理系统的硬件结构。此外,根据本公开的电池阵列的管理系统通过对用于电池单元充电的直流-直流(DC-DC)转换器的优化,可以进一步简化电池阵列的管理系统的硬件结构。通过对电池阵列的管理系统的硬件结构的简化,可以提高电池阵列的管理系统的集成度,降低成本。
在下文中将给出关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,此概述并非是关于本公开的穷举性概述,也并非意图确定本公开的关键或重要部分或者限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
为了实现本公开的目的,根据本公开的一个方面,提供了一种电池阵列的管理系统,该电池阵列包括并联连接的多个电池组,每个电池组包括串联连接的多个电池单元,该管理系统包括:总线;连接单元,设置在电池阵列和总线之间;主动均衡单元,被配置成通过直流-直流转换器对连接到总线的电池单元进行恒流充电以执行该电池单元的主动均衡;被动均衡单元,被配置成对连接到总线的电池单元进行恒流放电以执行该电池单元的被动均衡;感测单元,被配置成感测连接到总线的电池单元的电池参数;以及控制单元,被配置成控制连接单元将多个电池单元依次连接到总线,并且基于连接到总线的电池单元的电池参数控制主动均衡单元和被动均衡单元对该电池单元执行均衡操作,其中,控制单元基于直流-直流转换器的原边电流控制主动均衡单元对连接到总线的电池单元的恒流充电电流,并且基于直流-直流转换器的副边的输出执行直流-直流转换器的副边的同步整流。
根据本公开的实施方式,连接单元是包括多个开关的开关阵列, 多个开关中的每一个连接到相应的电池单元。
根据本公开的实施方式,开关是场效应管、绝缘栅双极型晶体管、可控硅晶闸管、三极管、固体开关和继电器中的一个。
根据本公开的实施方式,控制单元控制连接单元将多个电池组依次连接到总线,感测单元感测连接到总线的电池组的电池参数,并且控制单元基于连接到总线的电池组的电池参数控制主动均衡单元和被动均衡单元对该电池组执行均衡操作。
根据本公开的实施方式,被动均衡单元包括电阻器、晶体管和运算放大器,并且通过运算放大器采集电阻器两端的电压来控制晶体管工作在线性区以实现恒流放电。
根据本公开的实施方式,电池参数包括电池单元的电压、电流、内阻和温度中的至少之一。
根据本公开的实施方式,电池参数还包括电池单元的荷电状态、功率状态、安全状态和健康状态中的至少之一。
根据本公开的实施方式,控制单元根据感测单元感测到的电池参数确定是否需要通过主动均衡单元和/或被动均衡单元对连接到总线的电池单元执行主动均衡和/或被动均衡。
根据本公开的实施方式,主动均衡单元和被动均衡单元执行的均衡操作基于如下计算的参数P:
P=α(V/V0)+β(SOC/SOC0)+γ(SOH/SOH0)+θ(R/R0)
其中,V和V0分别表示连接到总线的电池单元的电压和所有电池单元的电压的平均值,SOC和SOC0分别表示连接到总线的电池单元的荷电状态和所有电池单元的荷电状态的平均值,SOH和SOH0分别表示连接到总线的电池单元的健康状态和所有电池单元的健康状态的平均值,并且R和R0分别表示连接到总线的电池单元的当前内阻和初始内阻,以及其中,α、β、γ和θ为权重,并且α+β+γ+θ=1。
根据本公开的另一方面,提供了一种使用根据上述方面的管理系统的电池阵列的管理方法,该管理方法包括:依次将电池单元连接到 总线;感测连接到总线的电池单元的电池参数;根据感测到的电池参数确定连接到总线的电池单元是否需要进行主动均衡和/或被动均衡;以及根据确定结果对连接到总线的电池单元执行主动均衡和/或被动均衡。
附图说明
参照下面结合附图对本公开实施方式的描述,会更加容易地理解本公开的以上和其他目的、特点和优点。
图1是示出根据本公开的实施方式的电池阵列的管理系统的框图。
图2是示出根据本公开的实施方式的电池阵列的管理系统的示意图。
图3是示出根据本公开的实施方式的连接单元的电路图。
图4是示出根据本公开的实施方式的主动均衡单元的电路图。
图5是示出根据本公开的实施方式的集成在主动均衡单元中的副边同步整流电路的电路图。
图6是示出根据本公开的实施方式的集成在主动均衡单元中的原边反馈电路的电路图。
图7是示出根据本公开的实施方式的被动均衡单元的电路图。
图8是示出根据本公开的实施方式的电池阵列的管理方法的流程图。
具体实施方式
在下文中,将参照所附的说明性示图详细描述本公开的一些实施方式。在用附图标记指示附图的元件时,尽管相同的元件在不同的附图中示出,但相同的元件将由相同的附图标记表示。此外,在本公开的以下描述中,在有可能使本公开的主题不清楚的情况下,将省略对并入于本文中的已知功能和配置的详细描述。
本文中使用的术语仅用于描述特定实施方式的目的,而非旨在限制本公开。如本文所使用的,除非上下文另外指出,否则单数形式旨 在也包括复数形式。还将理解的是,说明书中使用的术语“包括”、“包含”和“具有”旨在具体说明所陈述的特征、实体、操作和/或部件的存在,但是并不排除一个或更多个其他的特征、实体、操作和/或部件的存在或添加。
除非另有定义,否则本文中使用的包括技术术语和科学术语的所有术语具有与本发明构思所属领域技术人员通常理解的含义相同的含义。将进一步理解的是,诸如在常用词典中定义的那些术语应该被解释为具有与其在相关领域的上下文中的含义一致的含义,除非在此明确定义否则不应以理想化或过于正式的意义来解释。
在下面的描述中,阐述了许多具体细节以提供对本公开的全面理解。本公开可以在没有这些具体细节中的一些或所有具体细节的情况下实施。在其他实例中,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的部件,而省略了与本公开关系不大的其他细节。
在下文中,将参照附图详细描述根据本公开的实施方式的电池阵列的管理系统和管理方法。
图1是示出根据本公开的实施方式的电池阵列的管理系统100的框图。图2是示出根据本公开的实施方式的电池阵列的管理系统100的示意图。
如图1所示,根据本公开的实施方式,电池阵列的管理系统100可以包括:总线101;连接单元102,设置在电池阵列200和总线102之间;主动均衡单元103,被配置成通过直流-直流转换器1031对连接到总线101的电池单元进行恒流充电以执行该电池单元的主动均衡;被动均衡单元104,被配置成对连接到总线101的电池单元进行恒流放电以执行该电池单元的被动均衡;感测单元105,被配置成感测连接到总线101的电池单元的电池参数;以及控制单元106,被配置成控制连接单元102以将多个电池单元依次连接到总线101,并且基于连接到总线101的电池单元的电池参数控制主动均衡单元103和被动均衡单元104对该电池单元执行均衡操作,其中,控制单元106基于 直流-直流转换器1031的原边电流控制主动均衡单元103对连接到总线101的电池单元的恒流充电电流,并且基于直流-直流转换器1031的副边的输出执行直流-直流转换器1031的副边的同步整流。
如图1所示,根据本公开的实施方式,直流-直流转换器1031的输入端Vin+和Vin-可以连接到电池、辅助电池或交流-直流(AC-DC)开关电源的输出。直流-直流转换器1031的输出端Vo+和Vo-可以分别连接到总线的正极端P+和负极端P-,继而经由连接单元102分别连接到相应的电池单元的正极BAT+和负极BAT-。
如图1所示,根据本公开的实施方式,该电池阵列200可以包括并联连接的多个电池组200-1、200-2、…、200-n(n是大于1的自然数),每个电池组200-i(1≤i≤n,)包括串联连接的多个电池单元200-i-1、200-i-2、…、200-i-m(m是大于1的自然数)。因此,多个电池单元200-i-j(1≤j≤m)可以形成m×n的电池阵列200。
如下文结合图3描述的,根据本公开的实施方式,连接单元101可以是包括多个开关的开关阵列,多个开关中的每一个连接到相应的电池单元200-i-j。
根据本公开的实施方式,控制单元106可以控制开关阵列中的每个开关的导通和断开,从而将多个电池单元200-i-j中的每一个依次连接到总线101。此外,如图1和图2所示,主动均衡单元103、被动均衡单元104和感测单元105中的每一个连接到总线101,继而经由例如开关阵列构成的连接单元102依次连接到多个电池单元200-i-j中的每一个。根据本公开的实施方式,在任一时刻,控制单元106控制连接单元102使得仅一个电池单元连接到总线101。
图3是示出根据本公开的实施方式的连接单元102的电路图。
如图3所示,总线101可以包括正极端P+和负极端P-。连接单元101可以被实现为电子开关阵列,用于将每个电池组200-i连接到总线101。根据本公开的实施方式,为保证电子开关阵列的开通次数和双向可控的能力,同时需要一定的效率通流能力,构成电子开关阵列的每个开关可以是场效应管、绝缘栅双极型晶体管、可控硅晶闸管、 三极管、固体开关和继电器中的一个。替选地,开关也可以是其他具有相同开关功能的元件。
作为一个具体示例,如图3所示,电子开关阵列可以采用共栅极和共源极的双功率NMOS晶体管阵列实现,其中总线101的正极端P+通过共栅极和共源极的双功率NMOS晶体管与电池组200-i中的每个电池单元200-i-j的正极BAT+,总线101的负极端P-通过共栅极和共源极的双功率NMOS晶体管与电池组200-i中的每个电池单元200-i-j的负极BAT-电连接。控制单元106连接到每个共栅极和共源极的双功率NMOS晶体管的栅极G-i-j以控制每个共栅极和共源极的双功率NMOS晶体管的导通和关断,从而将相应的电池单元200-i-j连接到总线101。
通常,电子开关阵列的驱动电路需要在电子开关的驱动端产生高于源端电压的驱动电压且可被控制。该驱动电路可被设置在电池阵列附近,控制单元106可以通过例如隔离通信(诸如光通信)实现对开关的选择控制。该驱动电路可由电池阵列供电,通过例如电荷泵生成所需的驱动电压,例如通过电荷泵将电池阵列的电压(即电池组的电压)提升到所需的驱动电压。该驱动电压必须使得连接到具有最高电压的电池单元的开关能够导通。其他开关的驱动电压可以从电荷泵产生的驱动电压的分压获得。具体地,可以使用电阻器或场效应管等获得分压。替选地,可以使用变压器从电池阵列中获得所需的驱动电压。
主动均衡单元103和被动均衡单元104用于对连接到总线101的电池单元执行均衡操作。均衡的意义在于利用电子技术,使各个电池单元的偏差保持在预期的范围内,从而保证每个电池单元在正常的使用时不发生损坏。若不进行均衡控制,随着充放电循环的增加,各电池单元的电压逐渐分化,导致电池阵列的使用寿命将大大缩减。主动均衡是以电池单元之间的电量转移的方式进行均衡,具有高效率低损失的优点,而被动均衡一般通过负载放电的方式对具有较高电压的电池单元进行放电,具有成本低和电路设计简单的优点。根据本公开的实施方式,通过组合使用主动均衡和被动均衡,能够针对不同的场景 应用不同的均衡策略,从而高效地实现电池阵列的一致性管理。
根据本公开的实施方式,主动均衡单元103在控制单元106的控制下通过直流-直流转换器1031对连接到总线101的电池单元进行恒流充电以执行该电池单元的主动均衡。图4是示出根据本公开的实施方式的主动均衡单元103的电路图。
如图4所示,主动均衡单元103可以包括直流-直流转换器1031,其由原边反馈电路、变压器和副边同步整流电路构成。
根据本公开的实施方式,直流-直流转换器1031的输入端Vin+和Vin-可以连接到电池、辅助电池或交流-直流(AC-DC)开关电源的输出。直流-直流转换器1031的输出端Vo+和Vo-可以分别连接到总线的正极端P+和负极端P-,继而经由连接单元102连接到相应的电池单元。
根据本公开的实施方式,控制单元106基于直流-直流转换器1031的原边电流控制主动均衡单元103对连接到总线101的电池单元的恒流充电电流,并且基于直流-直流转换器1031的副边的输出执行直流-直流转换器的副边的同步整流。
在现有技术中,直流-直流转换器的副边电路具有同步整流和非同步整流两种方案。在非同步整流方案中,为了降低能量损失,副边电路通常使用导通电压较低的肖特基二极管作为整流二极管。然而,考虑到电池单元的电压通常为3.2V甚至更低,因此即使肖特基二极管的导通电压降低(通常为0.5V),在对每个电池组进行充电以执行主动均衡时,导通压降仍存在较大的效率损失(0.5V/3.2V),而且产生较大的发热。
为了提高效率,提出了同步整流方案,其中使用MOS晶体管替换肖特基二极管。通常,同步整流方案使用原边电路侧的脉冲宽度调制(PWM)控制器生成用于原边电路的MOS晶体管的PWM信号和用于副边电路的MOS晶体管的PWM信号,并且控制这两个PWM信号的时序和死区时间进而控制原边电路的MOS晶体管和副边电路的MOS晶体管。这种PWM控制器通常通过隔离驱动变压器或者隔离驱 动专用电路实现原边电路的PWM控制器对副边电路的MOS晶体管的驱动。然而,这种驱动方式成本高,隔离驱动面积大,难于集成到芯片内部,不利于集成化设计。
根据本公开的实施方式,控制单元106直接基于直流-直流转换器1031的副边的输出执行直流-直流转换器1031的副边的同步整流,而无需直流-直流转换器1031的原边的控制信号。
图5是示出根据本公开的实施方式的集成在主动均衡单元中的副边同步整流电路的电路图。
如图5所示,副边同步整流电路包括肖特基二极管D1和MOS晶体管Q1。根据本公开的实施方式,通过采集肖特基二极管D1两端的电压控制MOS晶体管Q1的导通。在MOS晶体管导通之后,其两端压降从约0.5V的肖特基二极管的导通电压降低到约20mV的MOS晶体管Q1的导通电压,这样可以极大的提高管理系统的效率。此外,该副边同步整流电路采用副边输出直接供电,其工作电压仅为1.5V至5V,可以满足大部分应用场景的需求。根据本公开的实施方式,当电池单元连接到总线101时,主动均衡单元103的输出端Vo+和Vo-直接与电池单元的两端相连接,建立电池电压。如上文所述,该电池电压可以经过电荷泵电路生成更高的电压用于驱动电路的供电和驱动。该驱动电路根据肖特基二极管D1两端的电压(即MOS晶体管Q1的源极电压和漏极电压)控制MOS晶体管Q1能够导通,这样可以降低管理系统100的整体功耗。此外,当管理系统100不执行主动均衡时,该副边同步整流电路进入休眠状态,处于极低的静态功耗状态,避免对电池单元造成损耗。
此外,根据本公开的实施方式,控制单元106可以基于直流-直流转换器1031的原边电流控制主动均衡单元103对连接到总线101的电池单元的恒流充电电流。
由于主动均衡单元103在对电池单元执行充电以执行主动均衡时不需要考虑负载的变化,因此根据本公开的实施方式,主动均衡单元103的恒流充电可以通过原边电流反馈的方式实现,从而可以将原边 反馈电路与管理系统100的其他部件集成在一起即提高集成度,进而实现高可靠性、低成本和小体积的设计。此外,主动均衡单元103的直流-直流转换器1031不需要原边和副边之间的隔离通信电路,而且也不需要使用具有辅助绕组的复杂的变压器,进一步简化了管理系统100的电路结构。
图6是示出根据本公开的实施方式的集成在主动均衡单元103的原边反馈电路的电路图。
如图6所示,该原边反馈电路使用电阻器R2采集直流-直流转换器1031的原边电流,从而计算副边的稳定电流。该原边反馈电路中不需要通过电压采集电路例如辅助绕组或者其他方式获取副边的输出电压的反馈,可以使用如下文描述的感测单元105感测到的电池单元的电压(即副边的输出电压)直接获得输出电压的反馈。这样,驱动电路可以使用如上所述获得的副边的电流和电压两者结合实现精确的恒流充电控制。
根据本公开的实施方式,还可以通过感测单元105对电池单元的电压的监测来间接组成反馈电路。例如,在主动均衡单元103对连接到总线101的电池单元进行主动均衡时,如果通过感测单元105检测到电池单元的电压超过预设阈值,则控制单元105可以控制原边反馈电路中的驱动电路以切断功率输出或降低功率输出。
根据本公开的实施方式,由于被动均衡单元104通过总线101和连接单元102在多个电池单元之间共享,因此可以获得更大的被动均衡电流,使得成本更低。
目前的被动均衡电路通常由MOS晶体管和电阻器构成,其中MOS晶体管仅工作于导通状态或断开状态,在导通状态下通过电阻器的放电进行被动均衡。在该工作状态下,MOS晶体管仅用作开关,因此被动均衡电流根据电池单元的电压和电阻器的阻值确定,导致放电电流不是恒定的,使得难以估计放电电量。
根据本公开的实施方式,被动均衡单元104可以包括电阻器R3、MOS晶体管Q3和运算放大器Amp1,并且通过运算放大器Amp1采 集电阻器R3的电压来控制MOS晶体管Q3工作在线性区以实现恒流放电。具体地,流过电阻器R3的放电电流在电阻器R3两端产生电压。运算放大器Amp1采集该电压并且基于基准电压Vref调整MOS晶体管Q3使其工作在线性区,从而实现恒流放电。具体地,放电电流为Vref/R,其中R是电阻器R3的电阻值。
根据本公开的实施方式,感测单元105感测的电池参数可以包括电池单元的电压、电流、内阻和温度中的至少之一。此外,根据本公开的实施方式,电池参数还可以包括电池单元的荷电状态(SOC,例如电池剩余电量的百分比)、功率状态(SOP,例如电池阵列的可输入/输出的功率范围,包括充电和放电的安全限制值)、安全状态(SOS,例如在保证电池阵列的正常充电和放电功能的情况下,不发生故障(例如热失控)的概率。)和健康状态(SOH,例如电池当前容量与电池出厂容量的百分比)中的至少之一。
根据本公开的实施方式,控制单元106可以根据感测单元105感测到的电池参数确定是否需要通过主动均衡单元103和/或被动均衡单元104对连接到总线101的电池单元执行主动均衡和/或被动均衡。
根据本公开的实施方式,管理系统100的电池参数的采集、被动均衡和主动均衡的功能可以通过以时分复用的方式进行轮询来实现,因此需要根据时序进行逻辑控制。
根据本公开的实施方式,控制单元106可以控制连接单元102将电池单元依次连接到总线101,使得感测单元105可以通过轮询的方式感测所有电池单元的电压序列,并且获得电池单元的例如SOC、SOH和内阻等电池参数。该感测操作可以连续地重复执行以获得各电池单元的实时信息。
根据本公开的实施方式,控制单元106可以基于电池参数根据均衡策略执行均衡操作。均衡策略用于确定是否需要执行均衡操作、针对哪个电池组执行均衡操作、以及执行主动均衡操作还是被动均衡操作。下文将对均衡策略进行更详细的描述。
根据本公开的实施方式,如果控制单元106确定需要执行均衡操 作,则设定用于执行均衡操作的时间段T,在该时间段T控制感测单元105停止以轮询方式感测电池参数,并且对需要均衡的电池单元执行均衡操作。在该均衡操作期间,感测单元105可以连续地感测需要均衡的电池单元的电池参数。
例如,在用于均衡操作的时间段T内,设t0是时间段T的开始时间点,此时感测单元105感测需要均衡的电池单元的电池参数,例如获得电池单元的电压Vt0。此外,设t1是均衡电流稳定的时间点,此时获得电池单元的电压Vt1,计算电压变化量ΔVt=Vt1-Vt0。此外,设感测单元105在均衡操作期间中感测的电压为Vs,则实际的电池单元的电压Vr约为Vs-ΔVt。根据本公开的实施方式,在均衡操作期间控制单元106可以监测电压Vr是否在正常的预设范围内。如果电压Vr不在该预设范围内,则停止均衡操作,进入轮询状态,并且执行故障诊断和保护动作。
根据本公开的实施方式,在时间段T逝去时,控制单元106停止均衡操作,并且控制感测单元105继续以轮询方式感测其他电池单元的电池参数。管理系统100通过重复上述步骤实现对电池阵列的所有电池单元的一致性管理。
管理系统100执行的均衡操作的目的在于使得电池阵列200具有最大的可用容量。根据本公开的实施方式,均衡策略基于如下参数的计算来设定:
P=α(V/V0)+β(SOC/SOC0)+γ(SOH/SOH0)+θ(R/R0)
其中,V和V0分别表示连接到总线101的电池单元的电压和所有电池单元的电压的平均值,SOC和SOC0分别表示连接到总线101的电池单元的荷电状态和所有电池单元的荷电状态的平均值,SOH和SOH0分别表示连接到总线101的电池单元的健康状态和所有电池单元的健康状态的平均值,并且R和R0分别表示连接到总线101的电池单元的当前内阻和初始内阻。此外,α、β、γ和θ为权重,并且α+β+γ+θ=1。参数P可以用百分比来表示。
根据本公开的实施方式,均衡策略可以基于关于参数P的多个规 则。例如,始终对具有参数P的最小值的电池单元执行均衡操作。此外,例如,当参数P的最大值和最小值之间的差值超过预设阈值时,控制单元106控制主动均衡单元103对具有参数P的最小值的电池单元执行主动均衡,并且控制被动均衡单元104对具有参数P的最大值的电池单元执行被动均衡。本领域技术人员可以根据本公开的教导设想其他的规则。
根据本公开的实施方式,在根据均衡策略执行均衡操作时,控制单元106可以控制连接单元102将总线101连接到需要均衡的电池单元,控制感测单元105感测该电池单元的电池参数,并且在预设时间段(例如上文所述的时间段T)内对该电池单元执行均衡操作。
根据本公开的实施方式,权重α、β、γ和θ可以根据具体应用场景进行设定。例如,权重α、β、γ和θ可以根据管理系统100的操作状态和电池阵列200的操作状态而具有不同的取值。例如,在主动均衡期间,可以增加权重β和γ的取值,以确保对电量最少的电池单元执行主动均衡,从而增加电池阵列的可放电量。例如,在电池单元是磷酸铁锂电池的情况下,当荷电状态在30%至70%的范围内时,增加权重β和γ的取值可以提高均衡的有效性。
尽管上文结合管理系统100针对每个电池单元的操作描述了本公开的实施方式,但是本公开不限于此。根据本公开的实施方式,管理系统100也可以针对包括多个电池单元的电池组执行各种操作,包括感测电池参数和执行均衡操作。
根据本公开的实施方式,控制单元106可以控制连接单元102将多个电池组200-i依次连接到总线101,控制感测单元205感测连接到总线101的电池组200-i的电池参数,并且基于连接到总线101的电池组200-i的电池参数控制主动均衡单元103和被动均衡单元104对该电池组200-i执行均衡操作。
本公开还提供了一种使用如上文所述的电池阵列的管理系统100的管理方法。图8是示出根据本公开的实施方式的电池阵列的管理方法800的流程图。
该管理方法800可以包括如下步骤:
步骤S801:依次将电池单元连接到总线;
步骤S802:感测连接到总线的电池单元的电池参数;
步骤S803:根据感测到的电池参数确定连接到总线的电池单元是否需要进行主动均衡和/或被动均衡;以及
步骤S804:根据确定结果对连接到总线的电池单元执行主动均衡和/或被动均衡。
根据本公开的实施方式,可以针对依次连接到总线的每个电池单元重复执行步骤S802至步骤S804以实现电池阵列的一致性管理。
根据本公开的电池阵列的管理系统通过利用开关阵列以时分复用的方式实现各电池单元的参数感测、主动均衡和被动均衡的功能,从而简化了电池阵列的管理系统的硬件结构。此外,根据本公开的电池阵列的管理系统通过对用于电池单元充电的直流-直流(DC-DC)转换器的优化,可以进一步简化电池阵列的管理系统的硬件结构。通过对电池阵列的管理系统的硬件结构的简化,可以提高电池阵列的管理系统的集成度,降低成本。
尽管上面已经通过对本公开的具体实施方式的描述对本公开进行了披露,但是,应该理解,本领域的技术人员可在所附权利要求的精神和范围内设计对本公开的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本公开的保护范围内。

Claims (10)

  1. 一种电池阵列的管理系统,所述电池阵列包括并联连接的多个电池组,每个电池组包括串联连接的多个电池单元,所述管理系统包括:
    总线;
    连接单元,设置在所述电池阵列和所述总线之间;
    主动均衡单元,被配置成通过直流-直流转换器对连接到所述总线的电池单元进行恒流充电以执行该电池单元的主动均衡;
    被动均衡单元,被配置成对连接到所述总线的电池单元进行恒流放电以执行该电池单元的被动均衡;
    感测单元,被配置成感测连接到所述总线的电池单元的电池参数;以及
    控制单元,被配置成控制所述连接单元将所述多个电池单元依次连接到所述总线,并且基于连接到所述总线的电池单元的电池参数控制所述主动均衡单元和所述被动均衡单元对该电池单元执行均衡操作,
    其中,所述控制单元基于所述直流-直流转换器的原边电流控制所述主动均衡单元对连接到所述总线的电池单元的恒流充电电流,并且基于所述直流-直流转换器的副边的输出执行所述直流-直流转换器的副边的同步整流。
  2. 根据权利要求1所述的管理系统,其中,
    所述连接单元是包括多个开关的开关阵列,所述多个开关中的每一个连接到相应的电池单元。
  3. 根据权利要求2所述的管理系统,其中,所述开关是场效应管、绝缘栅双极型晶体管、可控硅晶闸管、三极管、固体开关和继电器中的一个。
  4. 据权利要求1所述的管理系统,
    其中,所述控制单元控制所述连接单元将所述多个电池组依次连接到所述总线,
    其中,所述感测单元感测连接到所述总线的电池组的电池参数,以及
    其中,所述控制单元基于连接到所述总线的电池组的电池参数控制所述主动均衡单元和所述被动均衡单元对该电池组执行均衡操作。
  5. 根据权利要求1所述的管理系统,其中,所述被动均衡单元包括电阻器、晶体管和运算放大器,并且通过所述运算放大器采集所述电阻器两端的电压来控制所述晶体管工作在线性区以实现恒流放电。
  6. 根据权利要求1所述的管理系统,其中,所述电池参数包括电池单元的电压、电流、内阻和温度中的至少之一。
  7. 根据权利要求6所述的管理系统,其中,所述电池参数还包括所述电池单元的荷电状态、功率状态、安全状态和健康状态中的至少之一。
  8. 根据权利要求1所述的管理系统,其中,所述控制单元根据所述感测单元感测到的电池参数确定是否需要通过所述主动均衡单元和/或所述被动均衡单元对连接到所述总线的电池单元执行主动均衡和/或被动均衡。
  9. 根据权利要求1所述的管理系统,其中,所述主动均衡单元和所述被动均衡单元执行的均衡操作基于如下计算的参数P:
    P=α(V/V0)+β(SOC/SOC0)+γ(SOH/SOH0)+θ(R/R0)
    其中,V和V0分别表示连接到所述总线的电池单元的电压和所有电池单元的电压的平均值,SOC和SOC0分别表示连接到所述总线的电池单元的荷电状态和所有电池单元的荷电状态的平均值,SOH和SOH0分别表示连接到所述总线的电池单元的健康状态和所有电池单元的健康状态的平均值,并且R和R0分别表示连接到所述总线的电池单元的当前内阻和初始内阻,以及其中,α、β、γ和θ为权重,并且α+β+γ+θ=1。
  10. 一种使用根据权利要求1至9中任一项所述的管理系统的电池阵列的管理方法,包括:
    依次将电池单元连接到总线;
    感测连接到所述总线的电池单元的电池参数;
    根据感测到的电池参数确定连接到所述总线的电池单元是否需要进行主动均衡和/或被动均衡;以及
    根据确定结果对连接到所述总线的电池单元执行主动均衡和/或被动均衡。
PCT/CN2022/107000 2021-09-18 2022-07-21 电池阵列的管理系统和管理方法 WO2023040458A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280033105.XA CN117280565A (zh) 2021-09-18 2022-07-21 电池阵列的管理系统和管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111099041.7 2021-09-18
CN202111099041.7A CN113783265A (zh) 2021-09-18 2021-09-18 电池阵列的管理系统和管理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/607,704 Continuation US20240222985A1 (en) 2021-09-18 2024-03-18 Systems and methods for managing battery arrays

Publications (1)

Publication Number Publication Date
WO2023040458A1 true WO2023040458A1 (zh) 2023-03-23

Family

ID=78852221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107000 WO2023040458A1 (zh) 2021-09-18 2022-07-21 电池阵列的管理系统和管理方法

Country Status (2)

Country Link
CN (2) CN113783265A (zh)
WO (1) WO2023040458A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595467A (zh) * 2024-01-18 2024-02-23 杭州高特电子设备股份有限公司 一种电池组的主动均衡系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783265A (zh) * 2021-09-18 2021-12-10 上海玫克生储能科技有限公司 电池阵列的管理系统和管理方法
CN117937701A (zh) * 2024-03-22 2024-04-26 西安星源博锐新能源技术有限公司 一种用于电池主动均衡的储能变流器、储能系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896656A (zh) * 2016-04-18 2016-08-24 安徽锐能科技有限公司 双向均衡电路
CN105939034A (zh) * 2016-03-29 2016-09-14 武汉理工大学 基于超级电容储能转移的锂电池组主动均衡系统及方法
CN110752635A (zh) * 2019-10-12 2020-02-04 山东大学 串联电池组容量在线监测和充放电双状态均衡电路及方法
CN113783265A (zh) * 2021-09-18 2021-12-10 上海玫克生储能科技有限公司 电池阵列的管理系统和管理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526202B2 (en) * 2009-10-22 2013-09-03 Bcd Semiconductor Manufacturing Limited System and method for synchronous rectifier
EP2466718A1 (en) * 2010-12-16 2012-06-20 Dialog Semiconductor GmbH Multiple battery charger with automatic charge current adjustment
CN203722259U (zh) * 2013-11-06 2014-07-16 江苏华富储能新技术股份有限公司 一种电池组的均衡电路
CN103855776B (zh) * 2014-03-31 2016-04-13 东莞中山大学研究院 一种应用于汽车动力电池的均衡充电系统
CN104767255A (zh) * 2015-05-06 2015-07-08 焦志涛 一种电池均衡装置
CN107394840A (zh) * 2017-07-25 2017-11-24 山东大学 一种自适应切换的电池均衡管理电路拓朴结构及控制方法
CN110015178B (zh) * 2017-08-31 2022-10-18 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN110677028A (zh) * 2019-10-07 2020-01-10 深圳市金威源科技股份有限公司 一种电流电压叠加型快速放电电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105939034A (zh) * 2016-03-29 2016-09-14 武汉理工大学 基于超级电容储能转移的锂电池组主动均衡系统及方法
CN105896656A (zh) * 2016-04-18 2016-08-24 安徽锐能科技有限公司 双向均衡电路
CN110752635A (zh) * 2019-10-12 2020-02-04 山东大学 串联电池组容量在线监测和充放电双状态均衡电路及方法
CN113783265A (zh) * 2021-09-18 2021-12-10 上海玫克生储能科技有限公司 电池阵列的管理系统和管理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595467A (zh) * 2024-01-18 2024-02-23 杭州高特电子设备股份有限公司 一种电池组的主动均衡系统及方法
CN117595467B (zh) * 2024-01-18 2024-05-03 杭州高特电子设备股份有限公司 一种电池组的主动均衡系统及方法

Also Published As

Publication number Publication date
CN113783265A (zh) 2021-12-10
CN117280565A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2023040458A1 (zh) 电池阵列的管理系统和管理方法
CN107359662B (zh) 一种具有并行均衡功能的电池管理系统及均衡方法
EP2858210B1 (en) Device for activating multi-bms
US8796992B2 (en) Basic unit of lithium-ion battery, battery pack comprising the same, and charge/discharge equalizing method thereof
TWI568122B (zh) 電池系統與其控制方法
US8736231B2 (en) Power management circuit for rechargeable battery stack
JP6873951B2 (ja) 高電圧電池の動的平衡法
US20180183245A1 (en) Improved maintenance method of power battery pack
CN204316150U (zh) 一种延长串联蓄电池组使用寿命的电路
US20230092047A1 (en) Energy Storage System, Uninterruptible Power System, and Battery Equalization Method
WO2019042440A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
US20220255327A1 (en) Decentralized active equalization method for cascaded lithium-ion battery pack
WO2019042354A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
EP4304042A1 (en) Energy storage system, control method for energy storage system, and photovoltaic power generation system
CN101854066B (zh) 电源安全系统
CN218958586U (zh) 一种双模式的主动均衡锂离子电池电路
CN113783252B (zh) 一种用于电池簇间均衡的虚拟内阻调节装置
US20240222985A1 (en) Systems and methods for managing battery arrays
Hoque et al. Voltage equalization for series connected lithium-ion battery cells
CN116154888A (zh) 簇间环流抑制系统及方法
TWI667863B (zh) High voltage battery dynamic balance method
RU2490769C1 (ru) Батарейная система
TW201929377A (zh) 高壓電池管理與平衡電路架構
RU2751995C1 (ru) Способ эксплуатации батареи накопителей электрической энергии
CN220009534U (zh) 一种动力电池主动均衡电路及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033105.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE