WO2023040405A1 - 充放电电池的自加热控制方法以及自加热控制系统 - Google Patents

充放电电池的自加热控制方法以及自加热控制系统 Download PDF

Info

Publication number
WO2023040405A1
WO2023040405A1 PCT/CN2022/101475 CN2022101475W WO2023040405A1 WO 2023040405 A1 WO2023040405 A1 WO 2023040405A1 CN 2022101475 W CN2022101475 W CN 2022101475W WO 2023040405 A1 WO2023040405 A1 WO 2023040405A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
electrode
potential
reference electrode
Prior art date
Application number
PCT/CN2022/101475
Other languages
English (en)
French (fr)
Inventor
张柯
陈娜
李坚年
潘仪
郭姿珠
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP22868782.8A priority Critical patent/EP4345988A1/en
Priority to KR1020237042434A priority patent/KR20240005921A/ko
Publication of WO2023040405A1 publication Critical patent/WO2023040405A1/zh
Priority to US18/532,313 priority patent/US20240128537A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of batteries, in particular to a self-heating control method for a charging and discharging battery, a computer-readable storage medium, a battery manager and a self-heating control system for a charging and discharging battery.
  • Batteries are currently the most widely used energy storage devices in the field of new energy vehicles.
  • the charge and discharge capacity of the battery is greatly affected by the temperature.
  • the battery can be heated by the battery itself or external energy applied to the single cell, which can effectively enhance the discharge capacity of the battery at low temperature, thereby increasing the cruising range.
  • the self-heating method of the battery will cause serious uneven heating of the battery.
  • lithium precipitation will occur in some areas of the battery, thereby affecting the battery. cycle life and safety.
  • an object of the present disclosure is to propose a self-heating control method for a charge-discharge battery.
  • the self-heat control method for a charge-discharge battery can make the battery heat evenly, avoid the phenomenon of lithium deposition in the battery, and improve the battery life. cycle life and safety.
  • the present disclosure further proposes a computer-readable storage medium.
  • the present disclosure further proposes a battery manager.
  • the present disclosure further proposes a self-heating control system for charging and discharging batteries.
  • the charging and discharging battery includes a battery cell, a diaphragm is provided between the positive electrode and the negative electrode of the battery cell, a reference electrode is correspondingly provided at the diaphragm, and a surface is provided on the surface of the negative electrode of the battery cell.
  • the electrode the method includes: detecting the potential difference between the reference electrode and the surface electrode; generating a charging current adjustment instruction according to the potential difference between the reference electrode and the surface electrode, so as to adjust according to the charging current during the self-heating process of the charging and discharging battery The instruction regulates the charging current of the charging and discharging battery.
  • the potential difference between the reference electrode and the surface electrode is detected, and the charging current adjustment command is generated according to the potential difference between the reference electrode and the surface electrode, and the charging and discharging battery is self-heating.
  • the charging current of the charging and discharging battery is adjusted according to the charging current regulation command, which can avoid the phenomenon of lithium deposition in the battery, and can also improve the cycle life and safety of the battery.
  • generating the charging current adjustment command according to the potential difference between the reference electrode and the surface electrode includes: when the potential difference between the reference electrode and the surface electrode is less than a first potential threshold, generating a charging current amplitude A charging current adjustment command with a value of zero; when the potential difference between the reference electrode and the surface electrode is greater than or equal to the first potential threshold and less than the second potential threshold, according to the first potential threshold and the difference between the reference electrode and the surface electrode The potential difference generates a charging current regulation command.
  • the charging current amplitude corresponding to the charging current adjustment command is determined according to the following formula:
  • I_dc I_dc0*f(s1)*(VN-E_plating)
  • s1 is the first safety parameter
  • f(s1) is the function of s1
  • I_dc is the charging current amplitude
  • I_dc0 is the initial charging current amplitude
  • VN is the potential difference between the reference electrode and the surface electrode
  • E_plating is the first A potential threshold.
  • the first potential threshold is determined according to the following steps: detecting the potential difference between the negative electrode of the battery cell and the reference electrode; The negative electrode potential curve of the negative electrode, and the relationship between the lithium analysis potential and the charging rate is obtained according to the negative electrode potential curve at different charging rates; the first potential threshold is determined according to the relationship between the lithium analysis potential and the charging rate.
  • the method when the potential difference between the reference electrode and the surface electrode is less than the first potential threshold, the method further includes: detecting the potential difference between the positive electrode of the cell and the reference electrode; The potential difference with the reference electrode generates a battery heating current regulation command, so that the heating current amplitude of the charging and discharging battery is adjusted according to the battery heating current regulation command during the self-heating process of the charging and discharging battery.
  • generating the battery heating current adjustment instruction according to the potential difference between the positive electrode of the battery cell and the reference electrode includes: when the potential difference between the positive electrode of the battery cell and the reference electrode is greater than a third potential threshold , generating a battery heating current adjustment command with a heating current amplitude of zero; when the potential difference between the positive electrode of the cell and the reference electrode is greater than the fourth potential threshold and less than or equal to the third potential threshold, according to the third potential threshold, and The potential difference between the positive pole of the cell and the reference electrode generates a battery heating current regulation command.
  • the heating current amplitude corresponding to the battery heating current adjustment command is determined according to the following formula :
  • s2 is the second safety parameter
  • f(s2) is a function of s2
  • I_ac is the heating current amplitude
  • I_ac0 is the initial heating current amplitude
  • VP is the potential difference between the positive electrode of the cell and the reference electrode
  • E_max is the third potential threshold.
  • a self-heating control program for charging and discharging batteries is stored thereon, and when the self-heating control program for charging and discharging batteries is executed by a processor, the above-mentioned self-heating control method for charging and discharging batteries is realized.
  • the potential difference between the reference electrode and the surface electrode is detected, and the charging current adjustment command is generated according to the potential difference between the reference electrode and the surface electrode, during the self-heating process of the charging and discharging battery Adjusting the charging current of the charging and discharging battery according to the charging current regulation command can make the battery heated evenly, avoid lithium deposition in the battery, and improve the cycle life and safety of the battery.
  • the battery manager of the present disclosure includes a memory, a processor, and a self-heating control program for charging and discharging batteries stored in the memory and operable on the processor.
  • the processor executes the self-heating control program for charging and discharging batteries, the above-mentioned Self-heating control method for charging and discharging batteries.
  • the battery can be heated evenly, the phenomenon of lithium deposition in the battery can be avoided, and the cycle life and safety of the battery can also be improved.
  • the self-heating control system of the charging and discharging battery of the present disclosure includes: a reference electrode, the reference electrode corresponds to the diaphragm between the positive electrode and the negative electrode of the battery in the charging and discharging battery; the surface electrode, the surface electrode corresponds to the surface of the negative electrode of the battery Setting; battery manager, the battery manager is connected to the reference electrode and the surface electrode respectively, the battery manager is used to detect the potential difference between the reference electrode and the surface electrode, and generates
  • the charging current regulation command is used to adjust the charging current of the charging and discharging battery according to the charging current regulating command during the self-heating process of the charging and discharging battery.
  • the battery can be heated evenly, the phenomenon of lithium deposition in the battery can be avoided, and the cycle life and safety of the battery can also be improved.
  • the reference electrode is electronically insulated from the positive and negative electrodes of the cell, but ionically connected, and the surface electrode is directly connected to the negative electrode of the cell.
  • FIG. 1 is a flowchart of a self-heating control method according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of a cell according to an embodiment of the disclosure.
  • Fig. 3 is a schematic diagram of the cooperation of the positive electrode, the negative electrode, the separator, the reference electrode and the surface electrode according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of self-heating control of a charge-discharge battery according to an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of an electrode lead-out on a battery cell according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the connection of a battery cell, a battery manager, and an IGBT according to an embodiment of the present disclosure
  • FIG. 7 is a block schematic diagram of a processor, a memory, a communication interface, and a communication bus according to an embodiment of the present disclosure.
  • battery cell 40 positive pole 41; negative pole 42; diaphragm 43; positive pole ear 44; negative pole ear 45;
  • Processor 1201 communication interface 1202; memory 1203; communication bus 1204.
  • a method for controlling self-heating of a charge-discharge battery according to an embodiment of the present disclosure will be described below with reference to FIGS. 1-7 .
  • the charging and discharging battery includes a battery cell, a diaphragm is provided between the positive electrode and the negative electrode of the battery cell, and a reference is provided at the diaphragm. Electrodes, the surface of the negative electrode of the cell is provided with a surface electrode, wherein the reference electrode is electrically insulated from the positive and negative electrodes of the cell, but the ions are conducted, and the surface electrode is in direct contact with the negative electrode of the cell as a stable electrode Output stable reference potential.
  • the preparation material of the reference electrode can be made of materials such as copper, aluminum, lithium, lithium iron phosphate, graphene, carbon nanotubes, silver, silver chloride, etc., but the disclosure is not limited thereto, and the reference electrode can also be Made of materials that serve the same purpose as those described above.
  • the surface electrode is in direct contact with the negative electrode to establish an electronic contact channel.
  • the surface electrode is not limited to metal or non-metal conductors.
  • the preparation material of the surface electrode can be made of graphene, carbon nanotubes, carbon-based two-dimensional materials or other materials with good electronic properties. Conductive materials.
  • the battery manager is connected to the reference electrode and the surface electrode respectively, and the battery manager is used to detect the potential difference between the reference electrode and the surface electrode. Further, the battery manager can detect the potential difference between the reference electrode and the surface electrode placed at different positions of the battery cell.
  • S02. Generate a charging current regulation instruction according to the potential difference between the reference electrode and the surface electrode, so as to adjust the charging current of the charging and discharging battery according to the charging current regulation instruction during the self-heating process of the charging and discharging battery.
  • the battery manager can generate a charging current regulation instruction according to the potential difference between the reference electrode and the surface electrode, so that the battery manager can charge and discharge the battery according to the charging current regulation instruction during the self-heating process of the charging and discharging battery.
  • the charging current is adjusted.
  • the battery manager After the battery manager detects the potential difference between the reference electrode and the surface electrode, it generates a charging current adjustment command according to the potential difference between the reference electrode and the surface electrode. In the process, the charging current of the charging and discharging battery is adjusted according to the charging current regulation instruction.
  • preset data can be stored in the battery manager. After the battery manager detects the potential difference between the reference electrode and the surface electrode, it compares with the preset data, and then the battery manager generates a charging current adjustment command.
  • the charging current of the charging-discharging battery can be dynamically adjusted to prevent the large-value self-heating current from possibly causing Destroy the phenomenon of lithium deposition in the positive and negative active materials of the battery, thereby avoiding the phenomenon of lithium deposition in the battery, thereby improving the cycle life and safety of the battery.
  • the battery can be heated evenly, the phenomenon of lithium deposition in the battery can be avoided, and the cycle life and safety of the battery can also be improved.
  • generating the charging current adjustment command according to the potential difference between the reference electrode and the surface electrode may include: when the potential difference between the reference electrode and the surface electrode is smaller than the first potential threshold, the battery The manager generates a charge current adjustment command with a charge current amplitude of zero.
  • the battery manager when the reference electrode and the surface electrode are placed at different positions of the cell, the battery manager can detect multiple potential differences, and when any one of the multiple potential differences is less than the first potential threshold, the battery manager generates a charging current Charging current regulation command with zero amplitude.
  • the charging current adjustment command with a current amplitude of zero adjusts the charging current of the charging and discharging battery to adjust the charging current of the charging and discharging battery to zero, and actively reduces the charging current of the charging and discharging battery, thereby avoiding the occurrence of analysis of the charging and discharging battery. Lithium phenomenon.
  • the battery manager can detect multiple potential differences. When any one of the multiple potential differences is greater than or equal to the first potential threshold and less than the second potential threshold , according to the first potential threshold value and the potential difference between the reference electrode and the surface electrode to generate a charge current regulation command, thereby avoiding the phenomenon of lithium precipitation in the charging and discharging battery.
  • the charging current amplitude corresponding to the charging current adjustment instruction is determined according to the following formula:
  • I_dc I_dc0*f(s1)*(VN-E_plating)
  • s1 is the first safety parameter
  • f(s1) is the function of s1
  • I_dc is the charging current amplitude
  • I_dc0 is the initial charging current amplitude
  • VN is the potential difference between the reference electrode and the surface electrode
  • E_plating is the first A potential threshold.
  • f(s1) is a function of s1, and the value can be between 0 and 10. According to the previous experiment, it can be set as a fixed value or determined by looking up the table.
  • f(s1) depends on the intrinsic charge and discharge capacity of the charge and discharge battery , the specific value is determined through experiments during the strategy test, which can be a fixed value or a function.
  • f(s1) The general trend of f(s1) is the charge and discharge battery with good charge and discharge capacity. If the value of f(s1) is large, the charge and discharge capacity For poorly charged and discharged batteries, the value of f(s1) is small.
  • it can effectively avoid the phenomenon of lithium deposition in the charging and discharging battery during the charging process, and can further improve the cycle life and safety of the battery .
  • the first potential threshold is determined according to the following steps: detecting the potential difference between the negative electrode of the cell and the reference electrode, and further, detecting the potential difference between the reference electrode and all negative electrodes; According to the potential difference between the negative electrode of the cell and the reference electrode, the negative electrode potential curves at different charging rates are obtained, and the relationship between the lithium analysis potential and the charging rate is obtained according to the negative electrode potential curves at different charging rates; according to the lithium analysis potential The relationship with the charging rate determines the first potential threshold.
  • Such a setting can accurately determine the first potential threshold, can effectively avoid the occurrence of lithium precipitation in the charging process of the charging and discharging battery, and can further improve the cycle life and safety of the battery.
  • the charging and discharging battery when the potential difference between the reference electrode and the surface electrode is greater than or equal to the second potential threshold, the charging and discharging battery is not controlled for heating under this condition, and the charging current of the charging and discharging battery is based on the vehicle
  • the adjustment of the controller is adjusted. Such a setting can effectively avoid the occurrence of lithium deposition in the charge-discharge battery during the charging process, and can further improve the cycle life and safety of the battery.
  • the self-heating control method may further include:
  • the battery manager can generate a battery heating current regulation command according to the potential difference between the positive electrode of the battery cell and the reference electrode, so that the battery manager can heat the charging and discharging battery according to the battery heating current regulation command during the self-heating process of the charging and discharging battery The current amplitude is adjusted.
  • the battery manager After the battery manager detects the potential difference between the positive pole of the battery cell and the reference electrode, the battery manager generates a battery heating current adjustment command according to the potential difference between the positive pole of the battery cell and the reference electrode, so that the battery management During the self-heating process of the charging and discharging battery, the controller adjusts the heating current amplitude of the charging and discharging battery according to the battery heating current regulation command.
  • preset data can be stored in the battery manager. The battery manager detects the potential difference between the positive electrode of the battery cell and the reference electrode, compares it with the preset data, and then generates a battery heating current adjustment command.
  • the heating current amplitude of the charging and discharging battery is adjusted according to the battery heating current adjustment command, which can adjust the heating current amplitude of the charging and discharging battery in real time, which can make the charging and discharging battery evenly heated and prevent large
  • the phenomenon of destroying the active material of the positive electrode of the charge-discharge battery caused by the current amplitude of the heating current occurs, thereby further improving the cycle life and safety of the battery.
  • generating the battery heating current adjustment instruction according to the potential difference between the positive electrode of the battery cell and the reference electrode may include: the potential difference between the positive electrode of the battery cell and the reference electrode is greater than the third When the potential threshold is reached, a battery heating current adjustment instruction with a heating current amplitude of zero is generated.
  • the battery manager can detect multiple potential differences, and when any one of the multiple potential differences is greater than the third potential threshold, the generated heating current amplitude is Zero battery heating current regulation command.
  • a battery heating current adjustment command with a heating current amplitude of zero is generated, and the battery of the charging and discharging battery
  • the heating current is adjusted so that the battery heating current of the charging and discharging battery is adjusted to zero, and the heating current of the charging and discharging battery is actively reduced, so as to further avoid the phenomenon of destroying the positive electrode active material of the charging and discharging battery caused by the large heating current amplitude current.
  • the charging and discharging battery can be heated evenly, so that the cycle life and safety of the battery can be further improved.
  • the battery manager can detect multiple potential differences. When any one of the multiple potential differences is greater than the fourth potential threshold and less than or equal to the third potential threshold, according to The third potential threshold and the potential difference between the positive electrode of the battery cell and the reference electrode generate a battery heating current adjustment command.
  • the heating current amplitude corresponding to the battery heating current adjustment command is determined according to the following formula:
  • s2 is the second safety parameter
  • f(s2) is a function of s2
  • I_ac is the heating current amplitude
  • I_ac0 is the initial heating current amplitude
  • VP is the potential difference between the positive electrode of the cell and the reference electrode
  • E_max is the third potential threshold.
  • f(s2) is a function of s2 that can take a value between 0 and 10, and can be set as a fixed value or determined by looking up a table according to preliminary experiments.
  • the charging and discharging battery can be heated evenly, so that the damage caused by the large heating current amplitude current can be further avoided.
  • the phenomenon of charging and discharging the positive electrode active material of the battery occurs, which can further improve the cycle life and safety of the battery.
  • the self-heating control program of the charging and discharging battery is stored thereon, and when the self-heating control program of the charging and discharging battery is executed by the processor, the self-heating of the charging and discharging battery of the above-mentioned embodiment is realized Control Method.
  • the potential difference between the reference electrode and the surface electrode is detected, and the charging current adjustment instruction is generated according to the potential difference between the reference electrode and the surface electrode, and the self-heating of the charging and discharging battery During the process, the charging current of the charging and discharging battery is adjusted according to the charging current regulation command, which can make the battery heated evenly, avoid the phenomenon of lithium deposition in the battery, and improve the cycle life and safety of the battery.
  • the battery manager 30 includes a memory 1203, a processor 1201, and a self-heating control program of the charging and discharging battery stored in the memory 1203 and operable on the processor 1201.
  • the processor 1201 executes the self-heating control program of the charging and discharging battery.
  • the self-heating control program the self-heating control method of the charging and discharging battery in the above-mentioned embodiments is realized.
  • the processor 1201 executes the self-heating control program of the charging and discharging battery stored on the memory 1203, and charges the charging and discharging battery according to the charging current regulation instruction during the self-heating process of the charging and discharging battery. Adjusting the current can make the battery heat evenly, avoid the phenomenon of lithium precipitation in the battery, and improve the cycle life and safety of the battery.
  • the battery manager 30 includes at least one processor 1201, at least one communication interface 1202, at least one memory 1203 and at least one communication bus 1204; in an embodiment of the present disclosure, the processor 1201, the communication interface 1202 The number of memory 1203 and communication bus 1204 is at least one, and the processor 1201 , communication interface 1202 and memory 1203 communicate with each other through the communication bus 1204 .
  • memory 1203 can be, but not limited to, random access memory (Random Access Memory, RAM), read-only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-Only Memory, PROM), can Erasable Programmable Read-Only Memory (EPROM), Electric Erasable Programmable Read-Only Memory (EEPROM), etc.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electric Erasable Programmable Read-Only Memory
  • the processor 1201 may be an integrated circuit chip with signal processing capabilities.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit (ASIC), Field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA Field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • computer-readable media include the following: electrical connection with one or more wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, since the program can be read, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • the self-heat control system implements the self-heat control method of the charge-discharge battery in the above-mentioned embodiment.
  • the self-heating control system includes: a reference electrode 10 , a surface electrode 20 and a battery manager 30 .
  • the reference electrode 10 is arranged on the diaphragm 43 between the positive electrode 41 and the negative electrode 42 of the cell 40 in the corresponding charge-discharge battery, and the surface electrode 20 is arranged on the surface of the negative electrode 42 corresponding to the cell 40.
  • the preparation material of the reference electrode 10 can be made of Copper, aluminum, lithium, lithium iron phosphate, graphene, carbon nanotubes, silver, silver chloride and other materials, but the present disclosure is not limited thereto, and the reference electrode 10 can also be made of materials that play the same role as the above materials production.
  • the surface electrode 20 is in direct contact with the negative electrode 42, thereby establishing an electronic contact channel.
  • the surface electrode 20 is not limited to metal or non-metal conductors.
  • the preparation material of the surface electrode 20 can be made of graphene, carbon nanotubes, carbon-based two-dimensional materials or Other materials with good electronic conductivity.
  • the battery manager 30 is the battery manager 30 of the above-mentioned embodiment, the battery manager 30 is connected with the reference electrode 10 and the surface electrode 20 respectively, and the battery manager 30 is used for detecting the contact between the reference electrode 10 and the surface electrode 20 Potential difference, and generate a charging current regulation instruction according to the potential difference between the reference electrode 10 and the surface electrode 20, so as to adjust the charging current of the charging and discharging battery according to the charging current regulation instruction during the self-heating process of the charging and discharging battery. Further, the battery manager can detect the potential difference between the reference electrode and the surface electrode placed at different positions of the battery cell.
  • the battery manager 30 detects the potential difference between the reference electrode 10 and the surface electrode 20, it generates a charging current adjustment command according to the potential difference between the reference electrode 10 and the surface electrode 20, and the battery manager 30 During the self-heating process of the discharging battery, the charging current of the charging and discharging battery is adjusted according to the charging current regulation instruction.
  • preset data can be stored in the battery manager 30, and after the battery manager 30 detects the potential difference between the reference electrode 10 and the surface electrode 20, it is compared with the preset data, and then the battery manager 30 generates a charging current Regulation instruction, during the self-heating process of the charging and discharging battery, by adjusting the charging current of the charging and discharging battery according to the charging current regulation instruction during the self-heating process of the charging and discharging battery, the charging current of the charging and discharging battery can be dynamically adjusted to prevent large-scale
  • the self-heating current may cause damage to the active material of the positive electrode 41 and the active material of the negative electrode 42 to cause lithium deposition, thereby avoiding the phenomenon of lithium deposition in the battery, thereby improving the cycle life and safety of the battery.
  • the reference electrode 10 is electronically insulated from the positive electrode 41 and the negative electrode 42 of the electric core 40, but is ionically connected, and the surface electrode 20 is in direct contact with the negative electrode 42 of the electric core 40, as a stable The electrode outputs a stable reference potential.
  • a plurality of battery cells 40 may be arranged in the charge-discharge battery, and at least one battery cell 40 may be provided with a plurality of reference electrodes 10 and a plurality of surface electrodes 20, and the surface electrodes 20 and the negative electrodes 42 direct contact between them, thereby establishing an electronic contact channel, and detecting the local surface potential of the cell 40 .
  • the battery cell 40 may be provided with an extraction part, which is used to extract the surface electrode 20 and the reference electrode 10, so that the surface electrode 20 and the reference electrode 10 are connected to the battery manager 30, which is convenient
  • the battery manager 30 detects the potential difference between the reference electrode 10 and the surface electrode 20 .
  • the placement of the reference electrode 10 and the surface electrode 20 generally follows the principle of the point of maximum temperature difference, and the reference electrode 10 and the surface electrode 20 are preferably placed in the cell 40 with a large temperature difference in the charge-discharge battery
  • the reference electrode 10 and the surface electrode 20 can be arranged in the middle of the cell 40, but the disclosure is not limited thereto, the reference electrode 10 and the surface electrode 20 can also be arranged at the far end of the cell 40 away from the external heat source position, or the reference electrode 10 and the surface electrode 20 can also be arranged at the bottom position of the cell 40 .
  • Such setting can make the position of the reference electrode 10 and the surface electrode 20 reasonable, can avoid the phenomenon of lithium deposition in the battery, can also make the charging and discharging battery heated evenly, and then can improve the cycle life and safety of the battery.
  • the self-heating control system may include: an IGBT, and the IGBT may output heating current signals of different frequencies and amplitudes in real time according to external input.
  • the IGBT can be connected to the battery manager 30, and the IGBT can also be connected to the positive tab 44 and the negative tab 45 of the cell 40, and the battery manager 30 dynamically adjusts the IGBT according to a preset strategy.
  • the polar transistor outputs frequency or current amplitude to the cell 40 .
  • the battery manager 30 detects the potential difference between the negative electrode 42 and the reference electrode 10, and between the positive electrode 41 and the reference electrode 10, which can prevent damage to the active material of the positive electrode 41 of the battery that may be caused by a large-value self-heating current.
  • the phenomenon of lithium precipitation occurs with the active material of the negative electrode 42, ensuring that the cycle life and safety performance of the battery cell 40 are not affected.
  • the reference electrode 10 and the surface electrode 20 the local potential distribution of the cell 40 during self-heating can be detected.
  • the reference electrode 10 can output a stable standard potential that is not affected by the local potential, and the surface electrode 20 can output a changing surface potential that directly responds to the local potential.
  • the potential difference between the negative electrode 42 and the reference electrode 10 lithium deposition in the cell 40 can be prevented.
  • the potential difference between the positive electrode 41 and the reference electrode 10 the phenomenon of destroying the active material of the battery positive electrode 41 that may be caused by a large self-heating current can be prevented.
  • Reference electrode 10 generally made of a material with a stable electrochemical reaction pair, its potential is generally not affected by the surrounding environment and state, and can be used to output a stable reference potential.
  • the surface electrode 20 in this disclosure refers specifically to a conductor with electronic conductivity. After it contacts the active material of the positive electrode 41 or negative electrode 42, its potential will automatically match the Fermi level of the positive electrode 41 or negative electrode 42. Keep consistent, so as to achieve the purpose of dynamically detecting the electrochemical potential of the active material.
  • generating the charging current adjustment command according to the potential difference between the reference electrode 10 and the surface electrode 20 may include: the potential difference between the reference electrode 10 and the surface electrode 20 is less than the first potential When the threshold value is reached, the battery manager 30 generates a charging current adjustment instruction with a charging current amplitude of zero. Wherein, when the reference electrode 10 and the surface electrode 20 are placed at different positions of the cell 40, the battery manager 30 can detect multiple potential differences, and when any one of the multiple potential differences is less than the first potential threshold, the battery management The controller 30 generates a charging current regulation instruction whose charging current amplitude is zero.
  • a The charging current regulation command with a charging current amplitude of zero adjusts the charging current of the charging and discharging battery, so that the charging current of the charging and discharging battery is adjusted to zero, and actively reduces the charging current of the charging and discharging battery, thereby avoiding the occurrence of The phenomenon of lithium precipitation.
  • the potential difference between the reference electrode 10 and the surface electrode 20 is greater than or equal to the first potential threshold and smaller than the second potential threshold, according to the first potential threshold and the potential between the reference electrode 10 and the surface electrode 20 The difference generates the charging current regulation command, so as to avoid the phenomenon of lithium precipitation in the charging and discharging battery.
  • the battery manager 30 can detect multiple potential differences, and when any one of the multiple potential differences is greater than or equal to the first potential threshold and less than the first When there are two potential thresholds, a charging current regulation command is generated according to the first potential threshold and the potential difference between the reference electrode 10 and the surface electrode 20, thereby avoiding the phenomenon of lithium precipitation in the charging and discharging battery.
  • the charging current amplitude corresponding to the charging current adjustment command is determined according to the following formula:
  • I_dc I_dc0*f(s1)*(VN-E_plating)
  • s1 is the first safety parameter
  • f(s1) is a function of s1
  • I_dc is the magnitude of the charging current
  • I_dc0 is the magnitude of the initial charging current
  • VN is the potential difference between the reference electrode 10 and the surface electrode 20
  • E_plating is the first potential threshold.
  • f(s1) is a function of s1, and the value can be between 0 and 10. According to the previous experiment, it can be set as a fixed value or determined by looking up the table. f(s1) depends on the intrinsic charge and discharge capacity of the charge and discharge battery , the specific value is determined through experiments during the strategy test, which can be a fixed value or a function.
  • f(s1) The general trend of f(s1) is the charge and discharge battery with good charge and discharge capacity. If the value of f(s1) is large, the charge and discharge capacity For poorly charged and discharged batteries, the value of f(s1) is small.
  • it can effectively avoid the phenomenon of lithium deposition in the charging and discharging battery during the charging process, and can further improve the cycle life and safety of the battery .
  • the first potential threshold is determined according to the following steps: detecting the potential difference between the negative electrode 42 of the cell 40 and the reference electrode 10 , further, detecting the potential difference between the reference electrode 10 and all the negative electrodes 42 According to the potential difference between the negative electrode 42 of the battery cell 40 and the reference electrode 10, the potential curves of the negative electrode 42 under different charging rates are obtained, and the lithium analysis potential and charging are obtained according to the potential curves of the negative electrode 42 under different charging rates.
  • the relationship between the rate; the first potential threshold is determined according to the relationship between the lithium analysis potential and the charge rate. Such a setting can accurately determine the first potential threshold, can effectively avoid the occurrence of lithium precipitation in the charging process of the charging and discharging battery, and can further improve the cycle life and safety of the battery.
  • the potential difference between the reference electrode 10 and the surface electrode 20 is greater than or equal to the second potential threshold, under this condition, no heating control is performed on the charging and discharging battery, and the charging current of the charging and discharging battery is based on It is adjusted according to the adjustment of the vehicle controller.
  • Such a setting can effectively avoid the occurrence of lithium deposition in the charge-discharge battery during the charging process, and can further improve the cycle life and safety of the battery.
  • the self-heating control method may further include:
  • the battery manager 30 can generate a battery heating current adjustment command according to the potential difference between the positive electrode 41 of the cell 40 and the reference electrode 10, so that the battery manager 30 can adjust the battery heating current according to the battery heating current during the self-heating process of the charging and discharging battery.
  • the heating current amplitude of charging and discharging batteries is adjusted.
  • the battery manager 30 After the battery manager 30 detects the potential difference between the positive electrode 41 of the cell 40 and the reference electrode 10, the battery manager 30 generates a battery according to the potential difference between the positive electrode 41 of the cell 40 and the reference electrode 10.
  • the heating current adjustment instruction so that the battery manager 30 can adjust the heating current amplitude of the charging and discharging battery according to the battery heating current adjustment instruction during the self-heating process of the charging and discharging battery.
  • preset data may be stored in the battery manager 30, and the battery manager 30 detects that the potential difference between the positive electrode 41 of the cell 40 and the reference electrode 10 is compared with the preset data, and then the battery manager 30 generates a battery Heating current adjustment command, during the self-heating process of the charging and discharging battery, the heating current amplitude of the charging and discharging battery is adjusted according to the battery heating current adjustment command, which can adjust the heating current amplitude of the charging and discharging battery in real time, and can heat the charging and discharging battery Uniformity can prevent the phenomenon of destroying the active material of the positive electrode 41 of the charging and discharging battery caused by the large heating current amplitude current, thereby further improving the cycle life and safety of the battery.
  • generating the battery heating current adjustment command according to the potential difference between the positive electrode 41 of the cell 40 and the reference electrode 10 may include: between the positive electrode 41 of the cell 40 and the reference electrode 10 When the potential difference of is greater than the third potential threshold, a battery heating current adjustment instruction with a heating current amplitude of zero is generated.
  • the battery manager 30 can detect a plurality of potential differences, and when any one of the plurality of potential differences is greater than the third potential threshold, heating will be generated.
  • a battery heating current adjustment command with a heating current amplitude of zero is generated to control charging and discharging.
  • the battery heating current of the battery is adjusted so that the battery heating current of the charging and discharging battery is adjusted to zero, and the heating current of the charging and discharging battery is actively reduced, thereby further avoiding damage to the active material of the positive electrode 41 of the charging and discharging battery caused by the large heating current amplitude current. The phenomenon occurs, which can make the charging and discharging battery heat evenly, so that the cycle life and safety of the battery can be further improved.
  • the battery manager can detect multiple potential differences, when any one of the multiple potential differences is greater than the fourth potential threshold and less than or equal to the third potential threshold , generating a battery heating current adjustment command according to the third potential threshold and the potential difference between the positive electrode 41 of the cell 40 and the reference electrode 10 .
  • the heating current amplitude corresponding to the battery heating current adjustment command is determined according to the following formula:
  • s2 is the second safety parameter
  • f(s2) is a function of s2
  • I_ac is the amplitude of the heating current
  • I_ac0 is the amplitude of the initial heating current
  • VP is the potential between the positive electrode 41 of the cell 40 and the reference electrode 10 Poor
  • E_max is the third potential threshold.
  • f(s2) is a function of s2 that can take a value between 0 and 10, and can be set as a fixed value or determined by looking up a table according to preliminary experiments.
  • the charging and discharging battery can be heated evenly, so that the damage caused by the large heating current amplitude current can be further avoided.
  • the phenomenon of charging and discharging the positive electrode 41 active material of the battery occurs, which can further improve the cycle life and safety of the battery.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充放电电池的自加热控制方法以及自加热控制系统。充放电电池包括电芯(40),电芯(40)的正极(41)与负极(42)之间设有隔膜(43),隔膜(43)处对应设有参比电极(10),电芯(40)的负极(42)表面对应设有表面电极(20)。电池的自加热控制方法包括:检测参比电极(10)与表面电极(20)之间的电位差,根据参比电极(10)与表面电极(20)之间的电位差生成充电电流调节指令,以便在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节。

Description

充放电电池的自加热控制方法以及自加热控制系统
相关申请的交叉引用
本公开要求于2021年09月14日提交的申请号为202111074668.7,名称为“充放电电池的自加热控制方法以及自加热控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池领域,尤其是涉及一种充放电电池的自加热控制方法、一种计算机可读存储介质、一种电池管理器和一种充放电电池的自加热控制系统。
背景技术
电池是目前新能源汽车领域应用最为广泛的储能装置。电池的充放电能力受温度影响较大,通过电池自身或外界能量施加在单体电芯上对电池进行加热,可以有效增强电池在低温下的放电能力,从而增加续航里程。
相关技术中,电池的自加热方式会造成电池严重发热不均匀,在附加大电流充电的情况下,由于电芯温度的不均匀性,会造成电池部分区域发生析锂的现象,从而影响电池的循环寿命和安全性。
公开内容
本公开旨在至少解决相关技术中存在的技术问题之一。为此,本公开的一个目的在于提出了一种充放电电池的自加热控制方法,该充放电电池的自加热控制方法能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
本公开进一步地提出了一种计算机可读存储介质。
本公开进一步地提出了一种电池管理器。
本公开进一步地提出了一种充放电电池的自加热控制系统。
根据本公开的充放电电池的自加热控制方法,充放电电池包括电芯,电芯的正极与负极之间设有隔膜,隔膜处对应设有参比电极,电芯的负极表面对应设有表面电极,方法包括:检测参比电极与表面电极之间的电位差;根据参比电极与表面电极之间的电位差生成充电电流调节指令,以便在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节。
根据本公开的充放电电池的自加热控制方法,检测参比电极与表面电极之间的电位差,根据参比电极与表面电极之间的电位差生成充电电流调节指令,在充放电电池的自加热过程中,根据充电电流调节指令对充放电电池的充电电流进行调节,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
在本公开一些示例中,根据参比电极与表面电极之间的电位差生成充电电流调节指令, 包括:在参比电极与表面电极之间的电位差小于第一电位阈值时,生成充电电流幅值为零的充电电流调节指令;在参比电极与表面电极之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据第一电位阈值、以及参比电极与表面电极之间的电位差生成充电电流调节指令。
在本公开一些示例中,在参比电极与表面电极之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据以下公式确定充电电流调节指令对应的充电电流幅值:
I_dc=I_dc0*f(s1)*(VN-E_plating),
其中,s1为第一安全参数,f(s1)为s1的函数,I_dc为充电电流幅值,I_dc0为初始充电电流幅值,VN为参比电极与表面电极之间的电位差,E_plating为第一电位阈值。
在本公开一些示例中,第一电位阈值根据以下步骤确定:检测电芯的负极与参比电极之间的电位差;根据电芯的负极与参比电极之间的电位差获取不同充电倍率下的负极电位曲线,并根据不同充电倍率下的负极电位曲线获取析锂电位与充电倍率之间的关系;根据析锂电位与充电倍率之间的关系确定第一电位阈值。
在本公开一些示例中,在参比电极与表面电极之间的电位差小于第一电位阈值时,方法还包括:检测电芯的正极与参比电极之间的电位差;根据电芯的正极与参比电极之间的电位差生成电池加热电流调节指令,以便在充放电电池的自加热过程中根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。
在本公开一些示例中,根据电芯的正极与参比电极之间的电位差生成电池加热电流调节指令,包括:在电芯的正极与参比电极之间的电位差大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令;在电芯的正极与参比电极之间的电位差大于第四电位阈值且小于等于第三电位阈值时,根据第三电位阈值、以及电芯的正极与参比电极之间的电位差生成电池加热电流调节指令。
在本公开一些示例中,在电芯的正极与参比电极之间的电位差大于第四电位阈值且小于等于第三电位阈值时,根据以下公式确定电池加热电流调节指令对应的加热电流幅值:
I_ac=I_ac0*f(s2)*(VP-E_max),
其中,s2为第二安全参数,f(s2)为s2的函数,I_ac为加热电流幅值,I_ac0为初始加热电流幅值,VP为电芯的正极与参比电极之间的电位差,E_max为第三电位阈值。
根据本公开的计算机可读存储介质,其上存储有充放电电池的自加热控制程序,该充放电电池的自加热控制程序被处理器执行时实现上述的充放电电池的自加热控制方法。
根据本公开的计算机可读存储介质,检测参比电极与表面电极之间的电位差,根据参比电极与表面电极之间的电位差生成充电电流调节指令,在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节,能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
根据本公开的电池管理器,包括存储器、处理器及存储在存储器上并可在处理器上运行的充放电电池的自加热控制程序,处理器执行充放电电池的自加热控制程序时,实现上述的充放电电池的自加热控制方法。
根据本公开的电池管理器,能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
根据本公开的充放电电池的自加热控制系统,包括:参比电极,参比电极对应充放电电池中电芯的正极与负极之间的隔膜设置;表面电极,表面电极对应电芯的负极表面设置;电池管理器,电池管理器分别与参比电极和表面电极相连,电池管理器用于检测参比电极与表面电极之间的电位差,并根据参比电极与表面电极之间的电位差生成充电电流调节指令,以便在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节。
根据本公开的充放电电池的自加热控制系统,能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
在本公开一些示例中,参比电极与电芯的正极和负极之间电子绝缘,但离子导通,表面电极与电芯的负极之间直接接触电子导通。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的自加热控制方法的流程图;
图2是根据本公开实施例的电芯截面图;
图3是根据本公开实施例的正极、负极、隔膜、参比电极和表面电极配合示意图;
图4是根据本公开实施例的充放电电池的自加热控制的结构示意图;
图5是根据本公开实施例的电芯上具有电极引出的示意图;
图6是根据本公开实施例的电芯、电池管理器和绝缘栅双极型晶体管的连接示意图;
图7是根据本公开一个实施例的处理器、存储器、通信接口、通信总线的方框示意图。
附图标记:
参比电极10;
表面电极20;
电池管理器30;
电芯40;正极41;负极42;隔膜43;正极耳44;负极耳45;
绝缘栅双极型晶体管50;
处理器1201;通信接口1202;存储器1203;通信总线1204。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
下面参考图1-图7描述根据本公开实施例的充放电电池的自加热控制方法。
如图1-图7所示,根据本公开实施例的充放电电池的自加热控制方法,充放电电池包括电芯,电芯的正极与负极之间设置有隔膜,隔膜处对应设置有参比电极,电芯的负极表面对应设置有表面电极,其中,参比电极与电芯的正极和负极之间电子绝缘,但离子导通,表面电极与电芯的负极之间直接接触,作为稳定电极输出稳定的参比电势。进一步地,参比电极的制备材料可以由铜、铝、锂、磷酸铁锂、石墨烯、碳纳米管、银、氯化银等材料制成,但本公开不限于此,参比电极也可以由与上述材料起到相同作用的材料制成。进一步地,表面电极与负极直接接触,从而建立电子接触通道,表面电极不限于金属或非金属导体,表面电极的制备材料可以由石墨烯、碳纳米管、碳基二维材料或其他具有良好电子电导率的材料制成。
根据本公开实施例的自加热控制方法包括以下步骤:
S01,检测参比电极与表面电极之间的电位差。
需要说明的是,电池管理器分别与参比电极和表面电极相连,电池管理器用于检测参比电极与表面电极之间的电位差。进一步地,电池管理器可以检测电芯不同位置放置的参比电极与表面电极之间的电位差。
S02,根据参比电极与表面电极之间的电位差生成充电电流调节指令,以便在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节。
需要说明的是,电池管理器可以根据参比电极与表面电极之间的电位差生成充电电流调节指令,以便电池管理器在充放电电池的自加热过程中,根据充电电流调节指令对充放电电池的充电电流进行调节。
具体地,电池管理器检测出参比电极与表面电极之间的电位差后,根据参比电极与表面电极之间的电位差生成充电电流调节指令,电池管理器在充放电电池的自加热过程中,根据充电电流调节指令对充放电电池的充电电流进行调节。其中,电池管理器内可以存储有预置数据,电池管理器检测出参比电极与表面电极之间的电位差后,与预置数据进行对比,然后电池管理器生成充电电流调节指令,在充放电电池自加热过程中,通过在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节,能够动态调整充放电电池的充电电流,防止大幅值自加热电流可能引起的破坏电池正极活性材料和负极活性材料发生析锂的现象,从而可以避免电池发生析锂的现象,进而可以提升电池的循环寿命和安全性。
由此,通过上述充放电电池的自加热控制方法,能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
在本公开的一些实施例中,根据参比电极与表面电极之间的电位差生成充电电流调节指令,可以包括:在参比电极与表面电极之间的电位差小于第一电位阈值时,电池管理器生成充电电流幅值为零的充电电流调节指令。其中,在电芯的不同位置放置参比电极和表面电极时,电池管理器可以检测出多个电位差,当多个电位差中的任意一个小于第一电位 阈值时,电池管理器生成充电电流幅值为零的充电电流调节指令。在充放电电池自加热过程中,当充电电流幅值为零时,在热力学上充放电电池不可能析锂,在参比电极与表面电极之间的电位差小于第一电位阈值时,生成充电电流幅值为零的充电电流调节指令,对充放电电池的充电电流进行调节,使充放电电池的充电电流调节为零,主动减小充放电电池的充电电流,从而可以避免充放电电池发生析锂的现象。
进一步地,在参比电极与表面电极之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据第一电位阈值、以及参比电极与表面电极之间的电位差生成充电电流调节指令,从而避免充放电电池发生析锂的现象。其中,在电芯的不同位置放置参比电极和表面电极时,电池管理器可以检测出多个电位差,当多个电位差中的任意一个大于等于第一电位阈值且小于第二电位阈值时,根据第一电位阈值、以及参比电极与表面电极之间的电位差生成充电电流调节指令,从而避免充放电电池发生析锂的现象。
进一步地,在参比电极与表面电极之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据以下公式确定充电电流调节指令对应的充电电流幅值:
I_dc=I_dc0*f(s1)*(VN-E_plating),
其中,s1为第一安全参数,f(s1)为s1的函数,I_dc为充电电流幅值,I_dc0为初始充电电流幅值,VN为参比电极与表面电极之间的电位差,E_plating为第一电位阈值。需要说明的是,f(s1)为s1的函数取值可以在0-10之间,根据先期实验可设置为定值或查表确定,f(s1)取决于充放电电池本征充放电能力,在策略测试时通过实验确定具体数值,可以为一个定值也可以为一个函数,f(s1)总的趋势为充放电能力好的充放电电池,f(s1)取值大,充放电能力差的充放电电池,f(s1)取值小。在充放电电池自加热过程中,通过根据上述公式确定充电电流调节指令对应的充电电流幅值,能够有效避免充放电电池在充电过程中发生析锂现象,可以进一步提升电池的循环寿命和安全性。
在本公开的一些实施例中,第一电位阈值根据以下步骤确定:检测电芯的负极与参比电极之间的电位差,进一步地,可以检测参比电极与全部负极之间的电位差;根据电芯的负极与参比电极之间的电位差获取不同充电倍率下的负极电位曲线,并根据不同充电倍率下的负极电位曲线获取析锂电位与充电倍率之间的关系;根据析锂电位与充电倍率之间的关系确定第一电位阈值。这样设置能够准确确定第一电位阈值,能够有效避免充放电电池在充电过程中发生析锂现象,可以进一步提升电池的循环寿命和安全性。
在本公开的一些实施例中,在参比电极与表面电极之间的电位差大于等于第二电位阈值时,在这个条件下不对充放电电池进行加热控制,充放电电池的充电电流根据整车控制器的调整而调整。如此设置能够有效避免充放电电池在充电过程中发生析锂现象,可以进一步提升电池的循环寿命和安全性。
在本公开的一些实施例中,在参比电极与表面电极之间的电位差小于第一电位阈值时,自加热控制方法还可以包括:
S10,检测电芯的正极与参比电极之间的电位差,可以通过电池管理器检测电芯的正极与参比电极之间的电位差。
S20,根据电芯的正极与参比电极之间的电位差生成电池加热电流调节指令,以便在充放电电池的自加热过程中根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。电池管理器可以根据电芯的正极与参比电极之间的电位差生成电池加热电流调节指令,以便电池管理器在充放电电池的自加热过程中根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。
具体地,电池管理器检测出电芯的正极与参比电极之间的电位差后,电池管理器根据电芯的正极与参比电极之间的电位差生成电池加热电流调节指令,以便电池管理器在充放电电池的自加热过程中根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。其中,电池管理器内可以存储有预置数据,电池管理器检测出电芯的正极与参比电极之间的电位差,与预置数据进行对比,然后电池管理器生成电池加热电流调节指令,在充放电电池自加热过程中,根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节,能够实时调节充放电电池的加热电流幅值,可以使充放电电池加热均匀,可以防止大加热电流幅值电流引起的破坏充放电电池正极活性材料的现象发生,从而可以进一步地提升电池的循环寿命和安全性。
在本公开的一些实施例中,根据电芯的正极与参比电极之间的电位差生成电池加热电流调节指令,可以包括:在电芯的正极与参比电极之间的电位差大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令。其中,在电芯的不同位置放置参比电极和表面电极时,电池管理器可以检测出多个电位差,当多个电位差中的任意一个大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令。在充放电电池自加热过程中,在电芯的正极与参比电极之间的电位差大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令,对充放电电池的电池加热电流进行调节,使充放电电池的电池加热电流调节为零,主动减小充放电电池的加热电流,从而可以进一步避免大加热电流幅值电流引起的破坏充放电电池正极活性材料的现象发生,可以使充放电电池加热均匀,从而可以进一步地提升电池的循环寿命和安全性。
在电芯的正极与参比电极之间的电位差大于第四电位阈值且小于等于第三电位阈值时,根据第三电位阈值、以及电芯的正极与参比电极之间的电位差生成电池加热电流调节指令。在电芯的不同位置放置参比电极和表面电极时,电池管理器可以检测出多个电位差,当多个电位差中的任意一个大于第四电位阈值且小于等于第三电位阈值时,根据第三电位阈值、以及电芯的正极与参比电极之间的电位差生成电池加热电流调节指令。
在本公开的一些实施例中,在电芯的正极与参比电极之间的电位差大于第四电位阈值且小于等于第三电位阈值时,或者当多个电位差中的任意一个大于第四电位阈值且小于等于第三电位阈值时,根据以下公式确定电池加热电流调节指令对应的加热电流幅值:
I_ac=I_ac0*f(s2)*(VP-E_max),
其中,s2为第二安全参数,f(s2)为s2的函数,I_ac为加热电流幅值,I_ac0为初始加热电流幅值,VP为电芯的正极与参比电极之间的电位差,E_max为第三电位阈值。
需要说明的是,根据安全需求,f(s2)为s2的函数取值可以在0-10之间,根据先期实 验可设置为定值或查表确定。在充放电电池自加热过程中,通过根据上述公式确定电池加热电流调节指令调节充放电电池的加热电流幅值,可以使充放电电池加热均匀,从而可以进一步避免大加热电流幅值电流引起的破坏充放电电池正极活性材料的现象发生,进而可以进一步提升电池的循环寿命和安全性。
根据本公开实施例的计算机可读存储介质,其上存储有充放电电池的自加热控制程序,该充放电电池的自加热控制程序被处理器执行时实现上述实施例的充放电电池的自加热控制方法。
根据本公开实施例的计算机可读存储介质,检测参比电极与表面电极之间的电位差,根据参比电极与表面电极之间的电位差生成充电电流调节指令,在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节,能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
根据本公开实施例的电池管理器30,包括存储器1203、处理器1201及存储在存储器1203上并可在处理器1201上运行的充放电电池的自加热控制程序,处理器1201执行充放电电池的自加热控制程序时,实现上述实施例的充放电电池的自加热控制方法。
根据本公开实施例的电池管理器30,通过处理器1201执行存储器1203上存储的充放电电池的自加热控制程序,在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节,能够使电池加热均匀,可以避免电池发生析锂的现象,也可以提升电池的循环寿命和安全性。
如图7所示,该电池管理器30包括至少一个处理器1201,至少一个通信接口1202,至少一个存储器1203和至少一个通信总线1204;在本公开的实施例中,处理器1201、通信接口1202、存储器1203、通信总线1204的数量为至少一个,且处理器1201、通信接口1202、存储器1203通过通信总线1204完成相互间的通信。
其中,存储器1203可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。其中,存储器1203用于存储程序,处理器1201在接收到执行指令后,执行所述程序,实现上述实施例描述的空调控制方法的步骤。
处理器1201可能是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(NetworkProcessor,NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介 质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
如图1-图6所示,根据本公开实施例的充放电电池的自加热控制系统,自加热控制系统实现上述实施例的充放电电池的自加热控制方法。自加热控制系统包括:参比电极10、表面电极20和电池管理器30。参比电极10对应充放电电池中电芯40的正极41与负极42之间的隔膜43设置,表面电极20对应电芯40的负极42表面设置,进一步地,参比电极10的制备材料可以由铜、铝、锂、磷酸铁锂、石墨烯、碳纳米管、银、氯化银等材料制成,但本公开不限于此,参比电极10也可以由与上述材料起到相同作用的材料制成。进一步地,表面电极20与负极42直接接触,从而建立电子接触通道,表面电极20不限于金属或非金属导体,表面电极20的制备材料可以由石墨烯、碳纳米管、碳基二维材料或其他具有良好电子电导率的材料制成。
其中,电池管理器30为上述实施例的电池管理器30,电池管理器30分别与参比电极10和表面电极20相连,电池管理器30用于检测参比电极10与表面电极20之间的电位差,并根据参比电极10与表面电极20之间的电位差生成充电电流调节指令,以便在充放电电池的自加热过程中根据充电电流调节指令对充放电电池的充电电流进行调节。进一步地,电池管理器可以检测电芯不同位置放置的参比电极与表面电极之间的电位差。
具体地,电池管理器30检测出参比电极10与表面电极20之间的电位差后,根据参比电极10与表面电极20之间的电位差生成充电电流调节指令,电池管理器30在充放电电池的自加热过程中,根据充电电流调节指令对充放电电池的充电电流进行调节。其中,电池管理器30内可以存储有预置数据,电池管理器30检测出参比电极10与表面电极20之间的电位差后,与预置数据进行对比,然后电池管理器30生成充电电流调节指令,在充放电 电池自加热过程中,通过在充放电电池的自加热过程中,根据充电电流调节指令对充放电电池的充电电流进行调节,能够动态调整充放电电池的充电电流,防止大幅值自加热电流可能引起的破坏电池正极41活性材料和负极42活性材料发生析锂的现象,从而可以避免电池发生析锂的现象,进而可以提升电池的循环寿命和安全性。
在本公开的一些实施例中,参比电极10与电芯40的正极41和负极42之间电子绝缘,但离子导通,表面电极20与电芯40的负极42之间直接接触,作为稳定电极输出稳定的参比电势。
在本公开的一些实施例中,充放电电池内可以设置有多个电芯40,至少一个电芯40内可以设置有多个参比电极10和多个表面电极20,表面电极20与负极42之间直接接触,从而建立电子接触通道,探测电芯40局部表面电势。
在本公开的一些实施例中,电芯40可以设置有引出部位,引出部位用于引出表面电极20、参比电极10,从而使表面电极20、参比电极10与电池管理器30连接,便于电池管理器30检测参比电极10与表面电极20之间的电位差。
在本公开的一些实施例中,参比电极10和表面电极20的放置位置一般遵循温差最大点原则,参比电极10和表面电极20优选放置在充放电电池内温差较大的电芯40内,进一步地,参比电极10和表面电极20可以设置在电芯40中部位置,但本公开不限于此,参比电极10和表面电极20也可以设置在电芯40中远离外部热源的远端位置,或者参比电极10和表面电极20也可以设置在电芯40的底部位置。如此设置能够使参比电极10和表面电极20设置位置合理,可以避免电池发生析锂的现象,也可以使充放电电池加热均匀,进而可以提升电池的循环寿命和安全性。
在本公开的一些实施例中,自加热控制系统可以包括:绝缘栅双极型晶体管,绝缘栅双极型晶体管可根据外部输入,实时输出不同频率和幅值的加热电流信号。绝缘栅双极型晶体管可以与电池管理器30连接,绝缘栅双极型晶体管还可以与电芯40的正极耳44和负极耳45连接,电池管理器30根据预设策略,动态调整绝缘栅双极型晶体管向电芯40输出频率或电流幅值。
在本公开中,通过电池管理器30检测负极42与参比电极10之间、正极41与参比电极10之间的电位差,可以防止大幅值自加热电流可能引起的破坏电池正极41活性材料和负极42活性材料发生析锂的现象,保证电芯40的循环寿命和安全性能不受影响。并且,通过设置参比电极10和表面电极20,可以检测自加热时电芯40的局部电势分布。
需要说明的是,自加热技术的最大难题之一是,由于自加热的频率通常较高,因此会主要利用电子在金属导体(也既集流体)中的阻抗。又由于电芯40中电流密度沿着集流体方向通常成梯度分布。又由于,电池的集流体发热可以根据欧姆产热公式,写为Q=I 2*R,因此在靠近电芯40引出的位置,发热会非常严重,进而造成低温下的加热不均匀,冷端与热端温度可相差30–50摄氏度。因此,通过动态的探测电芯40局部的电势,特别是将参比电极10和表面电极20同时放置在容易析锂的电芯40中部和底部等远离热源处来探测到的局部电势,对于探测当前自加热条件是否具有显著风险具有重要的意义。
并且,参比电极10可以输出一个稳定的不受局部电势影响的标准电势,表面电极20可以输出一个变化的直接反应局部电势的表面电势。通过检测负极42与参比电极10之间电位差,可以防止电芯40发生析锂。通过检测正极41与参比电极10之间电位差,可以防止大幅值自加热电流可能引起的破坏电池正极41活性材料的现象,当监测到正极41电位高于或低于预设区间时,自动降低自加热幅值,直到探测信号低于预设的阈值。
参比电极10:一般用具有稳定电化学反应对的材料制备,其电势一般不受周围环境和状态影响,可用于输出稳定的参考电位。
表面电极20:本公开中的表面电极20,特指具有电子导通性的导体,其与正极41或者负极42的活性物质接触后,其电势会自动与正极41或负极42的费米能级保持一致,从而达到动态探测活性材料的电化学势的目的。
在本公开的一些实施例中,根据参比电极10与表面电极20之间的电位差生成充电电流调节指令,可以包括:在参比电极10与表面电极20之间的电位差小于第一电位阈值时,电池管理器30生成充电电流幅值为零的充电电流调节指令。其中,在电芯40的不同位置放置参比电极10和表面电极20时,电池管理器30可以检测出多个电位差,当多个电位差中的任意一个小于第一电位阈值时,电池管理器30生成充电电流幅值为零的充电电流调节指令。在充放电电池自加热过程中,充电电流幅值为零时,在热力学上充放电电池不可能析锂,在参比电极10与表面电极20之间的电位差小于第一电位阈值时,生成充电电流幅值为零的充电电流调节指令,对充放电电池的充电电流进行调节,使充放电电池的充电电流调节为零,主动减小充放电电池的充电电流,从而可以避免充放电电池发生析锂的现象。
进一步地,在参比电极10与表面电极20之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据第一电位阈值、以及参比电极10与表面电极20之间的电位差生成充电电流调节指令,从而避免充放电电池发生析锂的现象。其中,在电芯40的不同位置放置参比电极10和表面电极20时,电池管理器30可以检测出多个电位差,当多个电位差中的任意一个大于等于第一电位阈值且小于第二电位阈值时,根据第一电位阈值、以及参比电极10与表面电极20之间的电位差生成充电电流调节指令,从而避免充放电电池发生析锂的现象。
进一步地,在参比电极10与表面电极20之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据以下公式确定充电电流调节指令对应的充电电流幅值:
I_dc=I_dc0*f(s1)*(VN-E_plating),
其中,s1为第一安全参数,f(s1)为s1的函数,I_dc为充电电流幅值,I_dc0为初始充电电流幅值,VN为参比电极10与表面电极20之间的电位差,E_plating为第一电位阈值。需要说明的是,f(s1)为s1的函数取值可以在0-10之间,根据先期实验可设置为定值或查表确定,f(s1)取决于充放电电池本征充放电能力,在策略测试时通过实验确定具体数值,可以为一个定值也可以为一个函数,f(s1)总的趋势为充放电能力好的充放电电池,f(s1)取值大,充放电能力差的充放电电池,f(s1)取值小。在充放电电池自加热过程中,通过根据上述公式确定充电电流调节指令对应的充电电流幅值,能够有效避免充放电电池 在充电过程中发生析锂现象,可以进一步提升电池的循环寿命和安全性。
在本公开的一些实施例中,第一电位阈值根据以下步骤确定:检测电芯40的负极42与参比电极10之间的电位差,进一步地,可以检测参比电极10与全部负极42之间的电位差;根据电芯40的负极42与参比电极10之间的电位差获取不同充电倍率下的负极42电位曲线,并根据不同充电倍率下的负极42电位曲线获取析锂电位与充电倍率之间的关系;根据析锂电位与充电倍率之间的关系确定第一电位阈值。这样设置能够准确确定第一电位阈值,能够有效避免充放电电池在充电过程中发生析锂现象,可以进一步提升电池的循环寿命和安全性。
在本公开的一些实施例中,在参比电极10与表面电极20之间的电位差大于等于第二电位阈值时,在这个条件下不对充放电电池进行加热控制,充放电电池的充电电流根据整车控制器的调整而调整。如此设置能够有效避免充放电电池在充电过程中发生析锂现象,可以进一步提升电池的循环寿命和安全性。
在本公开的一些实施例中,在参比电极10与表面电极20之间的电位差小于第一电位阈值时,自加热控制方法还可以包括:
S10,检测电芯40的正极41与参比电极10之间的电位差,可以通过电池管理器30检测电芯40的正极41与参比电极10之间的电位差。
S20,根据电芯40的正极41与参比电极10之间的电位差生成电池加热电流调节指令,以便在充放电电池的自加热过程中根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。电池管理器30可以根据电芯40的正极41与参比电极10之间的电位差生成电池加热电流调节指令,以便电池管理器30在充放电电池的自加热过程中根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。
具体地,电池管理器30检测出电芯40的正极41与参比电极10之间的电位差后,电池管理器30根据电芯40的正极41与参比电极10之间的电位差生成电池加热电流调节指令,以便电池管理器30在充放电电池的自加热过程中,根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节。其中,电池管理器30内可以存储有预置数据,电池管理器30检测出电芯40的正极41与参比电极10之间的电位差与预置数据进行对比,然后电池管理器30生成电池加热电流调节指令,在充放电电池自加热过程中,根据电池加热电流调节指令对充放电电池的加热电流幅值进行调节,能够实时调节充放电电池的加热电流幅值,可以使充放电电池加热均匀,可以防止大加热电流幅值电流引起的破坏充放电电池正极41活性材料的现象发生,从而可以进一步地提升电池的循环寿命和安全性。
在本公开的一些实施例中,根据电芯40的正极41与参比电极10之间的电位差生成电池加热电流调节指令,可以包括:在电芯40的正极41与参比电极10之间的电位差大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令。其中,在电芯40的不同位置放置参比电极10和表面电极20时,电池管理器30可以检测出多个电位差,当多个电位差中的任意一个大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令。在充放电电池自加热过程中,在电芯40的正极41与参比电极10之间的电位差大于第三电 位阈值时,生成加热电流幅值为零的电池加热电流调节指令,对充放电电池的电池加热电流进行调节,使充放电电池的电池加热电流调节为零,主动减小充放电电池的加热电流,从而可以进一步避免大加热电流幅值电流引起的破坏充放电电池正极41活性材料的现象发生,可以使充放电电池加热均匀,从而可以进一步地提升电池的循环寿命和安全性。
在电芯40的正极41与参比电极10之间的电位差大于第四电位阈值且小于等于第三电位阈值时,根据第三电位阈值、以及电芯的正极41与参比电极10之间的电位差生成电池加热电流调节指令。在电芯的不同位置放置参比电极10和表面电极20时,电池管理器可以检测出多个电位差,当多个电位差中的任意一个大于第四电位阈值且小于等于第三电位阈值时,根据第三电位阈值、以及电芯40的正极41与参比电极10之间的电位差生成电池加热电流调节指令。
在本公开的一些实施例中,在电芯40的正极41与参比电极10之间的电位差大于第四电位阈值且小于等于第三电位阈值时,或者当多个电位差中的任意一个大于第四电位阈值且小于等于第三电位阈值时,根据以下公式确定电池加热电流调节指令对应的加热电流幅值:
I_ac=I_ac0*f(s2)*(VP-E_max),
其中,s2为第二安全参数,f(s2)为s2的函数,I_ac为加热电流幅值,I_ac0为初始加热电流幅值,VP为电芯40的正极41与参比电极10之间的电位差,E_max为第三电位阈值。
需要说明的是,根据安全需求,f(s2)为s2的函数取值可以在0-10之间,根据先期实验可设置为定值或查表确定。在充放电电池自加热过程中,通过根据上述公式确定电池加热电流调节指令调节充放电电池的加热电流幅值,可以使充放电电池加热均匀,从而可以进一步避免大加热电流幅值电流引起的破坏充放电电池正极41活性材料的现象发生,进而可以进一步提升电池的循环寿命和安全性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (11)

  1. 充放电电池的自加热控制方法,所述充放电电池包括电芯(40),所述电芯的正极(41)与负极(42)之间设有隔膜(43),所述隔膜处对应设有参比电极(10),所述电芯的负极表面对应设有表面电极(20),所述方法包括:
    检测所述参比电极与所述表面电极之间的电位差;及
    根据所述参比电极与所述表面电极之间的电位差生成充电电流调节指令,以便在所述充放电电池的自加热过程中根据所述充电电流调节指令对所述充放电电池的充电电流进行调节。
  2. 根据权利要求1所述的充放电电池的自加热控制方法,其中,根据所述参比电极与所述表面电极之间的电位差生成充电电流调节指令,包括:
    在所述参比电极与所述表面电极之间的电位差小于第一电位阈值时,生成充电电流幅值为零的充电电流调节指令;
    在所述参比电极与所述表面电极之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据所述第一电位阈值、以及所述参比电极与所述表面电极之间的电位差生成所述充电电流调节指令。
  3. 根据权利要求2所述的充放电电池的自加热控制方法,其中,在所述参比电极与所述表面电极之间的电位差大于等于第一电位阈值且小于第二电位阈值时,根据以下公式确定所述充电电流调节指令对应的充电电流幅值:
    I_dc=I_dc0*f(s1)*(VN-E_plating),
    其中,s1为第一安全参数,f(s1)为s1的函数,I_dc为所述充电电流幅值,I_dc0为初始充电电流幅值,VN为所述参比电极与所述表面电极之间的电位差,E_plating为所述第一电位阈值。
  4. 根据权利要求1-3所述的充放电电池的自加热控制方法,其中,所述第一电位阈值根据以下步骤确定:
    检测所述电芯的负极与所述参比电极之间的电位差;
    根据所述电芯的负极与所述参比电极之间的电位差获取不同充电倍率下的负极电位曲线,并根据不同充电倍率下的负极电位曲线获取析锂电位与充电倍率之间的关系;
    根据所述析锂电位与充电倍率之间的关系确定所述第一电位阈值。
  5. 根据权利要求2-3所述的充放电电池的自加热控制方法,其中,在所述参比电极与所述表面电极之间的电位差小于第一电位阈值时,所述方法还包括:
    检测所述电芯的正极与所述参比电极之间的电位差;
    根据所述电芯的正极与所述参比电极之间的电位差生成电池加热电流调节指令,以便在所述充放电电池的自加热过程中根据所述电池加热电流调节指令对所述充放电电池的加热电流幅值进行调节。
  6. 根据权利要求1-5所述的充放电电池的自加热控制方法,其中,根据所述电芯的正极与所述参比电极之间的电位差生成电池加热电流调节指令,包括:
    在所述电芯的正极与所述参比电极之间的电位差大于第三电位阈值时,生成加热电流幅值为零的电池加热电流调节指令;
    在所述电芯的正极与所述参比电极之间的电位差大于第四电位阈值且小于等于第三电位阈值时,根据所述第三电位阈值、以及所述电芯的正极与所述参比电极之间的电位差生成所述电池加热电流调节指令。
  7. 根据权利要求6所述的充放电电池的自加热控制方法,其中,在所述电芯的正极与所述参比电极之间的电位差大于第四电位阈值且小于等于第三电位阈值时,根据以下公式确定所述电池加热电流调节指令对应的加热电流幅值:
    I_ac=I_ac0*f(s2)*(VP-E_max),
    其中,s2为第二安全参数,f(s2)为s2的函数,I_ac为所述加热电流幅值,I_ac0为初始加热电流幅值,VP为所述电芯的正极与所述参比电极之间的电位差,E_max为所述第三电位阈值。
  8. 计算机可读存储介质,其上存储有充放电电池的自加热控制程序,该充放电电池的自加热控制程序被处理器执行时实现如权利要求1-7中任一项所述的充放电电池的自加热控制方法。
  9. 电池管理器,包括存储器(1203)、处理器(1201)及存储在存储器上并可在处理器上运行的充放电电池的自加热控制程序,所述处理器执行所述充放电电池的自加热控制程序时,实现根据权利要求1-7中任一项所述的充放电电池的自加热控制方法。
  10. 充放电电池的自加热控制系统,包括:
    参比电极,所述参比电极对应所述充放电电池中电芯的正极与负极之间的隔膜设置;
    表面电极,所述表面电极对应所述电芯的负极表面设置;
    电池管理器,所述电池管理器分别与所述参比电极和所述表面电极相连,所述电池管理器用于检测所述参比电极与所述表面电极之间的电位差,并根据所述参比电极与所述表面电极之间的电位差生成充电电流调节指令,以便在所述充放电电池的自加热过程中根据所述充电电流调节指令对所述充放电电池的充电电流进行调节。
  11. 根据权利要求10所述的充放电电池的自加热控制系统,其中,所述参比电极与所述电芯的正极和负极之间电子绝缘,但离子导通,所述表面电极与所述电芯的负极之间直接接触电子导通。
PCT/CN2022/101475 2021-09-14 2022-06-27 充放电电池的自加热控制方法以及自加热控制系统 WO2023040405A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22868782.8A EP4345988A1 (en) 2021-09-14 2022-06-27 Self-heating control method and self-heating control system of charging and discharging battery
KR1020237042434A KR20240005921A (ko) 2021-09-14 2022-06-27 충전 및 방전 배터리의 자체-가열 제어 방법 및 자체-가열 제어 시스템
US18/532,313 US20240128537A1 (en) 2021-09-14 2023-12-07 Self-heating control method and self-heating control system of charging and discharging battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111074668.7 2021-09-14
CN202111074668.7A CN115810834A (zh) 2021-09-14 2021-09-14 充放电电池的自加热控制方法以及自加热控制系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/532,313 Continuation US20240128537A1 (en) 2021-09-14 2023-12-07 Self-heating control method and self-heating control system of charging and discharging battery

Publications (1)

Publication Number Publication Date
WO2023040405A1 true WO2023040405A1 (zh) 2023-03-23

Family

ID=85481503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101475 WO2023040405A1 (zh) 2021-09-14 2022-06-27 充放电电池的自加热控制方法以及自加热控制系统

Country Status (5)

Country Link
US (1) US20240128537A1 (zh)
EP (1) EP4345988A1 (zh)
KR (1) KR20240005921A (zh)
CN (1) CN115810834A (zh)
WO (1) WO2023040405A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275949A (ja) * 1987-05-08 1988-11-14 Ngk Insulators Ltd 電気化学的装置
JP2013175417A (ja) * 2012-02-27 2013-09-05 Nippon Soken Inc リチウムイオン二次電池及びその充電制御方法
JP2014075285A (ja) * 2012-10-04 2014-04-24 Lithium Ion Battery Technology And Evaluation Center リチウム二次電池の電極電位測定装置およびこれを用いた電極電位の測定方法
CN112186307A (zh) * 2020-11-03 2021-01-05 中车青岛四方机车车辆股份有限公司 一种锂电池加热装置及加热方法
CN112216908A (zh) * 2020-11-13 2021-01-12 东风柳州汽车有限公司 一种锂离子电池包自加热方法及系统
CN112433159A (zh) * 2020-11-11 2021-03-02 北京理工大学 一种锂离子电池石墨负极析锂的检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275949A (ja) * 1987-05-08 1988-11-14 Ngk Insulators Ltd 電気化学的装置
JP2013175417A (ja) * 2012-02-27 2013-09-05 Nippon Soken Inc リチウムイオン二次電池及びその充電制御方法
JP2014075285A (ja) * 2012-10-04 2014-04-24 Lithium Ion Battery Technology And Evaluation Center リチウム二次電池の電極電位測定装置およびこれを用いた電極電位の測定方法
CN112186307A (zh) * 2020-11-03 2021-01-05 中车青岛四方机车车辆股份有限公司 一种锂电池加热装置及加热方法
CN112433159A (zh) * 2020-11-11 2021-03-02 北京理工大学 一种锂离子电池石墨负极析锂的检测方法
CN112216908A (zh) * 2020-11-13 2021-01-12 东风柳州汽车有限公司 一种锂离子电池包自加热方法及系统

Also Published As

Publication number Publication date
EP4345988A1 (en) 2024-04-03
KR20240005921A (ko) 2024-01-12
US20240128537A1 (en) 2024-04-18
CN115810834A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN109449541B (zh) 锂离子电池变频变幅交流低温自加热方法
WO2021089007A1 (zh) 电池加热系统、电动汽车和车载系统
TWI621320B (zh) 充電方法、電源轉換器、行動裝置及充電系統
WO2017034135A1 (ko) 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템
Rajagopalan Kannan et al. Analysis of the separator thickness and porosity on the performance of lithium-ion batteries
CN111554879A (zh) 一种正极片、正极片的制作方法及电池
CN103117382B (zh) 一种能提高安全性能的锂离子电池负极材料的制备方法
TW201605110A (zh) 負極極板
CN106129347B (zh) 多孔硅复合负极材料及其制备方法和锂离子电池
CN202905856U (zh) 一种锂离子二次电池负极极片
CN112688022A (zh) 一种快速充放锂离子电池及其制备方法
CN112820852A (zh) 一种负极片和锂离子电池
US20230023717A1 (en) Control method and apparatus for traction battery, vehicle, medium, and device
KR20180125721A (ko) 이차전지 전극 건조오븐 제어 자동화 시스템
WO2023040405A1 (zh) 充放电电池的自加热控制方法以及自加热控制系统
CN106784582A (zh) 适用于大倍率放电的锂离子电池以及极片
US20240021786A1 (en) Method for preparing positive electrode plate, and positive electrode plate and battery having same
CN206564290U (zh) 集流体及电池
CN212113877U (zh) 锂离子电池正负极片结构及锂离子电池
JP2013175417A (ja) リチウムイオン二次電池及びその充電制御方法
CN208256852U (zh) 一种固态锂离子电池及电池系统
CN206059514U (zh) 一种铜基锂片负极聚合物锂电池
JP2021514518A (ja) 内部加熱装置を備えたリチウムイオン電池
CN114006062A (zh) 一种锂离子电池的充电方法、装置、介质和车辆
CN102570551A (zh) 带散热功能的电池组均衡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237042434

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042434

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022868782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022868782

Country of ref document: EP

Effective date: 20231228